
GE
Intelligent Platforms

Programmable Control Products

PACSystems*
RX3i and RX7i

CPU Reference Manual, GFK-2222S

July 2013

 GFL-002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,

currents, temperatures, or other conditions that could cause personal injury exist in this

equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment,

a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note: Notes merely call attention to information that is especially significant to

understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts
have been made to be accurate, the information contained herein does not purport to cover all
details or variations in hardware or software, nor to provide for every possible contingency in
connection with installation, operation, or maintenance. Features may be described herein
which are not present in all hardware and software systems. GE Intelligent Platforms assumes
no obligation of notice to holders of this document with respect to changes subsequently made.

GE Intelligent Platforms makes no representation or warranty, expressed, implied, or statutory
with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or
usefulness of the information contained herein. No warranties of merchantability or fitness for
purpose shall apply.

* indicates a trademark of GE Intelligent Platforms, Inc. and/or its affiliates. All other
trademarks are the property of their respective owners.

©Copyright 2013 GE Intelligent Platforms, Inc.
All Rights Reserved

Contact Information

iii PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

If you purchased this product through an Authorized Channel Partner, please contact the seller

directly.

General Contact Information

Online technical support and

GlobalCare

http://www.ge-ip.com/support

Additional information http://www.ge-ip.com/

Solution Provider solutionprovider.ip@ge.com

Technical Support

If you have technical problems that cannot be resolved with the information in this guide, please

contact us by telephone or email, or on the web at www.ge-ip.com/support

Americas

Online Technical Support www.ge-ip.com/support

Phone 1-800-433-2682

International Americas Direct Dial 1-780-420-2010 (if toll free 800 option is unavailable)

Technical Support Email support.ip@ge.com

Customer Care Email customercare.ip@ge.com

Primary language of support English

Europe, the Middle East, and Africa

Online Technical Support www.ge-ip.com/support

Phone +800-1-433-2682

EMEA Direct Dial +420-23-901-5850 (if toll free 800 option is unavailable or

dialing from a mobile telephone)

Technical Support Email support.emea.ip@ge.com

Customer Care Email customercare.emea.ip@ge.com

Primary languages of support English, French, German, Italian, Czech, Spanish

Asia Pacific

Online Technical Support www.ge-ip.com/support

Phone +86-400-820-8208

+86-21-3217-4826 (India, Indonesia, and Pakistan)

Technical Support Email support.cn.ip@ge.com (China)

support.jp.ip@ge.com (Japan)

support.in.ip@ge.com (remaining Asia customers)

Customer Care Email customercare.apo.ip@ge.com

customercare.cn.ip@ge.com (China)

Contents

GFK-2222S v

Introduction ... 1-1

Revisions in this Manual ... 1-2

PACSystems Control System Overview ... 1-3
Programming and Configuration .. 1-3
Process Systems ... 1-3
PACSystems CPU Models ... 1-4

Common CPU Features ... 1-5
Firmware Storage in Flash Memory ... 1-5
Operation, Protection, and Module Status ... 1-6
Ethernet Global Data .. 1-6
RX3i Overview ... 1-7
RX7i Overview ... 1-8

Migrating Series 90 Applications to PACSystems .. 1-9

PACSystems Documentation ... 1-10

CPU Features and Specifications .. 2-1

RX3i Features and Specifications ... 2-2
CPU310 .. 2-2
CPU315 and CPU320/CRU320 ... 2-5
CPE305 and CPE310 .. 2-10

RX7i Features and Specifications ... 2-24
CPE010, CPE020 and CRE020 ... 2-24
CPE030/CRE030 and CPE040/CRE040 ... 2-27
RX7i Embedded Ethernet Interface ... 2-30

CPU Configuration .. 3-1

Configuring the CPU ... 3-1

Configuration Parameters ... 3-2
Settings Parameters ... 3-2
Modbus TCP Address Map .. 3-4
Scan Parameters ... 3-5
Memory Parameters ... 3-7
Fault Parameters .. 3-9
Redundancy Parameters (Redundancy CPUs Only) ... 3-11
Transfer List ... 3-11
Port 1 and Port 2 Parameters .. 3-11
Scan Sets Parameters ... 3-15
Power Consumption Parameters ... 3-15
Access Control ... 3-16

Setting a Temporary IP Address ... 3-17

Storing (Downloading) Hardware Configuration ... 3-19

Configuring the Embedded Ethernet Interface ... 3-20

Contents

vi PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

CPU Operation .. 4-1

CPU Sweep .. 4-2
Parts of the CPU Sweep .. 4-3
CPU Sweep Modes .. 4-6

Program Scheduling Modes ... 4-9

Window Modes ... 4-9

Data Coherency in Communications Windows .. 4-9

Run/Stop Operations .. 4-10
CPU Stop Modes ... 4-10
Stop-to-Run Mode Transition ... 4-11
Run/Stop Mode Switch Operation .. 4-12

Flash Memory Operation .. 4-13

Logic/Configuration Source and CPU Operating Mode at Power-up 4-14

Clocks and Timers .. 4-16
Elapsed Time Clock ... 4-16
Time-of-Day Clock ... 4-16
Watchdog Timer ... 4-18

System Security .. 4-20
Passwords and Privilege Levels - Legacy Mode ... 4-20
OEM Protection – Legacy Mode .. 4-22
Enhanced Security for Passwords and OEM Protection 4-23
Legacy/Enhanced Security Comparison .. 4-24

PACSystems I/O System .. 4-25
I/O Configuration .. 4-25
Genius I/O .. 4-27
Genius Global Data Communications .. 4-28
I/O System Diagnostic Data Collection .. 4-28

Power-Up and Power-Down Sequences .. 4-30
Power-Up Sequence .. 4-30
Power-Down Sequence ... 4-31
Retention of Data Memory Across Power Failure .. 4-32

Program Organization .. 5-1

Structure of a PACSystems Application Program .. 5-1
Blocks ... 5-1
Functions and Function Blocks .. 5-1
How Blocks Are Called ... 5-2
Nested Calls ... 5-2
Types of Blocks .. 5-3
Local Data .. 5-13
Parameter Passing Mechanisms ... 5-14
Languages.. 5-16

Controlling Program Execution ... 5-19

 Contents

GFK-2222S Contents vii

Interrupt-Driven Blocks ... 5-19
Interrupt Handling ... 5-20
Timed Interrupts ... 5-21
I/O Interrupts .. 5-21
Module Interrupts ... 5-21
Interrupt Block Scheduling ... 5-22

Program Data .. 6-1

Variables ... 6-2
Mapped Variables .. 6-2
Symbolic Variables ... 6-2
I/O Variables .. 6-3
Arrays ... 6-6
Variable Indexes and Arrays .. 6-6
Ensuring that a Variable Index Does not Exceed the Upper Boundary of an Array 6-8

Reference Memory ... 6-9
Word (Register) References .. 6-9
Bit (Discrete) References ... 6-11

User Reference Size and Default ... 6-12
%G User References and CPU Memory Locations ... 6-12

Genius Global Data... 6-13

Transitions and Overrides ... 6-13

Retentiveness of Logic and Data .. 6-14

Data Scope ... 6-15

System Status References ... 6-16
%S References .. 6-16
%SA, %SB, and %SC References .. 6-17
Fault References .. 6-19

How Program Functions Handle Numerical Data ... 6-21
Data Types ... 6-21
Floating Point Numbers .. 6-23

User Defined Types .. 6-25
Working with UDTs .. 6-25
UDT Properties .. 6-25
UDT Limits.. 6-26
Run Mode Store of UDTs ... 6-26
UDT Operational Notes .. 6-27

Operands for Instructions ... 6-28

Word-for-Word Changes ... 6-30

Contents

viii PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Ladder Diagram Programming ... 7-1

Advanced Math Functions .. 7-2
Exponential/Logarithmic Functions .. 7-3
Square Root ... 7-4
Trig Functions .. 7-5
Inverse Trig – ASIN, ACOS, and ATAN ... 7-6

Bit Operation Functions .. 7-7
Data Lengths for the Bit Operation Functions .. 7-8
Bit Position ... 7-9
Bit Sequencer ... 7-10
Bit Set, Clear .. 7-13
Bit Test ... 7-14
Logical AND, Logical OR, and Logical XOR .. 7-15
Logical NOT ... 7-18
Masked Compare ... 7-19
Rotate Bits .. 7-22
Shift Bits ... 7-23

Coils .. 7-25
Coil Checking ... 7-25
Graphical Representation of Coils ... 7-25
Set, Reset Coil ... 7-26
Transition Coils .. 7-28

Contacts .. 7-33
Continuation Contact .. 7-34
Fault Contact .. 7-34
High and Low Alarm Contacts.. 7-35
No Fault Contact .. 7-35
Normally Closed and Normally Open Contacts ... 7-36
Transition Contacts .. 7-37

Control Functions .. 7-43
Do I/O ... 7-44
Edge Detectors .. 7-47
Drum ... 7-49
For Loop ... 7-53
Mask I/O Interrupt .. 7-56
Read Switch Position ... 7-57
Scan Set IO .. 7-58
Suspend I/O ... 7-60
Suspend or Resume I/O Interrupt .. 7-62

Conversion Functions ... 7-63
Convert Angles ... 7-64
Convert UINT or INT to BCD4 ... 7-64
Convert DINT to BCD8 ... 7-65
Convert BCD4, UINT, DINT, or REAL to INT ... 7-66

 Contents

GFK-2222S Contents ix

Convert BCD4, INT, DINT, or REAL to UINT ... 7-68
Convert BCD8, UINT, INT, REAL or LREAL to DINT .. 7-70
Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL 7-72
Convert REAL to LREAL .. 7-74
Convert DINT to LREAL ... 7-74
Truncate ... 7-75

Counters ... 7-76
Down Counter .. 7-77
Up Counter ... 7-78

Data Move Functions .. 7-80
Array Size ... 7-82
Array Size Dimension Function Blocks .. 7-83
Block Clear ... 7-85
Block Move ... 7-86
BUS_ Functions ... 7-87
Communication Request .. 7-93
Data Initialization .. 7-98
Data Initialize ASCII ... 7-99
Data Initialize Communications Request ... 7-100
Data Initialize DLAN ... 7-100
Move ... 7-101
Move Data .. 7-103
Move Data Explicit ... 7-104
Move From Flat .. 7-105
Operation.. 7-105
Move to Flat ... 7-107
Shift Register .. 7-109
Size Of .. 7-111
Swap .. 7-112

Data Table Functions .. 7-113
Array Move ... 7-115

Math Functions ... 7-131
Absolute Value ... 7-132
Add ... 7-133
Divide ... 7-135
Modulus .. 7-136
Multiply ... 7-137
Scale .. 7-139
Subtract .. 7-140

Program Flow Functions ... 7-141
Argument Present .. 7-141
Call ... 7-143
Comment .. 7-146
Jump ... 7-147

Contents

x PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Master Control Relay/End Master Control Relay ... 7-148
Wires .. 7-150

Relational Functions ... 7-151
Compare... 7-152
Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than ... 7-153
EQ_DATA... 7-154
Range ... 7-155

Timers ... 7-156
Timed Contacts .. 7-156
Timer Function Blocks .. 7-157
Built-In Timer Function Blocks ... 7-157
Standard Timer Function Blocks .. 7-169

Function Block Diagram ... 8-1

Advanced Math Functions .. 8-2
EXPT Function ... 8-3

Bit Operation Functions .. 8-4
Logical AND, Logical OR, and Logical XOR .. 8-6
Logical NOT ... 8-8

Comments ... 8-9
Text Block... 8-9

Comparison Functions .. 8-10
Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than 8-12

Control Functions .. 8-13

Counters ... 8-15

Data Move Functions .. 8-16
Fan Out .. 8-19
Move Data .. 8-20

Math Functions ... 8-22
Add ... 8-24
Divide ... 8-25
Modulus .. 8-26
Multiply ... 8-27
Negate .. 8-28
Subtract .. 8-29

Program Flow Functions ... 8-30

Timers ... 8-31
Built-in Timer Function Blocks.. 8-31
Standard Timer Function Blocks .. 8-32

Type Conversion Functions .. 8-33
Convert WORD to INT ... 8-35
Convert WORD to UINT ... 8-36
Convert DWORD to DINT .. 8-36
Convert INT or UINT to WORD .. 8-37
Convert DINT to DWORD .. 8-37

 Contents

GFK-2222S Contents xi

Service Request Function .. 9-1

Operation of SVC_REQ Function ... 9-3
Ladder Diagram ... 9-3
Function Block Diagram ... 9-4

SVC_REQ 1: Change/Read Constant Sweep Timer .. 9-5

SVC_REQ 2: Read Window Modes and Time Values ... 9-7

SVC_REQ 3: Change Controller Communications Window Mode 9-8

SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value 9-9

SVC_REQ 5: Change Background Task Window Mode and Timer Value 9-10

SVC_REQ 6: Change/Read Number of Words to Checksum .. 9-11

SVC_REQ 7: Read or Change the Time-of-Day Clock .. 9-13
Parameter Block Formats .. 9-13

SVC_REQ 8: Reset Watchdog Timer ... 9-20

SVC_REQ 9: Read Sweep Time from Beginning of Sweep... 9-21

SVC_REQ 10: Read Target Name ... 9-22

SVC_REQ 11: Read Controller ID .. 9-23

SVC_REQ 12: Read Controller Run State ... 9-24

SVC_REQ 13: Shut Down (Stop) CPU... 9-25

SVC_REQ 14: Clear Controller or I/O Fault Table ... 9-26

SVC_REQ 15: Read Last-Logged Fault Table Entry ... 9-27

SVC_REQ 16: Read Elapsed Time Clock .. 9-30

SVC_REQ 17: Mask/Unmask I/O Interrupt .. 9-32
Masking/Unmasking Module Interrupts .. 9-32

SVC_REQ 18: Read I/O Forced Status .. 9-34

SVC_REQ 19: Set Run Enable/Disable ... 9-35

SVC_REQ 20: Read Fault Tables .. 9-36
Non-Extended Formats .. 9-36
Extended Formats .. 9-38
SVC_REQ 20 Examples .. 9-40

SVC_REQ 21: User-Defined Fault Logging ... 9-41

SVC_REQ 22: Mask/Unmask Timed Interrupts ... 9-43

SVC_REQ 23: Read Master Checksum ... 9-44

SVC_REQ 24: Reset Module ... 9-45

SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums 9-46

SVC_REQ 29: Read Elapsed Power Down Time .. 9-47

SVC_REQ 32: Suspend/Resume I/O Interrupt ... 9-48

SVC_REQ 45: Skip Next I/O Scan ... 9-50

SVC_REQ 50: Read Elapsed Time Clock .. 9-51

SVC_REQ 51: Read Sweep Time from Beginning of Sweep .. 9-53

SVC_REQ 56: Logic Driven Read of Nonvolatile Storage ... 9-54
Parameter Block ... 9-55
SVC_REQ 56 Example .. 9-58

Contents

xii PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

SVC_REQ 57: Logic Driven Write to Nonvolatile Storage.. 9-59
Parameter Block for SVC_REQ 57 .. 9-63
SVC_REQ 57 Example .. 9-65

PID Built-in Function Block .. 10-1

Operands of the PID Function .. 10-2
Operands for LD Version of PID Function Block.. 10-2
Operands for FBD Version of PID Function Block ... 10-3

Reference Array for the PID Function... 10-4
Scaling Input and Outputs .. 10-4
Reference Array Parameters ... 10-5

Operation of the PID Function .. 10-10
Automatic Operation .. 10-10
Manual Operation ... 10-10
Time Interval for the PID Function ... 10-11

PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations 10-12
Derivative Term .. 10-13
Error Term Mode .. 10-13
Derivative Action on PV Bit .. 10-13
Combined Operation of Error Term and Derivative Action Modes 10-13
CV Bias Term ... 10-14
CV Amplitude and Rate Limits ... 10-14
Sample Period and PID Function Block Scheduling .. 10-15

Determining the Process Characteristics ... 10-16

Setting Tuning Loop Gains ... 10-17
Basic Iterative Tuning Approach .. 10-17
Setting Loop Gains Using the Ziegler and Nichols Tuning Approach 10-17
Ideal Tuning Method .. 10-18

Example .. 10-19

Structured Text Programming ... 11-1

Language Overview .. 11-1
Statements ... 11-1
Expressions .. 11-1
Operators ... 11-2
Structured Text Syntax ... 11-3

Statement Types ... 11-4
Assignment Statement ... 11-5
Function Call .. 11-5
RETURN Statement ... 11-9
IF Statement ... 11-10
CASE Statement .. 11-11
FOR … DO Statements ... 11-13
WHILE Statement .. 11-15
REPEAT Statement ... 11-16

 Contents

GFK-2222S Contents xiii

ARG_PRES Statement .. 11-17
Exit Statement .. 11-18

Communications ... 12-1

Ethernet Communications .. 12-2
Embedded Ethernet Interface .. 12-2
Ethernet Interface Modules .. 12-3

Serial Communications ... 12-4
Serial Port Communications Capabilities ... 12-4
Configurable Stop Mode Protocols .. 12-5
Serial Port Pin Assignments... 12-5
Serial Port Baud Rates ... 12-8

Series 90-70 Communications and Intelligent Option Modules 12-9
Communications Coprocessor Module (CMM) .. 12-9
Programmable Coprocessor Module (PCM) .. 12-10
DLAN/DLAN+ (Drives Local Area Network) Interface .. 12-11

Serial I/O, SNP and RTU Protocols .. 13-1

Configuring Serial Ports Using COMM_REQ Function 65520 13-2
COMM_REQ Function Example .. 13-2
Timing ... 13-2
Sending Another COMM_REQ to the Same Port .. 13-2
Invalid Port Configuration Combinations .. 13-3
COMM_REQ Command Block Parameter Values .. 13-3
Sample COMM_REQ Command Blocks for Serial Port Setup function 13-4

Serial I/O Protocol ... 13-7
Calling Serial I/O COMM_REQs from the CPU Sweep ... 13-7
Compatibility ... 13-7
Status Word for Serial I/O COMM_REQs .. 13-8
Serial I/O COMM_REQ Commands .. 13-9
Overlapping COMM_REQs .. 13-9
Initialize Port Function (4300) .. 13-10
Set Up Input Buffer Function (4301) .. 13-11
Flush Input Buffer Function (4302) .. 13-11
Read Port Status Function (4303) ... 13-12
Write Port Control Function (4304) .. 13-15
Cancel COMM_REQ Function (4399) ... 13-16
Autodial Function (4400) .. 13-17
Write Bytes Function (4401)... 13-19
Read Bytes Function (4402) .. 13-20
Read String Function (4403) .. 13-22

RTU Slave Protocol .. 13-24
Message Format .. 13-24
Cyclic Redundancy Check (CRC) .. 13-29
Calculating the CRC-16 ... 13-30

Contents

xiv PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Sample CRC-16 Calculation .. 13-30
Calculating the Length of Frame .. 13-32
RTU Message Descriptions ... 13-33
RTU Scratch Pad ... 13-49
Communication Errors ... 13-50
RTU Slave/SNP Slave Operation With Programmer Attached 13-53

SNP Slave Protocol .. 13-54
Permanent Datagrams ... 13-54
Communication Requests (COMM_REQs) for SNP .. 13-54

Diagnostics ... 14-1

Fault Handling Overview ... 14-2
System Response to Faults ... 14-2
Fault Tables ... 14-2
Fault Actions and Fault Action Configuration ... 14-3

Using the Fault Tables .. 14-4
Controller Fault Table ... 14-4
I/O Fault Table ... 14-6

System Handling of Faults .. 14-8
System Fault References ... 14-8
Using Fault Contacts .. 14-11
Using Point Faults .. 14-13
Using Alarm Contacts .. 14-13

Controller Fault Descriptions and Corrective Actions ... 14-14
Loss of or Missing Rack (Group 1) .. 14-15
Loss of or Missing Option Module (Group 4) ... 14-16
Addition of, or Extra Rack (Group 5) .. 14-16
Reset of, Addition of, or Extra Option Module (Group 8) 14-17
System Configuration Mismatch (Group 11) .. 14-18
System Bus Error (Group 12)... 14-24
CPU Hardware Failure (Group 13) .. 14-24
Module Hardware Failure (Group 14) .. 14-25
Option Module Software Failure (Group 16) .. 14-26
Program or Block Checksum Failure (Group 17) ... 14-27
Battery Status (Group 18) .. 14-28
Constant Sweep Time Exceeded (Group 19) .. 14-30
System Fault Table Full (Group 20) ... 14-30
I/O Fault Table Full (Group 21) ... 14-30
User Application Fault (Group 22) .. 14-31
CPU Over Temperature (Group 24) ... 14-33
Power Supply Fault (Group 25) ... 14-33
No User Program on Power-Up (Group 129)... 14-33
Corrupted User Program on Power-Up (Group 130) ... 14-34
Window Completion Failure (Group 131) ... 14-34
Password Access Failure (Group 132) .. 14-35

 Contents

GFK-2222S Contents xv

Null System Configuration for Run Mode (Group 134) 14-35
CPU System Software Failure (Group 135) ... 14-35
Communications Failure During Store (Group 137) .. 14-37
Noncritical CPU Software Event (Group 140) .. 14-38

I/O Fault Descriptions and Corrective Actions .. 14-40
Fault Extra Data ... 14-40
I/O Fault Groups ... 14-40
I/O Fault Categories ... 14-41
Circuit Faults (Category 1) ... 14-43
Loss of Block (Category 2) ... 14-49
Addition of Block (Category 3) ... 14-50
I/O Bus Fault (Category 6) ... 14-51
Module Fault (Category 8) ... 14-52
Addition of IOC (Category 9) .. 14-53
Loss of or Missing IO Controller (Category 10).. 14-53
IOC (I/O Controller) Software Fault (Category 11)... 14-54
Forced and Unforced Circuit (Categories 12 and 13) ... 14-54
Loss of or Missing I/O Module (Category 14) ... 14-55
Addition of I/O Module (Category 15) ... 14-55
Extra I/O Module (Category 16) ... 14-55
Extra Block (Category 17) .. 14-56
IOC Hardware Failure (Category 18) ... 14-56
GBC Stopped Reporting Faults (Category 19) .. 14-56
GBC Software Exception (Category 21) .. 14-57
Block Switch (Category 22) .. 14-58
Reset of IOC (Category 27) ... 14-58

Diagnostic Logic Blocks .. 14-59
DLB Operation ... 14-60
Executing DLBs .. 14-62
DLB Example ... 14-65

Performance Data ... A-1

Boolean Execution Times ... A-2

Instruction Timing.. A-3
Overview .. A-3
CPU Version Information ... A-4
RX3i Instruction Times ... A-5
RX7i Instruction Times ... A-18

Overhead Sweep Impact Times ... A-29
Base Sweep Times .. A-29
What the Sweep Impact Tables Contain .. A-31
Programmer Sweep Impact Times .. A-31
I/O Scan and I/O Fault Sweep Impact ... A-32
Ethernet Global Data Sweep Impact .. A-39
Sweep Impact of Intelligent Option Modules.. A-42

Contents

xvi PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

I/O Interrupt Performance and Sweep Impact ... A-44
Timed Interrupt Performance ... A-46
Example of Predicted Sweep Time Calculation ... A-47

User Memory Allocation ... B-1

Items that Count Against User Memory .. B-2

User Program Memory Usage .. B-3
%L and %P Program Memory ... B-3
Program Logic and Overhead .. B-3

GFK-2222S 1-1

Introduction

This manual contains general information about PACSystems CPU operation and program

content. It also provides detailed descriptions of specific programming requirements.

Chapter 1 provides a general introduction to the PACSystems family of products, including

new features, product overviews, and a list of related documentation.

CPU hardware features and specifications are provided in chapter 2.

Installation procedures are described in the PACSystems RX7i Installation Manual,

GFK-2223 and the PACSystems RX3i System Manual, GFK-2314.

CPU Configuration is described in chapter 3. Configuration using the programming software

determines characteristics of module operation and establishes the program references used

by each module in the system. For details on configuration of the embedded RX7i Ethernet

interface as well as the rack-based RX7i and RX3i Ethernet Interface modules, refer to

TCP/IP Ethernet Communications for PACSystems, GFK-2224.

CPU Operation is described in chapter 4.

Programming Features are described in chapters 5 through 9 and Appendix A.

■ Elements of an Application Program: chapter 5

■ Program Data: chapter 6

■ Ladder Diagram (LD) instruction set reference: chapter 7

■ Function Block Diagram (FBD) instruction set reference: chapter 8

■ The Service Request Function: chapter 9

■ The PID Function: chapter 10

■ Structured Text (ST): chapter 11

Ethernet and Serial Communications are described in chapter 12.

Serial I/O, SNP, and RTU Protocols are described in chapter 13.

Diagnostics, including Fault Handling and Diagnostic Logic Blocks are described in

chapter 14.

Instruction Timing is provided in appendix A.

User Memory Allocation is described in Appendix B.

1

Chapter

1-2 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

1

Revisions in this Manual
Note: A given feature may not be implemented on all PACSystems CPUs. To determine

whether a feature is available on a given CPU model and firmware version, please

refer to the Important Product Information (IPI) document provided for the CPU

version that you are using.

This revision of the PACSystems CPU Reference Manual includes information about the

following new features:

 Support for Modbus/TCP Server, SRTP channels and Modbus/TCP client channels on

RX3i CPE305/CPE310 embedded Ethernet interface – chapters 2 and 12

 Support for Access Control List – chapters 3 and 14

 Modbus TCP/IP mapping for CPE305/CPE310 – chapter 3

 Enhanced Security Passwords and OEM Protection – chapter 4

 Serial I/O protocol enhancements (Data Set Ready, Ring Indicator, and Data Carrier

Detect) – chapter 13

 Diagnostics for PROFINET alarms and PROFINET network faults, including

#PNIO_ALARM, SA0030 – chapters 6 and 14

 Instruction executions times measured for RX3i CPU320/CRU320 – appendix A

 Sweep impact times for new modules: IC694MDL758, IC694APU300-CA and later,

IC695PNS001, IC694ALG442, IC694ALG220, IC694MDL645 and IC694MDL740 –

appendix A

Additional revisions include:

 Added instructions for replacing the RX3i CPE305/CPE310 real-time clock battery –

chapter 2

 Corrected definitions of reverse acting and direct acting modes for PID functions –

chapter 10

 Expanded data for Boolean execution measurements – appendix A

 Re-instated instruction times for RX7i CPE/CRE030/040 release 6.0 as published in

version Q of the manual (unintentionally omitted from version R) – appendix A

 Compatibility information for volatile memory backup batteries has been consolidated in

the PACSystems Battery and Energy Pack Manual – throughout

GFK-2222S Chapter 1 Introduction 1-3

1

PACSystems Control System Overview
The PACSystems controller environment combines performance, productivity, openness and

flexibility. The PACSystems control system integrates advanced technology with existing

systems. The result is seamless migration that protects your investment in I/O and application

development.

Programming and Configuration

Proficy* Machine Edition programming software provides a universal engineering

development environment for all programming, configuration and diagnostics of

PACSystems. A PACSystems CPU is programmed and configured using the programming

software to perform process and discrete automation for various applications. The CPU

communicates with I/O and smart option modules through a rack-mounted backplane. It

communicates with the programmer and/or HMI devices via the Ethernet ports or via the

serial ports 1 and 2 using Serial I/O, or Modbus RTU slave protocols.

Process Systems

PACSystems CPUs with firmware version 5.0 and later support Proficy Process Systems

(PPS). PPS is a complete, tightly integrated, seamless process control system using

PACSystems, Proficy HMI/SCADA, and Proficy Production Management Software to provide

control, optimization, and performance management to manage and monitor batch or

continuous manufacturing. It delivers the tools required to design, implement, document, and

maintain an automated process. For information about purchasing PPS software, refer to the

Support website.

1-4 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

1

PACSystems CPU Models

Family Catalog Number Description

RX3i CPUs IC695CPU310 300MHz Celeron CPU, 10 MB user memory

IC695CPU315 1 GHz Celeron-M CPU, 20 MB user memory

IC695CPU320 1 GHz Celeron-M CPU, 64 MB user memory

IC695NIU001+
versions –AAAA and later

1.1 GHz Atom 510 NIU. For information, see the RX3i
Ethernet NIU User’s Manual, GFK-2439

IC695NIU001 300MHz Celeron NIU. For information, see the PACSystems
RX3i Ethernet NIU User’s Manual, GFK-2439

RX3i CPUs with
embedded Ethernet
Interface**

IC695CPE305 1.1GHz Atom CPU, 5 MB user memory

IC695CPE310 1.1GHz Atom CPU, 10 MB user memory

RX3i Redundancy CPU IC695CRU320 1 GHz Celeron-M CPU, 64 MB user memory

RX7i CPUs with
embedded Ethernet
Interface

IC698CPE010 300MHz, Celeron CPU, 10MB user memory

IC698CPE020 700MHz, Pentium CPU, 10 MB user memory,

IC698CPE030 600MHz, Pentium-M CPU, 64MB user memory

IC698CPE040 1800MHz, Pentium-M CPU, 64MB user memory

RX7i Redundancy
CPUs with embedded
Ethernet Interface

IC698CRE020 700MHz, Pentium CPU, 10 MB user memory

IC698CRE030 600MHz, Pentium-M CPU, 64MB user memory

IC698CRE040 1800MHz, Pentium-M CPU, 64MB user memory

** The RX3i CPE305/CPE310 embedded Ethernet interface provides a maximum of two

programmer connections. It does not support the full set of Ethernet interface

features described in this manual. For a summary of RX3i embedded Ethernet

interface features, refer to TCP/IP Ethernet Communications for PACSystems,

GFK-2224K or later.

GFK-2222S Chapter 1 Introduction 1-5

1

Common CPU Features
PACSystems CPU models have the following features in common:

■ Programming in Ladder Diagram, Function Block Diagram, Structured Text and C.

■ Floating point (real) data functions.

■ Configurable data and program memory.

■ CPE305 and CPE310 have battery-less retention of user memory non-volatile flash. All

other models have battery-backed RAM for user data (program, configuration, register

data, and symbolic variable) storage and clocks.

■ CPE305 and CPE310 models have battery backup for real time clock (elapsed time

clock).

■ Non-volatile built-in flash memory for user data (program, configuration, register data,

and symbolic variable) storage. Use of this flash memory is optional.

■ Configurable Run/Stop mode switch.

■ Embedded RS-232 and RS-485 communications. (CPE305 has only RS-232

communications).

■ Up to 512 program blocks. Maximum size for a block is 128KB.

■ Auto Located Symbolic Variables, which allows you to create a variable without

specifying a reference address.

■ Bulk memory area accessed via reference table %W. The upper limit of this memory area

can be configured to the maximum available user RAM.

■ Larger reference table sizes, compared to Series 90* CPUs: 32Kbits for discrete %I and

%Q and up to 32K words each for analog %AI and %AQ.

■ Online Editing mode that allows you to easily test modifications to a running program.

(For details on using this feature, refer to the programming software online help and

Proficy Logic Developer Getting Started, GFK-1918.)

■ Bit in word referencing that allows you to specify individual bits in a WORD reference in

retentive memory as inputs and outputs of Boolean expressions, function blocks, and

calls that accept bit parameters.

■ In-system upgradeable firmware.

Firmware Storage in Flash Memory

The CPU uses non-volatile flash memory for storing the operating system firmware. This

allows firmware to be updated without disassembling the module or replacing EPROMs. The

operating system firmware is updated by connecting to the CPU with a PC compatible

computer and running the software included with the firmware upgrade kit.

1-6 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

1

Operation, Protection, and Module Status

Operation of the CPU can be controlled by the three-position Run/Stop switch or remotely by

an attached programmer and programming software. Program and configuration data can be

locked through software passwords. The status of the CPU is indicated by the CPU LEDs on

the front of the module. For details, see “Indicators” for each PACSystems family.

Note: The RESET pushbutton is provided to support future features and has no effect on

CPU operation in the current version.

Ethernet Global Data

Each PACSystems CPU supports up to 255 simultaneous EGD pages across all Ethernet

interfaces in the Controller (except for the CPE305/CPE310 embedded Ethernet interface,

which does not support EGD). EGD pages must be configured in the programming software

and stored into the CPU. The EGD configuration can also be loaded from the CPU into the

programming software. Both produced and consumed pages can be configured.

PACSystems CPUs support the use of only part of a consumed EGD page, and EGD page

production and consumption to the broadcast IP address of the local subnet.

The PACSystems CPU supports 2msec EGD page production and timeout resolution. EGD

pages can be configured for a production period of 0, indicating the page is to be produced

every output scan. The minimum period for these “as fast as possible” pages is 2msec.

During EGD configuration, PACSystems Ethernet interfaces are identified by their Rack/Slot

location.

GFK-2222S Chapter 1 Introduction 1-7

1

RX3i Overview

The RX3i control system hardware consists of an RX3i universal backplane and up to seven

Series 90-30 expansion or remote racks. The CPU can be in any slot in the universal

backplane except the last slot, which is reserved for the serial bus transmitter, IC695LRE001.

The RX3i supports user defined Function Blocks (LD logic only) and Structured Text

programming.

The RX3i universal backplane uses a dual bus that provides both:

■ High-speed PCI for fast throughput of new advanced I/O.

■ Serial backplane for easy migration of existing Series 90-30 I/O

The RX3i universal backplane and Series 90-30 expansion/remote racks support the Series

90-30 Genius Bus Controller and Motion Control modules, and most Series 90-30/RX3i

discrete and analog I/O with catalog prefixes IC693 and IC694. RX3i modules with catalog

prefixes IC695, including the Ethernet and other communications modules can only be

installed in the universal backplane. See the PACSystems RX3i System Manual, GFK-2314

for a list of supported modules.

RX3i supports hot standby (HSB) CPU redundancy, which allows a critical application or

process to continue operating if a failure occurs in any single component. A CPU redundancy

system consists of an active unit that actively controls the process and a backup unit that is

synchronized with the active unit and can take over the process if it becomes necessary.

Each unit must have a redundancy CPU, (IC695CRU320). The redundancy communication

path is provided by IC695RMX128 Redundancy Memory Xchange (RMX) modules set up as

redundancy links. For details on the operation of PACSystems redundancy systems, refer to

the PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308.

RX3i communications features include:

■ Open communications support includes Ethernet, and serial protocols. The rack-based

ETM001 Ethernet Interface has dual RJ-45 ports connected through an auto-sensing

switch. This eliminates the need for rack-to-rack switches or hubs. The ETM001 supports

upload, download and online monitoring, and provides 32 SRTP channels with a

maximum of 48 simultaneous SRTP server connections. For details on Ethernet Interface

capabilities, refer to TCP/IP Ethernet Communications for PACSystems, GFK-2224.

■ The CPE305 and CPE310 CPUs provide an embedded Ethernet interface that currently

supports programmer connection only.

■ PROFIBUS communications via the PROFIBUS Master module. For details, refer to the

PACSystems RX3i PROFIBUS Modules User’s Manual, GFK-2301.

■ PROFINET communications via the PROFINET Controller module. For details, refer to

the PACSystems RX3i PROFINET Controller Manual, GFK-2571.

■ CPE310, CPU310, CPU315, CPU/CRU320 and NIU001 provide two serial ports, one

RS-232 and one RS-485.

■ CPE305 provides one RS-232 serial port.

1-8 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

1

RX7i Overview

The RX7i control system hardware consists of an RX7i rack and up to seven Series 90-70

expansion racks. The CPU resides in slot 1 of the main rack. RX7i racks use a VME64

backplane that provides up to four times the bandwidth of existing VME based systems,

including the current Series 90-70 systems for faster I/O throughput. The VME64 base

supports all standard VME modules including Series 90-70 I/O and VMIC modules.

Expansion racks support Series 90-70 discrete and analog I/O, the Genius Bus Controller,

and the High Speed Counter. The CPU provides an embedded auto-sensing 10/100 Mbps

half/full duplex Ethernet interface.

RX7i supports hot standby (HSB) CPU redundancy, which allows a critical application or

process to continue operating if a failure occurs in any single component. A CPU redundancy

system consists of an active unit that actively controls the process and a backup unit that is

synchronized with the active unit and can take over the process if it becomes necessary.

Each unit must have a redundancy CPU, (IC698CRE020, CRE030 or CRE040). The

redundancy communication path is provided by IC698RMX016 Redundancy Memory

Xchange (RMX) modules set up as redundancy links. For details on the operation of

PACSystems redundancy systems, refer to the PACSystems Hot Standby CPU Redundancy

User’s Guide, GFK-2308.

Note: Extended operation with dissimilar CPU types is not allowed. During normal

operation, the primary and secondary units in an HSB redundancy system must have

the same CPU model type.

 The primary and secondary units of an HSB redundancy system can have dissimilar

model types for a limited time, for the purpose of system upgrade only. Fail wait times

for the higher performance CPU in a dissimilar redundant pair may need to be

increased to allow synchronization.

RX7i communications features include:

■ Open communications support includes Ethernet, Genius, and serial protocols.

■ A built-in 10/100mb Ethernet interface that has dual RJ-45 ports connected through an

auto-sensing switch for upload, download and online monitoring. This eliminates the need

for rack-to-rack switches or hubs. The CPU Ethernet Interface provides basic remote

control system monitoring from a web browser and allows a combined total of up to 16

web server and FTP connections. For details on Ethernet Interface capabilities, refer to

TCP/IP Ethernet Communications for PACSystems, GFK-2224.

■ Two serial ports, one RS-232 and one RS-485.

■ An RS-232 isolated Ethernet station manager serial port.

GFK-2222S Chapter 1 Introduction 1-9

1

Migrating Series 90 Applications to PACSystems
The PACSystems control system provides cost-effective expansion of existing systems.

Support for existing Series 90 modules, expansion racks and remote racks protects your

hardware investment. You can upgrade on your timetable without disturbing panel wiring.

■ The RX3i supports most Series 90-30 modules, expansion racks, and remote racks. For

a list of supported I/O, Communications, Motion, and Intelligent modules, see the

PACSystems RX3i System Manual, GFK-2314.

■ The RX7i supports most existing Series 90-70 modules, expansion racks and Genius

networks. For a list of supported I/O, Communications, and Intelligent modules, see the

PACSystems RX7i Installation Manual, GFK-2223.

■ Conversion of Series 90-70 and Series 90-30 programs preserves existing development

effort.

■ Conversion of VersaPro and Logicmaster applications to Machine Edition allows smooth

transition to PACSystems.

1-10 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

1

PACSystems Documentation

PACSystems Manuals

PACSystems CPU Reference Manual, GFK-2222

TCP/IP Ethernet Communications for PACSystems, GFK-2224

Station Manager for PACSystems, GFK-2225

PACSystems C Toolkit User’s Guide, GFK-2259

PACSystems Memory Xchange Modules User’s Manual, GFK-2300

PACSystems Hot Standby CPU Redundancy User’s Manual, GFK-2308

PACSystems Battery and Energy Pack Manual, GFK-2741

Proficy Machine Edition Logic Developer Getting Started, GFK-1918

Proficy Process Systems Getting Started Guide, GFK-2487

RX3i Manuals

PACSystems RX3i System Manual, GFK-2314

DSM324i Motion Controller for PACSystems RX3i and Series 90-30, GFK-2347

PACSystems RX3i PROFIBUS Modules User’s Manual, GFK-2301

PACSystems RX3i MAXON Software User’s Manual, GFK-2409

PACSystems RX3i Ethernet NIU User’s Manual, GFK-2439

PACMotion Multi-Axis Motion Controller User’s Manual, GFK-2448

PACSystems RX3i PROFINET Controller Manual, GFK-2571

PACSystems RX3i PROFINET Scanner Manual, GFK-2737

RX7i Manuals

PACSystems RX7i Hardware and Installation Manual, GFK-2223

PACSystems RX7i User's Guide to Integration of VME Modules, GFK-2235

Genius Bus Controller User’s Manual, GFK-2017

Series 90 Manuals

Series 90-30 Genius Bus Controller, GFK-1034

Genius I/O System User’s Manual, GEK904861

Genius I/O Analog and Discrete Blocks User’s Manual, GEK904862

In addition to these manuals, datasheets and product update documents describe individual

modules and product revisions. The most recent PACSystems documentation is available on

the Support website.

GFK-2222S 2-1

CPU Features and Specifications

This chapter provides details on the hardware features of the PACSystems CPUs and

their specifications.

■ RX3i Features and Specifications ... 2-2

■ RX7i Features and Specifications ... 2-24

2

Chapter

2-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

RX3i Features and Specifications

CPU310
IC695CPU310: 300 MHz CPU microprocessor

Serial Ports
The CPU has two independent, on-board serial ports, accessed by connectors on the
front of the module. Ports 1 and 2 provide serial interfaces to external devices. Either port
can be used for firmware upgrades. For serial port pin assignments and details on serial
communications, refer to chapter 12.

GFK-2222S Chapter 2 CPU Features and Specifications 2-3

2

CPU310 Indicators

The eight CPU LEDs indicate the operating status of various CPU functions.

LED State

On Blinking Off
CPU Operating State

 CPU OK On CPU has passed its powerup diagnostics and is functioning
properly.

1

 CPU OK Off CPU problem. RUN and OUTPUTS ENABLED LEDs may be
blinking in an error code pattern, which can be used by technical
support for troubleshooting. This condition and any error codes
should be reported to your technical support representative.

 CPU OK, OUTPUTS ENABLED,
RUN Blinking in unison

CPU is in boot mode and is waiting for a firmware update through a
serial port.

 CPU OK Blinking

 Other LEDs off.
CPU in Stop/Halt state; possible watchdog timer fault. Refer to the
fault tables. If the programmer cannot connect, cycle power with
battery attached and refer to fault tables.

 RUN On CPU is in Run mode.

 RUN Off CPU is in Stop mode.

 OUTPUTS ENABLED On Output scan is enabled.

 OUTPUTS ENABLED Off Output scan is disabled.

 I/O FORCE On Override is active on a bit reference.

 BATTERY Off Normal battery
2

 BATTERY Blinking Battery low
2

 BATTERY On Battery has failed or is not attached
2

 SYSTEM FAULT On CPU is in Stop/Faulted mode because a fatal fault has occurred.

 COM1 Blinking
COM2 Blinking

Signal activity on port.

1
 After initialization sequence is complete.

2
 Low battery detection requires a smart battery. For details, refer to PACSystems Battery and

Energy Pack Manual, GFK-2741.

2-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Specifications – CPU310

For environmental specifications, see Appendix A of the PACSystems RX3i System

Manual, GFK-2314.

Program storage Up to 10 Mbytes of battery-backed RAM
3

10Mbyte of non-volatile flash user memory

Power requirements +3.3 VDC: 1.25 Amps nominal
+5 VDC: 1.0 Amps nominal

Operating Temperature 0 to 60°C (32°F to 140°F)

Floating point Yes

Time of Day Clock accuracy Maximum drift of ±2 seconds per day.

Can be synchronized to an Ethernet time master within ±2ms of the
SNTP time stamp.

Elapsed Time Clock (internal timing) accuracy ±0.01% maximum

Embedded communications RS-232, RS-485

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

Backplane Dual backplane bus support: RX3i PCI and 90-30-style serial

PCI compatibility System designed to be electrically compliant with PCI 2.2 standard

Program blocks Up to 512 program blocks. Maximum size for a block is 128KB.

Flash memory endurance rating 100,000 write/erase cycles minimum

Memory

(For a detailed listing of memory areas, refer
to chapter 6.)

%I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32Kwords
%W: configurable up to the maximum available user RAM
Managed memory (Symbolic and I/O variables combined):

configurable up to 10 Mbytes

3
 For estimated battery life under various conditions, refer to the PACSystems Battery and Energy

Pack Manual, GFK-2741.

GFK-2222S Chapter 2 CPU Features and Specifications 2-5

2

CPU315 and CPU320/CRU320
IC695CPU315: 1 GHz CPU microprocessor

IC695CPU320: 1 GHz CPU microprocessor

IC695CRU320: 1 GHz CPU microprocessor with redundancy

Serial Ports
The CPU has two independent, on-board serial ports, accessed by connectors on the
front of the module. Ports 1 and 2 provide serial interfaces to external devices. Either port
can be used for firmware upgrades. For serial port pin assignments and details on serial
communications, refer to chapter 12.

2-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

CPU315, CPU320 and CRU320 Indicators

The eight CPU LEDs indicate the operating status of various CPU functions.

LED State

On Blinking Off
CPU Operating State

 CPU OK On CPU has passed its powerup diagnostics and is functioning
properly.

4

 CPU OK Off CPU problem. RUN and OUTPUTS ENABLED LEDs may be
blinking in an error code pattern, which can be used by technical
support for troubleshooting. This condition and any error codes
should be reported to your technical support representative.

 CPU OK, OUTPUTS ENABLED, RUN

 Blinking in unison
CPU is in boot mode and is waiting for a firmware update through
a serial port.

 CPU OK Blinking

 Other LEDs off.
CPU in Stop/Halt state; possible watchdog timer fault. Refer
to the fault tables. If the programmer cannot connect, cycle
power with battery attached and refer to fault tables.

 RUN On CPU is in Run mode.

 RUN Off CPU is in Stop mode.

 OUTPUTS ENABLED On Output scan is enabled.

 OUTPUTS ENABLED Off Output scan is disabled.

 I/O FORCE On Override is active on a bit reference.

 BATTERY Off Normal battery
5

 BATTERY Blinking Battery low
3

 BATTERY On Battery has failed or is not attached
3

 SYSTEM FAULT On CPU is in Stop/Faulted mode because a fatal fault has occurred.

 COM1 Blinking

COM2 Blinking

Signal activity on port.

4
 After initialization sequence is complete.

5
 Low battery detection requires hardware revision –Fx or later and a smart battery. For details,

refer to the PACSystems Battery and Energy Pack Manual, GFK-2741.

GFK-2222S Chapter 2 CPU Features and Specifications 2-7

2

Specifications – CPU315 and CPU320

For environmental specifications, see Appendix A of the PACSystems RX3i System

Manual, GFK-2314.

Program storage

 CPU315 Up to 20MB of battery-backed RAM
6

20MB of non-volatile flash user memory

 CPU320 Up to 64 MB of battery-backed RAM
†

64 MB of non-volatile flash user memory

Power requirements +3.3 VDC: 1.0 Amps nominal
+5 VDC: 1.2 Amps nominal

Operating Temperature 0 to 60°C (32°F to 140°F)

Floating point Yes

Time of Day Clock accuracy Maximum drift of ±2 seconds per day.

Can be synchronized to an Ethernet time master within ±2ms of
the SNTP time stamp.

Elapsed Time Clock (internal timing) accuracy ±0.01% maximum

Embedded communications RS-232, RS-485

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

Backplane Dual backplane bus support: RX3i PCI and 90-30-style serial

PCI compatibility System designed to be electrically compliant with PCI 2.2
standard

Program blocks Up to 512 program blocks. Maximum size for a block is 128KB.

Flash memory endurance rating 100,000 write/erase cycles minimum

Memory

(For a detailed listing of memory areas, refer to
chapter 6.)

%I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32Kwords
%W: configurable up to the maximum available user RAM
Managed memory (Symbolic and I/O variables combined):

configurable up to 64 Mbytes

6
 For estimated battery life under various conditions, refer to the PACSystems Battery and Energy

Pack Manual, GFK-2741.

2-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

CRU320 Specifications

Note: For environmental specifications and compliance to standards (for example, FCC

or European Union Directives), refer to the PACSystems RX3i System

Manual, GFK-2314.

Program storage Up to 64 Mbytes of battery-backed RAM
7

64 Mbytes of non-volatile flash user memory

Power requirements +3.3 VDC: 1.0 Amps nominal
+5 VDC: 1.2 Amps nominal

Operating Temperature 0 to 60°C (32°F to 140°F)

Floating point Yes

Time of Day Clock accuracy Maximum drift of 2 seconds per day

Elapsed Time Clock (internal timing) accuracy 0.01% maximum

Embedded communications RS-232, RS-485

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

Backplane Dual backplane bus support: RX3i PCI and 90-30-style serial

PCI compatibility System designed to be electrically compliant with PCI 2.2 standard

Program blocks Up to 512 program blocks. Maximum size for a block is 128KB.

Memory %I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32Kwords
%W: configurable up to the maximum available user RAM

Symbolic: configurable up to 64 Mbytes

Flash memory endurance rating 100,000 write/erase cycles minimum

Memory error checking and correction (ECC) Single bit correcting and multiple bit checking.

Switchover Time
8
 Maximum 1 logic scan, minimum 3.133 msec.

Typical Base Sweep Time (Reference Data
Transfer List Impact

9

3.66 msec: 1K Discrete I/O, 125 Analog I/O and 1K Registers

3.87 msec: 2K Discrete I/O, 250 Analog I/O and 2K Registers

4.30 msec: 4K Discrete I/O, 500 Analog I/O and 4K Registers

5.16 msec: 8K Discrete I/O, 1K Analog I/O and 8K Registers

Maximum amount of data in redundancy
transfer list

Up to 2 Mbytes

Number of redundant redundancy links supported Up to two IC695RMX128 synchronization links are supported.

7
 For estimated battery life under various conditions, refer to the PACSystems Battery and Energy

Pack Manual, GFK-2741.
8
 Switchover time is defined as the time from failure detection until backup CPU is active in a

redundancy system.
9
 Symbolic variable and Reference data can be exchanged between redundancy controllers. Up

to 2 Mbytes of data is available for transfer.

GFK-2222S Chapter 2 CPU Features and Specifications 2-9

2

Error Checking and Correction, IC695CRU320

RX3i Redundancy CPUs provide error checking and correction (ECC), which results in

slightly slower system performance, primarily during power-up, because it uses an extra

8 bits that must be initialized.

For details on ECC, refer to the PACSystems Hot Standby CPU Redundancy User’s

Guide, GFK-2308.

Note: Multiple Recoverable Memory Error faults may be generated when a single-bit

ECC error is detected. When a single-bit ECC error is detected, the value

presented to the microprocessor is corrected. However, the value stored in RAM

is not corrected until the next time the microprocessor writes to that

RAM location.

2-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

CPE305 and CPE310
IC695CPE305:
1.1GHz CPU with 5MB of user memory

IC695CPE310:
1.1GHz CPU with 10MB of user memory

CPE305

RESET

E
T

H
E

R
N

E
T

RJ-25

RS-232

U
S

B
-A

 R
D

S
D

!

IO FORCE
STATUS
SYS FLT
RDSD

OK
RN
EN
CM

COM 1

COM 2

NIU001+

E
T

H
E

R
N

E
T

RESET

U
S

B
-A

 R
D

S
D

!

CPU OK
RUN
OUTPUTS ENABLED

STATUS
SYS FLT

I/O FORCE

RDSD /
COM2

COM 1

GFK-2222S Chapter 2 CPU Features and Specifications 2-11

2

Specifications

Memory retention The non-volatile storage (NVS) can retain data indefinitely
without loss of data integrity. When CPU power is restored,
data stored in NVS is transferred back to user memory and the
NVS is cleared.

An optional IC695ACC400 Energy Pack powers the CPU long
enough to write its user memory contents to non-volatile
storage during a system power loss.

Program storage CPE305: 5 Mbytes of non-volatile flash user memory

CPE310: 10 Mbytes of non-volatile flash user memory

Power requirements, nominal +3.3 VDC: 1.0 A
+5 VDC: 1.0 A (up to 1.5 A if USB is fully loaded with 0.5 A)

+24 VDC: 0.5A at startup, 0.1 A during run time (Applies only if
Energy Pack is connected to the CPE3xx.)

Operating Temperature 0 to 60°C (32°F to 140°F)

Floating point Yes

Time of Day Clock accuracy Maximum drift of 2 seconds per day

Elapsed Time Clock (internal timing) accuracy 0.01% maximum

Embedded serial communications CPE305: RS-232

CPE310: RS-232 (COM1) and RS-485 (COM2)

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

Backplane Dual backplane bus support: RX3i PCI and 90-30-style serial

PCI compatibility System designed to be electrically compliant with PCI
2.2 standard

Program blocks Up to 512 program blocks. Maximum size for a block is
128KB.

Memory %I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32Kwords
%W: configurable up to the maximum available user memory
Symbolic: configurable up to 10 Mbytes

Embedded Ethernet interface specifications

Max. no. of connections Up to 32 simultaneous SRTP Server connections, up to 16
simultaneous Modbus/TCP Server connections, and up to 16
simultaneous communications channels of either SRTP
Channels or Modbus/TCP Client channels

Ethernet data rate 10Mb/sec and 100Mb/Sec

Physical interface 10BaseT RJ-45

Remote Station Manager over UDP Yes. Refer to the Station Manager Manual, GFK-2225J or

later for supported commands.

Configurable Advanced User Parameters Yes. Refer to TCP/IP Ethernet Communications for
PACSystems, GFK-2224K or later for supported AUPs.

For environmental specifications and compliance to standards (for example, FCC or European Union Directives),
refer to the PACSystems RX3i System Manual, GFK-2314.

2-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

CPE310 Backward Compatibility with CPU310

The CPE310 may be swapped with a CPU310 with no upgrade to the Proficy Machine

Edition Logic Developer-PLC programming software. Logic and configuration equality in

the programming software will be maintained when storing the same project to either a

CPU310 or a CPE310. Proficy Machine Edition versions that recognize the CPE310 (7.0

SIM3 and newer), will allow either a CPU310 configuration or a CPE310 configuration to

be stored to the CPE310. For all programming software versions (both current and

legacy) a CPU310 device can accept only a CPU310 configuration.

Legacy CPU310 Projects

The CPE310 supports CPU310 projects. Proficy Machine Edition versions earlier than

7.10 SIM 3 interpret the CPE310 as a CPU310. The CPE310 can be configured as a

CPU310 using Proficy Machine Edition versions as old as 5.5, Service Pack 1.

RDSD Port

If a CPU310 configuration is stored to a CPE310, the RDSD port is enabled to allow you

to transfer CPU310 projects to CPE310 models without using Proficy Machine Edition.

Fault Behavior

Faults related to the embedded CPE310 Ethernet interface may be generated on

powerup. For details, see “Replacing a CPU310 with a CPE310” below.

Replacing a CPU310 with a CPE310

 A CPE310 that is configured as a CPU310 logs the following faults in the Controller

fault table:

- A LAN Transceiver Fault is generated because the RX3i system detects that the

embedded Ethernet module does not have a network connection.

- An Extra Option Module fault is generated because the embedded Ethernet

module is detected as an unconfigured module.

- If the Energy Pack capacitor pack is disconnected or fails, the legacy faults for a

missing or failed battery are logged.

 When a CPE310 is configured as a CPU310, Ethernet properties cannot be

configured and there should be no cable connected to the Ethernet port.

 When a CPE310 is configured as a CPU310, the Show Status dialog box in Proficy

Machine Edition displays “CPU310A.”

GFK-2222S Chapter 2 CPU Features and Specifications 2-13

2

CPE310 versus CPU310 Performance Differences

The following differences should be considered when converting legacy applications or

developing new applications.

 Some exceptionally lengthy CPE backplane operations, such as

MC_CamTableSelect, Data Log and Read Event Queue functions, will take longer to

complete compared to other RX3i CPU models, and may delay backplane operations

to IC695 modules.

For example, when an MC_CamTableSelect function block is executed on the

PMM335 module, the CPU’s acknowledgement of the PMM355 module interrupt may

be delayed. In this situation, you may see the following fault in the I/O Fault Table,

even when the interrupt has not been dropped: Error initiating an interrupt to

the CPU.

 Performance specifications for many features, such as power-up time, function block

execution times and I/O module sweep times have changed. For details, refer to

Appendix A.

 The RS-232 port on the CPE310 does not provide 5V power on pin 5.

CPU305 Performance Differences vs. CPE310 and Legacy RX3i CPUs

The CPE305 exhibits the same performance differences as listed above for the CPE310.

The CPE305 supports legacy CPU310 projects that fit within 5 Mbytes of user memory.

The project’s configuration must be changed to support this conversion.

Because the CPE305 has less user memory than the other RX3i CPUs, operations that

involve transferring large files could fail.

For example, depending on the number and sizes of Data Log files already stored, the

Get_DL (Get Data Log) command could fail with a C10 hex (file transfer failure occurred

while sending the data log file to the CPU) error. To correct this error

1. Upload the data logs to Machine Edition and delete the logs from the CPU.

2. Take steps to reduce the size of the log file, such as reducing the number of

samples, the sample rate, or the number of parameters logged.

2-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Switches
The RDSD and Run Mode switches are located behind the protective door, as shown
below. The Reset switch is not used.
D

COM 1

COM 2

RESET
IC695CPE310

RDSD UPLOAD

DOWNLOAD

START

OFF

RUN OUTPUT
DISABLE

STOP
RUN I/O
ENABLE

ET
HE

RN
ET

IP ADDRESS

MAC ADDRESS

RUN
MODE

USB-A RDSD !

CPU OK
RUN
OUTPUTS ENABLED

STATUS
SYS FLT

I/O FORCE

RDSD /
COM2

COM 1

Energy Pack
Connector
(not shown)

RESET

IC695CPE305

RDSD UPLOAD

DOWNLOAD

START

OFF

RUN
MODE

RUN OUTPUT
DISABLE

STOP
RUN I/O
ENABLE

RJ-25

RS-232
ET

HE
RN

ET

USB-A RDSD !

IP ADDRESS

MAC ADDRESS

IO FORCE
STATUS
SYS FLT
RDSD

OK
RN
EN
CM

Energy Pack
Connector
(not shown)

Switch Operation
RDSD Switches Function

 Start pushbutton Pressing this switch initiates RDSD data transfer. (The three-position
switch must be set to Upload or Download.)

 Three-position switch Enables/disables RDSD data transfer and selects the direction of data
transfer.

 Upload Loads application from CPU to RDSD.

 Off Disables RDSD data transfer.

 Download Stores application from RDSD to CPU.

Run Mode Switch The Run Mode switch operates as described in chapter 4.

GFK-2222S Chapter 2 CPU Features and Specifications 2-15

2

Real-Time Clock Battery

The CPE3xx is shipped with a real time

clock (RTC) battery (IC690ACC001)

installed, with a pull-tab on the battery.

The pull-tab should be removed before

installing the CPE3xx module.

There are no diagnostics or indicators to

monitor RTC battery status.

The RTC battery has an estimated life of 5

years and must be replaced every 5 years

on a regular maintenance schedule.

If the RTC battery fails, the CPU date and

time is reset to 12:00 AM, 01-10-2000 at

startup. The CPU operates normally with

a failed or missing RTC battery; only the

initial CPU TOD clock information will be

incorrect.

Real Time
Clock Battery

Positive (+)
side faces
away from
circuit board

Replacing the Real-Time Clock Battery

The replacement battery must be IC690ACC001 from GE Intelligent Platforms or

equivalent, such as Panasonic BR2032.

Warning

Use of a different type of battery than that specified here may present a risk
of fire or explosion.

Battery may explode if mistreated. Do not recharge, disassemble, heat
above 100°C (212°F) or incinerate.

Caution

To avoid damage from electrostatic discharge, use proper
precautions when performing these procedures:

 Wear a properly functioning antistatic strap and be sure that you are fully

grounded. Never touch the printed circuit board, or components on the board,

unless you are wearing an antistatic strap.

 Any surface upon which you place the unprotected circuit board should be

static-safe, facilitated by antistatic mats if possible.

 Extra caution should be taken in cold, dry weather, when static charges can

easily build up.

2-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Battery Removal Method 1

1. Power down the rack and remove the CPU from the backplane.

2. Using a curved probe with a non-conducting surface, for example a non-metallic

dental pick, reach in from the back of the module and pull the battery out of its

retaining clip. (You can use needle-nose pliers to grasp the battery and pull it the rest

of the way out.)

Sample Tool for Battery Removal

Battery Removal Method 2

1. Power down the rack and remove the CPU from the backplane.

2. Squeeze both sides of the module and remove the front section of the plastic

housing.

3. Lift the two clips on the side of the plastic housing to release the circuit board and

pull the board out of the housing.

4. Pull the battery out of its retaining clip.

Installing a New RTC Battery

Install the battery with the positive (+) side up. That is, with the + side away from the

board and toward the housing plastic.

GFK-2222S Chapter 2 CPU Features and Specifications 2-17

2

Indicators

CPU Indicators

LED LED State

On Blinking Off
CPU Operating State

CPE305: OK

CPE310: CPU OK

 On, Green CPU has passed its powerup diagnostics and is

functioning properly. (After initialization

sequence is complete.)

 Off CPU problem. RUN and OUTPUTS ENABLED LEDs
may be blinking in an error code pattern, which can
be used by technical support for troubleshooting. This
condition and any error codes should be reported to
your technical support representative.

 Blinking; Other LEDs off. CPU in Stop-Halt state; possible watchdog timer fault.
Refer to the fault tables. If the programmer cannot
connect, cycle power with a charged Energy Pack
attached and refer to fault tables.

CPE305: OK and EN

CPE310: CPU OK and
OUTPUTS ENABLED

 Blinking in unison CPU is in boot mode and is waiting for a firmware
update through a serial port.

CPE305: RN

CPE310: RUN

 On CPU is in Run mode.

 Off CPU is in Stop mode.

CPE305: EN

CPE310: OUTPUTS
ENABLED

 On Output scan is enabled.

 Off Output scan is disabled.

I/O FORCE On Override is active on a bit reference.

STATUS Blinking green Energy Pack charging; not yet charged above the
minimum operating voltage.

 On red Energy Pack circuit fault.

 Blinking red Energy Pack near its end of life and should be
replaced soon.

 On green Energy Pack is charged above its minimum operating
voltage.

 Off Energy Pack not connected.

SYS FLT

(System Fault)
 On red CPU is in Stop/Faulted mode because a fatal fault

has occurred.

CPE305: CM

CPE310: COM1

 Blinking green Signal activity on COM1 port.

 Off No activity on COM1 port

CPE310 only

RDSD / COM2
(RDSD not attached)

 Blinking green Signal activity on COM2 port.

 Off No activity on COM2 port

2-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

RDSD Indicators

LED LED State

On Blinking Off
RDSD Operating State

CPE310 only

SYS FLT and
RDSD / COM2

 On red The RDSD has been removed during a store. The CPU
must be power cycled to resume RDSD operations.

 Off or blinking green

CPE305: RDSD

CPE310:
RDSD / COM2
(RDSD active:
RDSD attached to
USB-A RDSD port.)

 On green Valid RDSD connected or data transfer complete.

 Blinking green Data transfer in progress.

 On red RDSD fault. Check for and correct the following
conditions:

CPU type mismatch with project on RDSD.

Data transfer error.

Corrupted or invalid USB file system.

Insufficient space on RDSD.

 Blinking red RDSD-Controller project name mismatch.

 Off RDSD not attached or USB port is disabled.

Ethernet Indicators

LED LED State

On Blinking Off
CPU Operating State

100 On, Green Network data speed is 100 Mbps.

 Off Network data speed is 10 Mbps.

LINK On, Green The link is physically connected.

 Blinking green Traffic is detected at the port.

Serial Ports

These ports provide serial interfaces to external devices and can be used for firmware

upgrades. All serial ports are isolated. For serial port pin assignments and details on

serial communications, refer to chapter 12.

CPE305: one RS-232 port.

CPE310 one RS-232 port (COM1) and one RS-485 port (COM2).

The RS-232 port does not supply the 5VDC power offered by other RX3i and Series

90-30 CPUs. Cable IC693CBL316 must be used for RS-232 serial connections to the

CPE3xx.

Ethernet Port

The embedded Ethernet interface supports communications with the Machine Edition

programming software using the proprietary SRTP protocol. The CPE3xx CPUs provide

two SRTP-server connections.

This interface does not support Ethernet Global Data protocol.

The embedded Ethernet interface has one RJ-45 Ethernet port that automatically senses

the data rate (10Mbps or 100Mbps), duplex (half duplex or full duplex), and cabling

arrangement (straight through or crossover) of the attached link.

GFK-2222S Chapter 2 CPU Features and Specifications 2-19

2

Removable Data Storage Devices (RDSDs)

The CPE3xx provides the ability to transfer applications to and from an RDSD

(USB-compatible device, such as a memory stick, smart phone, digital camera or MP3

device). Once the data is copied to the RDSD, it can be written to other RX3i CPE3xx

CPUs of the same type, with no programmer software needed. The RDSD interface

requires a user-supplied flash memory device that complies with the USB 2.0

Specification.

The USB port must be enabled in the RX3i configuration in order to transfer data

between the CPU and the RDSD. The CPE3xx is shipped with the RDSD (USB) port

enabled.

The RDSD load and store operations can include the following data:

 An entire application, including logic and configuration, reference table data, and

cam files for Motion applications. (Motion files and local logic for DSM motion

applications are supported.) Configuration can include Ethernet Global Data and

Advanced User Parameters for the rack-based Ethernet interface. (Although a

complete, unmodified application must be placed on the RDSD, you can use an

options.txt file to download selected components of the application to the target

CPU.)

 Passwords and OEM key, if any, are encrypted and written to the RDSD when

the project is loaded from the CPU. When the project is stored to a CPU that has

no passwords or OEM key, those are copied to the CPU.

Note: With Enhanced Security enabled, the RDSD update will fail if the RDSD

source controller has Level 4 password protection and the destination

controller is password protected, regardless of whether the

passwords match.

 With Legacy security, when the project is stored to a CPU that has

passwords and/or OEM key, the passwords must match or the store

will fail.

 Fault tables are written to the RDSD before and after a load to or store from the

RDSD.

 If a hardware configuration that disables the USB port is successfully stored to

the CPU, the fault tables will not be written to the RDSD at completion of the

store operation.

Note: The USB port is for transfer of application data only. It is not intended for

permanent connection.

Note: When using RDSD, all programming software connections must be in the

“Offline” state for the RDSD to function properly.

2-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Uploading a Project from the CPU to the RDSD

Notes: Only one application project can be stored to the RDSD at a time. Before the

RX3i writes the project to the RDSD, any previous application is removed; if a

directory named PACS_Folder exists on the RDSD at the start of the upload, it is

deleted with all of its contents.

 Flash devices write in whole memory blocks and memory block sizes vary among

devices. The amount of space used by a project may vary between RDSDs due

to the differences in minimum block sizes and therefore the number of blocks

used by a project. The minimum amount of memory required will be the size of

the entire project plus an additional block for the options.txt file, if used.

1. Place the CPU that contains the project to be transferred in Run or Stop mode.

2. If the programmer is online with the RX3i, either go Offline or select Monitor mode.

3. Insert the RDSD into the USB connector on the CPU. (After 1 – 2 sec, the RDSD

LED turns solid green.)

4. Push the RDSD direction switch to the left (UPLOAD).

5. Momentarily depress the START pushbutton. Do not remove the RDSD from the

CPU during the transfer.

 The RDSD LED blinks green during the transfer. This can take from 10 – 150

sec, depending upon the size of the project data.

 The RDSD LED should turn solid green, indicating that the transfer completed

successfully.

 If the RDSD LED turns solid red, the transfer has failed. There will be a copy of

the fault tables as they existed at the end of the attempted transfer on the RDSD.

Insert the RDSD into a PC which has the PACS Analyzer software and select the

plcfaultafter.dat file on the RDSD for fault table analysis by the Analyzer. The

PACS Analyzer software can be downloaded from the Support website,

http://support.ge-ip.com.

 If the RDSD LED turns solid red, indicating an error, another RDSD operation

cannot be initiated until the device is disconnected then reconnected.

Cautions

 If the RDSD is removed during data transfer from the CPU, the integrity

of the RDSD and the files on it cannot be guaranteed. The RDSD status

LED will indicate a fault, and the CPU will abort the data transfer and

remain in its current operating mode.

 The project files, consisting of the entire contents of the PACS_Folder

directory and all of its subdirectories, loaded on the RDSD must not be

modified. If they are modified, the files transferred to the CPU will be

invalid

GFK-2222S Chapter 2 CPU Features and Specifications 2-21

2

6. When the RDSD LED turns solid green, indicating the transfer has been successfully

completed, remove the RDSD from the CPU. The RDSD can now be used to transfer

the application to other RX3i controllers of the same model type.

You can copy the entire applications directory to another USB device and use that

device as the source for downloads to CPE3xx CPUs, provided none of the files in

that directory are changed in any way during the transfer.

Downloading a Project from the RDSD to the CPU

To download a project to the RX3i, the RDSD must contain a valid project, consisting of

the hardware configuration, application logic, and reference memory in a compiled format

(originating from another RX3i controller). The project files, consisting of the entire

contents of the PACS_Folder directory and all of its subdirectories, loaded on the RDSD

must not be modified. If they are modified, the files transferred to the CPU will be invalid.

By default, all project components are stored to the CPU and are written to flash. You can

change this operation by placing an options.txt file on the RDSD as described below.

1. Ensure that the RX3i is in STOP mode

2. If PROFICY Machine Edition is online with the RX3i, either go Offline or select

Monitor mode.

3. Connect the RDSD to the USB connector on the CPU that will be receiving the files.

The RDSD LED turns solid green. Move the RDSD direction switch to the right

(DOWNLOAD).

4. Momentarily depress the START pushbutton. Do not remove the RDSD from the

CPU during the transfer.

 If the target name in the RDSD is different from the target name in the RX3i, the

RDSD LED will blink red. If this is expected or acceptable, momentarily depress

the START pushbutton again.

 The RDSD LED blinks green during the transfer. This can take from 10 – 150

sec, depending upon the size of the project data.

 The RDSD LED should turn solid green, indicating that the transfer completed

successfully. Unless the RUN/STOP switch has been disabled in the hardware

configuration just stored, it can be used to place the RX3i into RUN mode after

the transfer.

 If the RDSD LED turns solid red, the transfer has failed. There will be a copy of

the fault tables as they existed at the end of the attempted transfer on the RDSD.

Insert the RDSD into a PC which has the PACS Analyzer software and select the

plcfaultafter.dat file on the RDSD for fault table analysis by the Analyzer.

If the RDSD LED turns solid red, indicating an error, another RDSD operation

cannot be initiated until the device is disconnected then reconnected.

2-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Caution

If the RDSD is removed during data transfer to the CPU, the

RX3i controller will generate a fatal fault (sequence store

fault). You will need to clear the fault tables through a

programmer connection or by power cycling the CPU with the

Energy Pack disconnected before attempting to download

again.

5. When the RDSD LED turns solid green, indicating the transfer has been successfully

completed, remove the RDSD from the CPU.

The RUN/STOP switch can be used to place the RX3i into RUN mode after the

transfer, unless it has been disabled in the hardware configuration just stored. (If the

RUN/STOP switch is disabled, you will need to connect with the programmer to place

the RX3i in RUN mode.

Using an Options.txt File to Modify Download Operation

An options.txt file can be used to modify the operation of the RDSD during a store to the

RX3i. This is a plain-text file which can contain some or all of the following statements, in

any order. The format of each option line is the option keyword, followed by a space,

followed by either a capital Y or a capital N. The option keyword must be spelled exactly

as indicated below. If an option statement is omitted from the file, the default value will

be used.

If you want to use all of the default operations, the options.txt file is not necessary.

Options.txt File Format

Option Keyword Default
value

Description

Download_LogicAndCfg Y (yes) Logic and configuration are copied to the CPE305
(including symbolic variables)

Download_Data Y (yes) Reference memory is copied to the CPE305 (excluding
symbolic variables)

Download_CamFiles Y (yes) Cam files are copied to the CPE305

Write_Flash Y (yes) The downloaded CPE305 contents (as specified by the
above keywords) by default will be written to flash upon
completion of the store

Sample options.txt File

If the following options.txt file is present on the RDSD, logic, configuration and reference

data are copied to the CPU, and files are written to flash. Cam files are not copied.

Download_LogicAndCfg Y

Download_Data Y

Download_CamFiles N

Write_Flash Y

GFK-2222S Chapter 2 CPU Features and Specifications 2-23

2

Security

When the application is written to the RDSD from a controller that has passwords and/or

an OEM key defined, the passwords and OEM key are encrypted and stored on the

RDSD. When the project is written from the RDSD to a CPE3xx, the passwords and OEM

key are copied to it.

If an OEM key is defined on the RDSD, when transfer is complete, the OEM protection

will be enabled (locked). When an application is being stored to a CPE305 that already

has passwords and/or an OEM key defined, the passwords/key on the RDSD must match

the passwords/key in the target CPE3xx, or the transfer will fail.

RDSD Error Reporting

Errors are indicated when the RDSD LED becomes solid red (not blinking). All errors are

reported in the Controller fault tables. If the Controller has faults in its fault tables before

it receives a store, the fault tables are written to plcfaultbefore.dat and iofaultbefore.dat

on the RDSD. If the Controller has faults in its fault tables after it receives a store, the

fault tables are written to plcfaultafter.dat and iofaultafter.dat on the RDSD. Previous

versions of these files are deleted before the transfer. If either fault table is empty, the

corresponding file is not written and will not be present.

If a hardware configuration that disables the USB port is stored to the CPU, the fault

tables will not be written to the RDSD at completion of the store operation because the

USB port will be disabled at the end of the store process.

Operation with Energy Pack

The CPE3xx preserves user memory using an Energy Pack without the need to

periodically replace batteries. An IC695ACC400 Energy Pack powers the CPU long

enough for the CPU to write its user memory contents to the CPU’s non-volatile storage

during a system power loss. For details on the Energy Pack, refer to the datasheet

GFK-2724.

User memory is preserved only if the Energy Pack is connected (and charged) at

power-down and if it is present at power-up. Removing or reconnecting the Energy Pack

while the CPE3xx is not powered has no effect on the preservation of user memory.

The %S0014 (PLC_BAT) system status reference indicates the Energy Pack.:

Note: When the Energy Pack is powered up for the first time, or is in a system that has

been powered down long enough to completely discharge the Energy Pack, it

may require a few seconds for it charge to its operating level. The CPU’s

STATUS LED will blink green during this time.

Note: Because the Time of Day (TOD) clock is powered by the Real Time Clock

battery, removal of the Energy Pack does not cause the CPU to lose the TOD

value.

Energy Pack Replacement

If an Energy Pack fails, you can replace it with a new unit while the CPU is in operation.

When an Energy Pack is replaced, the new Energy Pack must charge. If a loss of power

occurs while the Energy Pack is disconnected or before it is fully charged, a memory loss

may occur.

2-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

RX7i Features and Specifications

CPE010, CPE020 and CRE020
IC698CPE010: 300MHz CPU microprocessor
IC698CPE020: 700MHz CPU microprocessor
IC698CRE020: 700MHz CPU microprocessor with redundancy

CPU Serial Ports
The CPU has three independent, on-board serial ports, accessed
by connectors on the front of the module. Ports 1 and 2 provide
serial interfaces to external devices; either can be used for firmware
upgrades. The third on-board serial port is a dedicated Ethernet
Station Manager port. All serial ports are isolated. For serial port pin
assignments and details on serial communications, refer to
chapter 12.

Ethernet Ports
For details on the embedded Ethernet interface, refer to page 2-30.

CPU Indicators
Five CPU LEDs indicate the operating status of various CPU
functions.

LED State
On Blinking Off

CPU Operating State

 OK On CPU has passed its powerup
diagnostics and is functioning properly.

 OK Off CPU problem. EN and RUN LEDs may
be blinking in an error code pattern,
which can be used by technical
support for troubleshooting. This
condition and any error codes should
be reported to your technical support
representative.

 OK, EN, RUN
Blinking in unison

CPU is in boot mode and is waiting for
a firmware update through a serial
port.

 OK Blinking
Other LEDs off.

CPU in Stop/Halt state; possible
watchdog timer fault. Refer to the fault
tables. If the programmer cannot
connect, cycle power with battery
attached and refer to fault tables.

 RUN On CPU is in Run mode

 RUN Off CPU is in Stop mode.

 ENA On Output scan is enabled.

 ENA Off Output scan is disabled.

 C1 (port 1) Blinking
C2 (port 2) Blinking

Signal activity on port.

GFK-2222S Chapter 2 CPU Features and Specifications 2-25

2

Specifications – CPE010, CPE020 and CRE020 Models

For environmental specifications, see “RX7i General Specifications” in Appendix A of the

RX7i Installation Manual, GFK-2223.

Program storage Up to 10 Mbytes of battery-backed RAM
10

10 Mbytes of non-volatile flash user memory

Power requirements
 CPE010

 CPE020, CRE020

+5 VDC: 3.2 Amps nominal
+12 VDC: 0.042 Amps nominal
-12 VDC: 0.008 Amps nominal

+5 VDC: 4.5 Amps nominal
+12 VDC: 0.042 Amps nominal
-12 VDC: 0.008 Amps nominal

Operating Temperature CPE010: 0 to 50°C (32°F to 122°F
 0 to 60°C (32°F to 140°F) with fan tray

CPE020, CRE020: 0 to 60°C (32°F to 140°F), fan tray required

Floating point Yes

Time of Day Clock accuracy Maximum drift of ±9 seconds per day.

Can be synchronized to an Ethernet time master within ±2ms of the SNTP
time stamp.

Elapsed Time Clock (internal timing)
accuracy

±0.01% maximum

Embedded communications RS-232, RS-485, Ethernet interface

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

To determine availability for a given firmware version, please refer to the
Important Product Information document provided with the CPU.

Ethernet Ports Embedded auto-sensing 10/100 Mbps half/full duplex Ethernet interface

VME Compatibility System designed to support the VME64 standard ANSI/VITA 1

Program blocks Up to 512 program blocks. Maximum size for a block is 128 KB.

Memory

(For a detailed listing of memory
areas, refer to chapter 6.)

%I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32 Kwords
%W: configurable up to the maximum available user RAM
Managed memory (Symbolic and I/O variables combined): configurable up
to 10 Mbytes

Error Checking and Correction CRE020 only.

10

 For estimated battery life under various conditions, refer to the PACSystems Battery and Energy
Pack Manual, GFK-2741.

2-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Ethernet Interface Specifications

Web-based data monitoring Up to 16 web server and FTP connections (combined)

Ethernet data rate 10Mb/sec and 100Mb/sec

Physical interface 10BaseT RJ45

WinLoader support Yes

Number of EGD configuration-based pages 255

Time synchronization SNTP

Selective consumption of EGD Yes

Load EGD configuration from PLC to programmer Yes

Remote Station Manager over UDP Yes

Local Station Manager (RS-232) Dedicated RS-232 port

Configurable Advanced User Parameters Yes

Error Checking and Correction, IC698CRE020

Redundancy CPUs are shipped with error checking and correction (ECC) enabled.

Enabling ECC results in slightly slower system performance, primarily during power-up,

because it uses an extra 8 bits that must be initialized. If you upgrade the firmware on the

non-redundancy CPU model IC698CPE020 to support redundancy, you must set the

ECC jumper to the enabled state as described in the installation instructions provided

with the upgrade kit.

The CRE020 performance measurements provided in appendix A were done with ECC

enabled.

For details on ECC, refer to the PACSystems Hot Standby CPU Redundancy User’s

Guide, GFK-2308.

GFK-2222S Chapter 2 CPU Features and Specifications 2-27

2

CPE030/CRE030 and CPE040/CRE040
CPE030/CRE030: 600MHz Pentium-M microprocessor
CPE040/CRE040: 1800MHz Pentium-M microprocessor

CPU Serial Ports
The CPU has three independent, isolated, on-board serial ports,
accessed by connectors on the front of the module. Ports 1 and 2
provide serial interfaces to external devices and can be used for
firmware upgrades. The third serial port is a dedicated Ethernet Station
Manager port. For serial communications, see chapter 13.

Ethernet Ports
For details on the embedded Ethernet interface, refer to page 2-30.

CPU Indicators
Seven CPU LEDs indicate CPU operating status.

LED State
On Blinking Off

CPU Operating State

 CPU OK On CPU has passed its powerup
diagnostics and is functioning properly.

 CPU OK Off CPU problem. RUN and OUTPUTS
ENABLED LEDs may be blinking in an
error code pattern, which can be used
by technical support for diagnostics.
This condition and any error codes
should be reported to your technical
support representative.

 CPU OK, OUTS ENA,
RUN Blinking in
unison

CPU is in boot mode and is waiting for a
firmware update through a serial port.

 OK Blinking
Other LEDs off.

CPU in Stop/Halt state; possible
watchdog timer fault. Refer to the fault
tables. If the programmer cannot
connect, cycle power with battery
attached and refer to fault tables.

 RUN Off CPU is in Stop mode.

 OUTS ENA On Output scan is enabled.

 OUTS ENA Off Output scan is disabled.

 I/O FORCE On Override is active on a bit reference
(Not used by CRE030 and CRE040.)

 BATTERY On Battery has failed or is not attached.

 SYS FAULT On CPU is in Stop/Faulted mode because a
fatal fault has occurred.

 C1 (port 1) Blinking
C2 (port 2) Blinking

Signal activity on port.

2-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

Specifications – CPE030/CRE030 and CPE040/CRE040 Models

For environmental specifications, see “RX7i General Specifications” in Appendix A of the

RX7i Installation Manual, GFK-2223.

Program storage Up to 64 Mbytes of battery-backed RAM
11

64 Mbytes of non-volatile flash user memory

Power requirements CPE030/CRE030:+5 VDC: 3.2 Amps nominal
 +12 VDC: 0.003 Amps nominal
 -12 VDC: 0.003 Amps nominal

CPE040/CRE040: +5 VDC: 6.8 Amps nominal
 +12 VDC: 0.003 Amps nominal
 -12 VDC: 0.003 Amps nominal

Operating temperature CPE030/CRE030: 0 to 50°C (32°F to 122°F
 0 to 60°C (32°F to 140°F) with fan tray

CPE040/CRE040: 0 to 60°C (32°F to 140°F), fan tray required

Floating point Yes

Time of Day Clock accuracy Maximum drift of ±2 seconds per day.

Can be synchronized to an Ethernet time master within ±2 ms of the SNTP
time stamp.

Elapsed Time Clock (internal timing)
accuracy

±0.01% maximum

Embedded communications RS-232, RS-485, Ethernet interface

Serial Protocols supported Modbus RTU Slave, SNP Slave, Serial I/O

To determine availability for a given firmware version, please refer to the
Important Product Information document provided with the CPU.

Ethernet Ports Embedded auto-sensing 10/100 Mbps half/full duplex Ethernet interface

[Optional] Station Manager cable for
Ethernet Interface

IC200CBL001

VME Compatibility System designed to support the VME64 standard ANSI/VITA 1

Program blocks Up to 512 program blocks. Maximum size for a block is 128KB.

Memory

(For a detailed listing of memory
areas, refer to chapter 6.)

%I and %Q: 32Kbits for discrete
%AI and %AQ: configurable up to 32Kwords
%W: configurable up to the maximum available user RAM
Managed memory (Symbolic and I/O variables combined): configurable up to
10 Mbytes

Error checking and correction CRE030 and CRE040 only

11

 For estimated battery life under various conditions, refer to the PACSystems Battery and Energy
Pack Manual, GFK-2741.

GFK-2222S Chapter 2 CPU Features and Specifications 2-29

2

Ethernet Interface Specifications

Web-based data monitoring Up to 16 web server and FTP connections (combined)

Ethernet data rate 10 Mb/sec and 100 Mb/sec

Physical interface 10BaseT RJ45

WinLoader support Yes

Number of EGD configuration-based pages 255

Time synchronization SNTP

Selective consumption of EGD Yes

Load EGD configuration from PLC to programmer Yes

Remote Station Manager over UDP Yes

Local Station Manager (RS-232) Dedicated RS-232 port

Configurable Advanced User Parameters Yes

Error Checking and Correction, IC698CRE030 and IC698CRE040

Redundancy CPUs are shipped with error checking and correction (ECC) enabled.

Enabling ECC results in slightly slower system performance, primarily during power-up,

because it uses an extra 8 bits that must be initialized. If you upgrade the firmware on a

non-redundancy CPU model to support redundancy, you must set the ECC jumper to the

enabled state as described in the installation instructions provided with the upgrade kit.

For details on ECC, refer to the PACSystems Hot Standby CPU Redundancy User’s

Guide, GFK-2308.

Note: Multiple Recoverable Memory Error faults may be generated when a single-bit

ECC error is detected. When a single-bit ECC error is detected, the value

presented to the microprocessor is corrected. However, the value stored in RAM

is not corrected until the next time the microprocessor writes to that RAM

location.

2-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

RX7i Embedded Ethernet Interface

Ethernet Ports

The embedded Ethernet Interface provides two RJ-45 Ethernet ports. Either or both of
these ports may be connected to other Ethernet devices. Each port automatically senses
the data rate (10Mbps or 100Mbps), duplex (half duplex or full duplex), and cabling
arrangement (straight through or crossover) of the attached link.) For Ethernet port pin
assignments, refer to chapter 12. For details on Ethernet communications, refer to the
following manuals:

TCP/IP Ethernet Communications for PACSystems User’s Guide, GFK-2224

PACSystems TCP/IP Communications Station Manager Manual, GFK-2225

Caution

The two ports on the Ethernet Interface must not be connected,
directly or indirectly to the same device. The hub or switch
connections in an Ethernet network must form a tree; otherwise
duplication of packets may result.

Ethernet Interface Indicators

The Ethernet Interface indicators consist of seven light emitting diodes (LEDs). All are

single-color green LEDs controlled by the Ethernet interface.

■ Module OK (EOK)

■ LAN online (LAN)

■ Status (STAT)

■ Two activity LEDS (LINK)

■ Two speed LEDS (100)

The EOK, LAN, and STAT LEDs are grouped together and indicate the state and status

of the Ethernet interface.

Each Ethernet port has two green LED indicators, Link and 100. The LINK LED indicates

the network link status and activity. This LED is illuminated when the link is physically

connected and blinks when traffic is detected at the port. Note that traffic at the port does

not necessarily mean that traffic is present at the Ethernet interface, since the traffic may

be going between ports of the switch. The 100 LED indicates the network data speed (10

or 100 Mb/sec). This LED is illuminated if the network connection is 100 Mbps.

LED operation is described in the following tables.

GFK-2222S Chapter 2 CPU Features and Specifications 2-31

2

Ethernet LED Operation

LED State

On Blinking Off
Ethernet Operating State

EOK Blink error code

LAN Off

STAT Off

Hardware Failure

EOK Fast Blink

LAN Off

STAT Off

Performing Diagnostics

EOK Slow Blink

LAN Off

STAT Off

Waiting for Ethernet configuration from
CPU

EOK Slow Blink
†

LAN On/Traffic/Off

STAT Slow Blink
†

(† EOK and STAT blink in unison)

Waiting for IP Address

 EOK On

LAN On/Traffic/Off

STAT On/Off

Operational

EOK Slow Blink
‡

LAN Slow Blink
‡

STAT Slow Blink
‡

(‡ All LEDs blink in unison)

Software Load

EOK LED Operation

The EOK LED indicates whether the Ethernet interface is able to perform normal

operation. This LED is on for normal operation and blinks for all other operations. When a

hardware or unrecoverable runtime failure occurs, the EOK LED blinks a two-digit error

code identifying the failure. The LED first blinks to indicate the most significant error digit,

then after a brief pause blinks again to indicate the least significant error digit. After a

long pause the error code display repeats.

2-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

2

EOK LED Blink Codes for Ethernet Hardware Failures

Blink Code Description

0x12 Undefined or Unexpected Interrupt.

0x13 Timer failure during power up diagnostics.

0x14 DMA failure during power up diagnostics.

0x21 RAM failure during power up diagnostics.

0x22 Stack error during power up diagnostics.

0x23 Shared Memory Interface error during power up diagnostics.

0x24 Firmware CRC (cyclic redundancy check) error during power up or
Factory Test.

†

0x25 Run time exception

0x31 Undefined instruction or divide by zero

0x32 Software interrupt

0x33 Instruction prefetch abort

0x34 Data abort

0x35 Unexpected Runtime IRQ

0x36 Unexpected Runtime FIQ (fast interrupt request)

0x37 Reserved Exception or branch through zero

† CRC error or software error during normal operation causes Ethernet restart.

LAN LED Operation

The LAN LED indicates access to the Ethernet network. During normal operation and

while waiting for an IP address, the LAN LED blinks to indicate network activity. This LED

remains on when the Ethernet interface is not actively accessing the network but the

network is available, and it is off if network access is not available. The definition of the

network being available as indicated by this LED is that the Ethernet physical interface is

available and one or both of the Ethernet ports is connected to an active network.

STAT LED Operation

The STAT LED indicates the condition of the Ethernet interface in normal operational

mode. If the STAT LED is off, an event has been entered into the exception log and is

available for viewing via the Station Manager interface. The STAT LED is on during

normal operation when no events are logged.

In the other states, the STAT LED is either off or blinking and helps define the operational

state of the module.

Ethernet Port LEDs Operation (100Mb and Link/Activity)

Each of the two Ethernet ports has two green LED indicators, 100 and LINK. The 100

LED indicates the network data speed (10 or 100 Mb/sec). This LED is illuminated if the

network connection is 100 Mbps.

The LINK LED indicates the network link status and activity. This LED is illuminated

when the link is physically connected and blinks when traffic is detected at the port. Note

that traffic at the port does not necessarily mean that traffic is present at the Ethernet

interface, since the traffic may be going between ports of the switch.

GFK-2222S Chapter 2 CPU Features and Specifications 2-33

2

Ethernet Restart Pushbutton

The Ethernet Restart pushbutton is used to manually restart the Ethernet firmware

without power cycling the entire control system. It is recessed to prevent accidental

operation. The restart does not occur until the pushbutton is released.

The type of restart behavior is selected by the length of time that the pushbutton is

depressed. The pushbutton-controlled restart operations are listed in the following table,

along with the LED indications for each. In all cases, the EOK, LAN and STAT LEDs

briefly turn on in unison as an LED test. The Ethernet port LEDs are not affected by a

manual restart of the Ethernet firmware.

Restart Operation Depress Ethernet Restart
pushbutton for

Ethernet LEDs
Illuminated

Normal restart Less than 5 seconds EOK, LAN, STAT

Restart without Ethernet plug-in
applications

5 to 10 seconds LAN, STAT

Restart into Firmware Update
operation

More than 10 seconds STAT

Normal Restart

When the Ethernet Restart pushbutton is pressed for less than 5 seconds, the Ethernet

interface will restart into normal operation.

Restart Without Ethernet plug-in Applications

When the Restart pushbutton is pressed and held for 5 to 10 seconds, the Ethernet

interface will restart into normal operation but does not start any optional Ethernet plug-in

applications. This is typically done during troubleshooting.

Restart into Firmware Update Operation

When the Ethernet Restart pushbutton is pressed and held for more than 10 seconds, the

Ethernet interface will restart into firmware update operation. This is typically done during

troubleshooting to bypass possibly invalid firmware and allow valid firmware to be loaded

using WinLoader.

Until the firmware update actually begins, you can manually exit the firmware update and

restart with the existing firmware by pressing the Ethernet Restart pushbutton again.

GFK-2222S 3-1

CPU Configuration

The PACSystems CPU and I/O system is configured using Proficy Machine Edition Logic

Developer-PLC programming software.

The CPU verifies the physical module and rack configuration at power-up and periodically

during operation. The physical configuration must be the same as the programmed

configuration. Differences are reported to the CPU alarm processor for configured fault

response. Refer to the Machine Edition Logic Developer-PLC Getting Started Manual,

GFK-1918 and the online help for a description of configuration functions.

Note: A CPE020, CPE030 or CPE040 can be converted to the corresponding

redundancy CPU (CRE020, CRE030 or CRE040) by installing different firmware

and moving a jumper. Detailed instructions are included in the firmware upgrade

kit for the redundancy CPU.

Configuring the CPU
To configure the CPU using the Logic Developer-PLC programming software, do the

following:

1. In the Project tab of the Navigator, expand

your PACSystems Target, the hardware

configuration, and the main rack (Rack 0).

2. Right click the CPU slot and choose

Configure. The Parameter Editor window

displays the CPU parameters.

Note: An RX7i CPU must be installed in Rack 0,

Slot 1. A double-wide RX3i CPU occupies

two slots and can be installed in any pair

of slots in Rack 0 except the two highest

numbered slots in the rack. The single-

wide

CPE305 RX3i CPU requires one slot and can

be installed in any slot in RX3i Rack 0,

except the highest numbered slot or slot 0.

3. To edit a parameter value, click the desired tab, then click in the appropriate Values

field. Refer to “Configuration Parameters” on page 3-2 for information on these fields.

4. Store the configuration to the Controller so these settings can take effect. For details,

see “Storing (Downloading) a Configuration” on page 3-19.

Note: If available, the embedded Ethernet Interface is displayed in a subslot of the CPU.

For details on configuring the embedded Ethernet Interface, refer to page 3-20.

3
Chapter

3-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Configuration Parameters

Settings Parameters

These parameters specify basic operating characteristics of the CPU. For details on how

these parameters affect CPU operation, refer to chapter 5.

Settings Parameters

Passwords Specifies whether passwords are Enabled or Disabled. Default: Enabled.

Note: If Enhanced Security
1
 is enabled in the target properties, the Passwords setting will

be Enabled and read-only, and the Access Control tab (page 3-16) appears.

 When passwords are disabled, they cannot be re-enabled without clearing PLC
memory.

Stop-Mode I/O
Scanning

Specifies whether the I/O is scanned while the PLC is in Stop mode. Default: Disabled.
(Always Disabled for Redundancy CPU.)

Note: This parameter corresponds to the I/O ScanStop parameter on a Series 90-70

PLC.

Watchdog Timer (ms) (Milliseconds in 10 ms increments.) Requires a value that is greater than the program sweep
time.

The software watchdog timer is designed to detect "failure to complete sweep" conditions.
The CPU restarts the watchdog timer at the beginning of each sweep. The watchdog timer
accumulates time during the sweep. The software watchdog timer is useful in detecting
abnormal operation of the application program, which could prevent the PLC sweep from
completing within the watchdog time period.

Valid range: 10 through 2550, in increments of 10.

Default: 200.

Note: For details on setting the watchdog timer in a CPU redundancy system, refer to the

PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308.

Logic/Configuration
Power-up Source

Specifies the location/source of the logic and configuration data that is to be used (or
loaded/copied into RAM) after each power up.

Choices: Always RAM, Always Flash, Conditional Flash.

Default: Always RAM.

Data Power-up Source Specifies the location/source of the reference data that is to be used (or loaded/copied into
RAM) after each power up.

Choices: Always RAM, Always Flash, Conditional Flash.

Default: Always RAM.

1
 For availability, refer to the Important Product Information document for the CPU

firmware version that you are using.

GFK-2222S Chapter 3 CPU Configuration 3-3

3

Settings Parameters

Run/Stop Switch Enables or disables the Run/Stop Mode Switch.

Choices:

Enabled: Enables you to use the physical switch on the PLC to switch the PLC into Stop

mode or from Stop mode into Run mode and clear non-fatal faults.

Disabled: Disables the physical Run/Stop switch on the PLC.

Default: Enabled.

Note: If both serial ports are configured for any protocol other than RTU Slave or SNP

Slave, the Run/Stop switch should not be disabled without first must making sure
that there is a way to stop the CPU, or take control of the CPU through another
device such as an Ethernet interface. If the CPU can be set to Stop mode, it will
switch the protocol from Serial I/O to the Stop Mode protocol (default is RTU
Slave). For details on Stop mode settings, refer to “Port 1 and Port 2 Parameters”
on page 3-11.

 This applies to Port 1 on the CPE305, which has only one serial port.

Memory Protection
Switch

Enables or disables the Memory Protect feature associated with the Run/Stop Mode Switch.

Choices:

Enabled: Memory Protect is enabled, which prevents writing to program memory and

configuration and forcing or overriding discrete data.

Disabled: Memory Protect is disabled.

Default: Disabled.

Power-up Mode Selects the CPU mode to be in effect immediately after power-up.

Choices: Last, Stop, Run.

Default: Last (the mode it was in when it last powered down).

Note: If the battery or Energy Pack is missing or has failed and if Logic/Configuration

Power-up Source is set to Always RAM, the CPU powers up in Stop mode
regardless of the setting of the Power-up Mode parameter.

Modbus Address
Space Mapping Type

Specifies the type of memory mapping to be used for data transfer between Modbus TCP/IP
clients and the PACSystems controller.

Choices:

Disabled: The “Disabled” setting is intended for use in systems containing Ethernet

firmware that does not support Modbus TCP.

Standard Modbus Addressing: Causes the Ethernet firmware to use the standard map,

which is displayed on the Modbus TCP Address Map tab.

Default: Disabled

For details on the PACSystems implementation of Modbus/TCP server, refer to TCP/IP
Communications for PACSystems, GFK-2224.

Universal Serial Bus RX3i CPE305/CPE310 CPUs only. Enables or disables the USB port for use with RDSD

(removable data storage devices). The USB port is enabled by default in the
CPE305/CPE310 and in the hardware configuration.

If a CPU310 configuration is stored to a CPE310, the USB port will be enabled.

3-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Modbus TCP Address Map

This read-only tab displays the standard mapping assignments between Modbus address

space and the CPU address space. Ethernet modules and daughterboards in the

PACSystems controller use Modbus-to-PLC address mapping based on this map.

Modbus
Register

The Modbus protocol uses five reference table designations:

0xxxx Coil Table. Mapped to the %Q table in the CPU.

1xxxx Input Discrete Table. Mapped to the %I table in the CPU.

3xxxx Input Register Table. Mapped to the %AI register table in the CPU.

4xxxx Holding Register Table. Mapped to the %R table in the CPU.

6xxxx File Access Table. Mapped to the %W table in the CPU.

Start Address Lists the beginning address of the mapped region.

End Address Lists the ending address of the mapped region. For word memory types (%AI, %R and %W) the
highest address available is configured on the Memory tab.

PLC Memory Lists the memory type of the mapped region.

Length Displays the length of the mapped region.

GFK-2222S Chapter 3 CPU Configuration 3-5

3

Scan Parameters

These parameters determine the characteristics of CPU sweep execution.

Scan Parameters

Sweep Mode The sweep mode determines the priority of tasks the CPU performs during the
sweep and defines how much time is allotted to each task. The parameters that
can be modified vary depending on the selection for sweep mode.

The Controller Communications Window, Backplane Communications Window,
and Background Window phases of the PLC sweep can be run in various modes,
based on the PLC sweep mode.

Choices:

■ Normal mode: The PLC sweep executes as quickly as possible. The overall
PLC sweep time depends on the logic program and the requests being
processed in the windows and is equal to the time required to execute the
logic in the program plus the respective window timer values. The window
terminates when it has no more tasks to complete. This is the default value.

■ Constant Window mode: Each window operates in a Run-to-Completion mode.
The PLC alternates among three windows for a time equal to the value set for
the window timer parameter. The overall PLC sweep time is equal to the time
required to execute the logic program plus the value of the window timer. This
time may vary due to sweep-to-sweep differences in the execution of the
program logic.

■ Constant Sweep mode: The overall PLC sweep time is fixed. Some or all of
the windows at the end of the sweep might not be executed. The windows
terminate when the overall PLC sweep time has reached the value specified
for the Sweep Timer parameter.

Logic Checksum Words The number of user logic words to use as input to the checksum algorithm each
sweep.

Valid range: 0 through 32760, in increments of 8.

Default: 16.

Controller Communication
Window Mode

(Available only when Sweep Mode is set to Normal.) Execution settings for the
Controller Communications Window.

Choices:

■ Complete: The window runs to completion. There is no time limit.

■ Limited: Time sliced. The maximum execution time for the Controller
Communications Window per scan is specified in the Controller
Communications Window Timer parameter.

Default: Limited.

Note: This parameter corresponds to the Programmer Window Mode parameter

on a Series 90-70 PLC.

Controller Communications
Window Timer (ms)

(Available only when Sweep Mode is set to Normal. Read-only if the Controller

Communications Window Mode is set to Complete.) The maximum execution time
for the Controller Communications Window per scan. This value cannot be greater
than the value for the watchdog timer.

The valid range and default value depend on the Controller Communications
Window Mode:

■ Complete: There is no time limit.

■ Limited: Valid range: 0 through 255 ms. Default: 10.

Note: This parameter corresponds to the Programmer Window Timer parameter

on a Series 90-70 PLC.

3-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Scan Parameters

Backplane Communication
Window Mode

(Available only when Sweep Mode is set to Normal.) Execution settings for the
Backplane Communications Window.

Choices:

Complete: The window runs to completion. There is no time limit.

Limited: Time sliced. The maximum execution time for the Backplane
Communications Window per scan is specified in the Backplane Communications
Window Timer parameter.

Default: Complete.

Backplane Communications
Window Timer (ms)

(Available only when Sweep Mode is set to Normal. Read-only if the Backplane
Communications Window Mode is set to Complete.) The maximum execution time
for the Backplane Communications Window per scan. This value can be greater
than the value for the watchdog timer.

The valid range and the default depend on the Backplane Communications
Window Mode:

■ Complete: There is no time limit. The Backplane Communications Window
Timer parameter is read-only.

■ Limited: Valid range: 0 through 255 ms. Default: 255. (10ms for Redundancy
CPUs.)

Background Window
Timer (ms)

(Available only when Sweep Mode is set to Normal.) The maximum execution time
for the Background Communications Window per scan. This value cannot be
greater than the value for the watchdog timer.

Valid range: 0 through 255

Default: 0 (5ms for Redundancy CPUs)

Sweep Timer (ms) (Available only when Sweep Mode is set to Constant Sweep.) The maximum
overall PLC scan time. This value cannot be greater than the value for the
watchdog timer.

Some or all of the windows at the end of the sweep might not be executed. The
windows terminate when the overall PLC sweep time has reached the value
specified for the Sweep Timer parameter.

Valid range: 5 through 2550, in increments of 5. If the value typed is not a multiple
of 5ms, it is rounded to the next highest valid value.

Default: 100.

Window Timer (ms) (Available only when Sweep Mode is set to Constant Window.) The maximum
combined execution time per scan for the Controller Communications Window,
Backplane Communications Window, and Background Communications Window.
This value cannot be greater than the value for the watchdog timer.

Valid range: 3 through 255, in increments of 1.

Default: 10.

Number of Last Scans (Available only for CPUs with firmware version 1.5 and greater.) The number of
scans to execute after the PACSystems CPU receives an indication that a
transition from Run to Stop mode should occur. (Used for Stop and Stop Fault, but
not Stop Halt.)

Choices: 0, 1, 2, 3, 4, 5.

Default:

 0 when creating a new PACSystems target.

 0 when converting a Series 90-70 target to a PACSystems target.

 1 when converting a Series 90-30 target to a PACSystems target.

GFK-2222S Chapter 3 CPU Configuration 3-7

3

Memory Parameters

The PACSystems user memory contains the application program, hardware configuration

(HWC), registers (%R), bulk memory (%W), analog inputs (%AI), analog outputs (%AQ),

and managed memory.

Managed memory consists of allocations for symbolic variables and I/O variables. The

symbolic variables feature allows you to create variables without having to manually

locate them in memory. An I/O variable is a symbolic variable that is mapped to a

module’s inputs and outputs in the hardware configuration. For details on using symbolic

variables and I/O variables, refer to chapter 7.

The amount of memory allocated to the application program and hardware configuration is

automatically determined by the actual program (including logic C data, and %L and %P),

hardware configuration (including EGD and AUP), and symbolic variables created in the

programming software. The rest of the user memory can be configured to suit the

application. For example, an application may have a relatively large program that uses

only a small amount of register and analog memory. Similarly, there might be a small logic

program but a larger amount of memory needed for registers and analog inputs and

outputs.

Appendix B provides a summary of items that count against user memory.

Calculation of Memory Required for Managed Memory

 The total number of bytes required for symbolic and I/O variables is calculated as follows:

[((number of symbolic discrete bits) × 3) / (8 bits/byte)]

+ [((number of I/O discrete bits) × Md) / (8 bits/byte)]

+ [(number of symbolic words × (2 bytes/word)]

+ [(number of I/O words) × (Mw bytes/word)]

Md = 3 or 4. The number of bits is multiplied by 3 to keep track of the force, transition, and

value of each bit. If point faults are enabled, the number of I/O discrete bits is multiplied

by 4.

Mw = 2 or 3. There are two 8-bit bytes per 16-bit word. If point faults are enabled, the

number of bytes is multiplied by 3 because each I/O word requires an extra byte.

Calculation of Total User Memory Configured

The total amount of configurable user memory (in bytes) configured in the CPU is

calculated as follows:

total managed memory (bytes)

+ total reference words × (2 bytes/word)

+ [if Point Faults are enabled] (total words of %AI memory + total words of %AQ

memory) × (1 byte / word)

+ [if Point Faults are enabled] (total bits of %I memory + total bits of %Q memory) /

8 bits/byte)

Note: The total number of reference points is considered system memory and is not

counted against user memory.

3-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Memory Allocation Configuration

Memory Parameters

Reference Points

%I Discrete Input, %Q Discrete Output,
%M Internal Discrete, %S System, %SA
System, %SB System, %SC System, %T
Temporary Status, %G Genius Global

The upper range for each of these memory types. Read only.

Total Reference Points Read only. Calculated by the programming software.

Reference Words

%AI Analog Input Valid range: 0 through 32,640 words.

Default: 64

%AQ Analog Output Valid range: 0 through 32,640 words.

Default: 64

%R Register Memory Valid range: 0 through 32,640 words.

Default: 1024.

%W Bulk Memory Valid range: 0 through maximum available user RAM.

Increments of 2048 words.

Default: 0.

Total Reference Words Read only. Calculated by the programming software.

Managed Memory

Symbolic Discrete (Bits) The configured number of bits reserved for symbolic discrete variables.

Valid range: 0 through 83,886,080 in increments of 32768 bits.

Default: 32,768.

Symbolic Non-Discrete (Words) The configured number of 16-bit register memory locations reserved for
symbolic non-discrete variables.

Valid range: 0 through 5,242,880 in increments of 2048 words.

Default: 65,536.

I/O Discrete (Bits) The configured number of bits reserved for discrete IO variables.

Valid range: 0 through 83,886,080 in increments of 32768 bits.

Default: 0

I/O Non-Discrete (Words) The configured number of 16-bit register memory locations reserved for
non-discrete IO variables.

Valid range: 0 through 5,242,880 in increments of 2048 words.

Default: 0

Total Managed Memory Required (Bytes) Read only. See page 3-7 for calculation.

Total User Memory Required (Bytes) Read only. See page 3-7 for calculation.

Point Fault References The Point Fault References parameter must be enabled if you want to use
fault contacts in your logic. Assigning point fault references causes the
CPU to reserve additional memory.

When you download both the HWC and the logic to the PLC, the
download routine checks if there are fault contacts in the logic and if there
are, it checks if the HWC to download has the Point Fault References
parameter set to Enabled. If the parameter is Disabled, an error is
displayed in the Feedback Zone.

When you download only logic to the PLC, the download routine checks if
there are fault contacts in the logic and if there are, it checks if the HWC
on the PLC has the Point Fault References parameter set to Enabled. If
the parameter is Disabled, an error is displayed in the Feedback Zone.

GFK-2222S Chapter 3 CPU Configuration 3-9

3

Fault Parameters

You can configure each fault action to be either diagnostic or fatal.

A diagnostic fault does not stop the PLC from executing logic. It sets a diagnostic

variable and is logged in a fault table.

A fatal fault transitions the PLC to the Stop Faulted mode. It also sets a diagnostic

variable and is logged in a fault table.

Fault Parameters

Loss of or Missing Rack (Fault group 1.) When BRM failure or loss of power loses a rack or when a
configured rack is missing, system variable #LOS_RCK (%SA12) turns ON. (To
turn it OFF, fix the hardware problem and cycle power on the rack.)

Default: Diagnostic.

Loss of or Missing I/O Controller (Fault group 2.) When a Bus Controller stops communicating with the PLC or
when a configured Bus Controller is missing, system variable #LOS_IOC
(%SA13) turns ON. (To turn it OFF, replace the module and cycle power on the
rack containing the module.)

Default: Diagnostic.

Loss of or Missing I/O Module (Fault group 3.) When an I/O module stops communicating with the PLC CPU or a
configured module is missing, system variable #LOS_IOM (%SA14) turns ON. (To
turn it OFF, replace the module and cycle power on the rack containing the
module.)

Default: Diagnostic.

Loss of or Missing Option
Module

(Fault group 4.) When an option module stops communicating with the PLC CPU
or a configured option module is missing, system variable #LOS_SIO (%SA15)
turns ON. (To turn it OFF, replace the module and cycle power on the rack
containing the module.)

Default: Diagnostic.

System Bus Error (Fault group 12.) When a bus error occurs on the backplane, system variable
#SBUS_ER (%SA32) turns ON. (To turn it OFF, cycle power on the main rack.)

Default: Fatal.

I/O Controller or I/O Bus Fault (Fault group 9.) When a Bus Controller reports a bus fault, a global memory fault,
or an IOC hardware fault, system variable #IOC_FLT (%SA22) turns ON. (To turn
it OFF, cycle power on the rack containing the module when the configuration
matches the hardware after a download.)

Default: Diagnostic.

System Configuration Mismatch (Fault group 11.) When a configuration mismatch is detected during system
power-up or during a download of the configuration, system variable #CFG_MM
(%SA9) turns ON. (To turn it OFF, power up the PLC when no mismatches are
present or download a configuration that matches the hardware.)

This parameter determines the fault action when the CPU is not running. If a

system configuration mismatch occurs when the CPU is in Run mode, the fault
action will be Diagnostic. This prevents the running CPU from going to
STOP/FAULT mode. To override this behavior, see “Configuring the CPU to Stop
Upon Loss of a Critical Module” on page 3-10.

Default: Fatal.

Recoverable Local Memory Error Redundancy CPUs only. (Fault group 38) Determines whether a single-bit ECC

error causes the CPU to stop or allows it to continue running.

Choices: Diagnostic, Fatal.

Default: Diagnostic.

Note: When a multiple-bit ECC error occurs, a Fatal Local Memory Error fault

(error code 169) is logged in the CPU Hardware Fault Group (group number 13).

3-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Fault Parameters

CPU Over Temperature (Fault group 24, error code 1.) When the operating temperature of the CPU
exceeds the normal operating temperature, system variable #OVR_TMP (%SA8)
turns ON. (To turn it OFF, clear the controller fault table or reset the PLC.)

Default: Diagnostic.

Controller Fault Table Size (Read-only.) The maximum number of entries in the Controller Fault Table.

Value set to 64.

I/O Fault Table Size (Read-only.) The maximum number of entries in the I/O Fault Table.

Value set to 64.

Configuring the CPU to Stop Upon the Loss of a Critical Module

In some cases, you may want to override the Run mode behavior of the System

Configuration Mismatch fault. A given module may be critical to the PLC’s ability to

properly control a process. In this case, if the module fails then it may be better to have

the CPU go to stop mode, especially if the CPU is acting as a backup unit in a redundant

system.

One way to cause the CPU to stop is to set the configured action for a Loss-of-Module

fault to Fatal so that the CPU stops if a module failure causes a loss-of-module fault. The

correct loss-of-module fault must be chosen for the critical module of interest: I/O

controller, I/O module, and Option module. The Ethernet communications module is an

example of an Option module.

This approach has a couple of disadvantages. First, it applies to all modules of that

category, which may include modules that are not critical to the process. Second, it relies

on the content of the fault table. If the table is cleared via program logic or user action, the

CPU will not stop.

In systems that use Ethernet Network Interface Units (ENIUs) for remote I/O, a critical

module of interest may be the Ethernet module that provides the network connection to

the ENIU. Other techniques can be used to provide a more selective response to an

Ethernet module failure than the Loss-of-Option module fault. One technique is to use

application logic to monitor the Ethernet Interface Status bits, which are described in

“Monitoring the Ethernet Interface Status Bits” in the TCP/IP Ethernet for PACSystems

User’s Manual, GFK-2224. If the logic determined that a critical Ethernet module was

malfunctioning, it could execute SVC_REQ #13 to stop the CPU.

Since the ENIU uses Ethernet Global Data to communicate with the PACSystems CPU,

another selective technique is to monitor the Exchange Status Words to determine the

health of individual EGD exchanges. For details on this status word, refer to “Exchange

Status Word Error Codes” in GFK-2224. Because the types of errors indicated by the

exchange status word may be temporary in nature, stopping the CPU may not be an

appropriate response for these errors. Nevertheless, the status could be used to tailor the

application’s response to changing conditions in the EGD network.

In some cases the critical module may reside in an expansion rack. In that case, in

addition to the loss-of-module fault, it is recommended to set the Loss-of-Rack fault to

Fatal. Then if the rack fails or loses power, the CPU will go to stop mode.

GFK-2222S Chapter 3 CPU Configuration 3-11

3

Redundancy Parameters (Redundancy CPUs Only)

These parameters apply only to redundancy CPUs. For details on configuring CPU for

redundancy, refer to the PACSystems Hot Standby CPU Redundancy User’s Guide,

GFK-2308.

Transfer List

These parameters apply only to redundancy CPUs. For details on configuring CPU for

redundancy, refer to the PACSystems Hot Standby CPU Redundancy User’s Guide,

GFK-2308.

Port 1 and Port 2 Parameters

These parameters configure the operating characteristics of the CPU serial ports. Ports 1

and 2 have the same set of configuration parameters. The protocol (Port Mode)

determines the parameters that can be set for each port.

Port Parameters

Port Mode

The protocol to execute on the serial port. Determines the list of parameters displayed on the Port tab.
Only the parameters required by the selected protocol are displayed.

Choices:

■ RTU Slave mode: Reserved for the use of the Modbus RTU Slave protocol. This mode also
permits connection to the port by an SNP master, such as the Winloader utility or the programming
software.

■ Message mode: The port is open for user logic access. This mode enables C language blocks to
perform serial port I/O operations via the C Runtime Library functions.

■ Available: The port is not to be used by the PLC firmware. (The CPE305 does not support this

selection.)

■ SNP Slave: Reserved for the exclusive use of the SNP slave. This mode permits connection to
the port by an SNP master, such as the Winloader utility or the programming software.

■ Serial I/O: Enables you to perform general-purpose serial communications by using COMMREQ
functions.

Default: RTU Slave.

Note: If both serial ports are configured for any protocol other than RTU Slave or SNP Slave, the

Run/Stop switch should not be disabled without first making sure that there is a way to stop
the CPU, or take control of the CPU through another device such as the Ethernet module. The
Serial I/O protocol is only active when the CPU is in run mode. If the CPU can be set to Stop
mode, it will switch the protocol from Serial I/O to the Stop Mode protocol (default is RTU
Slave). If an SNP Master, such as the programming software in Serial mode, begins
communicating on a port, the RTU protocol automatically switches to SNP Slave. As long as
the CPU can be stopped, the port’s protocol can be auto-switched to one that enables serial
programmer connection. For Stop Mode protocols, see page 3-13.

 If the Ethernet module is available, you can control the CPU by connecting the Machine
Edition programming software to the Ethernet port.

3-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Port Parameters

Station
Address

(RTU Slave only) ID for the RTU Slave.

Valid range: 1 through 247.

Default: 1.

Note: You should avoid using station address 1 for any other Modbus slave in a PACSystems

 control system because the default station address for the CPU is 1. The CPU uses the
 default address in two situations:

1. If you power up without a configuration, the default station address of 1 is used.

2. When the Port Mode parameter is set to Message Mode, and Modbus becomes the protocol in
stop mode, the station address defaults to 1.

 In either of these situations, if you have a slave configured with a station address of 1,
 confusion may result when the CPU responds to requests intended for that slave.

Note: The least significant bit of the first byte must be 0. For example, in a station address of

 090019010001, 9 is the first byte.

Data Rate (All Port Modes except Available.) Data rate (bits per second) for the port.

Choices: 1200 Baud, 2400 Baud, 4800 Baud, 9600 Baud, 19.2k Baud, 38.4k Baud, 57.6k Baud, 115.2k
Baud.

Default: 19.2k Baud.

Data Bits (Available only when Port Mode is set to Message mode or Serial I/O.) The number of bits in a word for
serial communication. SNP uses 8-bit words.

Choices: 7, 8.

Default: 8.

Flow Control (RTU slave, Message Mode, or Serial I/O.) Type of flow control to be used on the port.

Choices:

 For Serial I/O Port Mode: None, Hardware, Software (XON/XOFF).

 For all other Port Modes: None, Hardware.

Default: None.

Note: The Hardware flow-control is RTS/CTS crossed.

Parity (All Port Modes except Available.) The parity used in serial communication. Can be changed if required
for communication over modems or with a different SNP master device.

Choices: None, Odd, Even.

Default: Odd.

Stop bits (Available only when Port Mode is set to Message Mode, SNP Slave or Serial I/O.) The number of stop
bits for serial communication. SNP uses 1 stop bit.

Choices: 1, 2.

Default: 1.

Physical
Interface

(All port modes except Available.) The type of physical interface that this protocol is communicating
over.

Choices:

■ 2-wire: There is only a single path for receive and transmit communications. The receiver is
disabled while transmitting.

■ 4-wire: There is a separate path for receive and transmit communications and the transmit line is
driven only while transmitting.

■ 4-wire Transmitter on: There is a separate path for receive and transmit communications and the
transmit line is driven continuously. Note that this choice is not appropriate for SNP multi-drop
communications, since only one device on the multi-drop line can be transmitting at a given time.

Default: 4-wire Transmitter On.

GFK-2222S Chapter 3 CPU Configuration 3-13

3

Port Parameters

Turn Around
Delay Time
(ms)

(Available only when Port Mode is set to SNP Slave.) The Turn Around Delay Time is the minimum
time interval required between the reception of a message and the next transmission. In 2-wire mode,
this interval is required for switching the direction of data transmission on the communication line.

Valid range: 0 through 2550 ms, in increments of 10.

Default: 0.

Timeout (s) (Available only when Port Mode is set to SNP Slave.) The maximum time that the slave will wait to
receive a message from the master. If a message is not received within this timeout interval, the slave
will assume that communications have been disrupted, and then it will wait for a new attach message
from the master.

Valid range: 0 through 60 seconds.

Default: 10.

SNP ID (Available only when Port Mode is set to SNP Slave.) The port ID to be used for SNP communications.
In SNP multi-drop communications, this ID is used to identify the intended receiver of a message. This
parameter can be left blank if communication is point to point. To change the SNP ID, click the values
field and enter the new ID. The SNP ID is up to seven characters long and can contain the
alphanumeric characters (A through Z, 0 through 9) or the underline (_).

Specify Stop
Mode

(All port modes except Available.) Determines whether you accept the default stop mode or set it
yourself.

Choices:

No: The default stop mode is used.

Yes: The stop mode parameters appear and you can select the stop mode. If you set the stop mode to

the same protocol as the run mode, then the other stop mode parameters are read-only and are set to
the same values as for the run mode.

Default: No.

Stop Mode (Available only when Specify stop mode is set to Yes.) The stop mode protocol to execute on the serial
port. If you set the stop mode to the same protocol as for the run mode, then the other stop mode
parameters are read-only and are set to the same values as for the run mode.

Choices and defaults are determined by the Port Mode setting.

■ SNP Slave: Reserved for the exclusive use of the SNP slave.

■ RTU Slave: Reserved for the exclusive use of the Modbus RTU Slave protocol.

If the Stop mode protocol is different from the Port mode protocol, you can set parameters for the Stop
mode protocol.

If you do not select a Stop mode protocol, the default protocol with default parameter settings is used.

Port (Run) Mode Stop Mode

RTU Slave Choices: SNP Slave, RTU Slave
Default: RTU Slave.

Message Mode Choices: SNP Slave, RTU Slave
Default: RTU Slave.

Available Available (Not supported on CPE305.)

SNP Slave SNP Slave

Serial I/O Choices: SNP Slave, RTU Slave
Default: RTU Slave.

Note: Setting the Port Mode to RTU Slave and the Stop Mode to SNP Slave may cause loss of

programmer connection and delayed reconnection when the controller transitions from Stop to
Run mode. To avoid this behavior, select SNP Slave for the Port Mode and do not specify a
Stop Mode. For additional details, see “RTU Slave/SNP Slave Operation With Programmer
Attached” in Chapter 14.

3-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Port Parameters

Turn Around
Delay Time
(ms)

(Available only when Stop Mode is set to SNP Slave.) The Turn Around Delay Time is the minimum
time interval required between the reception of a message and the next transmission. In 2-wire mode,
this interval is required for switching the direction of data transmission on the communication line.

Valid range: 0 through 2550 ms, in increments of 10.

Default:

■ When the Stop Mode is different from the Port Mode: 0 ms.

■ When the Stop Mode is the same as the Port Mode: the value is read-only and is set to the same
value as the Turn Around Delay Time for the Port Mode.

Timeout (s) (Available only when Stop Mode is set to SNP Slave.) The maximum time that the slave will wait to
receive a message from the master. If a message is not received within this timeout interval, the slave
will assume that communications have been disrupted, and then it will wait for a new attach message
from the master.

Valid range: 0 through 60 seconds.

Default:

■ When the Stop Mode is different from the Port Mode: 10 seconds.

■ When the Stop Mode is the same as the Port Mode: the value is read-only and is set to the same
value as the Timeout for the Port Mode.

SNP ID (Available only when Stop Mode is set to SNP Slave.) The port ID to be used for SNP communications.
In SNP multi-drop communications, this ID is used to identify the intended receiver of a message. This
parameter can be left blank if communication is point to point. To change the SNP ID, click the values
field and enter the new ID. The SNP ID is up to seven characters long and can contain the
alphanumeric characters (A through Z, 0 through 9) or the underline (_).

Default:

■ When the Stop Mode is different from the Port Mode: the default is blank.

■ When the Stop Mode is the same as the Port Mode: the value is read-only and is set to the same
value as the SNP ID for the Port Mode.

Station
Address

(Available only when Stop Mode is set to RTU slave.) ID for the RTU Slave.

Valid range: 1 through 247.

Default:

■ When the Stop Mode is different from the Port Mode: 1.

■ When the Stop Mode is the same as the Port Mode: the value is read-only and is set to the same
value as the Station Address for the Port Mode.

GFK-2222S Chapter 3 CPU Configuration 3-15

3

Scan Sets Parameters

You can create multiple sets of asynchronous I/O scans, with a unique scan rate assigned

to each scan set. You can assign up to 31 scan sets for a total of 32. Scan set 1 is the

standard scan set where I/O is scanned once per sweep. Each module is assigned to a

scan set in the module’s configuration. Scan Set 1 is the default scan set.

Scan Set Parameters

Number A sequential number from 1 to 32 is automatically assigned to each scan set. Scan set 1 is
reserved for the standard scan set.

Scan Type Determines whether the scan set is enabled (as a fixed scan) or is disabled.

Choices: Disabled, Fixed Scan.

Default: Disabled.

Number of Sweeps (Editable only when the Scan Type is set to Fixed Scan.) The scan rate of the scan set. Double-
click the field, then select a value. A value of 0 prevents the I/O from being scanned.

Valid range: 0 through 64.

Default: 1.

Output Delay (Editable only when the Number of Sweeps is non-zero.) The number of sweeps that the output
scan is delayed after the input scan has occurred. Double-click on field, then select a value.

Valid range: 0 to (number of Sweeps - 1)

Default: 0.

Description (Editable only when the Scan Type is set to Fixed Scan.) Brief description of the scan set (32
characters maximum).

Power Consumption Parameters
The programming software displays the power consumed by the CPU (in Amps) for each voltage
provided by the power supply.

3-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Access Control

The Access Control list allows you to specify the reference address ranges that can be

accessed by non-local devices such as HMIs and other controllers. To use this feature,

Enhanced Security must be enabled in the target’s properties.

When Enhanced Security mode is enabled, any reference address range not defined

cannot be accessed by other devices. External reads and writes that do not exist in the

table are rejected by the firmware.

If overlapping memory ranges are defined, they must have the same Access level.

For symbolic variables, access control is specified by the variable’s Publish property,

which includes a Read Only and Read/Write setting.

Note: When requesting data from an external device, some drivers packetize data to

optimize communication. If a request attempts to read a value that is not

published, the entire packet will fail. A fault has been added to the fault table to

help you understand a failed read/write. After addressing the fault, you must clear

the fault in order to try again.

Access Control List Settings

Memory Area The memory area in which the reference address range is defined.

Default: Select an Area

Choices: %AI Analog Input, %AQ Analog Output, %I Discrete Input, %G Genius Global,
 %M Internal Discrete, %Q Discrete Output, %R Register Memory, %S System,
 %SA System, %SB System, %SC System, %T Temporary Status,
 %W Bulk Memory.

Start The starting offset of the reference address range.

Default: 0 (not valid)

Valid range:

For %S, %SA, %SB and %SC, must be 1.

All other memory types: 1 through the upper limit of the reference address
range. Must be less than the End value.

End The ending offset of the reference address range.

Default: 0 (not valid)

Valid range:

For %S, %SA, %SB and %SC, must be 128.

All other memory types: Any value greater than Start, through the upper limit of
the reference address range.

For word memory types (%AI, %R and %W) the highest address available is configured
on the Memory tab.

Access Selects the type of external access allowed for the defined address range.

Choices: Read-Only, Read/Write

Default: Read-Only

GFK-2222S Chapter 3 CPU Configuration 3-17

3

Setting a Temporary IP Address
Note: The CPE305/CPE310 does not support setting a temporary IP address. The IP

address can be set by connecting through a serial port or over Ethernet using the

factory-set default IP address.

To initiate Ethernet communications between the programming software and the

Controller, you first need to set an IP address. You can use the Set Temporary IP Address

utility to specify an IP address or download a hardware configuration with an IP address

through a serial port.

The following restrictions apply when using the Set Temporary IP Address utility:

■ To use the Set Temporary IP Address utility, the PLC CPU must not be in RUN mode.

IP address assignment over the network will not be processed until the CPU is

stopped and is not scanning outputs.

■ The Set Temporary IP Address utility does not function if communications with the

networked PACSystems target travel through a router. The Set Temporary IP Address

utility can be used if communications with the networked PACSystems target travel

across network switches and hubs.

■ The current user logged on the computer running the Set Temporary IP Address utility

must have full administrator privileges.

■ The target PACSystems must be located on the same local sub-network as the

computer running the Set Temporary IP Address utility. The sub-network is specified

by the computer's subnet mask and the IP addresses of the computer and the

PACSystems Ethernet Interface.

Note: To set the IP address, you will need

the MAC address of the Ethernet

Interface.

1. Connect the PACSystems to the

Ethernet network.

2. In the Project tab of the Navigator, right

click the PACSystems target, choose

Offline Commands, and then choose Set

Temporary IP Address. The Set

Temporary IP Address dialog box

appears.

3. In the Set Temporary IP Address dialog

box, do the following:

■ Specify the MAC address.

■ In the IP Address to Set box, specify
the temporary IP address you want
to set on the PACSystems.

■ If necessary, select the Enable
Network Interface Selections check
box and specify the IP address of
the network interface on which the
PACSystems is located.

3-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

4. When the fields are properly configured, click the Set IP button.

5. The IP Address of the specified PACSystems will be set to the indicated address. This

may take up to a minute.

After the programmer is connected, the actual IP address for the Ethernet interface, which

is set in the hardware configuration, should be downloaded to the controller. The

temporary IP address remains in effect until the Ethernet interface is restarted,

power-cycled or until the hardware configuration is downloaded or cleared.

Cautions

The temporary IP address set by the Set Temporary IP Address utility is not

retained through a power cycle. To set a permanent IP Address, you must set

the target's IP Address property and download (store) HWC to the PACSystems.

The Set Temporary IP Address utility can assign a temporary IP address even if

the target Ethernet Interface has previously been configured to a non-default IP

address. (This includes overriding an IP address previously configured by the

programmer.)

Use this IP Address assignment mechanism with care.

GFK-2222S Chapter 3 CPU Configuration 3-19

3

Storing (Downloading) Hardware Configuration
A PACSystems control system is configured by creating a configuration file in the

programming software, then transferring (downloading) the file from the programmer to

the CPU via serial port1, serial port 2, or an Ethernet Interface. If you use a serial port, it

must be configured as RTU Slave (default) or SNP Slave.

The CPU stores the configuration file in its non-volatile RAM memory. After the

configuration is stored, I/O scanning is enabled or disabled according to the newly stored

configuration parameters.

Before you can use an Ethernet Interface to store the hardware configuration to the

PACSystems, you must first set the IP address in the Ethernet Interface either by using

the Set Temporary IP Address utility (see page 3-17) or by downloading a hardware

configuration through a serial connection.

1. In the programmer software, go to the Project tab of the Navigator, right click the

Target, and choose Go Online.

2. Right click the Target and

choose Online Commands, Set

Programmer Mode. Make sure

the CPU is in Stop mode.

3. Right click the Target node, and

choose Download to Controller.

4. In the Download to Controller

dialog box, select the items to

download and click OK.

Notes: If you download to a PACSystems target that already has a project on it, the

existing project is overwritten.

If I/O variables are configured, hardware configuration and logic cannot be stored

independently. They must be stored at the same time.

If passwords have been set, when you go online, you will be taken to the highest

unprotected level. If no passwords have been set, you will go online with Privilege

Level 4.

3-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

3

Configuring the Embedded Ethernet Interface
Before you can use the embedded Ethernet Interface, you must configure it using the

programming software. To configure the embedded Ethernet interface:

1. In the Project tab of the Navigator,

expand your PACSystems Target, the

hardware configuration, and the main

rack (Rack 0).

2. Expand the CPU slot (Slot 1). The

Ethernet Interface daughterboard is

displayed as Ethernet.

3. Right click the daughterboard slot and

choose Configure. The Parameter Editor

window displays the Ethernet Interface

parameters.

Ethernet interface configuration includes the following additional procedures. For details

on completing these steps, refer to the TCP/IP Ethernet Communications for PACSystems

User’s Manual, GFK-2224.

▪ Assigning an IP address for initial network operation, such as connecting the

programmer to download the hardware configuration, using the Set Temporary IP

Address utility (see page 3-17) or by downloading a hardware configuration through a

serial connection.

▪ Configuring the characteristics of the Ethernet interface.

▪ Configuring Ethernet Global Data, if used (Not supported by CPE305/CPE310).

▪ (Optional, not required for most systems). Setting up the RS-232 port for Local Station

Manager operation. This is part of the basic Ethernet Interface configuration.

▪ (Optional, not required for most systems). Configuring advanced user parameters.

This requires creating a separate ASCII parameter file that is stored to the Controller

with the hardware configuration. The Ethernet Interface has a set of default Advanced

User Parameter values that should be changed only in exceptional circumstances by

experienced users.

▪ (Optional) Setting up the Controller for Modbus/TCP Server operation.

Note: When a CPE310 is configured as a CPU310, Ethernet properties cannot be

configured.

 The embedded Ethernet interface is not supported when CPE310 is configured as

a CPU310 and the Ethernet port should not be connected to any network because

it may have adverse effects on the network and/or operation of the CPU.

GFK-2222S 4-1

CPU Operation

This chapter describes the operating modes of a PACSystems CPU and describes the

tasks the CPU carries out during these modes. The following topics are discussed:

■ CPU Sweep

■ Program Scheduling Modes

■ Window Modes

■ Run/Stop Operations

■ Flash Memory Operation

■ Clocks and Timers

■ System Security

■ I/O System

■ Power-Up and Power-Down Sequences

4
Chapter

4-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

CPU Sweep
The application program in the CPU executes repeatedly until stopped by a command

from the programmer, from another device, from the Run/Stop switch on the CPU

module, or a fatal fault occurs. In addition to executing the application program, the CPU

obtains data from input devices, sends data to output devices, performs internal

housekeeping, performs communications tasks, and performs self-tests. This sequence

of operations is called the sweep.

The CPU sweep runs in one of three sweep modes:

Normal Sweep In this mode, each sweep can consume a variable amount of time. The Logic
Window is executed in its entirety each sweep. The Communications and
Background Windows can be set to execute in Limited or Run-to-Completion
mode.

Constant
Sweep

In this mode, each sweep begins at a user-specified Constant Sweep time after
the previous sweep began. The Logic Window is executed in its entirety each
sweep. If there is sufficient time at the end of the sweep, the CPU alternates
among the Communications and Background Windows, allowing them to
execute until it is time for the next sweep to begin.

Constant
Window

In this mode, each sweep can consume a variable amount of time. The Logic
Window is executed in its entirety each sweep. The CPU alternates among the
Communications and Background Windows, allowing them to execute for a time
equal to the user-specified Constant Window timer.

Note: The information presented above summarizes the different sweep modes. For

additional information, refer to “CPU Sweep Modes” on page 4-6.

The CPU also operates in one of four Run/Stop Modes (for details, see “Run/Stop

Operations” on page 4-10):

■ Run/Outputs Enabled

■ Run/Outputs Disabled

■ Stop/IO Scan

■ Stop/No IO

GFK-2222S Chapter 4 CPU Operation 4-3

4

Parts of the CPU Sweep

There are seven major phases in a typical CPU sweep as shown in the following figure.

Prog

window

scheduled

?

no

yes

Communications

Controller

Window

Comm

window

scheduled

?

yes

no

Backplane

Communications

Window

Start next sweep

SWEEP

Background
task

scheduled

?

Background task

Window

yes

no

Application Program

Task Execution

(Logicwindow)

WINDOW)

Start-of-Sweep

Housekeeping

input scan

Output Scan

Parts of a Typical CPU Sweep

4-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Major Phases in a Typical CPU Sweep

Phase Activity

Housekeeping The housekeeping portion of the sweep performs the tasks necessary to prepare
for the start of the sweep. This includes updating %S bits, determining timer
update values, determining the mode of the sweep (Stop or Run), and polling of
expansion racks.

Expansion racks are polled to determine if power has just been applied to an
expansion rack. Once an expansion rack is recognized, then configuration of that
rack and all of its modules are processed in the Controller Communications
Window.

Input Scan During the input scan, the CPU reads input data from the Genius Bus Controllers
and input modules. If data has been received on an EGD page, the CPU copies
the data for that page from the Ethernet interface to the appropriate reference
memory. For details, see TCP/IP Ethernet Communications for PACSystems,
GFK-2224

Note: The input scan is not performed if a program has an active Suspend I/O

function on the previous sweep.

Application Program Task
Execution (Logic Window)

The CPU solves the application program logic. It always starts with the first
instruction in the program. It ends when the last instruction is executed. Solving the
logic creates a new set of output data.

For details on controlling the execution of programs, refer to chapter 5.

Interrupt driven logic can execute during any phase of the sweep. For details, refer
to chapter 5.

A list of execution times for instructions can be found in Appendix A.

Output Scan The CPU writes output data to bus controllers and output modules. The user
program checksum is computed.

During the output scan, the CPU sends output data to the Genius Bus Controllers
and output modules. If the producer period of an EGD page has expired, the CPU
copies the data for that page from the appropriate reference memory to the
Ethernet interface. The output scan is completed when all output data has been
sent.

If the CPU is in Run mode and it is configured to perform a background checksum
calculation, the background checksum is performed at the end of the output scan.
The default setting for number of words to checksum each sweep is 16. If the
words to checksum each sweep is set to zero, this processing is skipped. The
background checksum helps ensure the integrity of the user logic while the CPU is
in Run mode.

The output scan is not performed if a program has an active Suspend I/O function
on the current sweep.

GFK-2222S Chapter 4 CPU Operation 4-5

4

Phase Activity

Controller Communications
Window

Services the onboard Ethernet and serial ports. In addition, reconfiguration of
expansion racks and individual modules occurs during this portion of the sweep.

The CPU always executes this window. The following items are serviced in this
window:

■ Reconfiguration of expansion racks and individual modules. During the
Controller Communications Window, highest priority is given to
reconfiguration. Modules are reconfigured as needed, up to the total time
allocated to this window. Several sweeps are required to complete
reconfiguration of a module.

■ Communications activity involving the embedded Ethernet port and the two
CPU's serial ports

Time and execution of the Controller Communications Window can be configured
using the programming software. It can also be dynamically controlled from the
user program using Service Request function #3. The window time can be set to a
value from 0 to 255 milliseconds (default is 10 milliseconds).

Note that if the Controller Communications Window is set to 0, there are two
alternate ways to open the window: perform a power-cycle without the battery (or
Energy Pack) attached, or go to Stop mode.

Backplane Communications
Window

Communications with intelligent devices occur during this window. The rack-based
Ethernet Interface module communicates in the Backplane Communications
window. During this part of the sweep the CPU communicates with intelligent
modules such as the Genius Bus Controller and TCP/IP Ethernet modules.

In this window, the CPU completes any previously unfinished request before
executing any pending requests in the queue. When the time allocated for the
window expires, processing stops.

The Backplane Communications Window defaults to Complete (Run to
Completion) mode. This means that all currently pending requests on all intelligent
option modules are processed every sweep. This window can also run in Limited
mode, in which the maximum time allocated for the window per scan is specified.

The mode and time limit can be configured and stored to the CPU, or it can be
dynamically controlled from the user program using Service Request function #4.
The Backplane Communications Window time can be set to a value from 0 to
255ms (default is 255ms). This allows communications functions to be skipped
during certain time-critical sweeps.

Background Window CPU self-tests occur in this window.

A CPU self-test is performed in this window. Included in this self-test is a
verification of the checksum for the CPU operating system software.

The Background Window time defaults to 0 milliseconds. A different value can be
configured and stored to the CPU, or it can be changed online using the
programming software.

Time and execution of the Background Window can also be dynamically controlled
from the user program using Service Request function #5. This allows background
functions to be skipped during certain time-critical sweeps.

4-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

CPU Sweep Modes

Normal Sweep Mode

In Normal Sweep mode, each sweep can consume a variable amount of time. The Logic

window is executed in its entirety each sweep. The Communications windows can be set

to execute in a Limited or Run-to-Completion mode. Normal Sweep is the most common

sweep mode used for control system applications.

The following figure illustrates three successive CPU sweeps in Normal Sweep mode.

Note that the total sweep times may vary due to sweep-to-sweep variations in the Logic

window, Communications windows, and Background window.

HK

INPUT

OUTPUT

CC

BPC

BG

LOGIC

SWEEP n+1

HK

INPUT

OUTPUT

CC

BPC

BG

SWEEP n SWEEP n+2

HK

INPUT

OUTPUT

CC

BPC

LOGIC LOGIC

BG

Abbreviations:

HK = Housekeeping
CC = Controller Communications Window
BPC = Backplane Communications Window
BG = Background Window

Typical Sweeps in Normal Sweep Mode

Constant Sweep Mode

In Constant Sweep mode, each sweep begins at a specified Constant Sweep time after
the previous sweep began. The Logic Window is executed in its entirety each sweep. If

there is sufficient time at the end of the sweep, the CPU alternates among the Controller

Communications, Backplane Communications, and Background Windows, allowing them

to execute until it is time for the next sweep to begin. Some or all of the Communications

and Background Windows may not be executed. The Communications and Background
Windows terminate when the overall CPU sweep time has reached the value specified as

the Constant Sweep time.

One reason for using Constant Sweep mode is to ensure that I/O data are updated at

constant intervals.

The value of the Constant Sweep timer can be configured to be any value from 5 to 2550

milliseconds. The Constant Sweep timer value may also be set and Constant Sweep

GFK-2222S Chapter 4 CPU Operation 4-7

4

mode may be enabled or disabled by the programming software or by the user program

using Service Request function #1. The Constant Sweep timer has no default value; a

timer value must be set prior to or at the same time Constant Sweep mode is enabled.

The Ethernet Global data page configured for either consumption or production can add

up to 1 millisecond to the sweep time. This sweep impact should be taken into account

when configuring the CPU constant sweep mode and setting the CPU watchdog timeout.

If the sweep exceeds the Constant Sweep time in a given sweep, the CPU places an

oversweep alarm in the CPU fault table and sets the OV_SWP (%SA0002) status

reference at the beginning of the next sweep. Additional sweep time due to an oversweep

condition in a given sweep does not affect the time given to the next sweep.

The following figure illustrates four successive sweeps in Constant Sweep mode with a

Constant Sweep time of 100 milliseconds. Note that the total sweep time is constant, but

an oversweep may occur due to the Logic Window taking longer than normal.

Abbreviations:

HK = Housekeeping
PRG = Programmer Window.
BPC = Backplane Communications Window.
CC = Controller Communications Window

OUTPUT

CC

SYS

BG

BG

BPC

HK

INPUT

LOGIC

SWEEP n+2
t = 220 ms

HK

INPUT

BG

HK

INPUT

LOGICLOGIC

HK

INPUT

LOGIC

OUTPUT

CC

BPC

BG

SYS

OUTPUT
20 ms oversweep

Constant
Sweep
Time

BPC

CC

OUTPUT

SWEEP n+1
t = 100 ms

SWEEP n
t = 0 ms

SWEEP n+3
t = 320 ms

BG = Background Window

Typical Sweeps in Constant Sweep Mode

4-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Constant Window Mode

In Constant Window mode, each sweep can consume a variable amount of time. The

Logic Window is executed in its entirety each sweep. The CPU alternates among the

three windows, allowing them execute for a time equal to the value set for the Constant

Window timer. The overall CPU sweep time is equal to the time required to execute the

Housekeeping, Input Scan, Logic Window, and Output Scan phases of the sweep plus

the value of the Constant Window timer. This time may vary due to sweep-to-sweep

variances in the execution time of the Logic Window.

An application that requires a certain amount of time between the Output Scan and the

Input Scan, permitting inputs to settle after receiving output data from the program, would

be ideal for Constant Window mode.

The value of the Constant Window timer can be configured to be any value from 3 to 255

milliseconds. The Constant Window timer value may also be set by the programming

software or by the user program using Service Request functions #3, #4, and #5.

The following figure illustrates three successive sweeps in Constant Window mode. Note

that the total sweep times may vary due to sweep-to-sweep variations in the Logic

Window, but the time given to the Communications and Background Windows is

constant. Some of the Communications or Background Windows may be skipped,

suspended, or run multiple times based on the Constant Window time.

CC

HK

INPUT

OUTPUT

CC

BPC

BG

LOGIC

SWEEP n+1

HK

INPUT

OUTPUT

CC

BPC

BG

SWEEP n SWEEP n+2

HK

INPUT

OUTPUT

CC

BPC

LOGIC LOGIC

CC

SYS

BG

Constant
Window

Time

Abbreviations:

HK = Housekeeping
CC = Controller Communications Window
BPC = Backplane Communications Window
BG = Background Window

Typical Sweeps in Constant Window Mode

GFK-2222S Chapter 4 CPU Operation 4-9

4

Program Scheduling Modes

The CPU supports one program scheduling mode, the Ordered mode. An ordered

program is executed in its entirety once per sweep in the Logic Window.

Window Modes
The previous section describes the phases of a typical CPU sweep. The Controller

Communications, Backplane Communications, and Background windows can be run in

various modes, based on the CPU sweep mode. (CPU sweep modes are described in

detail on page 4-6.) The following three window modes are available:

Run-to-
Completion

In Run-to-Completion mode, all requests made when the window has started
are serviced. When all pending requests in the given window have completed,
the CPU transitions to the next phase of the sweep. (This does not apply to the
Background window because it does not process requests.)

Constant In Constant Window mode, the total amount of time that the Controller
Communications window, Backplane Communications window, and
Background window run is fixed. If the time expires while in the middle of
servicing a request, these windows are closed, and communications will be
resumed the next sweep. If no requests are pending in this window, the CPU
cycles through these windows the specified amount of time polling for further
requests. If any window is put in constant window mode, all are in constant
window mode.

Limited In Limited mode, the maximum time that the window runs is fixed. If time
expires while in the middle of servicing a request, the window is closed, and
communications will be resumed the next time that the given window is run. If
no requests are pending in this window, the CPU proceeds to the next phase of
the sweep.

Data Coherency in Communications Windows
When running in Constant or Limited Window mode, the Controller and Backplane

Communications Windows may be terminated early in all CPU sweep modes. If an

external device, such as CIMPLICITY HMI, is transferring a block of data, the coherency

of the data block may be disrupted if the communications window is terminated prior to

completing the request. The request will complete during the next sweep; however, part

of the data will have resulted from one sweep and the remainder will be from the

following sweep. When the CPU is in Normal Sweep mode and the Communications

Window is in Run-to-Completion mode, the data coherency problem described above

does not exist.

Note: External devices that communicate to the CPU while it is stopped will read

information as it was left in its last state. This may be misleading to operators

viewing an HMI system that does not indicate CPU Run/Stop state. Process

graphics will often indicate everything is still operating normally.

Also, note that non-retentive outputs do not clear until the CPU is changed from

Stop to Run.

4-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Run/Stop Operations

The PACSystems CPUs support four run/stop modes of operation. You can change

these modes in the following ways: the Run/Stop switch, configuration from the

programming software, LD function blocks, and system calls from C applications.

Switching to and from various modes can be restricted based on privilege levels, position

of the Run/Stop switch, passwords, etc.

Mode Operation

Run/Outputs
Enabled

The CPU runs user programs and continually scans inputs and updates physical
outputs, including Genius and Ethernet outputs. The Controller and Backplane
Communications Windows are run in Limited, Run-to-Completion, or Constant
mode.

Run/Outputs
Disabled

The CPU runs user programs and continually scans inputs, but updates to
physical outputs, including Genius and Field Control, are not performed.
Physical outputs are held in their configured default state in this mode. The
Controller and Backplane Communications Windows are run in Limited, Run-to-
Completion, or Constant mode.

Stop/IO Scan
Enabled

The CPU does not run user programs, but the inputs and outputs are scanned.
The Controller and Backplane Communications Windows are run in Run-to-
Completion mode. The Background Window is limited to 10 ms.

Stop/IO Scan
Disabled

The CPU does not run user programs, and the inputs and outputs are not
scanned. The Controller and Backplane Communications Windows are run in a
Run-to-Completion mode. The Background Window is limited to 10 ms.

Note: Stop mode I/O scanning is always disabled for redundancy CPUs.

Note: You cannot add to the size of %P and %L reference tables in Run Mode unless

the %P and %L references are the first of their type in the block being stored or

the block being stored is a totally new block.

CPU Stop Modes

The CPU has two modes of operation while it is in Stop mode:

■ I/O Scan Enabled - the Input and Output scans are performed each sweep

■ I/O Scan Disabled - the Input and Output scans are skipped

When the CPU is in Stop mode, it does not execute the application program. You can

configure whether the I/O is scanned during Stop mode. Communications with the

programmer and intelligent option modules continue in Stop mode. Also, bus receiver

module polling and rack reconfiguration continue in Stop mode.

In both Stop modes, the Controller Communications and Backplane Communications

windows run in Run-to-Completion mode and the Background window runs in Limited

mode with a 10 millisecond limit.

The number of last scans can be configured in the hardware configuration. Last scans

are completed after the CPU has received an indication that a transition from Run to Stop

or Stop Faulted mode should occur. The default is 0.

SVCREQ13 can be used in the application program to stop the CPU after a specified

number of scans. All I/O will go to their configured default states, and a diagnostic

message will be placed in the CPU Fault Table.

GFK-2222S Chapter 4 CPU Operation 4-11

4

Controller

Communications

Window

Backplane

Communications

Window

Background Task

Window

Start-of-Sweep

Housekeeping

Input Scan

Output Scan

Executes in

Stop-I/O Scan Enabled

mode only

Executes in

Stop-I/O Scan Enabled

mode only

Runs

to

completion

Limited

(10ms)

Runs

to

Completion

CPU Sweep in Stop- I/O Disabled and Stop- I/O Enabled Modes

Stop-to-Run Mode Transition

The CPU performs the following operations on Stop-to-Run transition:

■ Validation of sweep mode and program scheduling mode selections

■ Validation of references used by programs with the actual configured sizes

■ Re-initialization of data areas for external blocks and standalone C programs

■ Clearing of non-retentive memory

4-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Run/Stop Mode Switch Operation

The Run/Stop mode switch has three positions:

Switch Position CPU and Sweep Mode Memory Protection

Run I/O Enable The CPU runs with I/O sweep enabled. User program memory is read
only.

Run Output
Disable

The CPU runs with outputs disabled. User program memory is read
only.

Stop The CPU is not allowed to go into Run
mode.

User program memory can be
written.

The Run/Mode switch can be disabled in the programming software HWC. The switch’s

memory protection function can be disabled separately in HWC. The Run/Mode switch is

enabled by default. The memory protection functionality is disabled by default.

The Read Switch Position (Switch_Pos) function allows the logic to read the current

position of the Run/Stop switch, as well as the mode for which the switch is configured.

For details, refer to chapter 7.

GFK-2222S Chapter 4 CPU Operation 4-13

4

Flash Memory Operation
The CPU stores the current configuration and application in user memory (either

battery-backed RAM or non-volatile user memory, depending on the CPU model). You

can also store the Logic, Hardware Configuration, and Reference Data into non-volatile

flash memory. The PACSystems CPU provides enough flash memory to hold all of user

space, all reference tables that aren't counted against user space, and any overhead

required. For details on which items count against user memory space, refer to

appendix B.

By default, the CPU reads program logic and configuration, and reference table data from

user memory at powerup. However, logic/configuration and reference tables can each be

configured to always read from flash or conditionally read from flash. To configure these

parameters in the programming software, select the CPU’s Settings tab in Hardware

Configuration.

If logic/configuration and/or reference tables are configured for conditional powerup from

flash, these items are restored from flash to user memory when the user memory is

corrupted or was not preserved (for example, the memory backup battery or Energy Pack

is not installed or not operational). If logic/configuration and/or reference memory are

configured for conditional powerup from flash and user memory has been preserved, no

flash operation will occur.

If logic/configuration and/or reference tables are configured to always power up from

flash, these items are restored from flash to user memory regardless of the state of the

user memory.

Note: If any component (logic/configuration or reference tables) is read from flash,

OEM-mode and passwords are also read from flash.

In addition to configuring where the CPU obtains logic, configuration, and data during

powerup, the programming software provides the following flash operations:

■ Write a copy of the current configuration, application program, and reference tables

(excluding overrides) to flash memory. Note that a write-to-flash operation causes all

components to be stored to flash.

■ Read a previously stored configuration and application program, and/or reference

table values from flash into user memory.

■ Verify that flash and user memory contain identical data.

■ Clear flash contents.

Flash read and write operations copy the contents of flash memory or user memory as

individual files. The programming software displays the progress of the copy operation

and allows you to cancel a flash read or write operation during the copy process instead

of waiting for the entire transfer process to complete. The entire user memory image

must be successfully transferred for the flash copy to be considered successful. If an

entire write-to-flash transfer is not completed due to canceling, power cycle, or some

other intervention, the CPU will clear flash memory. Similarly, if a read-from-flash transfer

is interrupted, user memory will be cleared.

4-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Logic/Configuration Source and CPU Operating Mode at Power-up
Flash and user memory can contain different values for the Logic/Configuration Power-up

Source parameter. The following tables summarize how these settings determine the

logic/configuration source after a power cycle. CPU mode is affected by the Power-up

Mode, Run/Stop Switch and Stop-Mode I/O Scanning parameters, Run/Stop mode switch

position, and the power down mode as shown in the tables on page 4-15.

Before Power Cycle After Power Cycle

Logic/Configuration
Power-up Source

in Flash

Logic/Configuration
Power-up Source in RAM

Origin of
Logic/Configuration

CPU Mode

Always Flash Memory not preserved
(i.e. no battery/Energy Pack,
or memory corrupted)

Flash See “CPU Mode when Memory Not Preserved/
Power-up Source is Flash” on page 4-15.

Always Flash No configuration in RAM, memory
preserved

Flash See” Memory Preserved” on
page 4-15.

Always Flash Always Flash Flash

Always Flash Conditional Flash Flash

Always Flash Always RAM Flash

Conditional Flash Memory not preserved
(i.e. no battery/Energy Pack
or memory corrupted)

Flash See “CPU Mode when Memory Not Preserved/
Power-up Source is Flash” on page 4-15.

Conditional Flash No configuration in RAM, memory
preserved

Uses default
logic/configuration

Stop Disabled

Conditional Flash Always Flash RAM See "CPU Mode when Memory Preserved” on
page 4-15.

Conditional Flash Conditional Flash RAM

Conditional Flash Always RAM RAM

Always RAM

Memory not preserved
(i.e. no battery/Energy Pack,
or memory corrupted)

Uses default
logic/configuration

Stop Disabled

Always RAM

No configuration in RAM, memory
preserved

Uses default
logic/configuration

Stop Disabled

Always RAM Always Flash Flash See “CPU Mode when Memory Preserved” on
page 4-15.

Always RAM Conditional Flash RAM

Always RAM Always RAM RAM

No Configuration in Flash Memory not preserved
(i.e. no battery/Energy Pack,
or memory corrupted)

Uses default
logic/configuration

Stop Disabled

No Configuration in Flash No configuration in RAM, memory
preserved

Uses default
logic/configuration

Stop Disabled

No Configuration in Flash Always Flash RAM See "CPU Mode when Memory Preserved” on
page 4-15. No Configuration in Flash Conditional Flash RAM

No Configuration in Flash Always RAM RAM

GFK-2222S Chapter 4 CPU Operation 4-15

4

CPU Mode when Memory Not Preserved/Power-up Source is Flash

Configuration Parameters

Run/Stop Switch Position CPU Mode Power-up Mode Run/Stop Switch

Run Enabled Stop Stop Disabled

Run Enabled Run Disabled Run Disabled

Run Enabled Run Enabled Run Enabled

Run Disabled N/A Run Disabled

Stop N/A N/A Stop Disabled

Last Enabled Stop Stop Disabled

Last Enabled Run Disabled Run Disabled

Last Enabled Run Enabled Run Disabled

Last Disabled N/A Run Disabled

CPU Mode when Memory Preserved

Configuration Parameters

Run/Stop Switch
Position

Power Down
 Mode

CPU Mode Power-up Mode Run/Stop Switch Stop-Mode I/O Scanning

Run Enabled Enabled Stop N/A Stop Enabled

Run Enabled Disabled Stop N/A Stop Disabled

Run Enabled N/A Run Disabled N/A Run Disabled

Run Enabled N/A Run Enabled N/A Run Enabled

Run Disabled N/A N/A N/A Run Enabled

Stop N/A Enabled N/A N/A Stop Enabled

Stop N/A Disabled N/A N/A Stop Disabled

Last Enabled Enabled Stop Stop Disabled Stop Disabled

Last Enabled Enabled Stop Stop Enabled Stop Enabled

Last Enabled Enabled Stop Run Disabled Stop Enabled

Last Enabled Enabled Stop Run Enabled Stop Enabled

Last Enabled Disabled Stop N/A Stop Disabled

Last Enabled N/A Run Disabled Stop Disabled Stop Disabled

Last Enabled Enabled Run Disabled Stop Enabled Stop Enabled

Last Enabled Disabled Run Disabled Stop Enabled Stop Disabled

Last Enabled N/A Run Disabled Run Disabled Run Disabled

Last Enabled N/A Run Disabled Run Enabled Run Disabled

Last Enabled N/A Run Enabled Stop Disabled Stop Disabled

Last Enabled Enabled Run Enabled Stop Enabled Stop Enabled

Last Enabled Disabled Run Enabled Stop Enabled Stop Disabled

Last Enabled N/A Run Enabled Run Disabled Run Disabled

Last Enabled N/A Run Enabled Run Enabled Run Enabled

Last Disabled N/A N/A Stop Disabled Stop Disabled

Last Disabled Enabled N/A Stop Enabled Stop Enabled

Last Disabled Disabled N/A Stop Enabled Stop Disabled

Last Disabled N/A N/A Run Disabled Run Disabled

Last Disabled N/A N/A Run Enabled Run Enabled

4-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Clocks and Timers
Clocks and timers provided by the CPU include an elapsed time clock, a time-of-day

clock, and software and hardware watchdog timers.

For information on timer functions and timed contacts provided by the CPU instruction

set, see “Timers and Counters” in chapter 8.

Elapsed Time Clock

The elapsed time clock tracks the time elapsed since the CPU powered on. The clock is

not retentive across a power failure; it restarts on each power-up. This seconds count

rolls over (seconds count returns to zero) approximately 100 years after the clock begins

timing.

Because the elapsed time clock provides the base for system software operations and

timer function blocks, it may not be reset from the user program or the programmer.

However, the application program can read the current value of the elapsed time clock by

using Service Request #16 or Service Request #50, which provides higher resolution.

Time-of-Day Clock

A hardware time-of-day clock maintains the time of day (TOD) in the CPU. The

time-of-day clock maintains the following time functions:

■ Year (two digits)

■ Month

■ Day of month

■ Hour

■ Minute

■ Second

■ Day of week

The TOD clock is battery-backed and maintains its present state across a power failure.

The time-of-day clock handles month-to-month and year-to-year transitions and

automatically compensates for leap years through year 2036.

You can read and set the hardware TOD time and date through the application program

using Service Request function #7. For details, see chapter 9.

High-Resolution Time of Day Software Clock

A high-resolution software TOD clock is implemented in firmware to provide nanoseconds

resolution. When the high-resolution software TOD clock is set, the hardware TOD clock

is set with the YYYY: Mon: Day: Hr: Min: Sec fields in the POSIX time, the RTC is read,

and the delta between the POSIX time and the value read from the RTC is computed and

saved. Thus, if 1-second resolution is desired the hardware TOD clock is read.

Otherwise, the high-resolution software TOD clock is read to provide greater resolution.

When the latter occurs, the hardware RTC is read and the saved delta added to the value

read.

When the SNTP Time Transfer feature is implemented, all SNTP time updates received

at the CPU shall update the high-resolution software TOD clock.

GFK-2222S Chapter 4 CPU Operation 4-17

4

Synchronizing the High-resolution Time of Day Clock to an SNTP Network Time Server

In an SNTP system, a computer on the network (called an SNTP server) sends out a

periodic timing message to all SNTP-capable Ethernet Interfaces on the network, which

synchronize their internal clocks with this SNTP timing message. If SNTP is used to

perform network time synchronization, the timestamp information typically has ±10

millisecond accuracy between controllers on the same network.

Synchronizing the CPU TOD clock to an SNTP server allows you to set a consistent time

across multiple systems. Once the CPU TOD clock is synchronized with the SNTP time,

all produced EGD exchanges will use the CPU’s TOD for the time stamp.

The CPU TOD clock is set with accuracy within ±2 ms of the SNTP time stamp.

TOD clock synchronization is enabled on an Ethernet module by the advanced user

parameter (AUP), ncpu_sync. The CPU must also use a COMMREQ in user logic to

select an Ethernet module as the time master. For additional information, refer to

“Timestamping of Ethernet Global Data Exchanges” in chapter 4 of TCP/IP

Communications for PACSystems, GFK-2224.

4-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Watchdog Timer

Software Watchdog Timer

A software watchdog timer in the CPU is designed to detect “failure to complete sweep”

conditions. The timer value for the software watchdog timer is set by using the

programming software. The allowable range for this timer is 10 to 2550 milliseconds; the

default value is 200 milliseconds. The software watchdog timer always starts from zero at

the beginning of each sweep.

The software watchdog timer is useful in detecting abnormal operation of the application

program that prevents the CPU sweep from completing within the user-specified time.

Examples of such abnormal application program conditions are as follows:

■ Excessive recursive calling of a block

■ Excessive looping (large loop count or large amounts of execution time for each

iteration)

■ Infinite execution loop

When selecting a software watchdog value, always set the value higher than the longest

expected sweep time to prevent accidental expiration. For Constant Sweep mode,

allowance for oversweep conditions should be considered when selecting the software

watchdog timer value.

The watchdog timer continues during interrupt execution. Queuing of interrupts within a

single sweep may cause watchdog timer expiration.

If the software watchdog timeout value is exceeded, the OK LED blinks, and the CPU

goes to Stop-Halt mode. Certain functions, however, are still possible. A fault is placed in

the CPU fault table, and outputs go to their default state. The CPU will only communicate

with the programmer; no other communications or operations are possible. To recover,

power must be cycled on the rack or backplane containing the CPU.

To extend the current sweep beyond the software watchdog timer value, the application

program may restart the software watchdog timer using Service Request function #8.

However, the software watchdog timer value may only be changed from the configuration

software.

Note that Service Request Function #8 does not reset the output scan timer implemented

on the Genius Bus Controller.

CPE3xx CPU models only: The programmer can connect to these CPUs in Stop-Halt

mode through the embedded Ethernet port without a reset or power cycle.

GFK-2222S Chapter 4 CPU Operation 4-19

4

Hardware Watchdog Timer

A backup circuit provides additional protection for the CPU. If this backup circuit

activates, the CPU is immediately placed in Reset mode. Outputs go to their default state

and no communications of any form are possible, and the CPU will halt.

RX3i CPE3xx CPUs Response to a Hardware Watchdog Timeout:

 The CPE3xx automatically restarts and goes into Stop-Halt mode.

 The CPE3xx retains fault tables after a hardware watchdog timeout.

 While the CPE3xx is in Stop-Halt mode, you can connect the programmer software or

PACs Analyzer to view the fault tables, including all faults logged before the timeout.

(The PACS Analyzer software can be downloaded from the Support website.)

 The CPE3xx does not retain Controller and I/O Fault tables following recovery from

the Stop-Halt state. To recover from Stop-Halt mode and return to normal operation,

all non-volatile memory must be cleared. This can be done by disconnecting the

Energy Pack and power cycling the CPE3xx. If power cycled with the Energy Pack

connected, the CPE3xx returns to Stop-Halt mode and retains all non-volatile

memory, including fault tables.

 During startup following hardware watchdog reset, the CPE3xx logs an informational

fault with Error Code 446, which indicates a watchdog auto-reset occurred.

All other RX3i and RX7i CPUs’ Response to a Hardware Watchdog Timeout:

The CPU goes to Reset mode. To recover, power must be cycled.

Note: PACSystems does not support Fatal Fault Retries.

4-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

System Security

The PACSystems CPU supports two types of system security:

 Passwords/privilege levels
 OEM protection

CPU versions with full support (including merged password tables) for Enhanced Security

provide a more secure mechanism for setting and authenticating passwords and OEM

keys. To determine whether merged password tables are supported, refer to the

Important Product Information document for the CPU model and firmware version that

you are using.

For Enhanced Security operation, see page 4-23. A summary of operational differences

between the two modes is provided on page 4-24.

Passwords and Privilege Levels - Legacy Mode

Passwords are a configurable feature of the PACSystems CPU. Their use is optional and

is set up using the programming software. Passwords provide different levels of access

privilege for the CPU when the programmer is Online. Passwords are not used if the

programmer is in Offline mode.

The default state is no password protection. Each privilege level in the CPU may have a

unique password; however, the same password can be used for more than one level.

Passwords can be changed only through the programming software.

Passwords are one to seven ASCII characters in length.

After passwords have been set up, access to the CPU via any communications path is

restricted from the levels at which the passwords are set, unless the proper password

has been entered. Once a password has successfully been accepted, access to the

highest privilege level requested and below is granted (for example, providing the

password for level 3 allows access to functions at levels 1, 2, and 3).

Note: The Run Mode switch on the CPU overrides password protection. Even though

the programmer may not be able to switch between Run and Stop mode, the

switch on the CPU can do so.

Privilege Levels

Level Password Access Description

4 Yes Write to configuration or logic. Configuration may only be written in Stop mode; logic
may be written in Stop or Run mode. Set or delete passwords for any level.

Note: This is the default privilege for a connection to the CPU if no passwords are
defined.

3 Yes Write to configuration or logic when the CPU is in Stop mode, including word-for-word
changes, addition/deletion of program logic, and the overriding of discrete I/O.

2 Yes Write to any data memory. This does not include overriding discrete I/O. The CPU
can be started or stopped. CPU and I/O fault tables can be cleared.

1 Yes Read any CPU data except for passwords. This includes reading fault tables,
performing datagrams, verifying logic/configuration, loading program and
configuration, etc. from the CPU. None of this data may be changed. At this level,
Run/Stop mode transitions from the programmer are not allowed.

GFK-2222S Chapter 4 CPU Operation 4-21

4

Protection Level Request from Programmer

In Legacy mode, upon connection to the CPU, the programmer requests the CPU to

move to the highest non-protected level.

The programmer requests a privilege level change by supplying the new privilege level

and the password for that level. If the password sent by the programmer does not agree

with the password stored in the CPU’s password access table for the requested level, the

privilege level change is denied and a fault is logged in the CPU fault table. The current

privilege level is maintained, and no change occurs. A request to change to a privilege

level that is not password protected is made by supplying the new level and a null

password. A privilege change may be to a lower level as well as to a higher level.

Maintaining Passwords Through a Power Cycle

Initial passwords are blank for a new controller or a controller that has its passwords

cleared. For passwords to be maintained through power cycles, the controller must

either:

 Store to RAM and use an Energy Pack or battery to maintain memory.
 Store to User Flash with configuration set up to load from Flash at power up.

Disabling Passwords

The use of password protection is optional. Passwords can be disabled using the

programming software.

Note: To enable passwords after they have been disabled, the CPU must be power

cycled with the battery or Energy Pack removed.

4-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

OEM Protection – Legacy Mode

Original Equipment Manufacturer (OEM) protection provides a higher level of security

than password levels 1 through 4. This feature allows a third-party OEM to create control

programs for the CPU and then set the OEM-locked mode, which prevents the end user

from reading or modifying the program.

The OEM protection feature is enabled/disabled using a 1 to 7 character password,

known as the OEM key. When OEM protection is enabled, all read and write access to

the CPU program and configuration is prohibited: any store, load, verify, or clear user

program operation will fail.

OEM Protection in Systems that Load from Flash Memory

For OEM protection, it is recommended to store the program to User Flash and set

configuration to always load from Flash. When setting up OEM protection it is important

to download the user program to RAM and User Flash before enabling the OEM

protection. For example, the following steps can be used to set up OEM protection.

1. Set OEM Key password (Must be at Access Level 4 to set OEM Key)

2. Download program to both RAM and User Flash.

3. Set OEM Protection to the Locked state (see firmware note below).

If you are storing a non-blank OEM key to flash memory, you should be careful to record

the OEM key for future reference. If disabling OEM protection, be sure to clear the OEM

key that is stored in flash memory.

Note: In firmware versions with full support for Enhanced Security (with merged

password tables), OEM Protection Lock must be explicitly set.

 In earlier versions, the OEM Protection could be enabled in User Flash without

explicitly setting the OEM Protection to Locked. With the earlier firmware, a non-

blank OEM Key that is loaded from User Flash at power-up would result in an

automatic OEM Lock. In firmware versions with merged passwords, this is no

longer supported.

 In firmware versions earlier than 6.01, the OEM protection was not preserved

unless a battery was attached.

GFK-2222S Chapter 4 CPU Operation 4-23

4

Enhanced Security for Passwords and OEM Protection

Enhanced Security passwords provide a cryptographically secure password protocol

between an SRTP client (for example Proficy Machine Edition) and a PACSystems

controller. Enhanced Security passwords operate very similar to the Legacy security

password operation that is supported by previous firmware releases.

Enhanced Security passwords are enabled in Proficy Machine Editon
1
. PME requires a

password to enable/disable a target’s Enhanced Security mode. This PME password

restricts changes to the security mode used by a specific PME target and is independent

of any passwords later configured on the controller.

Enabling Enhanced Security on a target does not force the controller to use only

Enhanced Security. The controller supports both Legacy and Enhanced Security

requests concurrently. For example, one PME target could be used to set initial

passwords with Legacy security and a different PME target with Enhanced Security could

connect and authenticate with the same controller.

Passwords set with one password mechanism (Legacy or Enhanced Security) can be

authenticated and changed using the other mechanism, as long as the password is 7

characters or less. Setting passwords with Enhanced Security that are greater than 7

characters prevents access using the Legacy mechanism. For example, you could use

Enhanced Security to set a 10 character password for Level 4 and Level 3, but set a 7

character password for Level 2. In this case, a Legacy target could be used to obtain

Level 2 access, but the Legacy target could never access Level 4 or Level 3 because of

Legacy’s 7 character limit.

Password and OEM Protection in Systems that Load from Flash Memory

Caution

Be careful when setting passwords and loading passwords from
User Flash on every power-up. In this situation, it is not possible to
clear passwords back to a default state if the Level 4 password and
OEM key are forgotten.

For a recommended procedure, see “OEM Protection in Systems that Load from Flash

Memory” on page 4-22.

1
 To determine the required Proficy Machine Edition version, refer to the Important

Product Information (IPI) document provided with the CPU firmware version you are
using.

4-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Legacy/Enhanced Security Comparison

Feature Legacy (less secure) Enhanced (more secure)

Level 2, 3 and 4 protection Levels 2, 3 and 4 must be set
or modified simultaneously. (If
you only want to change one,
you must enter all three.)

Passwords can be set
individually or in a group.
When changing passwords,
the old password for that level
is required in order to
change it.

Maximum password length 7 characters 31 characters

Clearing passwords Passwords can be cleared
back to initial blank password
values.

Once a password is set,
PME’s Enhanced Security
mode will not allow it to be
cleared back to a blank
password. To revert to a
blank password, the
controller’s memory must be
cleared and power cycled.

Passwords ≤7 characters, set
with either mode

Password verification and
password changes allowed.

Password verification and
password changes allowed.

Passwords >7 characters, set
with Enhanced Security mode

Password verification and
password changes not
allowed.

Password verification and
password changes allowed.

Maximum OEM key length 7 characters. 31 characters.

OEM keys ≤7 characters, set
with Enhanced Security

Can change OEM Protection
Lock state

Cannot change the OEM key.

Can change OEM Protection
Lock state and the OEM key.

OEM keys >7 characters, set
with Enhanced Security

Cannot change OEM
Protection Lock state or the
OEM key.

Can change OEM Protection
Lock state and the OEM key.

GFK-2222S Chapter 4 CPU Operation 4-25

4

PACSystems I/O System
The PACSystems I/O system provides the interface between the CPU and other devices.

The PACSystems I/O system supports:

■ I/O and Intelligent option modules.

■ Ethernet Interface

■ Motion modules (RX3i)

■ The Genius I/O system (RX7i). A Genius I/O Bus Controller (GBC) module provides

the interface between the RX7i CPU and a Genius I/O bus.

I/O Configuration

Module Identification

In addition to the catalog number, the programming software stores a Module ID for each

configured module in the hardware configuration that it delivers to the CPU. The CPU

uses the Module ID to determine how to communicate with a given module.

When the hardware configuration is downloaded to the CPU (and during subsequent

power-ups), the CPU compares the Module IDs stored by the programmer with the IDs of

the modules physically present in the system. If the Module IDs do not match, a System

Configuration Mismatch fault will be generated.

Because I/O modules of similar type may share the same Module ID, it is possible to

download a configuration containing a module catalog number that does not match the

module that is physically present in the slot without generating a System Configuration

Mismatch.

Certain discrete modules with both reference memory inputs and reference memory

outputs will experience invalid I/O transfer if incorrect configuration is stored from a

similar mixed I/O module. No fault or error condition will be detected during configuration

store and the module will be operational, although not in the manner described by

configuration.

For example, a configuration swap between the IC693MDL754 output module and

IC693MDL660 input module will not be detected as a configuration mismatch, but I/O

data transfer between the module and the CPU reference memory will be invalid. If the

input module (MDL660) is sent the configuration of the output module (MDL754) with the

following parameters: Reference Address: %Q601

 Module Status Reference: %I33

 Hold Last State Enable

It will receive inputs at the module status reference %I33 and the status of the module will

be received at %Q601.

If the output module is sent the configuration of the input module with the following

parameters: Reference Address: %I601

 Input Filter: Enable

 Digital Filter Settings Reference: %I65

It will output values at the digital filter settings reference %I65 and the status of the

module will be received at %I601.

4-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Default Conditions for I/O Modules

Interrupts

Some input modules can be configured to send an interrupt to the application program.

By default, this interrupt is disabled and the input filter is set to slow. If changed by the

programming software, the new settings are applied when the configuration is stored and

during subsequent power-cycles.

Outputs

Some output modules have a configurable output default mode that can be specified as

either Off or Hold Last State. If a module does not have a configurable output default

mode, its output default mode is Off. The selected action applies when the CPU

transitions from Run/Enabled to Run/Disabled or Stop mode, or experiences a fatal fault.

At power-up, Series 90-30 discrete output modules default to all outputs off. They will

retain this default condition until the first output scan from the PACSystems controller.

Analog output modules can be configured with a jumper located on the module’s

removable terminal block to either default to zero or retain their last state.

Inputs

Input modules that have a configurable input default mode can be configured to Hold Last

State or to set inputs to 0. If a module does not have a configurable input default mode,

its input default mode is Off. The selected action applies when the CPU transitions from

Run/Enabled to Run/Disabled or Stop mode, or experiences a fatal fault.

For details on the powerup and stop mode behavior of other modules, refer to the

documentation for that module.

Multiple I/O Scan Sets

Up to 32 I/O scan sets can be defined for a PACSystems CPU. A scan set is a group of

I/O modules that can be assigned a unique scan rate. A given I/O module can belong to

one scan set. By default, all I/O modules are assigned to scan set 1, which is scanned

every sweep.

For some applications, the CPU logic does not need to have the I/O information every

sweep. The I/O scan set feature allows the scanning of I/O points to be more closely

scheduled with their use in user logic programs. If you have a large number of I/O

modules, you may be able to significantly reduce scan time by staggering the scanning of

those modules.

A disadvantage of placing all modules into different scan sets appears when the CPU is

transitioning from Stop to Run. In that case, scan sets with a programmed delay are not

scanned on the first sweep. These modules' outputs are not enabled until the new data

has been scanned to them, perhaps many scans later. Therefore there is a period of time

during which the user logic is executing and some modules' outputs are disabled. During

that time, outputs of those modules are in the module’s stop-mode state. Stop-mode

behavior is module-dependent. Some modules zero their outputs, some hold their last

scanned state (if any), and some force their outputs to a configured default value. When

the module's outputs are enabled, the module uses the last scanned value, which will

either be zero or the contents of the register the module uses to hold the corresponding

output values from the reference tables.

GFK-2222S Chapter 4 CPU Operation 4-27

4

Genius I/O

The Genius Bus Controller (GBC) controls a single Genius I/O bus. Any type of Genius

I/O device may be attached to the bus.

In the I/O fault table, the rack, slot, bus, module, and I/O point number are given for a

fault. Bus number one refers to the bus on the single-channel GBC.

Genius I/O Configuration

The programming software can configure a subset of the parameters associated with

Genius I/O blocks.

Genius I/O blocks have a number of parameters that can be set using the Genius I/O

Hand-Held Monitor. These parameter values are stored in EEPROM in the block itself.

The serial bus address (SBA) and baud rate must be set using the Genius I/O Hand-Held

Monitor. For specific information on Genius I/O block types, configuration, and setup,

refer to the Genius I/O System User’s Manuals, GEK-90486-1 and -2.

Through the COMMREQ function block, the application program can request the GBC to

change any default condition on a specific block. However, the block only accepts this

change if it is not in Config Protect mode. If Config Protect mode is set, only the Hand-

Held Monitor can be used to change the defaults. The format of the COMMREQ function

block for Genius I/O is described in the Series 90-70 Genius Bus Controller User’s

Manual, GFK-2017 and the Series 90-30 Genius Bus Controller User’s Manual,

GFK-1034.

Genius I/O Data Mapping

Genius I/O discrete inputs and outputs are stored as bits in the CPU Bit Cache memory.

Genius I/O analog data is stored in the application RAM allocated for that purpose (%AI

and %AQ). Analog data is always stored one channel per one word (16 bit).

An analog grouped module consumes (in the input and output data memories) only the

amount of data space required for the actual inputs and outputs. For example, the Genius

I/O 115 VAC Grouped Analog Block, IC660CBA100, has four inputs and two outputs. It

consumes four words of Analog Input memory (%AI) and two words of Analog Output

memory.

A discrete grouped module, each point of which is configurable with the Hand-Held

Monitor (HHM) to be input, output, or output with feedback, consumes an amount in both

discrete input memory (%I) and discrete output memory (%Q) equal to its physical size.

Therefore, the eight-point Discrete Grouped Block (IC660CBD100) requires eight bits in

the %I memory and eight bits in the %Q memory, regardless of how each point on the

block is configured.

4-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Analog Grouped Block

The six-channel Analog Grouped block contains four analog input channels and two

analog output channels. When this block gets its turn on the Genius I/O Bus, it

broadcasts the data for all four input channels in one broadcast control message. Then,

when the GBC gets its turn, it sends the data for both output channels to the block in a

directed control message.

Low-Level Analog Blocks

Unlike the Analog Grouped block, the low-level analog blocks, such as the Thermocouple

and RTD blocks, are input-only blocks. All have six channels.

Genius Global Data Communications

The PACSystems RX7i supports the sharing of data among multiple control systems that

share a common Genius I/O bus. This mechanism provides a means for the automatic

and repeated transfer of %G, %I, %Q, %AI, %AQ, %R, and %W data. No special

application programming is required to use global data since it is integrated into the I/O

scan. Controllers that have Genius I/O capability can send global data to an RX7i and

can receive data from an RX7i. The programming software is used to configure the

receiving and transmitting of global data on a Genius I/O bus.

Note: Genius global data communications do not continue to operate when the RX7i

CPU is in Stop-I/O Scan Disabled mode. However, if the CPU is in Stop-I/O Scan

Enabled mode, Genius global data communications continue to operate.

I/O System Diagnostic Data Collection

Diagnostic data in a PACSystems I/O system is obtained in either of the following two

ways:

■ If an I/O module has an associated bus controller, the bus controller provides the

module’s diagnostic data for the CPU. For details on GBC faults, see “PACSystems

Handling of GBC Faults” on page 4-29.

■ For I/O modules not interfaced through a bus controller, the CPU’s I/O Scanner

subsystem generates the diagnostic bits based on data provided by the module.

The diagnostic bits are derived from the diagnostic data sent from the I/O modules to

their I/O controllers (CPU or bus controller). Diagnostic bits indicate the current fault

status of the associated module. Bits are set when faults occur and are cleared when

faults are cleared.

Diagnostic data is not maintained for modules from other manufacturers. The application

program must use the BUS Read function blocks to access diagnostic information

provided by those boards.

Note: At least two sweeps must occur to clear the diagnostic bits: one scan to send the

%Q data to the module and one scan to return the %I data to the CPU. Because

module processing is asynchronous to the controller sweep, more than two

sweeps may be needed to clear the bits, depending on the sweep rate and the

point at which the data is made available to the module.

GFK-2222S Chapter 4 CPU Operation 4-29

4

Discrete I/O Diagnostic Information

The CPU maintains diagnostic information for each discrete I/O point. Two memory

blocks are allocated in application RAM for discrete diagnostic data, one for %I memory

and one for %Q memory. One bit of diagnostic memory is associated with each I/O point.

This bit indicates the validity of the associated I/O data. Each discrete point has a fault

reference that can be interrogated using two special contacts: a fault contact (-[F]-) and a

no-fault contact (-[NF]-). The CPU collects this fault data if enabled to do so by the

programming software. The following table shows the state of the fault and no-fault

contacts.

Condition [FAULT] [NOFLT]

Fault Present ON OFF

Fault Absent OFF ON

Analog I/O Diagnostic Data

Diagnostic information is made available by the CPU for each analog channel associated

with analog modules and Genius analog blocks. One byte of diagnostic memory is

allocated to each analog I/O channel. Since each analog I/O channel uses two bytes of

%AI and %AQ memory, the diagnostic memory is half the size of the data memory.

The analog diagnostic data contains both diagnostics and process data with the process

data being the High Alarm and Low Alarm bits. The diagnostic data is referenced with the

-[F]- and -[NF]- contacts. The process bits are referenced with the high alarm (-[HA]- and

low alarm (-[LA]-) contacts. The memory allocation for analog diagnostic data is one byte

per word of analog input and analog output allocated by programming software. When an

analog fault contact is referenced in the application program, the CPU does an Inclusive

OR on all bits in the diagnostic byte except the process bits. The alarm contact is closed

if any diagnostic bit is ON and OFF only if all bits are OFF.

PACSystems Handling of GBC Faults

Defaulting of input data associated with failed/lost GBCs

When a GBC is missing, mismatched, or otherwise failed, the CPU applies the Input

Default setting for each device on that Genius bus when defaulting the input data. If the

device is configured for HOLD LAST STATE, the data is left alone. If the device is

configured for OFF, the input data is set to 0. If a redundant GBC is operational, the input

data is not affected.

Application of default input and diagnostic data for lost redundant blocks

When a GBC reports that a redundant block is lost, the CPU updates the input data

tables and input diagnostic tables with the default data during the very next input scan.

The output diagnostic data tables are updated during the very next output scan.

4-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Power-Up and Power-Down Sequences

Power-Up Sequence

System power-up consists of the following parts:

■ Power-up self-test

■ CPU memory validation

■ System configuration

■ Intelligent option module self-test completion

■ Intelligent option module dual port interface tests

■ I/O system initialization

Power-Up Self-Test

On system power-up, many modules in the system perform a power-up diagnostic self-

test. The CPU module executes hardware checks and software validity checks. Intelligent

option modules perform setup and verification of on-board microprocessors, software

checksum verification, local hardware verification, and notification to the CPU of self-

check completion. Any failed tests are queued for reporting to the CPU during the system

configuration portion of the cycle.

If a low or failed battery (or Energy Pack fault) indication is present, a fault is logged in

the CPU fault table.

CPU Memory Validation

The next phase of system power-up is the validation of the CPU memory. First, if the

system verifies that user memory areas are still valid. A known area of user memory is

checked to determine if data was preserved. Next, if a ladder diagram program exists, a

checksum is calculated across the _MAIN ladder block. If no ladder diagram program

exists, a checksum is calculated across the smallest standalone C program.

When the system is sure that the user memory is preserved, a known area of the bit

cache area is checked to determine if the bit cache data was preserved. If this test

passes, the Bit Cache memory is left containing its power-up values. (Non-retentive

outputs are cleared on a transition from Stop to Run mode.) If the checksum is not valid

or the retentive test on the user memory fails, the bit cache memory is assumed to be in

error and all areas are cleared. The CPU is now in a cleared state, the same as if a new

CPU module were installed. All logic and configuration files must be stored from the

programmer to the CPU.

System Configuration

After completing its self-test, the CPU performs the system configuration. It first clears all

system diagnostic bits in the bit cache memory. This prevents faults that were present

before power-down but are no longer present from accidentally remaining as faulted.

Then it polls each module in the system for completion of the module’s self-test.

The CPU reads information from each module, comparing it with the stored (downloaded)

rack/slot configuration information. Any differences between actual configuration and the

stored configuration are logged in the fault tables.

GFK-2222S Chapter 4 CPU Operation 4-31

4

Intelligent Option Module Self-Test Completion

Intelligent option modules may take a longer time to complete their self-tests than the

CPU due to the time required to test communications media or other interface devices.

As an intelligent option module completes its initial self-tests, it tells the CPU the time

required to complete the remainder of these self-tests. During this time, the CPU provides

whatever additional information the module needs to complete its self-configuration, and

the module continues self-tests and configuration. If the module does not report back in

the time it specified, the CPU marks the module as faulted and makes an entry in one of

the fault tables. When all self-tests are complete, the CPU obtains reports generated

during the module’s power-up self-test and places fault information (if any) in the fault

tables.

Intelligent Option Module Dual Port Interface Tests

After completion of the intelligent option module self-test and results reporting, integrity

tests are jointly performed on the dual-port interface used by the CPU and intelligent

option module for communications. These tests validate that the two modules are able to

pass information back and forth, as well as verify the interrupt and semaphore

capabilities needed by the communications protocol. After dual port interface tests are

complete, the communications messaging system is initialized.

I/O System Initialization

If the module is an input module, no further configuration is required. If the module is an

output module, the module is commanded to go to its default state. The output modules

default to all outputs off at power-up and in failure mode, unless configured otherwise.

A bus transmitter module is interrogated about what expansion racks are present in the

system. Based on the bus transmitter module’s response, the CPU adds those racks and

their associated slots into the list of slots to be configured.

Finally, the I/O Scanner performs its initialization. The I/O Scanner initializes all the I/O

controllers in the system by establishing the I/O connections to each I/O bus on the I/O

controller and obtaining all I/O configuration data from that I/O controller. This

configuration data is compared with the stored I/O configuration and any differences

reported in the I/O fault table. The I/O Scanner then sends each I/O controller a list of the

I/O modules to be configured on the I/O bus. After the I/O controllers have been

initialized, the I/O Scanner replaces the factory default settings in all I/O modules with

any application-specified settings.

Power-Down Sequence

System power-down occurs when the power supply detects that incoming AC power has

dropped for more than 15ms.

4-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

4

Retention of Data Memory Across Power Failure

The following types of data are preserved across a power cycle with an operational

battery (or for CPE3xx, an Energy Pack):

■ Application program

■ Fault tables and other diagnostic data

■ Checksums on programs and blocks

■ Override data

■ Data in register (%R), local register (%L), and program register (%P) memory

■ Data in analog memory (%AI and %AQ)

■ State of discrete inputs (%I)

■ State of retentive discrete outputs (%Q)

■ State of retentive discrete internals (%M)

The following types of data are not preserved across a power cycle:

■ State of discrete temporary memory (%T)

■ %M and %Q memories used on non-retentive -()- coils

■ State of discrete system internals (system bits, fault bits, reserved bits)

GFK-2222S 5-1

Program Organization

This chapter provides information about the operation of application programs in a

PACSystems CPU.

■ Structure of the Application Program

■ Controlling Program Execution

■ Interrupt-Driven Blocks

Structure of a PACSystems Application Program

A PACSystems application consists of one block-structured application program. The

application program contains all the logic needed to control the operations of the CPU and

the modules in the system. Application programs are created using the programming

software and transferred to the CPU. Programs are stored in the CPU’s non-volatile memory.

During the CPU Sweep (described in chapter 4), the CPU reads input data from the modules

in the system and stores the data in its configured input memory locations. The CPU then

executes the entire application program once, using this fresh input data. Executing the

application program creates new output data that is placed in the configured output memory

locations.

After the application program completes its execution, the CPU writes the output data to

modules in the system.

A block-structured program always includes a _MAIN block. Program execution begins with

the _MAIN block. Counting the _MAIN block, the program can contain up to 512 blocks.

Blocks

A block is a named section of executable logic that can be downloaded to and run on the

target controller. The logic in a block can include functions, function blocks and calls to other

blocks.

Functions and Function Blocks

A function is a type of instruction that has no internal storage (instance data). Therefore, it

produces the same result for the same set of input values every time it executes.

A function block defines data as a set of inputs and output parameters that can be used as

software connections to other blocks and internal variables. It has an algorithm that runs

every time the function block is executed. Because a function block has instance data, that is

it can store values, it has a defined state.

Chapter

5

5-2 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

The following table describes the types of instructions that make up the PACSystems

instruction set.

Instruction Type Instance Data Examples

Functions None BIT_SEQ, ADD, RANGE

Built-in function blocks WORD array. TMR, PID_IND, PID_ISA

Standard function blocks Structure variable. (See “Instance Data
Structures” on page 5-8.)

TP, TOF, TON

Note: A user defined function block (UDFB) is a block of logic that can be called in your

program logic to create multiple instances of the block, allowing you to create a block

of logic once and reuse it as if it was a standard function block instruction. For

additional information, see pages 5-3 and 5-7.

How Blocks Are Called

A block executes when called from the program logic in

the _MAIN block or another block. In this example,

LD_BLK1 is always called. Conditional logic can be

used to control calling a block. For LD_BLK2 to be

called, input %I00500 and output %Q00100 must be

ON. For details on using the Call function, refer to

chapter 7 (LD programming), chapter 8 (FBD

programming) or chapter 11 (ST programming).

Nested Calls

The CPU allows nested block calls as long as there is enough execution stack space to

support the call. If there is not enough stack space to support a given block call, an

“Application Stack Overflow” fault is logged. In these circumstances, the CPU cannot execute

the block. Instead, it sets all of the block’s Boolean outputs to FALSE, and resumes execution

at the point after the block call instruction.

Note: To halt the CPU when there is not enough stack space to execute a block, there are

two choices. The best method is to add logic to detect the occurrence of any User

Application Fault by testing the diagnostic bit %SA38, and then call SVC_REQ 13 to

halt the CPU. An alternative method is to add logic that tests for a negative OK value

coming out of the block and then call SVC_REQ 13 to halt the CPU.

A call depth of eight levels or more can be expected, except in rare cases where several of

the called blocks have very large numbers of parameters. The actual call depth achieved

depends on several factors, including the amount of data (non-Boolean) flow used in the

blocks, the particular functions called by the blocks, and the number and types of parameters

defined for the blocks. If blocks use less than the maximum amount of stack resources, more

than eight nested calls may be possible. The call level nesting counts the _MAIN block as

level 1.

GFK-2222S Chapter 5 Program Organization 5-3

5

Types of Blocks

PACSystems supports four types of blocks.

Block Type Local Data
Programming

Languages
Size Limit Parameters

Block Has its own local data LD
FBD
ST

128 KB 0 inputs
1 output

Parameterized Block Inherits local data
from caller

LD
FBD
ST

128 KB 63 inputs
64 outputs

User Defined Function
Block (UDFB)

Has its own local data LD
FBD
ST

128 KB 63 inputs
64 outputs

Unlimited internal member
variables

External Block Inherits local data
from caller

C user memory size limit
(10 MB)

63 inputs
64 outputs

All PACSystems block types automatically provide an OK output parameter. The name used

to reference the OK parameter within a block is Y0. Logic within the block can read and write

the Y0 parameter. When a block is called, its Y0 parameter is automatically initialized to

TRUE. This will result in a positive power flow out of the block call instruction when the block

completes execution, unless Y0 is set to FALSE within the logic of the block.

For all block types, the maximum number of input parameters is one less than the maximum

number of output parameters. This is because the EN input to the block call is not considered

to be an input parameter to the block. It is used in LD language to determine whether or not

to call the block, but is not passed into the block if the block is called.

Program Blocks

Any block can be a program block. The _MAIN block is automatically declared when you

create a block-structured program. When you declare any other block, you must assign it a

unique block name. A block is automatically configured with no input parameters and one

output parameter (OK).

When a block-structured program is executed, the _MAIN block is automatically executed.

Other blocks execute when called from the program logic in the _MAIN block, another block,

or itself. In the following example, if %M00001 is ON, the block named ProcessEGD will be

executed:

Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each block, except _MAIN,

has its own %L local data. Blocks do not inherit %L local data from their callers.

5-4 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Using Parameters with a Program Block

Every block is automatically defined to have one formal ‘power flow’ (or OK) output

parameter, named Y0. Y0 is a BOOL parameter of LENGTH 1, passed by initial-value result.

It indicates successful execution of the block. It can be read and written to by the logic within

the block.

Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a parameterized

block, you must assign it a unique block name. A parameterized block can be configured with

up to 63 input and 64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN block,

another block, or itself. In the following example, if %I00001 is set, the parameterized block

named LOAD_41 will be executed.

Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do not have

their own %L data, but instead inherit the %L data of their calling blocks. Parameterized

blocks also inherit the FST_EXE system reference and “time stamp” data that is used to

update timer functions from their calling blocks. If %L references are used within a

parameterized block and the block is called by _MAIN, %L references will be inherited from

the %P references wherever encountered in the parameterized block (for example, %L0005 =

%P0005).

Note: It is possible, by using Online Editing in the programming software to cause a

parameterized block to use %L higher than allowed because of the way it inherits

data. Using a word-for-word change to restore this reference to a valid address does

not correct the block because the variable still exists in the variable list. Deleting the

variable from the variable list does not cause an update to the CPU, so the

parameterized block still sees the reference out of range fault. To correct this

condition, you must remove the unused variables from the variable list after deleting

them from the logic.

GFK-2222S Chapter 5 Program Organization 5-5

5

Using Parameters with a Parameterized Block

A parameterized block may be defined to have between 0 and 63 formal input parameters,

and between 1 and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter,

named Y0, is automatically defined for every parameterized block. It is a BOOL parameter of

LENGTH 1, and indicates the successful execution of the parameterized block. It can be read

and written to by the parameterized block’s logic.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms allowed

for parameterized block parameters. (For definitions of the parameter passing types, see

“Parameter Passing Mechanisms” on page 5-14.)

Type Length Default Parameter Passing Mechanism

BOOL 1 to 256 INPUTS: by reference

OUTPUTS: by value result; except Y0, which is by initial-value
result

BYTE 1 to
1024

INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and WORD 1 to 512 INPUTS: by reference

OUTPUTS: by reference

DINT, REAL, and
DWORD

1 to 256 INPUTS: by reference

OUTPUTS: by reference

LREAL 1 to 128 INPUTS: by reference

OUTPUTS: by reference

function block* 1 INPUTS: by reference

OUTPUTS: not allowed

UDFB* 1 INPUTS: by reference

OUTPUTS: not allowed

User Defined Type
(UDT)

1 to
1024

INPUTS: by reference

OUTPUTS: not allowed

* A maximum of 16 input parameters can be of type function block or UDFB.

The PACSystems default parameter passing mechanisms correspond to the way that

parameterized subroutine block (PSB) parameters are passed on 90-70 controllers. The

parameter passing mechanisms of formal parameters cannot be changed from their default

values.

Arguments, or “actual parameters” are passed into a parameterized block when a

parameterized block call is executed. In general, arguments to formal parameters may come

from any memory type, may be data flow, and may be constants (when the formal

parameter’s LENGTH is 1). The following list contains the restrictions on arguments relative

to this general rule:

■ %S memory addresses cannot be used as arguments to any output parameter. This is

because user logic is not allowed to write to %S memory.

■ Indirect references used as arguments are resolved immediately before the

parameterized block is called, and the corresponding direct reference is passed into the

block. For example, where %R1 contains the value 10 and @R1 is used as an argument

to a call, immediately before calling the block, @R1 is resolved to be %R10, and %R10 is

passed in as the argument to the block. During execution of the block, the argument

remains as %R10, regardless of whether the value in %R1 changes.

5-6 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

In general, formal parameters within a parameterized block may be used with any instruction

or with any block call, as long as their TYPE and LENGTH are compatible with what the

instruction, function, or block call requires. The following list contains the restrictions on

formal parameters relative to this general rule:

■ Formal parameters cannot be used on legacy transitional contacts or coils, or on FAULT,

NOFLT, HIALM, or LOALM contacts. However, formal parameters can be used on IEC

transitional contacts and coils.

■ Formal BOOL input parameters cannot be used on coils or as output arguments to a

function or to a block call.

■ Formal parameters cannot be used with the DO I/O function.

■ Formal parameters cannot be used with indirect referencing.

GFK-2222S Chapter 5 Program Organization 5-7

5

User Defined Function Blocks

Users can define their own blocks, which have parameters and instance data, instead of

being limited to the standard and built-in function blocks provided in the PACSystems

instruction set. In many cases, the use of this feature results in a reduction in total program

size.

Once defined, multiple instances of a UDFB can be created by calling it within the program

logic. Each instance has its own unique copy of the function block’s instance data, which

consists of the function block’s internal member variables and all of its input and output

parameters except those that are passed by reference. When a UDFB is called on a given

instance, the UDFB’s logic operates on that instance’s copy of the instance data. The values

of the instance data persist from one execution of the UDFB to the next.

A UDFB cannot be triggered by an interrupt.

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other types

of PACSystems blocks (blocks, parameterized blocks, external blocks and other UDFBs).

Blocks, parameterized blocks, and other UDFBs can make calls to UDFBs.

Unless otherwise stated, the PACSystems implementation of UDFBs meets the IEC 61131-3

requirements for user defined function blocks.

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST block in the

Program Blocks folder. In the Properties for the block, select Function Block.

To define instance data for a UDFB, select Parameters in the block’s properties. Input and

output parameters are defined in the same way as for parameterized blocks. In the following

example, three internal member variables are defined: temp, speed, and modelno.

A member variable
is not passed into
or out of a UDFB as
a parameter. A
member variable is
used only within the
logic of a function
block.

5-8 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance name

in the function properties.

In the following LD example, the first rung creates two instances of the UDFB, Motors. The

instance variables associated with the instances are motors.motor1 and motors.motor2. The

second rung uses the two instances of the internal variable temp in logic.

Instance Data Structures

A variable with the format function_block_name.instance_name is

automatically created for each instance of a UDFB. The instance data

makes up a single composite variable that is of a structure type. The

example to the right shows the variable structures associated with two

instances of the UDFB named Motors. Each instance variable has

elements corresponding to parameters In1, Out1, and Y0, and internal

variables modelno, speed, and temp.

Instances are created as symbolic variables, never as mapped

variables. This ensures that instance data is only referenced by the

instance name and not by a memory address, which means that no

aliases can be created for the UDFB data elements. The indirect

reference operator cannot be used on an instance variable because

indirect references are not permitted on symbolic variables.

UDFBs and Scope

Unlike a parameterized subroutine, a UDFB has its own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only to the

logic inside the UDFB. They cannot be read or written by any external logic or by the

hardware configuration. An internal variable can be made visible outside the UDFB by

changing its scope to global. Logic outside the UDFB can read but cannot write to internal

variables whose scope is global.

Note: If you give internal variables global scope, your application will not conform to IEC

requirements.

GFK-2222S Chapter 5 Program Organization 5-9

5

Using Parameters with UDFBs

UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, Y0, which the CPU sets to true

upon each invocation of the block. Y0 can be controlled by logic within the block and provides

the output status of the block.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms allowed

for UDFB parameters. For additional information on parameter passing, see “Parameter

Passing Mechanisms” on page 5-14.

Type Length Parameter Passing Mechanism Retentiveness of Instance
Data for Parameters

BOOL 1 to 256 INPUTS: by reference, constant reference,
value, or value result. (Default: value)

Not Applicable if passed by
reference, since not stored in
instance data.

Can be retentive (default) or
nonretentive for value or value
result.

OUTPUTS: by result; except Y0, which is by
initial-value result

Retentive (default) or
Nonretentive

BYTE 1 to
1024

INPUTS: by reference, constant reference,
value, or value result. (Default: value)

Retentive for value or value
result.

Not applicable for reference OUTPUTS: by result

INT, UINT, and WORD 1 to 512 INPUTS: by reference, constant reference,
value, or value result. (Default: value)

Retentive for value or value
result.

Not applicable for reference OUTPUTS: by result

DINT, REAL, and
DWORD

1 to 256 INPUTS: by reference, constant reference,
value, or value result. (Default: value)

Retentive for value or value
result.

Not applicable for reference OUTPUTS: by result

LREAL 1 to 128 INPUTS: by reference, constant reference,
value, or value result. (Default: value)

Retentive for value or value
result.

Not applicable for reference OUTPUTS: by result

Function block (standard
or PACMotion)

1 INPUTS: by reference, constant reference,
(Default: reference)

Not applicable since passed by
reference

OUTPUTS: by result

UDFB* 1 INPUTS: by reference, constant reference,
friend

Not applicable since passed by
reference

OUTPUTS: not allowed

UDT 1 to
1024

INPUTS: by reference, constant reference Not applicable since passed by
reference OUTPUTS: not allowed

* A maximum of 16 input parameters can be of type UDFB.

If an input parameter is passed by reference or by value result, it requires an argument. All

other parameters of a UDFB are optional. That is, they do not have to be given arguments on

each instance of the UDFB. If no argument is given for an optional parameter, the variable

element associated with the parameter retains the value it previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed by

reference or passed by value result. This restriction prevents modification of a UDFB output.

5-10 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. Internal variables’ values are

not passed through the input and output parameters. An internal variable cannot have the

same name as a parameter of the UDFB it is defined in.

An internal variable can be:

■ Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL,

BYTE, WORD, and DWORD).

■ A UDFB type. Such member variables are known as nested instances. For example, the

function block “Motor” can have an internal variable of type “Valve,” where Valve is a

UDFB type. Note that defining a member variable as a UDFB type does not create an

instance.

A nested instance cannot be of the same type as the UDFB being defined because this

would set up an infinitely recursive definition. Nor can any level of a nested instance be of

the same type as the parent UDFB being defined. For example, the UDFB “Motor” cannot

have an internal variable of type “Valve,” if the Valve UDFB contains an internal variable

of type “Motor.”

■ A UDT. A structured, user-defined data type consisting of elements of other selected data

types.

■ A one-dimensional array.

Internal variables of TYPE BOOL can be retentive (default) or nonretentive. All other TYPEs

must be retentive.

Member variables corresponding to a UDFB’s input parameters cannot be read or written

outside of the UDFB. (This is more restrictive than the IEC 61131-3 requirements for user

defined function blocks.) Member variables corresponding to the UDFB’s output parameters

can be read but not written outside the UDFB.

Internal member variables that have basic types may be given initial values. The same initial

values apply to all instances of a UDFB. If an initial value isn’t given, the internal member

variable is set to zero when the application transitions to RUN mode for the first time.

An internal member variable that is a nested instance has initial values as specified by its

UDFB type definition.

Initial values are not stored during a RUN mode store. They will not take effect until a Stop

mode store is performed.

UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or used with

transition-detecting instructions. The exception to this is that BOOL input parameters passed

by reference cannot be forced or used with the Series 90-70 legacy transition-detecting

instructions (POSCOIL, NEGCOIL, POSCON and NEGCON) because their values are not

stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements, can be read

by their UDFB’s logic.

Input parameters that are passed by reference or passed by value result to a UDFB can be

written to by their UDFB’s logic. Input parameters passed by value cannot be written to by

GFK-2222S Chapter 5 Program Organization 5-11

5

their UDFB logic. Note that the restriction on writing to input parameters passed by value

does not apply to other types of blocks.

All UDFB output parameters can be both read and written to by their logic.

UDFB Operation with Other Blocks

A UDFB instance that is of global scope can be invoked by another UDFB’s logic or any other

block’s logic.

A UDFB instance that is passed (by reference) as an argument to a UDFB can be invoked by

the UDFB’s logic.

A UDFB instance that is passed (by reference) as an argument to a parameterized block can

be invoked by the parameterized block’s logic.

The output parameters, and their corresponding instance data elements, of a UDFB instance

that is passed as an argument can be read but not modified by the receiving block’s logic.

The input parameters of a UDFB instance that is passed as an argument cannot be read or

modified by the receiving block’s logic. The internal variables of a UDFB instance that is

passed as an argument cannot be modified by the receiving block’s logic. They can be read if

their scope is global, but not if their scope is local.

External Blocks

External blocks are developed using external development tools as well as the C

Programmer’s Toolkit for PACSystems. Refer to the C Programmer’s Toolkit for PACSystems

User’s Manual, GFK-2259 for detailed information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external block, you

must assign it a unique block name. It can be configured with up to 63 input parameters and

64 output parameters.

An external block executes when called from the program logic in the _MAIN block or from

the logic in another block, parameterized block, or UDFB. External blocks themselves cannot

call any other block. In the following example, if %I00001 is set, the external block named

EXT_11 is executed.

Note: Unlike other block types, external blocks cannot call other blocks.

External Blocks and Local Data

External blocks support the use of %P global data. External blocks do not have their own %L

data, but instead inherit the %L data of their calling blocks. They also inherit the FST_EXE

system reference and the “time stamp” data that is used to update timer function blocks from

their calling blocks. If %L references are used within an external block and the block is called

by _MAIN, %L references will be inherited from the %P references wherever encountered in

the external block (for example, %L0005 = %P0005).

5-12 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global and

static variables is saved. However, if static variables are declared without an initial value, the

initial value is undefined and must be initialized by the C application. (Refer to “Global

Variable Initialization” and “Static Variable” in the C Programmer’s Toolkit for PACSystems,

GFK-2259). The saved initial values are used to re-initialize the block’s global and static

variables whenever the CPU transitions from Stop to Run.

Using Parameters With an External Block

An external block may be defined to have between zero and 63 formal input parameters and

between one and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter, named

Y0, is automatically defined for every external block. Y0 is a BOOL parameter of LENGTH 1,

and indicates the successful execution of the block. It can be read and written to by the

external block’s logic.

The following table gives the TYPEs, LENGTHs, and parameter-passing mechanisms

allowed for external block parameters.

Type Length Default Parameter Passing Mechanism

BOOL 1 to 256 INPUTS: by reference

OUTPUTS: by reference; except Y0, which is
by initial-value result

BYTE 1 to 1024 INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and WORD 1 to 512 INPUTS: by reference

OUTPUTS: by reference

DINT, REAL, and
DWORD

1 to 256 INPUTS: by reference

OUTPUTS: by reference

LREAL 1 to 128 INPUTS: by reference

OUTPUTS: by reference

UDT* 1 to 128 INPUTS: by reference

OUTPUTS: not allowed

* To use a UDT, you must include the UDT definition as a C structure in the external block.

For details, see "Using a UDT as a C block input parameter data type" in the online help.

The PACSystems default parameter passing mechanisms correspond to the way that

external block parameters are passed on 90-70 controllers. The parameter passing

mechanisms of formal parameters cannot be changed from their default values.

You must define a name for each formal input and output parameter.

Arguments, or “actual parameters”, are passed into an external block when an external block

call is executed.

Arguments may be any valid reference address including an indirect reference, may be flow,

or may be a constant if the corresponding parameter’s LENGTH is 1.

GFK-2222S Chapter 5 Program Organization 5-13

5

Local Data

Each block or UDFB in a block-structured program has an associated local data block.

_MAIN’s data block memory is referenced by %P; all other data block memories are

referenced by %L.

The size of the data block is dependent on the highest reference in its block for %L and in all

blocks for %P.

Block

2

Block
3

Block

4

data
 %L

Data
 %L

Data
 %L

data
 %P

_MAIN

block

All blocks within the program can use data associated with the _MAIN block (%P). Blocks

and UDFBs can use their own %L data as well as the %P data that is available to all blocks.

The _MAIN block cannot use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their calling block

as well as the %P data of the _MAIN block. If a parameterized block or external block is

called by MAIN, all %L references in the parameterized block or external block will actually be

references to corresponding %P references (for example, %L0005 = %P0005). In addition to

inheriting the Local Data of their calling blocks, parameterized blocks and external blocks

inherit the FST_EXE status of their calling blocks.

PSB 1
 or
EB 1

BLOCK
1

data
 %P

_MAIN

Block

data
 %L

Inherits as %L

PSB 2
 or
EB 2

Inherits as %L

5-14 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Parameter Passing Mechanisms

All blocks (except _MAIN) have at least one parameter and thus are affected by parameter

passing mechanisms. A “parameter passing mechanism” describes the way that data is

passed from an argument in a calling block to a parameter in the called block, and from the

parameter in the called block back to the argument in the calling block.

PACSystems supports the following parameter-passing mechanisms: pass by reference,

pass by constant reference, pass by value, pass by value result, pass by result and pass by

initial-value result. An additional type, pass by friend, is available when the input Data Type is

a UDFB. A parameter is defined by its TYPE, LENGTH, and parameter passing mechanism.

 When a parameter is passed by reference, the address of its argument is passed into

the function block instance or parameterized block. All logic within the called block that

reads or writes to the parameter directly reads or writes to the actual argument.

 When a parameter is passed by constant reference, the CPU passes a reference

address pointer, symbolic variable pointer, or I/O variable pointer into the function block

instance or parameterized block. The instance or block can only read the reference

address or variable.

 When a parameter is passed by friend (UDFB inputs only), the CPU passes a UDFB

instance variable pointer into the function block instance or parameterized block. The

instance or block can write to any output or member, whether public or private, of the

UDFB instance variable passed as a friend.

Tip: In the logic of a UDFB, when you want to pass the UDFB as a friend, assign the

pseudo-variable "#This" to the input that expects an instance variable of that UDFB type.

In the following example, the In2 input of the LDPSB parameterized block expects a

UDFB instance variable friend of the ABC data type. Inside the logic of ABC, assign

"#This" to In2 in the call to LDPSB.

GFK-2222S Chapter 5 Program Organization 5-15

5

 When a parameter is passed by value (UDFB inputs only), the value of its argument is

copied into a local stack memory associated with the called block. All logic within the

called block that reads or writes to the parameter is reading or writing to this stack

memory. Thus no changes are ever made to the actual argument.

 When a parameter is passed by value result (UDFB inputs only), the value of its

argument is copied into a local stack memory associated with the called block, and the

address of its argument is saved. All logic within the called block that reads or writes to

the parameter is reading or writing to this stack memory. When the called block

completes its execution, the value in the stack memory is copied back to the actual

argument’s address. Thus no changes are made to the actual argument while the called

block is executing, but when it completes execution, the actual argument is updated.

5-16 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Languages

Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that execute from

top to bottom. The logic execution is thought of as “power flow”, which proceeds down along

the left “rail” of the ladder, and from left to right along each rung in sequence.

Relay
Power flow into function

Coil

Multiplication function

Power
Rail Power flow out of function

The flow of logical power through each rung is controlled by a set of simple program

instructions that work like mechanical relays and output coils. Whether or not a relay passes

logical power flow along the rung depends on the content of a memory location with which

the relay has been associated in the program. For instance, a relay might pass positive

power flow if its associated memory location contains the value 1. The same relay passes

negative power flow if the memory location contains the value 0.

Usually an instruction that receives negative power flow does not execute and propagates the

negative power flow on to the next instruction in the rung. However, some instructions such

as timers and counters execute even when they receive negative power flow, and may even

pass positive power flow out. Once a rung completes execution, with either positive or

negative power flow, power flows down along the left rail to the next rung.

Within a rung, there are many complex functions that are part of the standard function library

and can be used for operations like moving data stored in memory, performing math

operations, and controlling communications between the CPU and other devices in the

system. Some program functions, such as the Jump function and Master Control Relay, can

be used to control the execution of the program itself. Together, this large group of Ladder

Diagram instructions and standard library functions makes up the instruction set of the CPU.

GFK-2222S Chapter 5 Program Organization 5-17

5

Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that

represents the behavior of functions, function blocks and programs as a set of interconnected

graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements, in a

manner very similar to signal flows depicted in electronic circuit diagrams. Instructions are

shown with inputs entering from the left and outputs exiting on the right. A function block type

name is always shown within the element and the name of the function block instance is

shown above the element.

Solve Order

Instance of
UDFB, “Weight”

Instance of
UDFB, “Weight”

Wire indicates data flow
from output to input

The order of execution of instructions in an FBD is determined by the following:

1. The display position of the instruction in the FBD editor

2. Whether the inputs to the FBD instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD compiler

performs the following steps:

1. The FBD compiler scans the instructions in the FBD editor, beginning from left to right,

and top to bottom. When an instruction is encountered, the compiler attempts to resolve

the instruction, that is, the inputs are known. If the inputs are known, the instruction is

solved, and scanning continues for the next instruction.

2. If the current instruction cannot be resolved, that is, the inputs are not known, then the

compiler scans for the previous instruction, using the wire connecting the output of the

previous instruction to the input of the current instruction.

3. If the previous instruction can be resolved, the compiler calculates the output. The output

of the previous instruction then becomes the input to the current instruction, the current

instruction is resolved, and scanning continues for the next instruction.

4. If the previous instruction cannot be resolved, that is, the inputs are not known, then step

2 is repeated until an instruction is encountered, which can be resolved.

5-18 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Structured Text

The Structured Text (ST) programming language is an IEC 1131-3 textual programming

language. A structured text program consists of a series of statements, which are constructed

from expressions and language keywords. A statement directs the PLC to perform a specified

action. Statements provide variable assignments, conditional evaluations, iteration, and the

ability to call other blocks. For details on ST statements, parameters, keywords, and

operators supported by PACSystems, refer to chapter 11, “Structured Text.”

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN program

block can also be programmed in ST.

A block programmed in ST can call blocks, parameterized blocks, and UDFBs.

GFK-2222S Chapter 5 Program Organization 5-19

5

Controlling Program Execution
There are many ways in which program execution can be controlled to meet the system’s

timing requirements. The PACSystems CPU instruction set contains several powerful control

functions that can be included in an application program to limit or change the way the CPU

executes the program and scans I/O. For details on using these functions, refer to chapter 7.

The following is a partial list of the commonly used methods:

■ The Jump (JUMPN) function can be used to cause program execution to move either

forward or backward in the logic. When a JUMPN function is active, the coils in the part of

the program that is skipped are left in their previous states (not executed with negative

power flow, as they are with a Master Control Relay). Jumps cannot span blocks.

■ The nested Master Control Relay (MCRN) function can be used to execute a portion of

the program logic with negative power flow. Logic is executed in a forward direction and

coils in that part of the program are executed with negative power flow. Master Control

Relay functions can be nested to 255 levels deep.

■ The Suspend I/O function can be used to stop both the input scan and output scan for

one sweep. I/O can be updated, as necessary, during the logic execution through the use

of DO I/O instructions.

■ The Service Request function can be used to suspend or change the time allotted to the

window portions of the sweep.

■ Program logic can be structured so that blocks are called more or less frequently,

depending on their importance and on timing constraints. The CALL function can be used

to cause program execution to go to a specific block. Conditional logic placed before the

Call function controls the circumstances under which the CPU executes the block logic.

After the block execution is finished, program execution resumes at the point in the logic

directly after the CALL instruction.

Interrupt-Driven Blocks

Three types of interrupts can be used to start a block’s execution:

■ Timed Interrupts are generated by the CPU based on a user-specified time interval with

an initial delay (if specified) applied on Stop-to-Run transition of the CPU.

■ I/O Interrupts are generated by I/O modules to indicate discrete input state changes

(rising/falling edge), analog range limits (low/high alarms), and high speed signal

counting events.

■ Module Interrupts are generated by VME modules. A single interrupt is supported per

module.

Caution

Interrupt-driven block execution can interrupt the execution of non-
interrupt-driven logic. Unexpected results may occur if the interrupting
logic and interrupted logic access the same data. If necessary, Service
Request #17 or Service Request # 32 can be used to temporarily mask
I/O and Timed Interrupt-driven logic from executing when shared data
is being accessed.

5-20 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Interrupt Handling

An I/O, Module, or Timed interrupt can be associated with any block except _MAIN, as long

as the block has no parameters other than an OK output. After an interrupt has been

associated with a block, that block executes each time the interrupt trigger occurs. A given

block can have multiple timed, I/O, and module interrupt triggers associated with it. It is

executed each time any one of its associated interrupts triggers. For details on how interrupt

blocks are prioritized, refer to “Interrupt Block Scheduling” on page 5-22.

If a parameterized block or external block is triggered by an interrupt, it inherits %P data as

its %L local data. For example, a %L00005 reference in the parameterized block or C block

actually references %P00005.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a

result of an interrupt.

Blocks that are triggered by interrupts can make calls to other blocks. The application stack

used during interrupt-driven execution is different from the stack used during normal block-

structured program execution. In particular, the nested call limit is different from the limit

described for calls from the _MAIN block. If a call results in insufficient stack space to

complete the call, the CPU logs an ”Application Stack Overflow” fault.

Note: We strongly recommend that interrupt-driven blocks not be called from the _MAIN

block or other non-interrupt driven blocks because the interrupt and non-interrupt

driven blocks could be reading and writing the same global memories at

indeterminate times relative to each other. In the example below INT1, INT2,

BLOCK5, and PB1 should not be called from _MAIN, BLOCK2, BLOCK3, or

BLOCK4.

INT Block 1

 _MAIN

Block

Block
2

Block
3

Block
4

Block
5

INT Block 2

PB

1

GFK-2222S Chapter 5 Program Organization 5-21

5

Timed Interrupts

A block can be configured to execute on a specified time interval with an initial delay (if

specified) applied on a Stop-to-Run transition of the CPU.

To configure a timed interrupt block, specify the following parameters in the scheduling

properties for the block:

Time Base The smallest unit of time that you can specify for Interval and Delay. The time base
can be 1.0 second, 0.10 second, or 0.01 second, or 0.001 second.

Interval Specifies how frequently the block executes in multiples of the time base.

Delay (Optional) Specifies an additional delay for the first execution of the block in multiples
of the time base.

The first execution of a Timed Interrupt block will occur at

((delay * time base) + (interval * time base)) after the CPU is placed in Run mode.

I/O Interrupts

A block can be triggered by an interrupt input from certain hardware modules. For example,

on the 32-Circuit 24 VDC Input Module (IC697MDL650), the first input can be configured to

generate an interrupt on either the rising or falling edge of the input signal. If the interrupt is

enabled in the module configuration, that input can serve as a trigger to cause the execution

of a block.

To configure an I/O interrupt, specify a trigger in the scheduling properties for the block. The

trigger must be a global variable in %I, %AI or %AQ memory, or an I/O variable. (An I/O

variable is a form of symbolic variable that is mapped to a module I/O point in hardware

configuration.)

PACSystems modules that can trigger user interrupt logic always send the interrupt to the

CPU when configured to do so. If the CPU is in Stop mode when it receives the interrupt, it

does not run the user interrupt block. The CPU does not run the user interrupt block when it

transitions from Stop to Run mode.

Module Interrupts

A block can be triggered by an interrupt from a module that supports I/O interrupts if the

Interrupt parameter is enabled in the module’s hardware configuration.

To configure a module interrupt, specify the module by rack/slot/interrupt ID as the Trigger in

the scheduling properties for the block.

5-22 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

5

Interrupt Block Scheduling

You can select one of two types of interrupt block scheduling at the target level:

■ Normal block scheduling allows you to associate a maximum of 64 I/O and Module

Interrupts and 16 Timed Interrupts. With normal block scheduling, all interrupt-triggered

blocks have equal priority. This is the default scheduling mode.

■ Preemptive block scheduling allows you to associate a maximum of 32 interrupt

triggers. With preemptive block scheduling, each trigger can be assigned a relative

priority.

Normal Block Scheduling

Interrupt-driven logic has the highest priority of any user logic in the system. The execution of

a block triggered from an interrupt preempts the execution of the normal CPU sweep

activities. Execution of the normal CPU sweep activities is resumed after the interrupt-driven

block execution completes.

If the CPU receives one or more interrupts while executing an interrupt block, it places the

incoming interrupts into the queue while it finishes executing the current interrupt block.

Timed interrupt driven blocks are queued ahead of I/O or Module driven blocks. I/O or

Module interrupt driven blocks are queued in the order in which the interrupts are received. If

an interrupt driven block is already in the queue, additional interrupts that occur for this block

are ignored.

Preemptive Block Scheduling

Preemptive scheduling allows you to assign a priority to each interrupt trigger. The priority

values range from 1 to 16, with 1 being the highest. A single block can have multiple

interrupts with different priorities or the same priorities.

An incoming interrupt is handled according to its priority compared to that of the currently

executing block as follows:

■ If an incoming interrupt has a higher priority than the interrupt associated with the block

that is currently executing, the currently executing block is stopped and put in the

interrupt queue. The block associated with the incoming interrupt begins executing.

■ If an incoming interrupt has the same priority as the interrupt trigger associated with the

block that is currently executing, that block continues to execute and the incoming

interrupt is placed in the queue.

■ If an incoming interrupt has a lower priority than the interrupt associated with the block

that is currently executing, the incoming interrupt is placed in the queue.

When the CPU completes the execution of an interrupt block, the block associated with the

interrupt trigger that has the highest priority in the queue begins execution — or resumes

execution if the block's execution was preempted by another interrupt block and was placed

in the queue.

If multiple blocks in the queue have the same interrupt priority, their execution order is not

deterministic.

Note: Certain functions, such as DOIO, BUS_RD, BUS_WRT, COMMREQ,

SCAN_SET_IO, and some SVC_REQs may cause a block to yield to another queued

block that has the same priority.

GFK-2222S 6-1

Program Data

This chapter describes the types of data that can be used in an application program, and

explains how that data is stored in the PACSystems CPU’s memory.

■ Variables

■ Reference Memory

■ User Reference Size and Default

■ Genius Global Data

■ Transitions and Overrides

■ Retentiveness of Logic and Data

■ Data Scope

■ System Status References

■ How Program Functions Handle Numerical Data

■ User Defined Types (UDTs)

■ Word-for-Word Changes

■ Operands for Instructions

6
Chapter

6-2 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Variables
A variable is a named storage space for data values. It represents a memory location in the

target PACSystems CPU.

A variable can be mapped to a reference address (for example, %R00001). If you do not map

a variable to a specific reference address, it is considered a symbolic variable. The

programming software handles the mapping for symbolic variables in a special portion of

PACSystems user space memory.

The kinds of values a variable can store depends on its data type. For example, variables

with a UINT data type store unsigned whole numbers with no fractional part. Data types are

described in “How Program Functions Handle Numerical Data” on page 6-21.

In the programming software, all variables in a project are displayed in the Variables tab of

the Navigator. You create, edit, and delete variables in the Variables tab. Some variables are

also created automatically by certain components (such as TIMER variables when you add a

Timer instruction to ladder logic). The data type and other properties of a variable, such as

reference address are configured in the Inspector.

For more information about system variables, which are created when you create a target in

the programming software, refer to page 6-16.

Mapped Variables

Mapped (manually located) variables are assigned a specific reference address. For details

on the types of reference memory and their uses, refer to page 6-9.

Symbolic Variables

Symbolic variables are variables for which you do not specify a reference address (similar to

a variable in a typical high-level language). Except as noted in this section, you can use these

in the same ways that you use mapped variables.

In the programming software, a symbolic variable is displayed with a blank address. You can

change a mapped variable to a symbolic variable by removing the reference address from the

variable’s properties. Similarly, you can change a symbolic variable into a mapped variable

by specifying a reference address for the variable in its properties.

The memory required to support symbolic variables counts against user space. The amount

of space reserved for these variables is configured on the Memory tab in the CPU hardware

configuration.

GFK-2222S Chapter 6 Program Data 6-3

6

Restrictions on the Use of Symbolic Variables

■ Symbolic variables cannot be used with indirect references (for example, @Name). For a

description of indirect references, see page 6-9.

■ Only global scope Symbolic variables can be used in EGD pages.

■ A variable must be globally scoped and published (internal or external) to be used in a C

block.

■ Symbolic variables cannot be used in the COMMREQ status word.

■ Use of symbolic variables is not supported on web pages.

■ Symbolic Boolean variables are not allowed on non-BOOL parameters.

■ Symbolic non-discrete variables cannot be used on Series 90-70 style Transition contacts

and coils. (Symbolic discrete variables are supported.)

■ Overrides and Forces cannot be used on symbolic non-discrete variables. (Symbolic

discrete variables are supported.)

■ Arrays of the following data types are not supported:

Arrays of user defined function block (UDFB) instance variables.

Arrays of PACMotion function block instance variables.

Arrays of TON, TOF, or TP instance variables.

Arrays of reference ID variables (RIVs) that contain one or more linked RIV elements.

Note: A RIV array is supported when none of its elements is linked.

I/O Variables

An I/O variable is a symbolic variable that is mapped to a terminal in the hardware

configuration. A terminal can be one of the following: Physical discrete or analog I/O point on

a PACSystems module or on a Genius device, a discrete or analog status returned from a

PACSystems module, or Global Data. The use of I/O variables allows you to configure

hardware modules without having to specify the reference addresses to use when scanning

their inputs and outputs. Instead, you can directly associate variable names with a module’s

inputs and outputs.

As with symbolic variables, memory required to support I/O variables counts against user

space. You can configure the space available for I/O variables in the Memory tab of the

PACSystems CPU.

For a given module or Genius bus, you must use either I/O variables or manually located

mapped variables: you cannot use both in combination. It is not necessary to map all points

on a module. Points that are disconnected or unused can be skipped. When points are

skipped, space is reserved in user memory for that point (that is, a 32-point discrete module

will always use 32 bits of memory).

The hardware configuration (HWC) and logic become coupled in a PACSystems target on

your computer as soon as you do one of the following: Enable I/O variables for a module or

Genius bus (even if you don't create any I/O variables), use one or more symbolic variables

in the Ethernet Global Data (EGD) component, or upload a coupled HWC and logic from a

PACSystems PLC. The HWC and logic become coupled in a PACSystems controller when

coupled HWC and logic are downloaded to it.

6-4 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Effects of coupled HWC and logic:

 Whether the HWC and logic are coupled in the PACSystems target on your computer

or in the PACSystems controller, you cannot download or upload the HWC and logic

independently.

 When the HWC and logic are coupled in the PACSystems controller, you cannot

clear the HWC and the logic independently.

 As for any download, you cannot run mode store (RMS) the HWC and logic

independently.

 The HWC must be completely equal for you to make word-for-word changes, launch

the Online Test mode of Test Edit, or accept the edits of Test Edit.

I/O variables can be used any place that other symbolic variables are supported, such as in

logic as parameters to built-in function blocks, user defined function blocks, parameterized

function blocks, C blocks, bit-in-word references, and transition contacts and coils.

Restrictions on the Use of I/O Variables

 Since I/O variables are a form of symbolic variable, the same restrictions that apply to

other symbolic variables of the same data type and array bounds apply to I/O variables.

 Only a global variable can become an I/O variable. A local variable cannot become an I/O

variable.

 You can map only a discrete variable to a discrete terminal.

 You can map only a non-discrete variable to an analog terminal.

 Arrays and UDT variables must fit on the number of terminals in the reference address

node counting from and including the terminal where you enter the array head or UDT

variable. For example, if you have 32 analog terminals and you have a WORD array of

12 elements, you can map it to terminal 21 or any terminal before it (1 through 20).

 You can map a discrete array only to a terminal 8n+1, where n = 0, 1, 2, and so on. The

"+1" is there because the terminals are numbered beginning with 1. If you map it to a

terminal other than 8n+1, an error occurs upon validation.

 An I/O variable cannot be mapped to more than one location in hardware configuration.

 For the DO_IO function block, if an I/O variable is assigned to the ST parameter, then the

same I/O variable must also be assigned to the END parameter, and the entire module is

scanned.

 Some I/O modules do not support the use of I/O variables. For a list of modules that

support I/O variables, please refer to the Important Product Information for Logic

Developer – PLC programming software.

GFK-2222S Chapter 6 Program Data 6-5

6

I/O Variable Format

To map an I/O variable, use the format %vdr.s.[z.]g.t:

v = I (input) or Q (output)

d = data type: X (discrete) or W (analog).

r = rack number

s = slot number

[z] = subslot number. This element and the period that follows it appear only if there is a

subslot, for example, the SBA number of a Genius device. For an Ethernet

daughterboard, set this value to 0.

g = segment number or number of the reference address node. Set to 0 for the first

reference address node on the Terminals tab, 1 for the second reference node, and so

on.

t = terminal number. One-based, that is, the numbering begins at 1.

Supported I/O Variable Types

Data Type
Mnemonic

Supported Data
Types

Number of Consecutive Terminals Required

X

BOOL variable 1

BOOL array Number of elements in array.

BYTE variable 8

BYTE array 8n, where n is the number of array elements.

W

DINT variable 2

DINT array Number of elements in array times 2

DWORD variable 2

DWORD array Number of elements in array times 2

INT variable 1

INT array Number of elements in array

LREAL variable 4

LREAL array Number of elements in array times 4

REAL variable 2

REAL array Number of elements in array times 2

UINT variable 1

UINT array Number of elements in array

WORD variable 1

WORD array Number of elements in array

I/O Variable Examples

The I/O variable, Sample_IO_Variable is mapped to a non-discrete (W) output point (Q) on

the module located in rack 0, slot 8. The variable is mapped to the first point in the first group

of non-discrete output reference addresses.

The I/O variable, IO_VAR_EXAMPLE, is mapped to a discrete (X) input point (I) on the

module located in rack 0, slot 5. The point is located in the module’s third group of discrete

input points and is point 2 in that group.

6-6 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Arrays

An array is a complex data type composed of a series of variable elements with identical data

types. Any variable can become an array, except for another array, a variable element, or a

UDFB. In Machine Edition, you can create single-dimensional arrays and two-dimensional

arrays.

In the controller CPU, each element of an array is treated as a separate variable with a

separate, read-only reference address. The "root" node of the array variable also has a

reference address that is editable. When you set or change the reference address of the

"root" node of an array variable, the reference addresses of its elements are filled in with a

range of addresses starting at that reference address and incremented for each element so

as to create contiguous non-overlapping memory.

Variable Indexes and Arrays

PACSystems CPUs with firmware version 6.00 or later support variable indexes for arrays.

With a variable index, when logic is executed, the value of the variable is evaluated and the

corresponding array element is accessed.

Note: The numbering of array elements is zero-based.

For example, to access an element of the array named ABC, you could write ABC[DEF] in

logic. When logic is executed, if the value of DEF is 5, then ABC[DEF] is equivalent to

ABC[5], and the sixth element of array ABC is accessed.

If the value of the variable index exceeds the array boundary, a non-fatal fault is logged to the

CPU fault table. In LD, the instruction for which this occurred does not pass power to the

right.

Requirements and Support

An index variable must be of the INT, UINT, or DINT data type.

The valid range of values for an index variable is 0 through Y, where Y = [the number of array

elements in the array] - 1. Ensuring that a variable index does not exceed the upper boundary

of an array.

GFK-2222S Chapter 6 Program Data 6-7

6

An index variable can be one of the following:

 Symbolic variable

 I/O variable

 Variable mapped to % memory areas such as %R

 Structure element

 Array element with a constant index

 Array element with a variable index

 Alias variable

 In the logic of a UDFB or parameterized block: formal parameter

The following support a variable index:

 Array elements of any data type except STRING

 Parameter array elements of any data type

 Alias variables

Dimensional support:

 One-dimensional (1D) formal parameter arrays in the logic of a UDFB or

parameterized block

 2D support for the top level of an array of structures and 1D support for a structure

element that is an array. For example:

PQR[a, b].STRU[y].Zed,

where Zed is an element of the array of structures STRU, which itself is an element

of the 2D array of structures PQR.

 1D and 2D arrays for other variables

Other features:

 An array with a variable index supports a bit reference, for example

MyArray[nIndex].X[4],

where .X[4] is the fifth bit of the value stored in MyArray[nIndex]. The bit reference

itself, [4] in the example, must be a constant.

 In LD, the following word-for-word changes are supported for array elements with

variable indexes:

Replacing an index variable with another index variable

Replacing an index variable with a constant

Replacing a constant with an index variable

In LD, Diagnostic Logic Blocks support the use of array elements with

variable indexes.

The following do not support array elements with variable indexes:

 Indirect references

 EGD variables

 Reference ID variables (RIVs) and I/O variables when accessed in the Hardware

Configuration

Note: In logic, RIVs and I/O variables support variable indexes.

 STRING variables

6-8 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

A variable index cannot be one of the following:

 A math expression. For example, ABC[GH+1] is not supported.

 An indirect reference. For example, W[@XYZ] is not supported.

 A bit reference. For example, ABC[DEF.X[3]] is not supported.

Note: You can use a bit reference on an array element designated by a variable

index. For example, ABC[DEF].X[3] is supported.

 An array head. For example, if MNP and QRS are arrays, MNP[QRS] is not

supported, but MNP[QRS[3]] and MNP[QRS[TUV]] are, where TUV is an index

variable.

 A negative index. This generates a run-time non-fatal CPU fault.

 A value greater than Y, where Y = [number of array elements] - 1. This generates a

run-time non-fatal CPU fault.

Ensuring that a Variable Index Does not Exceed the Upper Boundary of an Array

One-Dimensional Array

1. Once per scan, execute ARRAY_SIZE_DIM1 to count the number of elements in

the array.

Note: The array size of a variable can be changed in a run mode store but it will not be

changed while logic is executing.

ARRAY_SIZE_DIM1 places the count value in the variable associated with its output Q.

2. Before executing an instruction that uses a variable index, compare the value of the index

variable with the number of elements in the array.

Tip: In LD, use a RANGE instruction.

Notes Checking before executing each instruction that uses an indexed variable is

recommended in case logic has modified the index value beyond the array size or in

case the array size has been reduced before the scan to less than the value of an

index variable that has not been reduced accordingly since.

Valid range of an index variable: 0 through (n–1), where n is the number of array

elements. Array indexes are zero-based.

Two-Dimensional Array

 Execute both ARRAY_SIZE_DIM1 and ARRAY_SIZE_DIM2 to count the number of

elements in respectively the first and second dimensions of the array.

GFK-2222S Chapter 6 Program Data 6-9

6

Reference Memory
The CPU stores program data in bit memory and word memory. Both types of memory are

divided into different types with specific characteristics. By convention, each type is normally

used for a specific type of data, as explained below. However, there is great flexibility in

actual memory assignment.

Memory locations are indexed using alphanumeric identifiers called references. The

reference’s letter prefix identifies the memory area. The numerical value is the offset within

that memory area, for example %AQ0056.

Word (Register) References

Type Description

%AI The prefix %AI represents an analog input register. An analog input register holds the value of
one analog input or other non-discrete value.

%AQ The prefix %AQ represents an analog output register. An analog output register holds the value
of one analog output or other non-discrete value.

%R Use the prefix %R to assign system register references that will store program data such as the
results of calculations.

%W Retentive Bulk Memory Area, which is referenced as %W (WORD memory).

%P Use the prefix %P to assign program register references that will store program data with the
_MAIN block. This data can be accessed from all program blocks. The size of the %P data block
is based on the highest %P reference in all blocks. %P addresses are available only to the LD
program they are used in, including C blocks called from LD blocks; they are not system-wide.

Note: All register references are retained across a power cycle to the CPU.

Indirect References

An indirect reference allows you to treat the contents of a variable assigned to an LD

instruction operand as a pointer to other data, rather than as actual data. Indirect references

are used only with word memory areas (%R, %W, %AI, %AQ, %P, and %L). An indirect

reference in %W requires two %W locations as a DWORD indirect index value. For example,

@%W0001 would use the %W2:W1 as a DWORD index into the %W memory range. The

DWORD index is required because the %W size is greater than 65K.

Indirect references cannot be used with symbolic variables.

To assign an indirect reference, type the @ character followed by a valid reference address

or variable name. For example, if %R00101 contains the value 1000, @R00101 instructs the

CPU to use the data location of %R01000.

Indirect references can be useful when you want to perform the same operation to many

word registers. Use of indirect references can also be used to avoid repetitious logic within

the application program. They can be used in loop situations where each register is

incremented by a constant or by a value specified until a maximum is reached.

6-10 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Bit in Word References

Bit in word referencing allows you to specify individual bits in a word reference type as inputs

and outputs of Boolean expressions, functions, and calls that accept bit parameters (such as

parameterized blocks). This feature is restricted to word references in retentive memory. The

bit number in the bit within word construct must be a constant.

You can use the programmer or an HMI to set an individual bit on or off within a word, or

monitor a bit within a word. Also, C blocks can read, modify, and write a bit within a word.

Bit in Word references can be used in the following situations:

■ In retentive 16-bit memory (AI, AQ, R, W, P, and L) and symbolics.

■ On all contacts and coils except legacy transition contacts (POSCON/NEGCON) and

transition coils (POSCOIL/NEGCOIL).

■ On all functions and call parameters that accept single or unaligned bit parameters.

Functions that accept
unaligned discrete references

Parameters

ARRAY MOVE (BIT) SR and DS

ARRAY RANGE (BIT) Q

MOVE (BIT) IN and Q

SHFR (BIT) IN, ST and Q

The use of Bit in Word references has the following restrictions:

■ Bit in Word references cannot be used on legacy transition contacts

(POSCON/NEGCON) and transition coils (POSCON/NEGCON).

■ The bit number (index) must be a constant; it cannot be a variable.

■ Bit addressing is not supported for a constant.

■ Indirect references cannot be used to address bits in 16-bit memory.

■ You cannot force a bit within 16-bit memory.

Examples:

%R2.X [0] addresses the first (least significant) bit of %R2

%R2.X [1] addresses the second bit of %R2. In the examples

In the examples [0] and [1] are the bit indexes. Valid bit indexes for the different variable

types are:

BYTE variable [0] through [7]

WORD, INT, or UINT variable [0] through [15]

DWORD or DINT variable [0] through [31]

GFK-2222S Chapter 6 Program Data 6-11

6

Bit (Discrete) References

Type Description

%I Represents input references. %I references are located in the input status table, which stores
the state of all inputs received from input modules during the last input scan. A reference
address is assigned to discrete input modules using your programming software. Until a
reference address is assigned, no data will be received from the module. %I memory is always
retentive.

%Q Represents physical output references. The coil check function checks for multiple uses of %Q
references with relay coils or outputs on functions. You can select the level of coil checking
desired (Single, Warn Multiple, or Multiple).

 %Q references are located in the output status table, which stores the state of the output
references as last set by the application program. This output status table’s values are sent to
output modules at the end of the program scan. A reference address is assigned to discrete
output modules using your programming software. Until a reference address is assigned, no
data is sent to the module. A particular %Q reference may be either retentive or non-retentive.

%M Represents internal references. The coil check function of your programming software checks
for multiple uses of %M references with relay coils or outputs on functions. A particular %M
reference may be either retentive or non-retentive.

%T Represents temporary references. These references are never checked for multiple coil use
and can, therefore, be used many times in the same program even when coil use checking is
enabled—this is not a recommended practice because it makes subsequent trouble-shooting
more difficult. %T may be used to prevent coil use conflicts while using the cut/paste and file
write/include functions. Because this memory is intended for temporary use, it is cleared on
Stop-to-Run transitions and cannot be used with retentive coils.

%S
%SA
%SB
%SC

Represent system status references. These references are used to access special CPU data
such as timers, scan information, and fault information. For example, the %SC0012 bit can be
used to check the status of the CPU fault table. Once the bit is set on by an error, it will not be
reset until after the sweep. %S, %SA, %SB, and %SC can be used on any contacts.

■ %SA, %SB, and %SC can be used on retentive coils -(M)-.

Note: Although the programming software forces the logic to use retentive coils with %SA,

%SB, and %SC references, most of these references are not preserved across power
cycles regardless of the state of the battery or Energy Pack.

%S can be used as word or bit-string input arguments to functions or function blocks.

%SA, %SB, and %SC can be used as word or bit-string input or output arguments to functions
and function blocks.

For a description of the behavior of each bit, see “System Status References” on page 6-16.

%G Represents global data references. These references are used to access data shared among
several control systems.

Note: For details on retentiveness, refer to “Retentiveness of Logic and Data” on page

6-14.

6-12 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

User Reference Size and Default

Maximum user references and default reference sizes are listed in the table below.

Item Range Default

Reference Points

%I reference 32768 bits 32768 bits

%Q reference 32768 bits 32768 bits

%M reference 32768 bits 32768 bits

%S total (S, SA, SB, SC) 512 bits
(128 each)

512 bits
(128 each)

%T reference 1024 bits 1024 bits

%G 7680 points 7680 points

Total Reference Points 107520 107520

Reference Words

%AI reference 0—32640 words 64 words

%AQ reference 0—32640 words 64 words

%R, 1K word increments 0—32640 words 1024 words

%W 0—maximum available user RAM 0 words

Total Reference Words 0—maximum available user RAM 1152 words

%L (per block) 8192 words 8192 words

%P (per program) 8192 words 8192 words

Managed Memory

Symbolic Discrete 0—83,886,080 (bits) 32768

Symbolic Non-Discrete 0—5,242,880 (words) 65536

I/O Discrete 0 through 83,886,080 0

I/O Non-Discrete 0 through 5,242,880. 0

Total Symbolic 0—42,088,704 bytes
(This is the total memory available for the combined total
of symbolic memory. This also includes other user
memory use, program etc.)

143360

%G User References and CPU Memory Locations

The CPU contains one data space for all of the global data references (%G). The internal

CPU memory for this data is 7680 bits long. For Series 90-70 systems, the programming

software subdivides this range using %G, %GA, %GB, %GC, %GD, and %GE prefixes—

allowing each of these prefixes to be used with bit offsets in the range 1–1280. For

PACSystems, these ranges are converted to %G.

GFK-2222S Chapter 6 Program Data 6-13

6

Genius Global Data

PACSystems supports the sharing of data among multiple control systems that share a

common Genius I/O bus. This mechanism provides a means for the automatic and repeated

transfer of %G, %I, %Q, %AI, %AQ, and %R data. No special application programming is

required to use global data since it is integrated into the I/O scan. All devices that have

Genius I/O capability can send and receive global data from a PACSystems CPU.

Using I/O variables (page 6-3), you can directly associate variable names to a module’s

Genius global data that is scanned as part of an input/output scan.

Transitions and Overrides

The %I, %Q, %M, and %G user references, and symbolic variables of type BOOL, have

associated transition and override bits. %T, %S, %SA, %SB, and %SC references have

transition bits but not override bits. The CPU uses transition bits for counters, transition

contacts, and transitional coils. Note that counters do not use the same kind of transition bits

as contacts and coils. Transition bits for counters are stored within the locating reference.

The transition bit for a reference tells whether the most recent value (ON, OFF) written to the

reference is the same as the previous value of the reference. Therefore when a reference is

written and its new value is the same as its previous value, its transition bit is turned OFF.

When its new value is different from its previous value, its transition bit is turned ON. The

transition bit for a reference is affected every time the reference is written to. The source of

the write is immaterial; it can result from a coil execution, an executed function’s output, the

updating of reference memory after an input scan, etc.

When override bits are set, the associated references cannot be changed from the program

or the input device; they can only be changed on command from the programmer. Overrides

do not protect transition bits. If an attempted write occurs to an overridden memory location,

the corresponding transition bit is cleared.

6-14 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Retentiveness of Logic and Data
Data is defined as retentive if it is saved by the CPU when the CPU transitions from STOP

mode to RUN mode.

The following items are retentive:

■ program logic

■ fault tables and diagnostics

■ checksums for program logic

■ overrides and output forces

■ word data (%R, %W, %L, %P, %AI, %AQ)

■ bit data (%I, %G, fault locating references, and reserved bits)

■ %Q and %M variables that are configured as retentive (%T data is non-retentive and

therefore not saved on STOP to RUN transitions.)

■ symbolic variables that have a data type other than BOOL

■ symbolic variables of BOOL type that are configured as retentive

■ Retentive data is also preserved during power-cycles of the CPU with battery backup or

Energy Pack backup. Exceptions to this rule include the fault locating references and

most of the %S, %SA, %SB, and %SC references. These references are initialized to

zero at power-up regardless of the state of the battery or Energy Pack. (See page 6-16

for a description of the behavior of each system status reference.)

When %Q or %M variables are configured as retentive, the contents are retained through

power loss and Run-to-Stop-to-Run transitions.

GFK-2222S Chapter 6 Program Data 6-15

6

Data Scope

Each of the user references has “scope”; that is, it may be available throughout the system,

available to all programs, restricted to a single program, or restricted to local use within a

block.

User Reference Type Range Scope

%I, %Q, %M, %T, %S, %SA, %SB,
%SC, %G, %R, %W, %AI, %AQ,
convenience references, fault locating
references

Global From any program, block, or host
computer. Variables defined in these
registers have system (global) scope by
default. However, variables with local
scope can also be assigned in these
registers.

Symbolic variable Global From any program, block, or host
computer. Symbolic variables have
system (global) scope by default.
However, symbolic variables with local
scope can be created using the naming
conventions for local variables.

I/O variable Global From any program, block, or host
computer.

%P Program From any block, but not from other
programs (also available to a host
computer).

%L Local From within a block only (also available to
a host computer).

In an LD block:

■ %P should be used for program references that are shared with other blocks.

■ %L are local references that can be used to restrict the use of register data to that block.

These local references are not available to other parts of the program.

■ %I, %Q, %M, %T, %S, %SA, %SB, %SC, %G, %R, %W, %AI, and %AQ references are

available throughout the system.

6-16 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

System Status References

System status references in the CPU are assigned to %S, %SA, %SB, and %SC memory.

The four timed contacts (time tick references) include #T_10MS, #T_100MS, #T_SEC, and

#T_MIN. Examples of other system status references include #FST_SCN, #ALW_ON, and

#ALW_OFF

Note: %S bits are read-only bits; do not write to these bits. However, you can write to %SA,

%SB, and %SC bits.

Listed below are available system status references that can be used in an application

program. When entering logic, either the reference or the nickname can be used. Refer to

chapter 14 for detailed fault descriptions and information on correcting faults.

%S References

Reference System
Variable

Definition

%S0001 #FST_SCN Current sweep is the first sweep in which the LD executed. Set the first time the user
program is executed after a Stop/Run transition and cleared upon completion of its
execution.

%S0002 #LST_SCN Set when the CPU transitions to run mode; cleared when the CPU is performing its final
sweep. The CPU clears this bit and then performs one more complete sweep before
transitioning to Stop or Stop Faulted mode. If the number of last scans set to 0, %S0002
will be cleared after the CPU is stopped and user logic will not see this bit cleared.

%S0003 #T_10MS 0.01 second timed contact.

%S0004 #T_100MS 0.1 second timed contact.

%S0005 #T_SEC 1.0 second timed contact.

%S0006 #T_MIN 1.0 minute timed contact.

%S0007 #ALW_ON Always ON.

%S0008 #ALW_OFF Always OFF.

%S0009 #SY_FULL Set when the CPU fault table fills up (size configurable with a default of 16 entries).
Cleared when an entry is removed from the CPU fault table and when the CPU fault table
is cleared.

%S0010 #IO_FULL Set when the I/O fault table fills up (size configurable with a default of 32 entries).
Cleared when an entry is removed from the I/O fault table and when the I/O fault table is
cleared.

%S0011 #OVR_PRE Set when an override exists in %I, %Q, %M, or %G, or symbolic BOOL memory.

%S0012 #FRC_PRE Set when force exists on a Genius point.

%S0013 #PRG_CHK Set when background program check is active.

%S0014 #PLC_BAT CPUs with batteries, including CPU310, CPU315, CPU/CRU320 and NIU001

If the battery is disconnected, this contact is set to 1.

If a Smart Battery fails during operation, this contact is set to 1. When used with a
legacy (non-smart) battery, this indication is not reliable..

Batteryless CPUs, including CPE305 and CPE310 :

Energy Pack is connected and functioning = 0

Energy Pack is not connected or has failed = 1

Note: The #FST_EXE name is not associated with a %S address, it must be referenced by the name “#FST_EXE”

only. This bit is set when transitioning from Stop to Run and indicates that the current sweep is the first

time this block has been called.

GFK-2222S Chapter 6 Program Data 6-17

6

%SA, %SB, and %SC References

Note: %SA, %SB, and %SC contacts are not set or reset until the input scan phase of the

sweep following the occurrence of the fault or a clearing of the fault table(s). %SA,

%SB, and %SC contacts can also be set or reset by user logic and CPU monitoring

devices.

Reference System
Variable

Definition

%SA0001 #PB_SUM Set when a checksum calculated on the application program does not match the reference
checksum. If the fault was due to a temporary failure, the condition can be cleared by again
storing the program to the CPU. If the fault was due to a hard RAM failure, then the CPU must
be replaced.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0002 #OV_SWP Set when the CPU detects that the previous sweep took longer than the time specified by the
user. To clear this bit, clear the CPU fault table or power cycle the CPU. Only occurs if the

CPU is in Constant Sweep mode.

%SA0003 #APL_FLT Set when an application fault occurs. To clear this bit, clear the CPU fault table or power cycle
the CPU.

%SA0009 #CFG_MM Set when a configuration mismatch fault is logged in the fault tables. To clear this bit, clear the
CPU fault table or power cycle the CPU.

%SA0008 #OVR_TMP Set when the operating temperature of the CPU exceeds the normal operating temperature,
58ºC. To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0010 #HRD_CPU Set when the diagnostics detects a problem with the CPU hardware. To clear this bit, clear the
CPU fault table or power cycle the CPU.

%SA0011 #LOW_BAT The low battery indication is not supported for all CPU modules. For details, refer to “Battery
Status (Group 18)” in chapter 14.

The CPU may set this contact when an I/O module or special-purpose module has reported a
low battery. In this case, a fault will be reported in the I/O fault table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0012 #LOS_RCK Set when an expansion rack stops communicating with the CPU. To clear this bit, clear the
CPU fault table or power cycle the CPU.

%SA0013 #LOS_IOC Set when a Bus Controller stops communicating with the CPU.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0014 #LOS_IOM Set when an I/O module stops communicating with the CPU.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0015 #LOS_SIO Set when an option module stops communicating with the CPU.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0017 #ADD_RCK Set when an expansion rack is added to the system.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0018 #ADD_IOC Set when a Bus Controller is added to a rack.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0019 #ADD_IOM Set when an I/O module is added to a rack.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0020 #ADD_SIO Set when an intelligent option module is added to a rack.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0022 #IOC_FLT Set when a Bus Controller reports a bus fault, a global memory fault, or an IOC hardware fault.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0023 #IOM_FLT Set when an I/O module reports a circuit or module fault.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0027 #HRD_SIO Set when a hardware failure is detected in an option module.
To clear this bit, clear the I/O fault table or power cycle the CPU.

6-18 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Reference System
Variable

Definition

%SA0029 #SFT_IOC Set when there is a software failure in the I/O Controller.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0030 #PNIO_
ALARM

A PROFINET alarm has been received and an I/O fault has been logged in group 28. To clear
this bit, clear the I/O fault table or power cycle the CPU.

%SA0031 #SFT_SIO Set when an option module detects an internal software error.
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0032 #SBUS_ER Set when a bus error occurs on the VME bus backplane
To clear this bit, clear the I/O fault table or power cycle the CPU.

%SA0081 –
%SA0112

 Set when a user-defined fault is logged in the CPU fault table.
To clear these bits, clear the CPU fault table or power cycle the CPU. For more information,
see discussion of Service Request 21 in chapter 10.

%SB0001 #WIND_ER Set when there is not enough time to start the Programmer Window in Constant Sweep mode.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0009 #NO_PROG Set when the CPU powers up with memory preserved, but no user program is present.
Cleared when the CPU powers up with a program present or by clearing the CPU fault table.

%SB0010 #BAD_RAM Set when the CPU detects corrupted RAM memory at power-up. Cleared when the CPU
detects that RAM memory is valid at power-up or by clearing the CPU fault table.

%SB0011 #BAD_PWD Set when a password access violation occurs. Cleared when
the CPU fault table is cleared or when the CPU is power cycled.

%SB0012 #NUL_CFG Set when an attempt is made to put the CPU in Run mode when there is no configuration data
present.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0013 #SFT_CPU Set when the CPU detects an error in the CPU operating system software.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0014 #STOR_ER Set when an error occurs during a programmer store operation.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0016 #MAX_IOC Set when more than 32 IOCs are configured for the system.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0017 #SBUS_FL Set when the CPU fails to gain access to the bus.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SC0009 #ANY_FLT Set when any fault occurs that causes an entry to be placed in the CPU or I/O fault table.
Cleared when both fault tables are cleared or when the CPU is power cycled.

%SC0010 #SY_FLT Set when any fault occurs that causes an entry to be placed in the CPU fault table. Cleared
when the CPU fault table is cleared or when the CPU is power cycled.

%SC0011 #IO_FLT Set when any fault occurs that causes an entry to be placed in the I/O fault table. Cleared
when the I/O fault table is cleared or when the CPU is power cycled.

%SC0012 #SY_PRES Set as long as there is at least one entry in the CPU fault table. Cleared when the CPU fault
table is cleared.

%SC0013 #IO_PRES Set as long as there is at least one entry in the I/O fault table. Cleared when the I/O fault table
is cleared.

%SC0014 #HRD_FLT Set when a hardware fault occurs. Cleared when both fault tables are cleared or when the
CPU is power cycled.

%SC0015 #SFT_FLT Set when a software fault occurs. Cleared when both fault tables are cleared or when the CPU
is power cycled.

GFK-2222S Chapter 6 Program Data 6-19

6

Fault References

The fault references are discussed in chapter 14 of this manual but are also listed here for

your convenience.

System Fault References

System Fault Reference Description

#ANY_FLT Any new fault in either table since the last power-up or clearing of the fault tables

#SY_FLT Any new system fault in the CPU fault table since the last power-up or clearing of the fault
tables

#IO_FLT Any new fault in the I/O fault table since the last power-up or clearing of the fault tables

#SY_PRES Indicates that there is at lease one entry in the CPU fault table

#IO_PRES Indicates that there is at least one entry in the I/O fault table

#HRD_FLT Any hardware fault

#SFT_FLT Any software fault

Configurable Fault References

Configurable Faults
(Default Action

Description

#SBUS_ER (diagnostic) System bus error. (The BSERR signal was generated on the VME system bus.)

#SFT_IOC (diagnostic) Non-recoverable software error in a Genius Bus Controller.

#LOS_RCK (diagnostic) Loss of rack (BRM failure, loss of power) or missing a configured rack.

#LOS_IOC (diagnostic) Loss of Bus Controller missing a configured Bus Controller.

#LOS_IOM (diagnostic) Loss of I/O module (does not respond) or missing a configured I/O module.

#LOS_SIO (diagnostic) Loss of intelligent option module (does not respond) or missing a configured module.

#IOC_FLT (diagnostic) Non-fatal bus or Bus Controller error—more than 10 bus errors in 10 seconds (error rate
is configurable).

#CFG_MM (fatal) Wrong module type detected during power-up, store of configuration, or Run mode. The
CPU does not check the configuration parameters set up for individual modules such as
Genius I/O blocks.

Non-Configurable Faults

Non-Configurable Faults
(Action)

Description

#SBUS_FL (fatal) System bus failure. The CPU was not able to access the VME bus. BUSGRT-NMI error.

#HRD_CPU (fatal) CPU hardware fault, such as failed memory device or failed serial port.

#HRD_SIO (diagnostic) Non-fatal hardware fault on any module in the system.

#SFT_SIO (diagnostic) Non-recoverable software error in a LAN interface module.

#PB_SUM (fatal) Program or block checksum failure during power-up or in Run mode.

#LOW_BAT (diagnostic) The low battery indication is not supported for all CPU modules. For details, refer to
“Battery Status (Group 18)” in chapter 14.

The CPU may set this contact when an I/O module or special-purpose module has
reported a low battery. In this case, a fault will be reported in the I/O fault table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

#OV_SWP (diagnostic) Constant sweep time exceeded.

6-20 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Non-Configurable Faults
(Action)

Description

#SY_FULL, IO_FULL
(diagnostic)

CPU fault table full
I/O fault table full

#IOM_FLT (diagnostic) Point or channel on an I/O module—a partial failure of the module.

#APL_FLT (diagnostic) Application fault.

#ADD_RCK (diagnostic) New rack added, extra, or previously faulted rack has returned.

#ADD_IOC (diagnostic) Extra I/O Bus Controller or reset of I/O Bus Controller.

#ADD_IOM (diagnostic) Previously faulted I/O module is no longer faulted or extra I/O module.

#ADD_SIO (diagnostic) New intelligent option module is added, extra, or reset.

#NO_PROG (information) No application program is present at power-up. Should only occur the first time the CPU
is powered up or if the user memory is not retained.

#BAD_RAM (fatal) Corrupted program memory at power-up. Program could not be read and/or did not pass
checksum tests.

#WIND_ER (information) Window completion error. Servicing of Programmer or Logic Window was skipped.
Occurs in Constant Sweep mode.

#BAD_PWD (information) Change of privilege level request to a protection level was denied; bad password.

#NUL_CFG (fatal) No configuration present upon transition to Run mode. Running without a configuration is
similar to suspending the I/O scans.

#SFT_CPU (fatal) CPU software fault. A non-recoverable error has been detected in the CPU. May be
caused by Watchdog Timer expiring.

#MAX_IOC (fatal) The maximum number of bus controllers has been exceeded. The CPU supports 32 bus
controllers.

#STOR_ER (fatal) Download of data to CPU from the programmer failed; some data in CPU may be
corrupted.

GFK-2222S Chapter 6 Program Data 6-21

6

How Program Functions Handle Numerical Data
Regardless of where data is stored in memory – in one of the bit memories or one of the word

memories – the application program can handle it as different data types.

Data Types

Type Name Description Data Format

BOOL Boolean The smallest unit of memory. Has two states, 1 or 0. A
BOOL array may have length N.

BYTE Byte Has an 8-bit value. Has 256 values (0–255). A BYTE
array may have length N.

WORD Word Uses 16 consecutive bits of data memory. The valid
range of word values is 0000 hex to FFFF hex.

Register
1 (16 bit states)

16 1

DWORD Double Word Has the same characteristics as a single word data
type, except that it uses 32 consecutive bits in data
memory instead of only 16 bits.

Register 2

32

Register 1

1617 1
(32 bit states)

UINT Unsigned
Integer

Uses 16-bit memory data locations. They have a valid
range of 0 to +65535 (FFFF hex).

Register
1 (Binary value)

16 1

INT Signed
Integer

Uses 16-bit memory data locations, and are
represented in 2’s complement notation. The valid
range of an INT data type is –32768 to +32767.

 Register 1 (Two’s
Complement
value) 16 1

S

s=sign bit (0=positive,
1=negative)

DINT Double
Precision
Integer

Stored in 32-bit data memory locations (two consecutive
16-bit memory locations). Always signed values (bit 32
is the sign bit). The valid range of a DINT data type is
-2147483648 to +2147483647

s

Register 2

32

Register 1

1617 1
(Binary value)

s=sign bit (0=positive,
1=negative)

REAL Floating Point Uses 32 consecutive bits (two consecutive 16-bit
memory locations). The range of numbers that can be
stored in this format is from ±1.401298E-45 to
±3.402823E+38. For the IEEE format, refer to “Floating
Point Numbers” on page 6-23.

 Register 2

32

Register 1

16 17 1
(IEEE format)

LREAL Double
Precision
Floating Point

Uses 64 consecutive bits (four consecutive 16-bit
memory locations). The range of numbers that can be
stored in this format is from ±2.2250738585072020E-
308 to ±1.7976931348623157E+308. For the IEEE
format, refer to “Floating Point Numbers” on page 6-23.

 Register 2

32

Register 1

16 17 1

(IEEE format)

Register 4

64

Register 3

48 49 33

6-22 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Type Name Description Data Format

BCD-4 Four-Digit
BCD

Uses 16-bit data memory locations. Each binary coded
decimal (BCD) digit uses four bits and can represent
numbers between 0 and 9. This BCD coding of the 16
bits has a legal value range of 0 to 9999.

Register 1
(4 BCD digits)

13 159

4 3 2 1

BCD-8 Eight-Digit
BCD

Uses two consecutive 16-bit data memory locations (32
consecutive bits). Each BCD digit uses 4 bits per digit to
represent numbers from 0 to 9. The complete valid
range of the 8-digit BCD data type is 0 to 99999999.

13

Register 2

(8 BCD digits)

32 162529

8 7 6 5

Register 1

159

4 3 8 1

21 17

MIXED Mixed Available only with the MUL and DIV functions. The
MUL function takes two integer inputs and produces a
double integer result. The DIV function takes a double
integer dividend and an integer divisor to product an
integer result.

16

16 16 32

32 16

=

=

ASCII ASCII Eight-bit encoded characters. A single word reference is
required to make two (packed) ASCII characters. The
first character of the pair corresponds to the low byte of
the reference word. The remaining 7 bits in each section
are converted.

Note: Using functions that are not explicitly bit-typed will affect transitions for all bits in the written

byte/word/dword. For information about using floating point numbers, refer to “Floating Point

Numbers” on page 6-23.

GFK-2222S Chapter 6 Program Data 6-23

6

Floating Point Numbers

Floating point numbers are stored in one of two IEEE 754 standard formats that uses

adjacent 16-bit words: 32-bit single precision or 64-bit double precision.

The REAL data type represents single precision floating point numbers. The LREAL data

type represents double precision floating point numbers. REAL and LREAL variables are

typically used to store data from analog I/O devices, calculated values, and constants.

Types of Floating Point Variables

Data Type Precision and Range

REAL Limited to 6 or 7 significant digits, with a range of approximately
±1.401298x10

-45
 through ±3.402823x10

38
.

LREAL Limited to 17 significant digits, with a range of approximately
±2.2250738585072020x10

-308
 to ±1.7976931348623157x10

308
.

Note: The programming software allows 32-bit and 64-bit arguments (DWORD, DINT,

REAL, and LREAL) to be placed in discrete memories such as %I, %M, and %R in the

PACSystems target. This is not allowed on Series 90-70 targets. (Note that any bit

reference address that is passed to a non-bit parameter must be byte-aligned. This is

the same as the Series 90-70 CPU.)

Internal Format of REAL Numbers

16 1 32 17

8-bit exponent

1-bit sign (Bit 32)

Bits 1-16 Bits 17-32

23-bit mantissa

Register use by a single floating point number is diagrammed below. For example, if the

floating point number occupies registers R5 and R6, R5 is the least significant register and

R6 is the most significant register.

Bits 17-32

Most Significant Register

Least Significant Bit Most Significant Bit

32 17

16 1

Bits 1-16
Least Significant Register

Least Significant Bit Most Significant Bit

Internal Format of LREAL Numbers

1

11-bit exponent

1-bit sign (Bit 64)

Bits 1-16 Bits 49-64

52-bit mantissa

Bits 17-32 Bits 33-48

6-24 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Errors in Floating Point Numbers and Operations

Overflow occurs when a REAL or LREAL function generates a number outside the allowed

range. When this occurs, the Enable Out output of the function is set Off, and the result is set

to positive infinity (for a number greater than the upper limit) or negative infinity (for a number

less than the lower limit). You can determine where this occurs by testing the sense of the

Enable Out output.

Binary representations of Infinity and NaN values have exponents that contain all 1s.

IEEE 754 Infinity Representations

 REAL LREAL

POS_INF (positive infinity) = 7F800000h = 7FF0000000000000h

NEG_INF (negative infinity) = FF800000h = 7FF0000000000001h

If the infinities produced by overflow are used as operands to other REAL or LREAL

functions, they may cause an undefined result. This undefined result is referred to as an NaN

(Not a Number). For example, the result of adding positive infinity to negative infinity is

undefined. When the ADD_REAL function is invoked with positive infinity and negative infinity

as its operands, it produces an NaN. If any operand of a function is a NaN, the result will be

some NaN.

Note: For NaN, the Enable Out output is Off (not energized).

IEEE 754 Representations of NaN values:

REAL LREAL

7F800001 through 7FFFFFFF 7FF8000000000001 through 7FFFFFFFFFFFFFFF

FF800001 through FFFFFFFF FFF0000000000001 through FFFFFFFFFFFFFFFF

Note: For releases 5.0 and greater, the CPU may return slightly different values for NaN

compared to previous releases. In some cases, the result is a special type of NaN

displayed as #IND in Machine Edition. In these cases, for example, EXP(-infinity),

power flow out of the function is identical to that in previous releases.

GFK-2222S Chapter 6 Program Data 6-25

6

User Defined Types
A UDT is a structured data type consisting of elements of other selected data types. Each

top-level UDT element can be one of the following:

Top-level UDT Element Example

Simple data type, except STRING INT

Another UDT, except any in which the current UDT is
nested at any level.

Note: A UDT cannot be nested within itself.

A UDT named UDT_ABC has a top-level element whose
data type is another UDT, named UDT_2.

Array of a simple data type LREAL array of length 8.

Array of UDTs

Note: A UDT cannot be nested within itself.

A UDT named UDT_ABC has a top-level element that is an
array whose data type is another UDT, named UDT_row.

Working with UDTs
1. In Machine Edition, add a UDT as a node under a

target in the Project tab of the Navigator.

A UDT is saved with the target it’s used in.

2. Edit the UDT properties and define the elements in the
UDT’s structure.

3. Create a variable whose data type is the UDT.

By default, the variable resides in symbolic memory. You can convert the symbolic

variable to an I/O variable by assigning it to an I/O terminal.

4. Use the variable in logic.

UDT Properties

Name: The UDT’s name. Maximum length: 32 characters.

Description: The user-defined description of the UDT.

Memory Type: The type of symbolic or I/O variable memory in which a variable of this UDT

resides.

Non-Discrete: (Default) Word-oriented memory organized in groups of 16 contiguous bits.

Discrete: Bit-oriented memory.

Notes: You cannot nest a UDT of one memory type in a UDT of a different memory type.

Changing the memory type propagates to existing variables of this UDT only after

target validation.

Is Fixed Size: If set to True, you can increase the Size (Bytes) value to a maximum of 65,535

bytes to create a buffer at the end of the UDT. The buffer is included in the memory allocated

to every downloaded variable of that UDT data type. Use of a buffer may allow run mode

store of a UDT when the size of the UDT definition has changed. For details, see page 6-26.

If set to False (default), the Size (Bytes) value is read-only and does not include a buffer at

the end of the UDT.

Size (bytes): (Read-only when Is Fixed Size is set to False.) The total number of bytes

required to store a structure variable of the user-defined data type (UDT).

Bytes Remaining: (Read-only; displayed if Is Fixed Size is set to True.) The UDT's buffer

size; the number of bytes available before the actual size of the UDT reaches the value of the

Size (bytes) property.

6-26 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

UDT Limits

 Maximum number of UDTs per target: 2048

 Maximum UDT size: 65,535 bytes

Note: Bit spares created to line up the end of a section of BOOL variables or arrays

with the end of a byte will count toward the maximum size.

 Maximum number of top-level UDT elements: 1024

 Maximum array size of a top-level UDT element: 1024 array elements

 UDTs do not support the following:

- Two-dimensional arrays

- Function block data types

- Enumerated data types

 You cannot nest a UDT of one memory type in a UDT of a different memory type.

 You cannot alias a variable to a UDT variable or UDT variable element.

 A FAULT contact supports a BOOL element of a UDT I/O variable, but not a BOOL

element of a UDT parameter in a UDFB or parameterized block.

 POSCON and NEGCON do not support BOOL elements of UDT parameters in

parameterized blocks or UDFBs.

Run Mode Store of UDTs

An RMS can be performed on a target that contains a variable of a UDT, unless:

 An operation in the UDT editor modifies the offset or bit mask of an element that has the

same name before and after the operation.

 The size of the UDT definition increases.

 Array length increases.

 The memory type of the UDT definition changes.

 There is a data type change in the UDT definition, except for the following

interchangeable data types:

- WORD, INT, UINT

- DWORD, DINT

 The UDT definition is renamed.

GFK-2222S Chapter 6 Program Data 6-27

6

UDT Operational Notes

 By default, a UDT variable resides in symbolic memory. You can convert the symbolic

variable to an I/O variable.

 All UDT elements are public and, therefore, readable and writeable.

 Properties of elements of UDT variables:

The Input Transfer List and Output Transfer List properties are read-only and set to

False.

The Retentive property is editable only for BOOLs and only if the UDT Memory Type is

discrete. For UDTs whose Memory Type is non-discrete, a BOOL variable has its

Retentive property set to True during validation.

 UDT variables are supported in LD, FBD, and ST blocks, as well as in Diagnostic Logic

Blocks.

For additional operational notes, refer to the programmer Help.

Example

You want to set up six COMMREQ commands to send values to a series of six identical

intelligent modules that require individualized data of the same data types in the same format,

specified by the manual for the intelligent module. This data contains header information and

several words of data. You could proceed as follows:

1. Add a UDT named COMMREQ6 and edit it to contain the data in the required data types

and sequence.

2. Create an array of length 6, named ABC, of the COMMREQ6 data type.

3. The array resides in symbolic memory. You can convert the symbolic variable to an I/O

variable.

4. Populate the variable. If the value of an element needs to be the same for all six

COMMREQ6 elements, you can set up an ST for loop that uses a variable index to

populate each element with the same data, for example:

for i = 1 to 6 do

ABC[i].WaitFlag := 0;

end_for;

5. Just before issuing one or more COMM_REQs, use the MOVE_TO_FLAT instruction to

"flatten" the COMMREQ6 array or one or more of its top-level elements from a structure

to a "flat" series of contiguous registers in an area of % memory supported by

COMM_REQ.

6. Issue the COMM_REQs based on the % memory registers that you just populated with

the MOVE_TO_FLAT instruction.

Although you can populate the memory registers directly without a UDT and

MOVE_TO_FLAT, there are advantages when working with UDT variables:

 UDT variables reside in symbolic or I/O variable memory, which protects them from

memory overlaps and offers more protection against overwriting, whereas reference

memory areas offer no such protection. It is best to use reference memory just before

issuing a COMM_REQ.

 You can work with meaningful structure variable names and structure element names.

 You can set up loops with variable indexes to populate some of the values.

6-28 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Operands for Instructions
The operands for PACSystems instructions can be in the following forms:

■ Constants

■ Variables that are located in any of the PACSystems memory areas (%I, %Q, %M,

%T, %G, %S, %SA, %SB, %SC, %R, %W, %L, %P, %AI, %AQ)

■ Symbolic variables, including I/O variables

■ Parameters of a Parameterized block or C block

■ Power flow

■ Data flow

■ Computed references such as indirect references or bit-in-word references

■ BOOL arrays

An operand’s type and length must be compatible with that of the parameter it is being

passed into. PACSystems instructions and functions have the following operand restrictions:

■ Constants cannot be used as operands to output parameters because output values

cannot be written to constants.

■ Variables located in %S memory cannot be used as operands to output parameters

because %S memory is read-only.

■ Variables located in %S, %SA, %SB, and %SC memories cannot be used as operands to

numerical parameters such as INTs, DINTs, REALs, LREALs, etc.

■ Data flow is prohibited on some input parameters of some functions. This occurs when

the function, during the course of its execution, actually writes a value to the input

parameter. Data flow is prohibited in these cases because data flow is stored in a

temporary memory and any updated value assigned to it would be inaccessible to the

user application.

■ The arguments to EN, OK, and many other BOOLEAN input and output parameters are

restricted to be power flow.

■ Restrictions on using Parameterized block or External block parameters as operands to

instructions or functions are documented in chapter 5.

■ References in discrete memory (I, Q, M, and T) must be byte-aligned.

GFK-2222S Chapter 6 Program Data 6-29

6

Note the following:

■ Indirect references, which are available for all WORD-oriented memories (%R, %W, %P,

%L, %AI, %AQ), can be used as arguments to instructions wherever located variables in

the corresponding WORD-oriented memory are allowed. Note that indirect references are

converted into their corresponding direct references immediately before they are passed

into an instruction or function.

■ Bit-in-word references are generally allowed on contact and coil instructions other than

legacy transition contacts and coils (POSCON, NEGCON, POSCOIL and NEGCOIL).

They are also allowed as arguments to function parameters that accept single or

unaligned bits.

BOOL arrays can be used as parameters to an instruction instead of variables of other data

types. The array must be of sufficient length to replace the given data type. For example,

instead of using a 16-bit INT variable, you could use a BOOL array of length 16 or more.

The following conditions must be met:

 The BOOL array must be byte-aligned, that is, the reference address of the first element

of the BOOL array must be 8n + 1, where n = 0, 1, 2, 3, and so on. For example,

%M00033 is byte-aligned, because 33 = (8 × 4) + 1.

 The parameter in question must support discrete memory reference addresses.

 The instruction in question must not have a Length parameter. (The Length parameter is

displayed as ?? in the LD editor until a value is assigned.)

 The data type to be replaced with a BOOL array must be one of the following:

Data Type Minimum Length

BYTE 8

INT, UINT, WORD 16

DINT, DWORD, REAL 32

REAL 64

 Excess bits are ignored. For example, if you use a BOOL array of length 12 instead of an

8-bit BYTE, the last four bits of the BOOL array are ignored.

6-30 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

6

Word-for-Word Changes
Many changes to the program that do not modify the size of the program are considered

word-for-word changes. Examples include changing the type of contact or coil, or changing a

reference address used for an existing function block.

Symbolic Variables

Creating, deleting, or modifying a symbolic variable definition is not a word-for-word change.

The following are word-for-word changes:

■ Switching between two symbolic variables

■ Switching between an symbolic variable and a mapped variable

■ Switching between a constant and a symbolic variable

GFK-2222S 7-1

Ladder Diagram Programming

This chapter describes the programming instructions that can be used to create ladder logic

programs for the PACSystems control system.

For an overview of the types of operands that can be used with instructions, refer to

“Operands for Instructions” in chapter 6.

The ladder logic implementation of the PACSystems instruction set includes the following

categories:

■ Advanced Math .. 7-2

■ Bit Operations .. 7-7

■ Coils ... 7-25

■ Communication ...

Consists of the PNIO_DEV_COMM function. For details, refer to the PACSystems

RX3i PROFINET Controller Manual, GFK-2571.

■ Contacts ... 7-33

■ Control Functions ... 7-43

■ Conversion Functions .. 7-63

■ Counters ... 7-76

■ Data Move Functions ... 7-80

■ Data Table Functions ... 7-113

■ Math Functions... 7-131

■ Program Flow Functions .. 7-141

■ Relational Functions .. 7-151

■ Timers .. 7-156

■ Motion Functions and Function Blocks ...

RX3i CPUs support PLCopen compliant motion functions and function blocks. Details

of these function blocks can be found in the PACMotion Multi-Axis Motion Controller

User’s Manual, GFK-2448.

7
Chapter

Advanced Math Functions

7-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Advanced Math Functions
The Advanced Math functions perform logarithmic, exponential, square root, trigonometric,

and inverse trigonometric operations.

Function Mnemonic Description

Exponential EXP_REAL
EXP_LREAL

Raises e to the value specified in IN (e
IN

). Calculates the inverse

natural logarithm of the IN operand.

EXPT_REAL
EXPT_LREAL

Calculates IN1 to the IN2 power (IN1
IN2

).

Inverse Trig ACOS_REAL
ACOS_LREAL

Calculates the inverse cosine of the IN operand and expresses the
result in radians.

ASIN_REAL
ASIN_LREAL

Calculates the inverse sine of the IN operand and expresses the
result in radians.

ATAN_REAL
ATAN_LREAL

Calculates the inverse tangent of the IN operand and expresses the
result in radians.

Logarithmic LN_REAL
LN_LREAL

Calculates the natural logarithm of the operand IN.

LOG_REAL
LOG_LREAL

Calculates the base 10 logarithm of the operand IN.

Square
Root

SQRT_DINT Calculates the square root of the operand IN, a double-precision
integer, and stores in Q the double-precision integer portion of the
square root of the input IN.

SQRT_INT Calculates the square root of the operand IN, a single-precision
integer, and stores in Q the single-precision integer portion of the
square root of the input IN.

SQRT_REAL Calculates the square root of the operand IN, a real number, and
stores the real-number result in Q SQRT_LREAL

Trig COS_REAL
COS_LREAL

Calculates the cosine of the operand IN, where IN is expressed in
radians.

 SIN_REAL
SIN_LREAL

Calculates the sine of the operand IN, where IN is expressed in
radians.

 TAN_REAL
TAN_LREAL

Calculates the tangent of the operand IN, where IN is expressed in
radians.

Advanced Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-3

7

Exponential/Logarithmic Functions

When an exponential or logarithmic function receives power flow, it performs the appropriate

operation on the REAL or LREAL input value(s) and places the result in output Q.

The inverse natural log

(EXP) function raises e to the

power specified by IN.

The Power of X (EXPT)

function raises the value of

input IN1 to the power

specified by the value IN2.

The Base 10 Logarithm

(LOG) function calculates the

base 10 logarithm of IN.

The Natural Logarithm (LN)

function calculates the

logarithm of IN.

The power flow output is energized when the function is performed, unless overflow or one of

the following invalid conditions occurs:

■ IN < 0, for LOG or LN

■ IN1 < 0, for EXPT

■ IN is negative infinity, for EXP

■ IN, IN1, or IN2 is a NaN (Not a Number)

Operands of the Exponential/Logarithmic Functions

Parameter Description Allowed Operands Optional

IN or IN1 For EXP, LOG, and LN, IN contains the
REAL or LREAL value to be operated on.

The EXPT function has two inputs, IN1
and IN2. For EXPT, IN1 is the base value
and IN2 is the exponent.

All except variables located in %S—%SC No

IN2 (EXPT) The REAL or LREAL exponent for EXPT. All except variables located in %S—%SC No

Q Contains the REAL or LREAL
logarithmic/exponential value of IN or of
IN1 and IN2.

All except constants and variables located
in %S—%SC

No

Advanced Math Functions

7-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Square Root

Mnemonics:

SQRT_DINT
SQRT_INT
SQRT_REAL
SQRT_LREAL

When the Square Root function receives power flow, it finds the square root of IN and stores

the result in Q. The output Q must be the same data type as IN.

The power flow output is energized when the function is performed without overflow, unless

one of these invalid REAL operations occurs:

■ If IN < 0, Q is set to 0 and ENO is set FALSE.

■ If IN is a NaN (Not a Number), Q will also be a NaN value and ENO will be set false.

Example

The square root of the integer number located at %AI0001 is placed into %R00003 when

%I00001 is ON.

Operands for the Square Root Function

Parameter Description Allowed Operands Optional

IN The value to calculate the
square root of. If IN < 0, the
function does not pass power
flow.

All except variables located in %S - %SC No

Q The calculated square root. All except constants and variables located in %S -
%SC

No

Advanced Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-5

7

Trig Functions

Mnemonics:

SIN_REAL
SIN_LREAL

COS_REAL
COS_LREAL

TAN_REAL
TAN_LREAL

The SIN, COS, and TAN functions are used to find the trigonometric sine, cosine, and

tangent, respectively, of an input whose units are radians. When one of these functions

receives power flow, it computes the sine (or cosine or tangent) of IN and stores the result in

output Q.

The SIN, COS, and TAN functions accept a broad range of input values, where –2
63

 < IN < 2
63

, (2
63

 is

approximately 9.22x10
18

). Input values outside this range will produce incorrect results.

The power flow output is energized unless the following invalid condition occurs:

■ IN or Q is a NaN (Not a Number)

Operands

Parameter Description Allowed Operands Optional

IN Number of radians.

–2
63

 < IN < 2
63

All except variables located in %S—%SC No

Q Trigonometric value of IN (REAL or LREAL) All except constants and variables located
in %S—%SC

No

Example

The COS of the value in V_R00001 is placed in V_R00033.

Advanced Math Functions

7-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Inverse Trig – ASIN, ACOS, and ATAN

Mnemonics:

ASIN_REAL
ASIN_LREAL

ACOS_REAL
ACOS_LREAL

ATAN_REAL
ATAN_LREAL

When an Inverse Sine (ASIN), Inverse Cosine (ACOS), or Inverse Tangent (ATAN) function

receives power flow, it respectively computes the inverse sine, inverse cosine or inverse

tangent of IN and stores the result in radians in output Q.

The ASIN and ACOS functions accept a narrow range of input values, where –1 IN 1.

Given a valid value for the IN parameter, the ASIN function produces a result Q such that:

2

π
Q

2

π
ASIN(IN)

The ACOS function produces a result Q such that:

πQ0ACOS(IN)

The ATAN function accepts the broadest range of input values, where – IN + . Given a

valid value for the IN parameter, the ATAN function produces a result Q such that:

2

π
Q

2

π
ATAN(IN)

The power flow output is energized unless one of the following invalid conditions occurs:

■ IN is outside the valid range for ASIN, ACOS, or ATAN

■ IN is a NaN (Not a Number)

Operands of Inverse Trig Functions

Parameter Description Allowed Operands Optional

IN The REAL or LREAL value to process.

ASIN and ACOS: -1 IN 1

ATAN: – IN +

All except variables located in %S - %SC No

Q

Trigonometric value of IN. REAL or
LREAL value expressed in radians.

ASIN: (-/2) Q (/2)

ACOS: 0 Q

ATAN: (-/2) Q (/2)

All except constants and variables located
in %S - %SC

No

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-7

7

Bit Operation Functions
The Bit Operation functions perform comparison, logical, and move operations on bit strings.

Function Mnemonics Description

Bit Position BIT_POS_DWORD

BIT_POS_WORD

Bit Position. Locates a bit set to 1 in a bit string.

Bit Sequencer BIT_SEQ Bit Sequencer. Sequences a string of bit values, starting at ST. Performs a
bit sequence shift through an array of bits. The maximum length allowed is
256 words.

Bit Set, Clear BIT_SET_DWORD

BIT_SET_WORD

Bit Set. Sets a bit in a bit string to 1.

BIT_CLR_DWORD

BIT_CLR_WORD

Bit Clear. Clear a bit within a string by setting that bit to 0.

Bit Test BIT_TEST_DWORD

BIT_TEST_WORD

Bit Test. Tests a bit within a bit string to determine whether that bit is
currently 1 or 0.

Logical AND AND_DWORD

AND_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of
corresponding bits are both 1, places a 1 in the corresponding location in
output string Q; otherwise, places a 0 in the corresponding location in Q.

Logical NOT NOT_DWORD

NOT_WORD

Logical invert. Sets the state of each bit in output bit string Q to the opposite
state of the corresponding bit in bit string IN1.

Logical OR OR_DWORD

OR_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of
corresponding bits are both 0, places a 0 in the corresponding location in
output string Q; otherwise, places a 1 in the corresponding location in Q.

Logical XOR XOR_DWORD

XOR_WORD

Compares the bit strings IN1 and IN2 bit by bit. When a pair of
corresponding bits are different, places a 1 in the corresponding location in
the output bit string Q; when a pair of corresponding bits are the same,
places a 0 in Q.

Masked
Compare

MASK_COMP_DWORD

MASK_COMP_WORD

Masked Compare. Compares the contents of two separate bit strings with
the ability to mask selected bits.

Rotate Bits ROL_DWORD

ROL_WORD

Rotate Left. Rotates all the bits in a string a specified number of places to
the left.

ROR_DWORD

ROR_WORD

Rotate Right. Rotates all the bits in a string a specified number of places to
the right.

Shift Bits SHIFTL_DWORD

SHIFTL_WORD

Shift Left. Shifts all the bits in a word or string of words to the left by a
specified number of places.

SHIFTR_DWORD

SHIFTR_WORD

Shift Right. Shifts all the bits in a word or string of words to the right by a
specified number of places.

Bit Operation Functions

7-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Data Lengths for the Bit Operation Functions

The Bit Operation functions operate on a single WORD or DWORD of data or up to 256

WORDs or DWORDs that occupy adjacent memory locations.

Bit Operation functions treat the WORD or DWORD data as a continuous string of bits, with

bit 1 of the first WORD or DWORD being the Least Significant Bit (LSB). The last bit of the

last WORD or DWORD is the Most Significant Bit (MSB). For example, if you specify three

WORDs of data beginning at reference %R0100, they are treated as 48 contiguous bits.

Warning

Overlapping input and output reference address ranges in multiword functions
is not recommended, as it can produce unexpected results.

Note that for all functions (Bit Test, Bit Set, Bit Clear, and Bit Position) that return a bit

position indicator as an output parameter (POS), bit position numbering starts at 1, not 0, as

shown in the diagram above.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-9

7

Bit Position

The Bit Position function locates a bit set to 1 in a bit string.

Each scan that power is received, the function scans the bit string starting at IN. When the

function stops scanning, either a bit equal to 1 has been found or the entire length of the

string has been scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero if no

non-zero bit is found.

A string length of 1 to 256 WORDs or DWORDs can be selected. The function passes power

flow to the right whenever it receives power.

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or
DWORDs in the bit string.

1 Length 256.

Constants No

IN The data to operate on All. Constants may only be used
when Length is 1.

No

Q Energized if a bit set to 1 is
found

Flow Yes

POS An unsigned integer giving
the position of the first
nonzero bit found, or zero if
no non-zero bit is found

All except constants and variables
located in %S - %SC

No

Examples

When V_I00001 is set, the bit string starting at V_M00001 is searched until a bit equal to 1 is

found, or 6 words have been searched. Coil V_Q00001 is turned on. If a bit equal to 1 is

found, its location within the bit string is written to V_AQ0001 and V_Q00002 is turned on.

For example, if V_00001 is set, bit V_M00001 is 0, and bit V_M0002 is 1, the value written to

V_AQ0001 is 2.

Bit Operation Functions

7-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Bit Sequencer

The Bit Sequencer (BIT_SEQ) function performs a bit sequence shift

through a series of contiguous bits.

The operation of BIT_SEQ depends on the value of the reset input (R),
and both the current value and previous value of the enabling power
flow input (EN):

R Current Execution EN Previous Execution EN Current Execution Bit Sequencer Execution

ON ON/OFF ON/OFF Bit sequencer resets

OFF OFF ON Bit sequencer increments/decrements
by 1

OFF Bit sequencer does not execute

ON ON/OFF Bit sequencer does not execute

The reset input (R) overrides the enabling power flow (EN) and always resets the sequencer.

When R is active, the current step number is set to the value of the optional N operand. If you

did not specify N, the step number is set to 1. All bits in the bit sequencer, ST, are set to 0,

except for the bit pointed to by the current step, which is set to 1.

When EN is active and R is not active, and the previous EN was OFF, the bit pointed to by

the current step number is cleared. The current step number is incremented or decremented,

based on the direction (DIR) operand. Then the bit pointed to by the new step number is set

to 1.

■ When the step number is being incremented and it goes outside the range of

(1 step number Length), it is set back to 1.

■ When the step number is being decremented and it goes outside the range of

(1 step number Length), it is set to Length.

The parameter ST is optional. If it is not used, BIT_SEQ operates as described above, except

that no bits are set or cleared. The function just cycles the current step number through its

allowed range.

BIT_SEQ passes power to the right whenever it receives power.

Note: Before using the BIT_SEQUENCER function block, the current step number (Word 1

in the control block) must be set to an integer value between 1 and the length, as

defined in the function block properties. Failure to properly initialize the step number

in the BIT_SEQUENCER function block may result in the CPU going to STOP-HALT

mode.

 Asserting the Reset parameter (R), before using the BIT SEQUENCER function block

assures that the current step number is set to a valid value.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-11

7

Memory Required for Bit Sequencer

Each bit sequencer uses a three word array of control block information. The control block

can be a symbolic variable or it can be located in %R, %W, %L, or %P memory:

Word 1 current step number

Word 2 length of sequence (in
bits)

Word 3 control word

Note: Do not write to the control block memory registers from other functions.

Word 3 (the control word) stores the state of the Boolean inputs and outputs of its associated

function in the following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

OK (status input

Reserved

EN (enable input

Notes:

■ Bits 0 through 13 are not used.

■ In the N operand, bits are entered as 1 through 16, not 0 through 15.

Operands for Bit Sequencer

Warning

Do not write to the Control Block memory with other instructions. Overlapping
references may cause erratic operation of BIT_SEQ.

Parameter Description Allowed Operands Optional

Address
(????)

Beginning address of the Control Block,
which is a three-word array:

Word 1: current step number
Word 2: length of sequence in bits
Word 3: control word, which tracks the
status of the last enabling power flow and
the status of the power flow to the right.

Symbolic variables,
variables located in %R,
%W, %P, or %L

No

Length (??) The number of bits in the bit sequencer, ST,

that BIT_SEQ will step through. 1 Length

 256.

Constants No

R When R is energized, the step number of
BIT_SEQ is set to the value in N (default =
1), and the bit sequencer, ST, is filled with
zeros, except for the current step number
bit.

Flow No

DIR (Direction) When DIR is energized, the step
number of BIT_SEQ is incremented prior to
the shift. Otherwise, it is decremented.

Flow No

Bit Operation Functions

7-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Parameter Description Allowed Operands Optional

N The value that the step number is set to

when R is energized. Default value is 1. 1

N Length. If N < 1, the step number will
be reset to 1 when R is energized. If N >
Length, the step number will be reset to
Length. Must be an integer variable or
constant.

All except variables
located in %S - %SC

Yes

ST Contains the first word of the bit sequencer.

If ST is not used, the Bit Sequencer
function operates as described above,
except that no bits are set or cleared. The
function just cycles the current step number
(in word 1 of the control block) through its
allowed range.

If ST is in %M memory and the Length is 3,
the bit sequencer occupies 3 bits; the other
5 bits of the byte are not used. If ST is in
%R memory, and the Length is 17, the bit
sequencer uses 4 bytes, all of %R1 and
%R2.

All except constants,
flow, and variables
located in %S

Yes

Example

In the following example, a #FST_SCN system variable is used to set CLEAR to ON for one

scan. This sets the step number in Word 1 of the Bit Sequencer’s control block to an initial

value of 3.

The Bit Sequencer operates on register memory %R00001. Its control block is stored in

registers %R0010, %R0011, and %R0012. When CLEAR is active, the sequencer is reset

and the current step is set to step number 3, as specified in N. The third bit of %R0001 is set

to one and the other seven bits are set to zero.

When NXT_CYC is active and CLEAR is not active, the bit for step number 3 is cleared and

the bit for step number 2 or 4 (depending on whether DIRECTION is energized) is set.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-13

7

Bit Set, Clear

Mnemonics

BIT_SET_DWORD
BIT_SET_WORD

BIT_CLR_DWORD

BIT_CLR_WORD

The Bit Set (BIT_SET_DWORD and BIT_SET_WORD) function sets a bit in a bit string to 1.

The Bit Clear (BIT_CLR_DWORD and BIT_CLR_WORD) function clears a bit in a string by

setting the bit to 0.

Each scan that power is received; the function sets or clears the specified bit. If a variable

rather than a constant is used to specify the bit number, the same function can set or clear

different bits on successive scans. Only one bit is set or cleared, and the transition

information for that bit is updated. The transition status of all the other bits in the bit string is

not affected.

The function passes power flow to the right, unless the value for BIT is outside the specified

range.

Operands

Parameter Description Allowed Operands Optional

Length
(??)

The number of WORDs or DWORDs in

the bit string. 1 Length 256.

Constants

IN The first WORD or DWORD of the data to
process

All except constants, flow, and variables
located in %S

BIT The number of the bit to set or clear in IN.

1 BIT (16 × Length) for WORD.

1 BIT (32 × length) for DWORD

All except variables located in %S - %SC

Examples

Example 1

Whenever input V_I0001 is set, bit 12 of the string beginning at

reference %R00040 (as specified by variable V_R0040) is set

to 1.

Example 2

Whenever V_I00001 is set, %M00043, the third bit of the string

beginning at %M00041, is set to 1. Note that neither the status

nor the transition value of any of the other bits in the same byte

as %M00043 (e.g., %M00041, %M00042, %M00044, etc.) is

affected by the BIT_SET function.

Bit Operation Functions

7-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Bit Test

When the Bit Test function receives power flow, it tests a bit within a bit

string to determine whether that bit is currently 1 or 0. The result of the

test is placed in output Q.

Each scan that power is received, the Bit Test function sets its output Q to

the same state as the specified bit. If a register rather than a constant is

used to specify the bit number, the same function can test different bits on

successive sweeps. If the value of BIT is outside the range (1 BIT (16

× length) for a WORD and 1 BIT (32 × length) for a DWORD), then Q

is set OFF.

You can specify a string length of 1 to 256 WORDs or DWORDs.

Note: When using the Bit Test function, the bits are numbered 1 through 16 for a WORD,

not 0 through 15. They are numbered 1 through 32 for a DWORD.

Operands

Parameter Description Allowed Operands Optional

Length
(??)

The number of WORDs or DWORDs in the data string to test. 1

Length 256.

Constant No

IN The first WORD or DWORD in the data to test All No

BIT The number of the bit to test in IN. 1 BIT (16×Length). All except variables located in %S
- %SC

No

Q The state of the specific bit tested; Q is energized if the bit tested
is a 1.

Flow No

Example 1

When input V_I0001 is set, the bit at the location

contained in reference PICKBIT is tested. The bit is

part of string PRD_CDE. If it is 1, output Q passes

power flow to the ADD function, causing 1 to be

added to the current value of the ADD function input

IN1.

Example 2

When input V_I0001 is set, the bit at the location contained in

reference PICKBIT is tested. The bit is part of string PRD_CDE. If it is

1, output Q passes power flow and the coil V_Q0001 is turned on.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-15

7

Logical AND, Logical OR, and Logical XOR

Each scan that power is received, the Logical function examines each bit in bit string IN1 and

the corresponding bit in bit string IN2, beginning with the least significant bit in each. You can

specify a string length of 1 to 256 WORDs or DWORDs. The IN1 and IN2 bit strings specified

may overlap.

Logical AND

If both bits examined by the Logical AND function are 1, AND places a 1 in the corresponding

location in output string Q. If either bit is 0 or both bits are 0, AND places a 0 in string Q in

that location.

AND passes power flow to the right whenever it receives power.

Tip: You can use the Logical AND function to build masks or screens, where only certain

bits are passed (the bits opposite a 1 in the mask), and all other bits are set to 0.

Logical OR

If either bit examined by the Logical OR function is 1, OR places a 1 in the corresponding

location in output string Q. If both bits are 0, Logical OR places a 0 in string Q in that location.

The function passes power flow to the right whenever it receives power.

Tips:

■ You can use the Logical OR function to combine strings or to control many outputs with
one simple logical structure. The Logical OR function is the equivalent of two relay
contacts in parallel multiplied by the number of bits in the string.

■ You can use the Logical OR function to drive indicator lamps directly from input states or
to superimpose blinking conditions on status lights.

Logical XOR

When the Exclusive OR (XOR) function receives power flow, it compares each bit in bit string

IN1 with the corresponding bit in string IN2. If the bits are different, a 1 is placed in the

corresponding position in the output bit string.

For each pair of bits examined, if only one bit is 1, then XOR places a 1 in the corresponding

location in bit string Q. XOR passes power flow to the right whenever it receives power.

Bit Operation Functions

7-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Tips for Logical XOR

■ If string IN2 and output string Q begin at the same reference, a 1 placed in string IN1 will
cause the corresponding bit in string IN2 to alternate between 0 and 1, changing state
with each scan as long as power is received.

■ You can program longer cycles by pulsing the power flow to the function at twice the
desired rate of flashing. The power flow pulse should be one scan long (oneshot type
coil or self resetting timer).

■ You can use XOR to quickly compare two bit strings, or to blink a group of bits at the rate
of one ON state per two scans.

■ XOR is useful for transparency masks.

Operands for Logical AND, OR, and XOR

Parameter Description Allowed Operands Optional

Length (??) The number of words in the
bit string on which to
perform the logical

operation. 1 Length 256.

Constant No

IN1 The first WORD or DWORD
of the first string operate on.

All No

IN2 (Must be the same data
type as IN1.)

The first WORD or DWORD
of the second string to
operate on.

All No

Q (Must be the same data
type as IN1.)

The first WORD or DWORD
of the operation’s result.

All except constants and
variables located in %S
memory

No

Examples

Logical AND

When input v_I0001 is set, the 16bit strings represented by variables WORD1 and WORD2

are examined. The logical AND places the results in output string RESULT.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-17

7

Logical XOR

Whenever V_I0001 is set, the bit string represented by the variable WORD3 is cleared (set to

all zeros).

Bit Operation Functions

7-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Logical NOT

When the Logical Not or Logical Invert (NOT) function receives power flow, it sets the state of

each bit in the output bit string Q to the opposite of the state of the corresponding bit in bit

string IN1.

All bits are altered on each scan that power is received, making output string Q the logical

complement of input string IN1. Logical NOT passes power flow to the right whenever it

receives power. You can specify a string length of 1 to 256 WORDs or DWORDs

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or
DWORDs in the bit string

to NOT. 1 Length 256.

Constant No

IN1 The first WORD or
DWORD of the input string
to NOT.

All No

Q

(Must be the same data type
as IN1)

The first WORD or
DWORD of the NOT's
result.

All except constants and
variables located in %S
memory

No

Example

When input V_I0001 is set, the bit string represented by the variable A is negated. Logical

NOT stores the resulting inverse bit string in variable B. Variable A retains its original bit

string value.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-19

7

Masked Compare

The Masked Compare (MASK_COMP_DWORD and

MASK_COMP_WORD) function compares the contents of

two bit strings. It provides the ability to mask selected bits.

Tip: Input string 1 might contain the states of outputs

such as solenoids or motor starters. Input string 2

might contain their input state feedback, such as limit

switches or contacts.

When the function receives power flow, it begins comparing

the bits in the first string with the corresponding bits in the

second string. Comparison continues until a miscompare is

found or until the end of the string is reached.

The BIT input stores the bit number where the next comparison should start. Ordinarily, this is

the same as the number where the last miscompare occurred. Because the bit number of the

last miscompare is stored in output BN, the same reference can be used for both BIT and

BN. The comparison actually begins 1 bit following BIT; therefore, the initial value of BIT

should be 1 less first bit to be compared (for example, zero (0) to begin comparison at

%I00001). Using the same reference for BIT and BN causes the compare to start at the next

bit position after a miscompare; or, if all bits compared successfully upon the next invocation

of the function, the compare starts at the beginning.

Tip: If you want to start the next comparison at some other location in the string, you can

enter different references for BIT and BN. If the value of BIT is a location that is

beyond the end of the string, BIT is reset to 0 before starting the next comparison.

The function passes power flow whenever it receives power. The other outputs of the function

depend on the state of the corresponding mask bit.

If all corresponding bits in strings IN1 and IN2 match, the function sets the miscompare

output MC to 0 and BN to the highest bit number in the input strings. The comparison then

stops. On the next invocation of a Masked Compare, it is reset to 0.

If a Miscompare is found, that is, if the two bits being compared are not the same, the

function checks the correspondingly numbered bit in string M (the mask).

If the mask bit is a 1, the comparison continues until it reaches another miscompare or the

end of the input strings.

If a miscompare is detected and the corresponding mask bit is a 0, the function does the

following:

1. Sets the corresponding mask bit in M to 1.

2. Sets the miscompare (MC) output to 1.

3. Updates the output bit string Q to match the new content of mask string M.

4. Sets the bit number output (BN) to the number of the miscompared bit.

5. Stops the comparison.

Bit Operation Functions

7-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for Masked Compare Function

Parameter Description Allowed Operands Optional

Length (??) The number of DWORDs or
WORDs in the two compared
strings.

DWORD: 1 Length 2,048

WORD: 1 Length 4,096

Constant No

IN1 The first bit string to be compared All. Constants are legal only when Length is 1 No

IN2 The second bit string to be
compared

All. Constants are legal only when Length is 1 No

M The bit string mask containing the
ongoing status of the compare

All except flow or variables in %S memory. Constants are
legal only when Length is 1

No

BIT BIT+1=the bit number where the
next comparison starts

All except variables in %S - %SC memories No

Q The output copy of the compare
mask bit string

All except constants No

BN The number of the bit where the
latest miscompare occurred, or the
highest bit number in the inputs if
no miscompare occurred

All except constants and variables in %S memory No

MC Can be used to determine if a
miscompare has occurred.

flow Yes

Examples for Masked Compare

Example 1

When %I00001 is set, MASK_COMP_WORD compares the bits represented by the

reference VALUES against the bits represented by the reference EXPECT. Comparison

begins at BITNUM+1. If an unmasked miscompare is detected, the comparison stops. The

corresponding bit is set in the mask RESULT. BITNUM is updated to contain the bit number

of the miscompared bit. In addition, the output string NEWVALS is updated with the new

value of RESULT, and coil %Q00002 is turned on. Coil %Q00001 is turned on whenever

MASK_COMP_WORD receives power flow.

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-21

7

Example 2

On the first scan, the Masked Compare Word function executes. %M0001 through %M0016

is compared with %M0017 through %M0032. %M0033 through %M0048 contains the mask

value. The value in %R0001 determines the bit position in the two input strings where the

comparison starts.

Before the function is executed, the contents of the above references are:

The #FST_SCN contact forces one and only one execution; otherwise, the function would

repeat with possibly unexpected results.

Bit Operation Functions

7-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Rotate Bits

Mnemonics:

ROL_DWORD

ROL_WORD

ROR_DWORD

ROR_WORD

When receiving power flow, the Rotate Bits Right (ROR_DWORD and ROR_WORD) and

Rotate Bits Left (ROL_DWORD and ROL_WORD) functions rotate all the bits in a string of

WORDs or DWORDs N positions respectively to the right or to the left. When rotation occurs,

the specified number of bits is rotated out of the input string respectively to the right or to the

left and back into the string on the other side.

The Rotate Bits function passes power flow to the right, unless the number of bits to rotate is

less than 0, or is greater than the total length of the string. The result is placed in output string

Q. If you want the input string to be rotated, the output parameter Q must use the same

memory location as the input parameter IN. The entire rotated string is written on each scan

that power is received.

A string length of 1 to 256 words or double words can be specified.

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs in the string to

be rotated. 1 Length 256.

Constant No

IN The string to rotate All. Constants are legal when Length is 1 No

N The number of positions to rotate. 0 ≤ N ≤ Length. All except variables in %S - %SC
memories

No

Q The resulting rotated string All except constants and variables in %S
memory

No

Example

Whenever input V_I0001 is set, the input bit string in

location %R0001 is rotated left 3 bits and the result is

placed in %R00002. The actual input bit string %R0001

is left unchanged. If the same reference had been used

for IN and Q, a rotation would have occurred in place.

 MSB

%R0001

 MSB

%R0002 (after %I00001 is set)

Bit Operation Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-23

7

Shift Bits

Mnemonics:

SHIFTL_DWORD

SHIFTL_WORD

SHIFTR_DWORD

SHIFTR_WORD

Shift Left

When the Shift Left (SHIFTL_WORD) function receives power flow, it shifts all the bits in a

word or group of words to the left by a specified number of places, N. When the shift occurs,

the specified number of bits is shifted out of the output string to the left. As bits are shifted out

of the high end of the string (Most Significant Bit (MSB)), the same number of bits is shifted in

at the low end (Least Significant Bit (LSB)). The SHIFTL_DWORD function operates in a

similar manner on DWORDs instead of WORDs.

Shift Right

When the Shift Right (SHIFTR_WORD) function receives power flow, it shifts all the bits in a

word or group of words a specified number of places to the right (N). When the shift occurs,

the specified number of bits is shifted out of the output string to the right. As bits are shifted

out of the low end of the string (LSB), the same number of bits is shifted in at the high end

(MSB).

Shift Left and Shift Right

A string length (Length) of 1 to 256 words can be specified.

The bits being shifted into the beginning of the string are specified via input parameter B1. If

the value of N is greater than 1, each bit is filled with the same value (0 or 1). This can be:

■ The Boolean output of another program function.

■ All 1s. To do this, use the #AWL_ON (always on) system bit (in memory location %S7),

as a permissive to input B1.

■ All 0s. To do this, use the #ALW_OFF (always off) system bit (in memory location %S8),

as a permissive to input B1.

The Shift Bits function passes power flow to the right, unless the number of bits specified to

shift is zero or is greater than the array size.

Bit Operation Functions

7-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Output Q is the shifted copy of the input string. If you want the input string to be shifted, the

output parameter Q must use the same memory location as the input parameter IN. The

entire shifted string is written on each scan that power is received. Output B2 is the last bit

shifted out. For example, if four bits were shifted, B2 would be the fourth bit shifted out.

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or

DWORDs in the string. 1 Length

 256.

Constants. No

IN The string of WORDs or DWORDs
to shift

All. Constants are legal only
when Length = 1.

No

N The number of places (bits) to shift
the array. 0 ≤ N ≤ Length

If N is 0, no shift occurs, but power
flow is generated. If N is greater
than the number of bits in the
string (Length), all bits in Q are set
to the value B1, OK is set FALSE,
and B2 is set to B1.

All except variables in
%S— %SC memories

No

B1 The bit value to shift into the array flow No

B2 The bit value of the last bit shifted
out of the array.

flow Yes

Q

(Must be the same
data type as IN)

The first WORD or DWORD of the
shifted array

All except constants and
variables in %S memory.

No

Example

Whenever input V_I0001 is set, the bits in the input string that begins at WORD1 are copied

to the output bit string that starts at WORD2. WORD2 is left-shifted by 8 bits, as specified by

the input N. The resulting open bits at the beginning of the output string are set to the value of

V_I0002.

Coils

GFK-2222S Chapter 7 Ladder Diagram Programming 7-25

7

Coils
Coils are used to control the discrete (BOOL) references assigned to them. Conditional logic

must be used to control the flow of power to a coil. Coils cause action directly. They do not

pass power flow to the right. If additional logic in the program should be executed as a result

of the coil condition, you can use an internal reference for the coil or a continuation

coil/contact combination.

■ A continuation coil does not use an internal reference. It must be followed by a
continuation contact at the beginning of any rung following the continuation coil.

■ Coils are always located at the rightmost position of a line of logic.

Coil Checking

The level of coil checking is set to “Show as error” by default. If you want a coil conflict to

result in a warning instead of this error, or if you want no warning at all, edit the Controller

option: Multiple Coil Use Warning in the programming software.

The “Show as warning” option enables you to use any coil reference with multiple Coils, Set

Coils, and Reset Coils, but you will be warned at validation time every time you do so. With

both the “Show as warning” and the “no warning” options, a reference can be set ON by

either a Set Coil or a normal Coil and can be set OFF by a Reset Coil or by a normal Coil.

Graphical Representation of Coils

The programming software displays the COIL, NCCOIL, SETCOIL, and RESETCOIL

instructions differently depending on the retentive state of the BOOL variables assigned to

them. Examples are provided in the discussion of each type of coil. For a discussion of

retentiveness, refer to “Retentiveness of Logic and Data” in chapter 6.

Coil (Normally Open)

A retentive variable is assigned to the
coil

A non-retentive variable is assigned to the
coil

When a COIL receives power flow, it sets its associated BOOL variable ON (1). When it

receives no power flow, it sets the associated BOOL variable OFF (0). COIL can be assigned

a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables

are permitted. Bit-in-word references on any word-oriented memory except %AI, including

symbolic non-discrete memory, are also permitted.

Coils

7-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Continuation Coil

A continuation coil instructs the PLC to continue the present rung's LD logic power

flow value (TRUE or FALSE) at the continuation contact on a following rung.

The flow state of the continuation coil is passed to the continuation contact.

Notes:

■ If the flow of logic does not execute a continuation coil before it executes a continuation
contact, the state of the continuation contact is no flow (FALSE).

■ The continuation coil and the continuation contact do not use parameters and do not
have associated variables.

■ You can have multiple rungs with continuation contacts after a single continuation coil.

■ You can have multiple rungs with continuation coils before one rung with a continuation
contact.

Negated Coil

A retentive variable is assigned to the
negated coil

A non-retentive variable is assigned to
the negated coil

When it does not receive power flow, a negated coil (NCCOIL) sets a discrete reference ON.

When it does receive power flow, NCCOIL sets a discrete reference OFF. NCCOIL can be

assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables

are permitted. Bit-in-word references on any word-oriented memory except %AI, including

symbolic non-discrete memory, are also permitted.

Set, Reset Coil

Set Coil and Reset Coil with a retentive
variable assigned

Set Coil and Reset Coil with a
non-retentive variable assigned

The SET and RESET coils can be used to keep (“latch”) the state of a reference either ON

or OFF.

Warning

SET / RESET coils write an undefined result to the transition bit for the given
reference. This result differs from that written by Series 90-70 CPUs and could
change for future PACSystems CPU models.

Because they write an undefined result to transition bits, do not use SET or
RESET coils with references used on POSCON or NEGCON transition contacts.

When a SET coil receives power flow, it sets its discrete reference ON. When a SET coil

does not receive power flow, it does not change the value of its discrete reference. Therefore,

whether or not the coil itself continues to receive power flow, the reference stays ON until the

reference is reset by other logic, such as a RESET coil.

Coils

GFK-2222S Chapter 7 Ladder Diagram Programming 7-27

7

When a RESET coil receives power flow, it resets a discrete reference to OFF. When a

RESET coil does not receive power flow, it does not change the value of its discrete

reference. Therefore, its reference remains OFF until it is set ON by other logic, such as a

SET coil.

The last solved SET coil or RESET coil of a pair takes precedence.

The SET and RESET coils can be assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables

are permitted. Bit-in-word references on any word-oriented memory except %AI, including

symbolic non-discrete memory, are also permitted.

Example of Set, Reset Coils

The coil represented by E1 is turned ON when reference E2 or E6 is ON and is turned OFF

when reference E5 or E3 is ON.

Coils

7-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Transition Coils

PACSystems controllers provide four transition coils: PTCOIL, NTCOIL, POSCOIL, and

NEGCOIL.

■ POSCOIL and NEGCOIL are updated every time they are called.

■ PTCOIL and NTCOIL are updated once per CPU scan.

For examples showing the differences in the operation of the two types of transition coils, see

page 7-32.

POSCOIL and NEGCOIL

Warnings

■ These transition coil instructions should not be used in a parameterized block or
user-defined function block (UDFB) with a parameter or member. In these cases,
an R_TRIG or F_TRIG should be used instead.

■ Do not override a transition coil by putting a force on its reference bit. If a
transition coil is overridden, the coil has no effect on the bit, and if the override is
then removed, the coil might be set ON for one sweep. . This can cause
unexpected behavior in the Controller logic and in field devices attached to the
Controller.

■ Do not write to the reference bit of a transition coil using any other instruction or
from an external device. Doing so will destroy the coil’s one-shot nature and the
coil may not behave as described.

■ Do not use a transition contact with the same reference address used on a
transition coil because the value of the transition bit, which stores the power flow
value into the coil, will be affected.

Positive Transition Coil (POSCOIL) Negative Transition Coil (NEGCOIL)

If:

■ the transition bit is OFF, and

■ the input power flow is ON,

the POSCOIL sets the reference bit of its associated

variable ON until the coil is executed again. When the

coil is executed again, it sets its reference bit OFF.

Note: When the Positive Transition Coil sets its

reference bit ON, it also sets its transition bit to

ON. The next time the Positive Transition coil

executes, it finds its transition bit set to ON and

sets its reference bit to OFF.

If:

■ the transition bit is OFF, and

■ the input power flow input is OFF,

the NEGCOIL sets the reference bit of its associated

variable ON until the coil is executed again. When the

coil is executed again, it sets its reference bit OFF.

Note: When the Negative Transition Coil sets its

reference bit ON, it also sets its transition bit to

ON. The next time the Negative Transition Coil

executes, it finds the transition bit set to ON and

sets its reference bit to OFF.

Coils

GFK-2222S Chapter 7 Ladder Diagram Programming 7-29

7

Operands for POSCOIL and NEGCOIL

Parameter Description Allowed Operands Optional

BOOL_V The variable associated with POSCOIL or
NEGCOIL

BOOL variable: I, Q, M, T, G, SA,
SB, SC, symbolic discrete
variables, and I/O variable.

Bit reference in BOOL variable:
I, Q, M, T, G, SA, SB, SC

No

Example for POSCOIL and NEGCOIL

When reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning E2

ON. When E1 goes from ON to OFF, power flow is removed from E2 and E3, turning coil E3

ON.

Coils

7-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

PTCOIL and NTCOIL

Because the behavior of PTCOILs and NTCOILs is determined only by the current power

flow into the coil and the previous power flow into the coil (i.e., the transition bit), it is not

affected by writes to its associated BOOL variable by other coils or instructions in the logic.

Therefore, many of the cautions that apply to POSCOILs and NEGCOILs do not apply to

PTCOILs and NTCOILs.

Warnings

■ PTCOIL and NTCOIL instructions should not be used in a parameterized block or
user-defined function block (UDFB) with a parameter or member. In these cases,
an R_TRIG or F_TRIG should be used instead.

The transition bit of a given PTCOIL or NTCOIL is changed only once per CPU
scan. Therefore, using a PTCOIL or NTCOIL in a block that can be called multiple
times per scan can have adverse effects on all calls after the first one because the
PTCOIL or NTCOIL cannot detect the transition on the second and subsequent
calls.

■ Do not override a transition coil by putting a force on its reference bit. If a
transition coil is overridden, the coil has no effect on the bit, and if the override is
then removed, the coil might be set ON for one sweep. . This can cause
unexpected consequences in the Controller logic and in field devices attached to
the Controller.

■ Do not use a transition contact with the same reference address used on a
transition coil because the value of the transition bit, which stores the power flow
value into the coil, will be affected.

Positive Transition Coil (PTCOIL)

Negative Transition Coil (NTCOIL)

If:

■ the transition bit is OFF, and

■ the input power flow is ON

the PTCOIL sets the reference bit and transition bit of

its associated variable ON.

If:

■ the transition bit is OFF, and

■ the input power flow is OFF

the NTCOIL sets the reference bit and transition bit of

its associated variable ON.

The transition bit depends on the value of the input power flow the last time the PTCOIL or NTCOIL

was executed.

Coils

GFK-2222S Chapter 7 Ladder Diagram Programming 7-31

7

Notes:

■ As soon as a PTCOIL or NTCOIL is set to ON or OFF, it updates its transition bit.

■ Multiple instances of PTCOIL and/or NTCOIL can be associated with the same BOOL

variable, but the transition status of each instance of the PTCOIL or NTCOIL associated

with the BOOL variable is unique, that is, it is tracked independently.

■ The transition bit is non-retentive, that is, it is cleared to OFF when the CPU transitions

from stop to run. As a result, the first time a PTCOIL executes with its input power flow

set to ON its associated BOOL variable will be set to ON.

Operands for PTCOIL and NTCOIL

Parameter Description Allowed Operands Optional

BOOL_V The variable associated with
PTCOIL or NTCOIL

Variables in I, Q, M, T, SA, SB, SC, or G
memories as well as symbolic discrete
variables. In addition, bit-in-word references on
any non-discrete memory (e.g., %R) or on
symbolic non-discrete variables are allowed.

No

Coils

7-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Examples Comparing PTCOIL and POSCOIL

PTCOIL

In the example below, the power flow into the PTCOIL alternates between OFF and ON. On

the first sweep the power flow in is OFF, on the second sweep it is ON, and so forth. Each

time the power flow into the PTCOIL changes from OFF to ON, the value of Xsition is turned

ON. Therefore, on the first sweep, the PTCOIL turns Xsition OFF, on the second sweep it

turns it ON, on the third sweep it turns it OFF, and so forth. Notice that the behavior of the

PTCOIL is not affected by the presence of the fourth rung, which also writes to Xsition.

PTCOIL behaves the same way when the fourth rung is removed.

POSCOIL

If a POSCOIL is used in place of the PTCOIL in the example below (keeping the rest of the

logic identical and same alternation of power flow into the POSCOIL), the behavior of the

logic will be different. The behavior of the POSCOIL is affected by the execution of the fourth

rung, which writes to Xsition and changes both its value and its transition bit. In this example,

the POSCOIL never turns Xsition ON. If the fourth rung is removed, POSCOIL will behave

exactly as the PTCOIL behaves, turning Xsition OFF on the first sweep, ON on the second

sweep, and so forth.

Flip the value of PflowIn. If it was ON turn it OFF. If it was OFF turn it ON.

Contacts

GFK-2222S Chapter 7 Ladder Diagram Programming 7-33

7

Contacts
A contact is used to monitor the state of a reference address. Whether the contact passes

power flow depends on positive power flow into the contact, the state or status of the

reference address being monitored, and the contact type. A reference address is ON if its

state is 1; it is OFF if its state is 0.

Contact Display Mnemonic Contact Passes Power to Right...

Continuation Contact

CONTCON if the preceding continuation coil is set ON

Fault Contact

FAULT if its associated BOOL or WORD variable has a point fault

High Alarm Contact

HIALR if the high alarm bit associated with the analog (WORD) reference is
ON

Low Alarm Contact

LOALR if the low alarm bit associated with the analog (WORD) reference is
ON

No Fault Contact

NOFLT if its associated BOOL or WORD variable does not have a point fault

Normally Closed
Contact

NCCON if associated BOOL variable is OFF

Normally Open Contact

NOCON if associated BOOL variable is ON

Transition Contacts

NEGCON (negative transition contact) if BOOL reference transitions from ON
to OFF. Updated every time it is called.

NTCON (negative transition contact) if BOOL reference transitions from
ON to OFF. Updated once per scan.

POSCON (positive transition contact) if BOOL reference transitions from OFF
to ON. Updated every time it is called.

PTCON (positive transition contact) if BOOL reference transitions from OFF
to ON. Updated once per scan.

Contacts

7-34 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Continuation Contact

A continuation contact continues the LD logic from the last previously-executed rung in the

block that contained a continuation coil.

The flow state of the continuation contact is the same as the preceding executed continuation

coil. A continuation contact has no associated variable.

Notes:

■ If the flow of logic does not execute a continuation coil before it executes a continuation
contact, the state of the continuation contact is no flow.

■ The state of the continuation contact is cleared (set to no flow) each time a block begins
execution.

■ The continuation coil and the continuation contact do not use parameters and do not
have associated variables.

■ You can have multiple rungs with continuation contacts after a single continuation coil.

■ You can have multiple rungs with continuation coils before one rung with a continuation
contact.

Fault Contact

A Fault contact (FAULT) detects faults in discrete or analog reference addresses, or locates

faults (rack, slot, bus, module).

■ To guarantee correct indication of module status, use the reference address (%I, %Q,
%AI, %AQ) with the FAULT/NOFLT contacts.

■ To locate a fault, use the rack, slot, bus, module fault locating system variable with a
FAULT/NOFLT contact.

Note: The fault indication of a given module is cleared when the associated fault is cleared

from the fault table.

■ For I/O point fault reporting, you must enable point fault references in Hardware
Configuration.

FAULT passes power flow if its associated variable or location has a point fault.

Operands

Parameter Description Allowed Operands Optional

BWVAR The variable associated with
the FAULT contact

variables in %I, %Q, %AI, and %AQ memories,
and predefined fault-locating references

No

Contacts

GFK-2222S Chapter 7 Ladder Diagram Programming 7-35

7

High and Low Alarm Contacts

The high alarm contact (HIALR) is used to detect a high alarm associated with an analog

reference. Use of this contact and the low alarm contact must be enabled during CPU

configuration.

A high alarm contact passes power flow if the high alarm bit associated with the analog

reference is ON.

The low alarm contact (LOALR) detects a low alarm associated with an analog reference.

Use of this contact must be enabled during CPU configuration.

A low alarm contact passes power flow if the low alarm bit associated with the analog

reference is ON.

Operands

Parameter Description Allowed Operands Optional

WORDV The variable associated with the HIALR or LOALR
contact

variables in AI and AQ
memories

No

No Fault Contact

A No Fault (NOFLT) contact detects faults in discrete or analog reference addresses, or

locates faults (rack, slot, bus, module). NOFLT passes power flow if its associated variable or

location does not have a point fault.

■ To guarantee correct indication of module status, use the reference address (%I, %Q,

%AI, %AQ) with the FAULT/NOFLT contacts.

■ To locate a fault, use the rack, slot, bus, module fault locating system variables with a

FAULT/NOFLT contact.

■ For I/O point fault reporting, you must configure your Hardware Configuration (HWC) to

enable the PLC point faults.

Note: The fault indication of a given module is cleared when the associated fault is cleared

from the fault table.

Operands

Parameter Description Allowed Operands Optional

BWVAR The variable associated with
the NOFLT contact

variables in %I, %Q, %AI, and %AQ memories,
and predefined fault-locating references

No

Contacts

7-36 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Normally Closed and Normally Open Contacts

A normally closed contact (NCCON) acts as a switch that passes power flow if the BOOLV

operand is OFF (false, 0).

A normally open contact (NOCON) acts as a switch that passes power flow if the BOOLV

operand is ON (true, 1).

Operands

Parameter Description Allowed Operands Optional

BOOLV BOOLV may be a predefined system variable
or a user-defined variable.

NCCON:

 If BOOLV is ON, the normally closed
contact does not pass power flow.

 If BOOLV is OFF, the contact passes
power flow.

discrete variables in I, Q, M, T, S,
SA, SB, SC, and G memories;
symbolic discrete variables; bit-
in-word references on variables
in any non-discrete memory
(e.g., %L) or on symbolic non-
discrete variables.

No

NOCON:

 If BOOLV is ON, the normally open contact
passes power flow.

 If BOOLV is OFF, the contact does not
pass power flow.

Contacts

GFK-2222S Chapter 7 Ladder Diagram Programming 7-37

7

Transition Contacts

PACSystems controllers provide four transition contacts: POSCON, NEGCON, PTCON and

NTCON.

■ The power flow out of the POSCON and NEGCON transition contacts is determined by

the last write to the BOOL variable associated with the contact. The associated transition

bit is updated every time the function is called.

■ The power flow out of the PTCON and NTCON transition contacts is determined by the

value that the associated BOOL variable had the last time the contact was executed. The

associated transition bit is updated once per scan.

For an example showing the differences in the operation of the two types of transition

contacts, see page 7-41.

POSCON and NEGCON

Warnings

■ These transition contact instructions should not be used in a parameterized block
or user-defined function block (UDFB) with a parameter or member. In these cases,
an R_TRIG or F_TRIG should be used instead.

■ Do not use POSCON or NEGCON transition contacts for references used with
transition coils (also called one-shot coils) or with SET and RESET coils.

If a SETCOIL or RESETCOIL receives positive power flow and its associated
variable is not overridden, the SETCOIL or RESETCOIL writes the expected
result to the transition bit for the associated variable (that is, the transition bit
is set if the variable’s value is set from ON to OFF or is set from OFF to ON, and
is cleared when its value remains the same). However, if the SETCOIL or
RESETCOIL receives positive power flow and its associated variable is
overridden, the SETCOIL or RESETCOIL causes the transition bit to be cleared.

■ Do not use a transition contact with the same reference address used on a transition coil
because the value of the transition bit, which stores the power flow value into the coil, will
be affected.

Positive Transition Contact POSCON

Negative Transition Contact NEGCON

POSCON starts passing power flow and continues
passing power flow to the right only when all of the
following conditions are met:

■ the input power flow to POSCON is ON,

■ the value of the associated variable is ON, and

■ the transition bit for the associated variable is ON

The POSCON’s transition bit is set to ON when the
variable associated with the POSCON transitions from
OFF to ON.

NEGCON starts passingpower flow and continues passing
power flow to the right only when all of the following conditions
are met:

■ the input power flow to NEGCON is ON

■ the value of the associated variable is OFF, and

■ the transition bit for the associated variable is ON

The NEGCON’s transition bit is set to ON when the variable
associated with the NEGCON transitions from ON to OFF.

The transition bit is set to OFF when the associated variable is written to while the POSCON or NEGCON contact is
passing power flow, regardless of whether the value written is ON or OFF. Power flow stops when the transition bit is set
to OFF.

Contacts

7-38 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Depending on the logic flow, writes to the POSCON’s or NEGCON's associated variable can

occur at different intervals within the Controller scan:

■ multiple times during a Controller scan, resulting in the transition bit being ON for only a

portion of the scan.

■ several Controller scans apart, resulting in the transition bit being ON for more than one

scan.

■ once per scan, for example if the POSCON or NEGCON's associated variable is a %I

input bit.

The source of the write is immaterial; it can be an output coil, a function block output, the

input scan, an input interrupt, a data change from the program, or external communications.

When the variable is written, the transition bit is immediately affected. The scan does not

affect the transition bit. The only way to clear the transition bit is to write to the associated

variable.

Overrides

Overrides do not protect transition bits. If a write is attempted to an overridden point, the

point’s transition bit is cleared. As a result, any associated POSCON or NEGCON contacts

will stop passing power flow.

Transition to Run Mode

■ Variables that are non-retentive and not overridden will have values and transitions

cleared to 0.

■ Variables that are non-retentive and overridden will retain their values and transition bits.

■ Variables that are retentive will retain their values and transition bits.

Operands for POSCON and NEGCON

Parameter Description Allowed Operands Optional

BOOLV The variable associated with the transition contact BOOL variable: I, Q, M, T, S, SA, SB, SC,
and G, symbolic discrete variables, I/O
variables

Bit reference in BOOL variable: I, Q, M, T,
S, SA, SB, SC, and

No

Contacts

GFK-2222S Chapter 7 Ladder Diagram Programming 7-39

7

Examples for POSCON and NEGCON

Example 1

Coil E2 is turned ON when the value of the variable E1 transitions from OFF to ON. It stays

ON until E1 is written to again, causing the POSCON to stop passing power flow.

Coil E4 is turned ON when the value of the variable E3 transitions from ON to OFF. It stays

ON until E3 is written to again, causing the NEGCON to stop passing power flow.

Example 2

Bit %M00017 is set by a BIT_SET function and then cleared by a BIT_CLR function. The

positive transition contact X1 activates the BIT_SET, and the negative transition X2 activates

the BIT_CLR.

The positive transition associated with bit %M00017 will be on until %M00017 is reset by the

BIT_CLR function. This occurs because the bit is only written when contact X1 goes from

OFF to ON. Similarly, the negative transition associated with bit %M00017 will be ON until

%M00017 is set by the BIT_SET function.

Contacts

7-40 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

PTCON and NTCON

Warning

PTCON or NTCON instructions should not be used in a parameterized block or
user-defined function block with a parameter or member. In these cases, an
R_TRIG or F_TRIG should be used instead.

The transition bit of a given PTCON or NTCON is updated only once per CPU
scan. Therefore, using a PTCON or NTCON in a block that can be called
multiple times per scan may have adverse effects on all calls after the first one
because the PTCON or NTCON cannot detect the transition on the second and
subsequent calls.

Positive Transition Contact PTCON

Negative Transition Contact NTCON

PTCON passes power flow to the right only when all

of the following conditions are met:

■ The input power flow to PTCON is ON.

■ The value of the BOOL variable associated with

PTCON is ON.

■ The transition bit associated with the PTCON is

OFF

NTCON passes power flow to the right only when all

of the following conditions are met:

■ The input power flow to NTCON is ON.

■ The value of the BOOL variable associated with

NTCON is OFF.

■ The transition bit associated with the NTCON is

ON

The transition bit depends on the value of the BOOL variable associated with this PTCON or NTCON when

it was last executed.

Notes:

■ As soon as a PTCON or NTCON is set to ON or OFF, it updates its transition bit.

■ Multiple instances of PTCON and/or NTCON can be associated with the same BOOL

variable, but the instance data of each instance of the PTCON or NTCON associated with

the BOOL variable is unique, that is, it is tracked independently.

■ Transition data is non-retentive, that is, it is cleared to OFF when the CPU transitions

from stop to run. As a result, the first time a PTCON executes with its input power flow

set to ON and its associated BOOL variable also set to ON, it passes power flow to the

right.

Operands for PTCON and NTCON

Parameter Description Allowed Operands Optional

BOOL_V The variable associated with PTCON
or NTCON contact

BOOL variable: I, Q, M, T, S, SA, SB, SC, and G
memories, symbolic discrete variables, I/O variables.

Bit reference in non-BOOL variable: R, AI, AQ, L, P, W,
and on symbolic non-discrete variables.

No

Contacts

GFK-2222S Chapter 7 Ladder Diagram Programming 7-41

7

Examples Comparing PTCON and POSCON

PTCON

The logic in the following example starts execution with all variables set to 0. Before the

second sweep begins, the Xsition variable used on the PTCON instruction is set to 1. It

retains that value for sweeps 2, 3, and 4. Then it is reset back to 0 before sweep 5 begins

and retains its 0 value for sweeps 5, 6, and 7. This pattern repeats. The PTCON instruction in

rung two passes power flow on the 2nd sweep, the 8
th
 sweep, the 14

th
 sweep, and so on.

These are sweeps where the Xsition variable’s value becomes a 1, after having been a 0 on

the previous sweep. On all other sweeps, the PTCON instruction does not pass power flow.

POSCON

If a POSCON is used in place of the PTCON in the following example (keeping the rest of the

logic identical), the same alternation of the Xsition variable’s value occurs. The POSCON

instruction passes power flow on sweeps 2, 3, and 4; then again on sweeps 8, 9, and 10; and

so forth. The POSCON’s behavior is dependent on Xsition’s transition bit. Since Xsition’s

value is written once and then simply retained for three sweeps, its transition bit retains its

same value for three sweeps. Thus the POSCON will pass or not pass power flow for three

sweeps in a row. Note that if Xsition’s value is actually written on each sweep, the POSCON

and the PTCON behave identically.

Contacts

7-42 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Logic Example Using PTCON

On the 2nd sweep, turn Xsition ON for 3 sweeps; on the 5th sweep, turn it OFF for 3 sweeps, etc.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-43

7

Control Functions
The control functions limit program execution and change the way the CPU executes the

application program.

Function Mnemonic Description

Do I/O DO_IO For one scan, immediately services a specified range of inputs or outputs. (All inputs
or outputs on a module are serviced if any reference locations on that module are
included in the DO I/O function. Partial I/O module updates are not performed.)
Optionally, a copy of the scanned I/O can be placed in internal memory, rather than at
the real input points.

Drum DRUM Provides predefined On/Off patterns to a set of 16 discrete outputs in the manner of a
mechanical drum sequencer.

Edge Detectors F_TRIG
R_TRIG

Detect the changing state of a Boolean signal.

For Loop FOR_LOOP
EXIT_FOR
END_FOR

For loop. Repeats the logic between the FOR_LOOP instruction and END_FOR
instruction a specified number of times or until EXIT_FOR is encountered.

Mask I/O
Interrupt

MASK_IO_INTR Mask or unmask an interrupt from an I/O module when using I/O variables. If not using
I/O variables, use SVC_REQ 17, described in chapter 9.

Proportional
Integral
Derivative
Control

PID_ISA
PID_IND

Provides two PID (Proportional/Integral/Derivative) closed-loop control algorithms:

 Standard ISA PID algorithm (PID_ISA)

 Independent term algorithm (PID_IND)

Note: For details, refer to chapter 10.

Read Switch
Position

SWITCH_POS Reads position of the Run/Stop switch and the mode for which the switch is
configured.

Scan Set IO SCAN_SET_IO Scans the IO of a specified scan set.

Service Request SVC_REQ Requests a special PLC service.

Note: For details, refer to chapter 9.

Suspend IO SUS_IO Suspends for one sweep all normal I/O updates, except those specified by DO I/O
instructions.

Suspend or
Resume I/O
Interrupt

SUSP_IO_INTR Suspend or resume an I/O interrupt when using I/O variables. If not using I/O
variables, use SVC_REQ 32, described in Chapter 9.

Control Functions

7-44 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Do I/O

When the DO I/O (DO_IO) function receives power flow, it updates inputs or

outputs for one scan while the program is running. You can also use DO_ IO to

update selected I/O during the program in addition to the normal I/O scan.

You can use DO_IO in conjunction with a Suspend IO (SUS_IO) function,

which stops the normal I/O scan. For details, see page 7-60.

If input references are specified, DO_IO allows the most recent values of inputs

to be obtained for program logic. If output references are specified, DO I/O

updates outputs based on the most current values stored in I/O memory. I/O is

serviced in increments of entire I/O modules; the PLC adjusts the references, if necessary,

while DO_IO executes. DO_IO does not scan I/O modules that are not configured.

DO_IO continues to execute until all inputs in the selected range have reported or all outputs

have been serviced on the I/O modules. Program execution then returns to the function that

follows the DO_IO.

If the range of references includes an option module (HSC, APM, etc.), all the input data (%I

and %AI) or all the output data (%Q and %AQ) for that module are scanned. The ALT

parameter is ignored while scanning option modules.

DO_IO passes power to the right whenever it receives power unless:

■ Not all references of the type specified are present within the selected range.

■ The CPU is not able to properly handle the temporary list of I/O created by the function.

■ The range specified includes I/O modules that are associated with a “Loss of I/O” fault.

Warning

If DO_IO is used with timed or I/O interrupts, transition contacts associated
with scanned inputs may not operate as expected.

Note: The Do I/O function skips modules that do not support DO_IO scanning:

IC693BEM331 90-30 Genius Bus Controller

IC694BEM331 RX3i Genius Bus Controller

IC693BEM341 90-30 2.5 GHz FIP Bus Controller

IC693DNM200 90-30 DeviceNet Master

IC695PBM300 RX3i PROFIBUS Master

IC695PBS301 RX3i PROFIBUS Slave

IC687BEM731 90-70 Genius Bus Controller

IC697BEM731 90-70 Standard Width Genius Bus Controller

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-45

7

Do I/O for Inputs

When DO_IO receives power flow and input references are specified, the PLC scans input

points from the starting reference (ST) to the ending reference (END). If a reference is

specified for ALT, a copy of the new input values is placed in memory beginning at that

reference, and the real input values are not updated. ALT must be the same size as the

reference type scanned. If a discrete reference is used for ST and END, ALT must also be

discrete.

If no reference is specified for ALT, the real input values are updated. This allows inputs to be

scanned one or more times during the program execution portion of the CPU scan.

Do I/O for Outputs

When DO_IO receives power flow and output references are specified, the PLC writes to the

output points. If no value is specified in ALT, the range of outputs written to the output

modules is specified by the starting reference (ST) and the ending reference (END). If

outputs should be written to the output points from internal memory other than %Q or %AQ,

the beginning reference is specified for ALT and the end reference is automatically calculated

from the length of the END—ST range.

Operands

Parameter Description Allowed Operands Optional

ST The starting address of the set of input or output points or words to be
serviced. ST and END must be in the same memory area.

 If ST and END are placed in BOOL memory, ST must be byte-
aligned. That is, its reference address must start at (8n+1), for
example, %I01, %Q09, %Q49.

 If ST and END are mapped to analog memory, they can have the
same reference address.

 If ST is mapped to an I/O variable, the same I/O variable must
also be assigned to the END parameter, and the entire module is
scanned.

I, Q, AI, AQ, I/O Variable No

END The address of the end bit of input or output points or words to be
serviced. Must be in the same memory area as ST.

 If ST and END are placed in BOOL memory, END's reference
address must be 8n, for example, %I08, %Q16.

 If ST and END are mapped to analog memory, they can have the
same reference address.

 If ST is mapped to an I/O variable, the same I/O variable must
also be assigned to the END parameter, and the entire module is
scanned.

I, Q, AI, AQ, I/O Variable No

ALT For an input scan, ALT specifies the address to store scanned input
point/word values. For an output scan, ALT specifies the address to
get output point/word values from, to send to the I/O modules.

Note: ALT can be a WORD only if ST and END are in analog

 memory.

I, Q, M, T, G, R, AI, AQ Yes

Control Functions

7-46 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example - Do I/O for Inputs

When DO_IO receives power flow, the PLC scans

references %I0001—64 and %Q0001 is turned on. A copy

of the scanned inputs is placed in internal memory from

%M0001-64. Because a reference is specified for ALT, the

real inputs are not updated. This allows the current values

of inputs to be compared with their values at the beginning

of the scan. This form of DO_IO allows input points to be

scanned one or more times during the program execution

portion of the CPU scan.

Example - Do I/O For Outputs

Because a reference is entered for ALT, the values at

%AQ001—004 are not written to output modules. When

DO_IO receives power flow, the PLC writes the values

from references %R0001-0004 to the analog output

modules and %Q0001 is turned on.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-47

7

Edge Detectors

Falling Edge Trigger

Rising Edge Trigger

These function blocks detect the changing state of a Boolean signal and produce a single

pulse when an edge is detected.

When transitional instructions, such as Transition Coils (page 7-28) or Transition Contacts

(page 7-37), are used inside a function block, there is a problem when the same function

block is called more than once per scan. The first call executes the transition correctly but

subsequent calls do not because they see the state as adjusted from the first call. The rising

and falling edge trigger instructions solve this problem. These instructions have their own

instance data that can be a member or an input of the function block so that the transition

state follows that of the function block instance and not the function block.

If an edge detector function block is used within a UDFB, its instance data must be a member

variable of the UDFB.

Operands

Parameter Description Allowed Operands Optional

???? Instance data for function block. This is a structure variable, described
below.

F_TRIG, R_TRIG No

CLK Input to be monitored for a change in state. All Yes

Q Edge detection output.

Must be flow in LD. In
other languages all
types allowed except S,
SA, SB, SC and
constants.

Yes

Instance Data Structure

These elements cannot be published or written to.

Element Name Type Description

CLK BOOL Edge detection input. Not accessible in user
logic.

Q BOOL Edge detection output. Accessible in user
logic. Read only.

STATE BOOL Internal value. Not accessible in user logic.

ENO BOOL Enable Output. User logic can access as
read-only.

Control Functions

7-48 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

F_TRIG Operation

When the CLK input goes from true to false, the

output Q is true for one function block instance

execution. The output Q then remains false until a

new falling edge is detected.

When the Controller transitions from stop to run mode

and the CLK input is false and the instance memory

is non-retentive, the output Q is true after the function

block’s first execution. After the next execution, the

output is false.

The F_TRIG output Q will be true for one function

block instance execution at a stop-to-run transition after the first download, whether or not

instance memory is retentive.

R_TRIG Operation

When the CLK input transitions from false to true,

the output Q is true for one function block execution.

The output Q then remains false until a new rising

edge is detected.

When the Controller transitions from stop to run

mode and the CLK input is true and the instance

memory is non-retentive, the output Q is set to true

after the function block’s first execution. After the

second execution, the output is false.

If the CLK input is initialized on, the R_TRIG output Q will be true for one function block

instance execution at a stop-to-run transition after the first download, whether or not instance

memory is retentive.

Example

In the following example, when Input1 transitions from false to true, the coil, Detected, is set

ON for one function block execution. The output Q remains false until a new rising edge is

detected.

CLK

Q

Function Block Execution

CLK

Q

Function Block Execution

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-49

7

Drum

The Drum function operates like a mechanical drum sequencer, which

steps through a set of potential output bit patterns and selects one based

on inputs to the function. The selected value is copied to a group of 16

discrete output references.

When the Drum function receives power flow, it copies the contents of a

selected reference to the Q reference.

Power flow to the R (Reset) input or to the S (Step) input selects the

reference to be copied.

The function passes power to the right only if it receives power from the

left and no error condition is detected.

The DTO (Dwell Timeout Output) bit is cleared the first time the drum is in

a new step. This is true:

 Whether the drum is introduced to a new step by changing the Active Step or by using

the S (Step) Input.

 Regardless of the DT (Dwell Time array) value associated with the step (even if it is 0).

 During the first sweep the Active Step is initialized.

Using Drum in Parameterized Blocks

The Drum dwell and fault timer features use an internal timer that is implemented in the same

manner as for the OFDT, ONDTR, and TMR timers. Therefore, special care must be taken

when programming Drum in parameterized blocks. Drum functions in parameterized blocks

can be programmed to track true real-time as long as the guidelines and rules below are

followed. If the guidelines and rules described here are not followed, the operation of the

Drum function in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to

ensure these rules are followed.

The best use of a Drum function is to invoke it with a particular reference address exactly one

time each scan. With parameterized blocks, it is important to use the appropriate reference

memory with the Drum function and to call the parameterized block an appropriate number of

times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that

appears above the parameterized block in the call tree. To determine the source block for a

given parameterized block, determine which block invoked that parameterized block. If the

calling block is _MAIN or of type Block, it is the source block. If the calling block is any other

type (parameterized block or function block), apply the same test to the block that invoked

this block. Continue back up the call tree until the _MAIN block or a block of type Block is

found. This is the source block for the parameterized block.

Programming Drum in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the

parameterized block in more than one place in your program logic.

Control Functions

7-50 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Parameterized block called from one block

If your parameterized block that contains a Drum function will be called from only one logic

block, follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the Drum control block that will not be manipulated

anywhere else. The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L

memory corresponds to %P memory when the source block is _MAIN.

Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the

Drum reference memory used by each call to the parameterized block. Follow these rules

and guidelines:

1. Call the parameterized block exactly one time per execution of each source block that it

appears in.

2. Choose a %L reference or parameterized block formal parameter for the Drum control

block. Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

■ The strongly recommended choice is a %L location, which is inherited from the

parameterized block’s source block. Each source block has its own %L memory space

except the _MAIN block, which has a %P memory area instead. When the _MAIN block

calls another block, the %P mappings from the _MAIN block are accessed by the called

block as %L mappings.

■ If you use a parameterized block formal parameter (word array passed-by-reference), the

actual parameter that corresponds to this formal parameter must be a %L, %R, %P, %W,

or symbolic reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a

unique reference address must be used by each source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and your

parameterized block contains a Drum function, you must follow two additional rules:

■ Program the source block so that it invokes the parameterized block before making any

recursive calls to itself.

■ Do not program the parameterized block to call itself directly.

Using Drum in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on

these and other types of blocks, refer to Chapter 5.

When a Drum function is present inside a UDFB, and a member variable is used for the

control block of a Drum function, the behavior of the Drum function may not match your

expectations. If multiple instances of the UDFB are called during a logic sweep, only the first-

executed instance will update the timer in the Drum function. If a different instance is then

executed, the timer value will remain unchanged.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-51

7

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed

time to its timer functions. This behavior matches the behavior of the Drum function timer in a

normal program block.

Example

A UDFB is defined that uses a member variable for a Drum function block. Two instances of

the function block are created: Drum_A and Drum_B. During each logic scan, both Drum_A

and Drum_B are executed. However, only the member variable in Drum_A is updated and

the member variable in Drum_B always remains at 0.

Operands

Parameter Description Allowed
Operands

Optional

???? (Control Block) The beginning address of a five-word array that contains the
Drum Sequencer's control block. The contents of the control block are
described below.

R, P, L, W,
Symbolic

No

?? (Length) Value between 1 and 128 that specifies the number of steps. Constant No

S Step input. Used to go one step forward in the sequence. When the function
receives power flow and S makes an OFF to ON transition, the Drum
Sequencer moves one step. When R (Reset) is active, the function ignores S.

flow No

R Reset input. Used to select a specific step in the sequence. When the DRUM
function and Reset both receive power flow, DRUM copies the Preset Step
value in the Control Block to the Active Step reference in the Control Block.
Then the function copies the value in the Preset Step reference to the Q
reference bits. When R is active, the function ignores S.

flow No

PTN (Pattern) The starting address of an array of words. The number of words is
specified by the Length (??) operand. Each word represents one step of the
Drum Sequencer. The value of each word represents the desired combination
of outputs for a particular value of the Active Step word in the control block.
The first element corresponds to an Active Step value of 1; the last element
corresponds to an Active Step value of Length. The programming software
does not create an array for you. You must ensure you have enough memory
for PTN.

All except
constant and S,
SA—SC
numerical data.

No

DT (Dwell Time) If you use the DT operand, you must also use the DTO operand
and vice-versa. The DT operand is the starting address of Length words of
memory, where Length is the number of steps. Each DT word corresponds to
one word of PTN. The value of each word represents the dwell time for the
corresponding step of the Drum Sequencer in 0.1 second units. When the
dwell time expires for a given step the DTO bit is set.

If a Dwell Time is specified, the drum cannot sequence into its next step until
the Dwell Time has expired. The programming software does not create an
array for you. You must ensure you allocate enough memory for DT.

All except S, SA,
SB, SC and
constant

Yes

FTT (Fault Timeout) If you use the FTT operand, you must also use the TFT
operand, and vice-versa. The FTT operand is the starting address of Length
words of memory, where Length is the number of steps. Each FTT word
corresponds to one word of PTN. The value of each word represents the fault
timeout for the corresponding step of the Drum Sequencer in 0.1 second
units.

When the fault timeout has expired the Fault Timeout bit is set.

The programming software does not create an array for you. You must
ensure you allocate enough memory for FTT.

All except S, SA,
SB, SC and
constant

Yes

Control Functions

7-52 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Parameter Description Allowed
Operands

Optional

Q A word of memory containing the element of the PTN that corresponds to the
current Active Step.

All except S and
constant

No

DRC (Drum Coil) Bit reference that is set whenever the function is enabled and
Active Step is not equal to Preset Step.

All except S Yes

DTO (Dwell Timeout) If you use the DTO operand, you must also use DT and vice-
versa. This bit reference is set if the dwell time for the current step has
expired.

All except S and
constant

Yes

TFT (Timeout Fault) If you use the TFT operand, you must also use the FTT
operand and vice-versa. Bit reference that is set if the drum has been in a
particular step longer than the step’s specified Fault Timeout.

All except S and
constant

Yes

FF (First Follower) The starting address of (Length/8+1) bytes of memory, where
Length is the number of steps. If MOD (Length/8+1)>0, FF has (Length/8+1)
bytes. Each bit in the bytes of FF corresponds to one word of PTN. No more
than one bit in the FF bytes is ON at any time, and that bit corresponds to the
value of the Active Step. The first bit corresponds to an Active Step value of
one. The last used bit corresponds to an Active Step value of Length.

All except S and
constant

Yes

Control Block for the Drum Sequencer Function

The control block for the Drum Sequencer function contains information needed to operate

the Drum Sequencer.

address Active Step

address + 1 Preset Step

address + 2 Step Control

address + 3 Timer Control

Active Step The active step value specifies the element in the Pattern array to copy to the

Out output memory location. This is used as the array index into the Pattern, Dwell Time,

Fault Timeout, and First Follower arrays.

Preset Step A word input that is copied to the Active Step output when the Reset is On.

Step Control A word that is used to detect Off to On transitions on both the Step input and

the Enable input. The Step Control word is reserved for use by the function, and must not be

written to.

Timer Control Two words of data that hold values needed to run the timer. These values

are reserved for use by the function and must not be written to.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-53

7

For Loop

A FOR loop repeats rung logic a specified number of times while varying the value of the

INDEX variable in the loop. A FOR loop begins with a FOR_LOOP instruction and ends with

an END_FOR instruction. The logic to be repeated must be placed between the FOR and

END_FOR instructions. The optional EXIT_FOR instruction enables you to exit the loop if a

condition is met before the FOR loop ends normally.

When FOR_LOOP receives power flow, it saves the START, END, and INC (Increment)

operands and uses them to evaluate the number of times the rungs between the FOR_LOOP

and its END_FOR instructions are executed. Changing the START and END operands while

the FOR loop is executing does not affect its operation.

When an END_FOR receives power flow, the FOR loop is terminated and power flow jumps

directly to the statement following the END_FOR instruction.

There can be nothing after the FOR_LOOP instruction in the rung and the FOR_LOOP

instruction must be the last instruction to be executed in the rung. An EXIT_FOR statement

can be placed only between a FOR instruction and an END_FOR instruction. The END_FOR

statement must be the only instruction in its rung.

A FOR_LOOP can assign decreasing values to its index variable by setting the increment to

a negative number. For example, if the START value is 21, the END value is 1, and the

increment value is –5, the statements of the FOR loop are executed five times, and the index

variable is decremented by 5 in each pass. The values of the index variable will be 21, 16,

11, 6, and 1.

When the START and END values are set equal, the statements of the FOR loop are

executed only once.

When START cannot be incremented or decremented to reach the END, the statements

within the FOR loop are not executed. For example, if the value of START is 10, the value of

END is 5, and the INCREMENT is 1, power flow jumps directly from the FOR statement to

the statement after the END_FOR statement.

Note: If the FOR_LOOP instruction has power flow when it is first tested, the rungs

between the FOR and its corresponding END_FOR statement are executed the

number of times initially specified by START, END, and INCREMENT. This repeated

execution occurs on a single sweep of the PLC and may cause the watchdog timer to

expire if the loop is long.

Nesting of FOR loops is allowed, but it is restricted to five FOR/END_FOR pairs. Each FOR

instruction must have a matching END_FOR statement following it.

Control Functions

7-54 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Nesting with JUMPs and MCRs is allowed, provided that they are properly nested. MCRs and

ENDMCRs must be completely within or completely outside the scope of a

FOR_LOOP/END_FOR pair. JUMPs and LABEL instructions must also be completely within

or completely outside the scope of a FOR_LOOP/END_FOR pair. Jumping into or out of the

scope of a FOR/END_FOR is not allowed.

Operands

Only the FOR_LOOP function requires operands.

Paramete
r

Description Allowed Operands Optional

INDEX The index variable. When the loop has
completed, this value is undefined.

Note: Changing the value of the index

variable within the scope of the FOR loop is
not recommended.

All except constants, flow, and variables
in %S - %SC

No

START The index start value. All except variables in %S - %SC No

END The index end value. All except variables in %S - %SC No

INC The increment value. (Default: 1.) Constants Yes

For Loop Examples

Example 1

The value for %M00001 (START) is 1 and the value for

%M00017 (END) is 10. The INDEX (%R00001)

increments by the value of the INC operand (which is

assumed to be 1 when omitted) starting at 1 until it

reaches the ending value 10. The ADD function of the

loop is executed 10 times, adding the current value of I1

(%R00001), which will vary from 1 to 10, to the value of

I2 (%R00002).

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-55

7

Example 2

The value for %T00001 (START) is -100 and the value for %T00017 (END) is 100. The

INDEX (%R00001) increments by tens, starting at -100 until it reaches it end value of +100.

The EQ function of the loop tries to execute 21 times, with the INDEX (%R00001) being

equal to –100, –90, –80, –70, –60, –50, –40, –30, –20, –10, 0, 10, 20, 30, 40, 50, 60, 70, 80,

90, and 100. However, when the INDEX (%R00001) is 0, the EXIT statement is enabled and

power flow jumps directly to the statement after the END_FOR statement.

Control Functions

7-56 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Mask I/O Interrupt

Mask or unmask an interrupt from an I/O board when using I/O
variables. If not using I/O variables, use SVC_REQ 17.

When the interrupt is masked, the CPU processes the interrupt

but does not schedule the associated logic for execution. When

the interrupt is unmasked, the CPU processes the interrupt and

schedules the associated logic for execution.

When the CPU transitions from Stop to Run, the interrupt is
unmasked

The function passes power to the right when it executes successfully.

Operands

Parameter Description Allowed Types Allowed Operands Optional

MASK Selects unmask or mask operation.
Unmask=0; Mask=1

BOOL variable
or Bit reference in
non-discrete memory

data flow, I, Q, M, T,
G, S, SA, SB, SC, R,
P, L, AI, AQ, W,
symbolic, I/O variable

No

IN1 The interrupt trigger to be masked or
unmasked.

 The I/O board must be a supported input
module.

 The reference address specified must
correspond to a valid interrupt trigger
reference.

 The interrupt for the specified channel
must be enabled in the configuration.

BOOL or WORD
variable

I, Q, M, T, G, R, P, L,
AI, AQ, W, I/O
variable

No

Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware

module and is configured as an I/O interrupt to a program block. When the BOOL variable

MaskOn_Off transitions from OFF to ON and A1 is set to ON, the interrupt Mod_Int is

masked (not executed) for one scan.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-57

7

Read Switch Position

Read Switch Position (SWITCH_POS) allows the logic to read the current

position of the RUN/STOP switch, as well as the mode for which the switch is

configured.

Operands

Parameter Description Allowed Operands Optional

POS Memory location at which to write current switch
position value.

1 - Run I/O Enabled

2 - Run Outputs Disabled

3 - Stop Mode

All except S, SA, SB, SC No

MODE Memory location to which switch configuration value is
written.

 0 - Switch configuration not supported

1 - Switch controls run/stop mode

2 - Switch not used, or is used by the user application

3 - Switch controls both memory protection and
run/stop mode

4 - Switch controls memory protection

All except S, SA, SB, SC No

Control Functions

7-58 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Scan Set IO

The Scan_Set_IO function scans the I/O of a specified scan

set number. (Modules can be assigned to scan sets in

hardware configuration.) You can specify whether the Inputs

and/or Outputs of the associated scan set will be scanned.

Execution of this function block does not affect the normal

scanning process of the corresponding scan set. If the

corresponding scan set is configured for non-default Number

of Sweeps or Output Delay settings, they remain in effect

regardless of how many executions of the Scan Set IO

function occur in any given sweep.

The Scan Set IO function skips modules that do not support DO_IO scanning (page 7-44.)

Operands for SCAN_SET_IO

Parameter Description Allowed Types Allowed Operands Optional

IN If true the inputs will be
scanned.

BOOL variable or bit
reference in a non-BOOL
variable

Power flow No

OUT If true the outputs will be
scanned.

BOOL variable or bit
reference in a non-BOOL
variable

Power flow No

SET Number of the scan set to be
scanned. Scan sets are
specified in the CPU hardware
configuration and assigned to
modules in the module
hardware configuration.

UINT All except %S memory types. No

ENO Energized when all arguments
to the function are valid and
there are no errors in
scanning.

BOOL variable or bit
reference in a non-BOOL
variable

Power flow. Yes

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-59

7

Example

By using the Scan Set IO function block in an interrupt block, you can create a custom I/O

scan. For example, two Scan Set IO function blocks can be used in an interrupt block to scan

the inputs of a scan set at the beginning of the block and the outputs of the same scan set at

the end of the block.

In the following example, when ScanInputs is ON, input data for all I/O modules assigned to

Scan Set 2 is updated. When ScanOutputs is ON, output data for all I/O modules assigned to

Scan Set 2 is updated.

Control Functions

7-60 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Suspend I/O

The Suspend I/O (SUS_IO) function stops normal I/O scans from occurring for one CPU

sweep. During the next output scan, all outputs are held at their current states. During the

next input scan, the input references are not updated with data from inputs. However, during

the input scan portion of the sweep, the CPU verifies that Genius bus controllers have

completed their previous output updates.

Note: The PACSystems SUS_IO function suspends analog and discrete I/O, whether

integrated I/O or Genius I/O. It does not suspend Ethernet Global Data. For details,

refer to TCP/IP Ethernet Communications for PACSystems, GFK-2224.

When SUS_IO receives power flow, all I/O servicing stops except that provided by DO_IO

functions.

Warning

If SUS_IO were placed at the left rail of the ladder, without enabling logic to
regulate its execution, no regular I/O scan would ever be performed.

SUS_IO passes power flow to the right whenever it receives power.

Example for Suspend I/O

This example shows a SUS_IO function and a DO_IO function used to stop I/O scans, then

cause certain I/O to be scanned from the program.

Inputs %I00010 and %I00011 form a latch circuit with the contact from %M00001. This keeps

the SUS_IO function active on each sweep until %I00011 goes on. If this input were not

scanned by DO_IO after SUS_IO went active, SUS_IO could only be disabled by powering

down the PLC.

Output %Q00002 is set when both DO_IO functions execute successfully. The rung is

constructed so that both DO_IO functions execute even if one does not set its OK output.

With normal I/O suspended, output %Q00002 is not updated until a DO_IO function with

%Q00002 in its range executes. This does not occur until the sweep after the setting of

%Q00002. Outputs that are set after a DO_IO function executes are not updated until

another DO_IO function executes, typically in the next sweep. Because of this delay, most

programs that use SUS_IO and DO_IO place the SUS_IO function in the first rung of the

program, the DO_IO function that processes inputs in the next rung, and the DO_IO function

that processes outputs in the last rung.

The range of the DO_IO function doing outputs is %Q00001 through %Q00030. If the module

in this range were a 32-point module, the DO_IO function would actually perform a scan of

the entire module. A DO_IO function will not break the scan in the middle of an I/O module.

Control Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-61

7

Suspend I/O Sample Logic

Control Functions

7-62 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Suspend or Resume I/O Interrupt

Suspend or resume an I/O interrupt when using I/O variables.

If not using I/O variables, use SVC_REQ 32.

The function executes successfully and passes power to the right unless:

 The I/O module associated with the interrupt trigger specified in IN1 is not supported.

 The reference address specified does not correspond to a valid interrupt trigger

reference.

 The specified channel does not have its interrupt enabled in the configuration.

Operands

Parameter Description Allowed Types Allowed Operands Optional

SUSP Selects a suspend or resume
operation.
 1 (ON)=suspend
 0 (OFF)=resume

BOOL variable or bit
reference in a non-BOOL
variable

data flow, I, Q, M, T, G, S, SA, SB,
SC, R, P, L, discrete symbolic, I/O
variable

No

IN1 The interrupt trigger to be
suspended or resumed.

BOOL or WORD variable I, Q, M, T, G, R, P, L, AI, AQ, W, I/O
variable

No

Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware

module and is configured as an I/O interrupt to a program block. When the BOOL variable

SuspOn_Off is set to ON and A1 is set to ON, interrupts from Mod_Int are suspended until

SuspOn_Off is reset.

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-63

7

Conversion Functions
The Conversion functions change a data item from one number format (data type) to another.

Many programming instructions, such as math functions, must be used with data of one type.

As a result, data conversion is often required before using those instructions.

Function Description

Convert Angles

DEG_TO_RAD Converts degrees to radians

RAD_TO_DEG Converts radians to degrees

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BCD4 Converts UINT (16-bit unsigned integer) to BCD4

INT_TO_BCD4 Converts INT (16-bit signed integer) to BCD4

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BCD8 Converts DINT (32-bit signed integer) to BCD8

Convert to INT (16-bit signed integer)

BCD4_TO_INT Converts BCD4 to INT

UINT_TO_INT Converts UINT to INT

DINT_TO_INT Converts DINT to INT

REAL_TO_INT Converts REAL to INT

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT Converts BCD4 to UINT

INT_TO_UINT Converts INT to UINT

DINT_TO_UINT Converts DINT to UINT

REAL_TO_UINT Converts REAL to UINT

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT Converts 8-digit Binary-Coded-Decimal (BCD8) to DINT

UINT_TO_DINT Converts UINT to DINT

INT_TO_DINT Converts INT to DINT

REAL_TO_DINT Converts REAL (32-bit signed real or floating-point values) to DINT

LREAL_TO_DINT Converts REAL (64-bit signed real or floating-point values) to DINT

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL Converts BCD4 to REAL

BCD8_TO_REAL Converts BCD8 to REAL

UINT_TO_REAL Converts UINT to REAL

INT_TO_REAL Converts INT to REAL

DINT_TO_REAL Converts DINT to REAL

LREAL_TO_REAL Converts LREAL to REAL

Convert to LREAL(64-bit signed real or floating-point values)

DINT_TO_LREAL Converts DINT to LREAL

REAL_TO_LREAL Converts REAL to LREAL

Truncate

TRUNC_DINT Rounds a REAL number down to a DINT (32-bit signed integer) number

TRUNC_INT Rounds a REAL number down to an INT (16-bit signed integer) number

Conversion Functions

7-64 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert Angles

Mnemonics:

DEG_TO_RAD_REAL
DEG_TO_RAD_LREAL

RAD_TO_DEG_REAL
RAD_TO_DEG_LREAL

When the Degrees to Radians (DEG_TO_RAD) or the Radians to Degrees (RAD_TO_DEG)

function receives power flow, it performs the appropriate angle conversion on the REAL or

LREAL value in input IN and places the result in output Q.

DEG_TO_RAD and RAD_TO_DEG pass power flow to the right when they execute, unless

IN is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN The value to convert. All except S, SA, SB, and SC No

Q The converted value. All except S, SA, SB, and SC No

Example

A value of +1500 radians is converted to degrees. The result

is placed in %R00001 and %R00002.

Convert UINT or INT to BCD4

When this function receives power flow, it converts the input

unsigned (UINT) or signed single-precision integer (INT) data

into the equivalent 4-digit Binary-Coded-Decimal (BCD)

values, which it outputs to Q.

This function does not change the original input data. The output data can be used directly as

input for another program function.

The function passes power flow when power is received, unless the conversion would result

in a value that is outside the range 0 to 9,999.

Tip: Data can be converted to BCD format to drive BCD-encoded LED displays or presets

to external devices such as high-speed counters.

Operands

Parameter Description Allowed Operands Optional

IN The UINT or INT value to convert to
BCD4.

All except S, SA, SB, and SC No

Q The BCD4 equivalent value of the original
UINT or INT value in IN.

All except S, SA, SB, and SC No

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-65

7

Example - UINT to BDC4

Whenever input %I00002 is set and no errors exist,

the UINT at input location %I00017 through %I00032 is

converted to four BCD digits and the result is stored in

memory locations %Q00033 through %Q00048. Coil

%M01432 is used to check for successful conversion.

Example - INT to BCD4

Whenever input %I0002 is set and no errors exist,

the INT values at input locations %I0017 through

%I0032 are converted to four BCD digits, and the

result is stored in memory locations %Q0033

through %Q0048. Coil %Q1432 is used to check

for successful conversion.

Convert DINT to BCD8

When DINT_TO_BCD8 receives power flow, it converts the input signed double-

precision integer (DINT) data into the equivalent 8-digit Binary-Coded-Decimal

(BCD) values, which it outputs to Q. DINT_TO_BCD8 does not change the

original DINT data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would result

in a value that is outside the range 0 to 99,999,999.

Operands

Parameter Description Allowed Operands Optional

IN The DINT value to convert to BCD8 All except S, SA, SB, and SC No

Q The BCD8 equivalent value of the original DINT value in IN All except S, SA, SB, and SC No

Example

Whenever input %I00002 is set and no errors exist, the

double-precision signed integer (DINT) at input location

%AI0003 is converted to eight BCD digits and the result

is stored in memory locations %L00001 through

%L00002.

Conversion Functions

7-66 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert BCD4, UINT, DINT, or REAL to INT

BDC4, UINT, and DINT

When this function receives power flow, it converts the input data into the equivalent single-

precision signed integer (INT) value, which it outputs to Q. This function does not change the

original input data. The output data can be used directly as input for another program

function, as in the examples.

The function passes power flow when power is received, unless the data is out of range.

REAL

When REAL_TO_INT receives power flow, it rounds the input REAL data up or down to the

nearest single-precision signed integer (INT) value, which it outputs to Q. REAL_TO_INT

does not change the original REAL data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the data is out of range or

NaN (Not a Number).

Warning

Converting from REAL to INT may result in overflow. For example, REAL
7.4E15, which equals 7.4 × 1015, converts to INT OVERFLOW.

Tip: To truncate a REAL value and express the result as an INT, i.e., to remove the

fractional part of the REAL number and express the remaining integer value as an

INT, use TRUNC_INT.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to INT. All except S, SA, SB, and SC No

Q The INT equivalent value of the original value in IN. All except S, SA, SB, and SC No

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-67

7

Examples

BCD4 to INT

Whenever input %I0002 is set, the BCD-4 value in PARTS is converted to a signed integer

(INT) and passed to the ADD_INT function, where it is added to the INT value represented by

the reference RUNNING. The sum is output by ADD_INT to the reference TOTAL.

UINT to INT

Whenever input %M00344 is set, the UINT value in %R00234 is converted to a signed

integer (INT) and passed to the ADD function, where it is added to the INT value in

%R06488. The sum is output by the ADD function to the reference CARGO.

DINT to INT

Whenever input %M00031 is set, the DINT value in %R00055 is converted to a signed

integer (INT) and passed to the ADD function, where it is added to the INT at %R02345. The

sum is output by the ADD function to %R08004.

Conversion Functions

7-68 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert BCD4, INT, DINT, or REAL to UINT

When this function receives power flow, it converts the input data into the equivalent single-

precision unsigned integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used

directly as input for another program function, as in the example.

The function passes power flow when power is received, unless the resulting data is outside

the range 0 to +65,535.

Warning

Converting from REAL to UINT may result in overflow. For example, REAL
7.2E17, which equals 7.2 × 1017, converts to UINT OVERFLOW.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to UINT. All except S, SA, SB, and SC No

Q The UINT equivalent value of the original input value in IN. All except S, SA, SB, and SC No

Examples

BCD4 to UINT

Tip: One use of BCD4_TO_UINT is to convert BCD data from the I/O structure into

integer data and store it in memory. This can provide an interface to BCD

thumbwheels or external BCD electronics, such as high-speed counters and position

encoders.

In the following example, whenever input %I0002 is set, the BCD4 value in PARTS is

converted to an unsigned single-precision integer (UINT) and passed to the ADD_UINT

function, where it is added to the UINT value represented by the reference RUNNING. The

sum is output by ADD_UINT to the reference TOTAL.

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-69

7

INT to UINT

Whenever input %I0002 is set, the INT value in %L00050 is converted to an unsigned single-

precision integer (UINT) and passed to the ADD_UINT function, where it is added to the

UINT value in %R08833. The sum is output by ADD_UINT to the reference TOTAL.

DINT to UINT

Whenever input %I00002 is set and no errors exist, the double precision signed integer

(DINT) at input location %R00007 is converted to an unsigned integer (UINT) and passed to

the SUB function, where the constant value 145 is subtracted from it. The result of the

subtraction is stored in the output reference location %Q00033.

REAL to UINT

Whenever input %I00045 is set, the REAL value in %L00045 is converted to an unsigned

single-precision integer (UINT) and passed to the ADD_UINT function, where it is added to

the UINT value in %R00045. The sum is output by ADD_UINT to the reference TOTAL.

Conversion Functions

7-70 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert BCD8, UINT, INT, REAL or LREAL to DINT

BCD8, UINT, and INT

When this function receives power flow, it converts the data into the equivalent signed

double-precision integer (DINT) value, which it outputs to Q. The conversion to DINT does

not change the original data.

The output data can be used directly as input for another program function. The function

passes power flow when power is received, unless the data is out of range.

REAL and LREAL

When REAL_TO_DINT or LREAL_TO_DINT receives power flow, it rounds the input data to

the nearest double-precision signed integer (DINT) value, which it outputs to Q. These

functions do not change the original REAL or LREAL data.

The output data can be used directly as input for another program function. The function

passes power flow when power is received, unless the conversion would result in an

out-of-range DINT value.

Warning

Converting from LREAL or REAL to DINT may result in overflow. For example,
REAL 5.7E20, which equals 5.7 × 1020, converts to DINT OVERFLOW.

Tip: To truncate a REAL value and express the result as a DINT, i.e., to remove the

fractional part of the REAL number and express the remaining integer value as a

DINT, use TRUNC_DINT.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to DINT. All except S, SA, SB, and SC No

Q The DINT equivalent value of the original input value in IN. All except S, SA, SB, and SC No

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-71

7

Examples

UINT to DINT

Whenever input %M01478 is set, the unsigned single-precision integer (UINT) value at input

location %R00654 is converted to a double-precision signed integer (DINT) and the result is

placed in location %L00049. The output %M00065 is set whenever the function executes

successfully.

BCD8 to DINT

Whenever input %I00025 is set, the BCD-8 value in %L00046 is converted to a signed

double-precision integer (DINT) and passed to the ADD_DINT function, where it is added to

the DINT value in %R00797. The sum is output by ADD_DINT to the reference TOTAL.

INT to DINT

Whenever input %I00002 is set, the signed single-

precision integer (INT) value at input location %I00017

is converted to a double-precision signed integer

(DINT) and the result is placed in location %L00001.

The output %Q01001 is set whenever the function

executes successfully.

REAL to DINT

Whenever input %I0002 is set, the REAL value

at input location %R0017 is converted to a

double precision signed integer (DINT) and the

result is placed in location %R0001. The output

%Q1001 is set whenever the function executes

successfully.

Conversion Functions

7-72 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL

When this function receives power flow, it converts the input data into the equivalent 32-bit

floating-point (REAL) value, which it outputs to Q. The conversion to REAL does not change

the original input data.

The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would result

in a value that is out of range.

Warning

Converting from BCD8 to REAL may result in the loss of significant digits.

This is because a BCD8 value is stored in a DWORD, which uses 32 bits to store a value,

whereas a REAL (32-bit IEEE floating point number) uses 8 bits to store the exponent and

the sign and only 24 bits to store the mantissa.

Warning

Converting from DINT to REAL may result in the loss of significant digits for
numbers with more than 7 significant base-10 digits.

This is because a DINT value uses 32 bits to store a value, which is the equivalent of up to

10 significant base-10 digits, whereas a REAL (32-bit IEEE floating point number) uses 8 bits

to store the exponent and the sign and only 24 bits to store the mantissa, which is the

equivalent of 7 or 8 significant base-10 digits. When the REAL result is displayed as a base-

10 number, it may have up to 10 digits, but these are converted from the rounded 24-bit

mantissa, so that the last 2 or 3 digits may be inaccurate.

Operands

Parameter Description Allowed Operands Optional

IN The value to convert to REAL. All except S, SA, SB, and SC

Q The REAL equivalent value of the original input value in IN. All except S, SA, SB, and SC

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-73

7

Examples

UINT to REAL

The unsigned integer value in %L00001 is 825. The value placed in %L00016 is 825.000.

INT to REAL

The integer value of input IN is -678. The value placed in %R00010 is -678.000.

LREAL to REAL

The double-precision floating point value of the square root of 2 is rounded to the nearest

single-precision floating point value and placed in R00300.

Conversion Functions

7-74 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Convert REAL to LREAL

When REAL_TO_LREAL receives power flow, it converts the 32-bit single

precision floating point REAL data to the equivalent 64-bit double-precision

floating point data. REAL_TO_LREAL does not change the original REAL data.

Operands

Parameter Description Allowed Operands Optional

IN The REAL value to convert to LREAL. All except S, SA, SB, and
SC

No

Q The LREAL equivalent value of the original REAL value. All except S, SA, SB, and
SC

No

Example
The REAL value of the square root of 2 is converted to the LREAL data type and placed in
R00200. Because the actual precision of the data in Result_Real is seven decimal places,
the additional decimal places in the data in R00200 are not valid.

Convert DINT to LREAL

When DINT_TO_LREAL receives power flow, it converts the double-

precision input data to 64-bit double-precision floating point data.

Conversion Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-75

7

Truncate

When power is received, the Truncate functions TRUNC_DINT and TRUNC_INT round a

floating-point (REAL) value down respectively to the nearest signed double-precision signed

integer (DINT) or signed single-precision integer (INT) value. TRUNC_DINT and TRUNC_INT

output the converted value to Q. The original data is not changed.

Note: The output data can be used directly as input for another program function.

TRUNC_DINT and TRUNC_INT pass power flow when power is received, unless the

specified conversion would result in a value that is out of range or unless IN is NaN (Not a

Number).

Operands

Parameter Description Allowed Operands Optional

IN The REAL value whose copy is to be converted and truncated.
The original is left intact.

All except S, SA, SB, and SC No

Q The truncated value of the original REAL value in IN. All except S, SA, SB, and SC No

Example

The displayed constant is truncated and the integer result 562 is placed in %T0001.

Counters

7-76 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Counters
Function Mnemonic Description

Down Counter DNCTR Counts down from a preset value. The output is ON whenever the Current

Value is 0.

Up Counter UPCTR Counts up to a designated value. The output is ON whenever the Current

Value is the Preset Value.

Data Required for Counter Function Blocks

Warning

Do not use two consecutive words (registers) as the starting addresses of two
counters. Logic Developer - PLC does not check or warn you if register blocks
overlap. Timers will not work if you place the current value of a second timer
on top of the preset value for the previous timer.

Each counter uses a one-dimensional, three-word array of %R, %W, %P, %L, or symbolic

memory to store the following information:

Current value (CV) Word 1
Warning

The first word (CV) can be read but should not be written to, or
the function may not work properly.

Preset value (PV) Word 2 When the Preset Value (PV) operand is a variable, it is normally set to a

different location than word 2 in the timer’s or counter’s three-word array.

■ If you use a different address and you change word 2 directly, your change

will have no effect, as PV will overwrite word 2.

■ If you use the same address for the PV operand and word 2, you can

change the Preset Value in word 2 while the timer or counter is running

and the change will be effective.

Control word Word 3
Warning

The third word (Control) can be read but should not be written to;
otherwise, the function will not work.

The control word stores the state of the Boolean inputs and outputs of its

associated timer or counter, as shown in the following diagram:

Word 3: Control Word Structure

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Q (counter/timer status output)

EN (enable input

Reset input

Enable input, previous execution

Note: Bits 0 through 13 are not used for counters.

Counters

GFK-2222S Chapter 7 Ladder Diagram Programming 7-77

7

Down Counter

The Down Counter (DNCTR) function counts down from a preset value. The

minimum Preset Value (PV) is zero; the maximum PV is +32,767 counts.

When the Current Value (CV) reaches the minimum value, -32,768, it stays

there until reset. When DNCTR is reset, CV is set to PV. When the power flow

input transitions from OFF to ON, CV is decremented by one. The output is

ON whenever CV 0.

The output state of DNCTR is retentive on power failure; no automatic

initialization occurs at power-up.

Warning

Do not use the down counter’s Address with other instructions. Overlapping
references cause erratic counter operation.

Note: For DNCTR to function properly, you must provide an initial reset to set the CV to the

value in PV. If DNCTR is not initially reset, CV will decrement from 0 and the output

of DNCTR will be set to ON immediately.

Operands

Parameter Description Allowed Operands Optional

Address
(????)

The beginning address of a three-word WORD array:

 Word 1: Current Value (CV)
 Word 2: Preset Value (PV)%
 Word 3: Control word

R, W, P, L, symbolic No

R When R receives power flow, it resets the counter's CV to PV. Power flow No

PV Preset Value to copy into word 2 of the counter's address when the

counter is enabled or reset. 0 PV 32,767. If PV is out of range,
word 2 cannot be reset.

All except S, SA, SB, SC No

CV The current value of the counter All except S, SA, SB, SC
and constant

No

Example – Down Counter

DNCTR counts 5000 new parts before energizing output %Q00005.

Counters

7-78 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Up Counter

The Up Counter (UPCTR) function counts up to the Preset Value (PV). The

range is 0 to +32,767 counts. When the Current Value (CV) of the counter

reaches 32,767, it remains there until reset. When the UPCTR reset is ON,

CV resets to 0. Each time the power flow input transitions from OFF to ON,

CV increments by 1. CV can be incremented past the Preset Value (PV).

The output is ON whenever CV PV. The output (Q) stays ON until the R

input receives power flow to reset CV to zero.

The state of UPCTR is retentive on power failure; no automatic initialization occurs at

powerup.

Operands

Warning

Do not use the up counter’s Address with other instructions. Overlapping
references cause erratic counter operation.

Parameter Description Allowed Operands Optional

Address
(????)

The beginning address of a three-word WORD array:

 Word 1: Current Value (CV)
 Word 2: Preset Value (PV)
 Word 3: Control word

R, W, P, L, symbolic No

R When R is ON, it resets the counter's CV to 0. Power flow No

PV Preset Value to copy into word 2 of the counter's address when the counter is

enabled or reset. 0 PV 32,767. If PV is out of range, it does not affect
word 2.

All except S, SA, SB,
and SC

No

CV The current value of the counter All except S, SA, SB,
SC and constant

No

Example – Up Counter

Every time input %I0012 transitions from OFF to ON, the Up Counter counts up by 1; internal

coil %M0001 is energized whenever 100 parts have been counted. Whenever %M0001 is

ON, the accumulated count is reset to zero.

Counters

GFK-2222S Chapter 7 Ladder Diagram Programming 7-79

7

Example – Up Counter and Down Counter

This example uses an up/down counter pair with a shared register for the accumulated or

current value. When the parts enter the storage area, the up counter increments by 1,

increasing the current value of the parts in storage by a value of 1. When a part leaves the

storage area, the down counter decrements by 1, decreasing the inventory storage value by

1. To avoid conflict with the shared register, both counters use different register addresses

but each has a current value (CV) address that is the same as the accumulated value for the

other register.

Data Move Functions

7-80 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Data Move Functions
The Data Move functions provide basic data move capabilities.

Function Mnemonics Description

Array Size ARRAY_SIZE Counts the number of elements in an array.

Array Size Dimension 1 ARRAY_SIZE_DIM1 Returns the value of the Array Dimension 1 property of a
one- or two-dimensional array.

Array Size Dimension 2 ARRAY_SIZE_DIM2 Returns the value of the Array Dimension 2 property of a
two-dimensional array.

Block Clear BLK_CLR_WORD Replaces all the contents of a block of data with zeros.
Can be used to clear an area of WORD or analog
memory.

Block Move BLKMOV_DINT
BLKMOV_DWORD
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD

Copies a block of seven constants to a specified memory
location. The constants are input as part of the function.

Bus Read BUS_RD_BYTE
BUS_RD_DWORD
BUS_RD_WORD

Reads data from a module on the bus.

Bus Read Modify Write BUS_RMW_BYTE
BUS_RMW_DWORD
BUS_RMW_WORD

Uses a read/modify/write cycle to update a data element
in a module on the bus.

Bus Test and Set BUS_TS_BYTE
BUS_TS_WORD

Handles semaphores on the bus.

Bus Write BUS_WRT_BYTE
BUS_WRT_DWORD
BUS_WRT_WORD

Writes data to a module on the bus.

Communication Request COMM_REQ Allows the program to communicate with an intelligent
module, such as a Genius Bus Controller or a High
Speed Counter.

Data Initialization DATA_INIT_DINT
DATA_INIT_DWORD
DATA_INIT_INT
DATA_INIT_REAL
DATA_INIT_LREAL
DATA_INIT_UINT
DATA_INIT_WORD

Copies a block of constant data to a reference range.
The mnemonic specifies the data type.

Data Initialize ASCII DATA_INIT_ASCII Copies a block of constant ASCII text to a reference
range.

Data Initialize DLAN DATA_INIT_DLAN Used with a DLAN Interface module.

Data Initialize Communications
Request

DATA_INIT_COMM Initializes a COMM_REQ function with a block of
constant data. The length should equal the size of the
COMM_REQ function’s entire command block.

Move MOVE_BOOL
MOVE_DATA
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_LREAL
MOVE_UINT
MOVE_WORD

Copies data as individual bits, so the new location does
not have to be the same data type. Data can be moved
into a different data type without prior conversion.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-81

7

Function Mnemonics Description

Move Data Explicit MOVE_DATA_EX Provides an input that allows for data coherency by
locking symbolic memory being written to during the copy
operation.

Move from Flat MOVE_FROM_FLAT Copies reference memory data to a UDT variable or UDT
array. Provides the option of locking the symbolic or I/O
variable memory area being written to during the copy
operation.

Move to Flat MOVE_TO_FLAT Copies data from symbolic or I/O variable memory to
reference memory. Copies across mismatching data
types.

Shift Register SHFR_BIT
SHFR_DWORD

SHFR_WORD

Shifts one or more data bits, data WORDs or data
DWORDs from a reference location into a specified area
of memory. Data already in the area is shifted out.

Size Of SIZE_OF Counts the number of bits used by a variable.

Swap SWAP_DWORD
SWAP_WORD

Swaps two BYTEs of data within a WORD or two
WORDs within a DWORD.

Data Move Functions

7-82 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Array Size

Counts the number of elements in the array assigned to input IN and

writes the number to output Q.

In an array of structure variables, the number of structure variables

is written to Q; the elements in the structure variables are not

counted.

Tip: If the array assigned to input IN of ARRAY_SIZE is passed to a parameterized C

block for processing, also pass the value of output Q to the block. In the C block

logic, use the value of output Q to ensure all array elements are processed without

exceeding the end of the array. For a two-dimensional array, this method works only

if all elements are treated identically; for example, all are initialized to the same value.

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type whose elements are counted.

If a non-array variable is assigned to IN, the value of
Q is 1.

Data flow, I, Q, M, T, S, SA,
SB, SC, G, discrete symbolic,
I/O variable

No

Q Number of elements in the array assigned to input
IN.

DINT or DWORD variable.

Data flow, I, Q, M, T, G, R, P,
L, AI, AQ, W, symbolic,
I/O variable

No

Example

The two-dimensional array TestArray has its Array Dimension 1 property set to 4 and its

Array Dimension 2 property set to 3. ARRAY_SIZE calculates 4 × 3 and writes the value 12

to the variable Elements.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-83

7

Array Size Dimension Function Blocks

Array Size Dimension 1

Returns the value of the Array Dimension 1 property of an array and

writes the value to output Q. If a non-array variable is assigned to

IN, the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User

Defined Function Block (UDFB), you can use the output Q value to

ensure that a loop using a variable index to access array elements

does not exceed the array's first dimension.

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type. Data flow, I, Q, M, T,
S, SA, SB, SC, G,
discrete symbolic, I/O
variable

No

Q The value of the Array Dimension 1 property of the array assigned
to input IN. The value is set to 0 if a non-array is assigned to IN.

Note: Because the index of the first element of an array is zero, the
index of the last element is one less than the value assigned to Q.

DINT or DWORD
variable.

Data flow, I, Q, M, T,
G, R, P, L, AI, AQ,
W, symbolic,
I/O variable

No

Array Size Dimension 2

Returns the value of the Array Dimension 2 property of an array and

writes the value to output Q. If a non-array variable is assigned to IN,

the value of Q is 0.

In an LD or ST block that is not a parameterized block or a User

Defined Function Block (UDFB), you can use the output Q value to

ensure that a loop using a variable index to access array elements

does not exceed the array's second dimension.

Operands

Parameter Description Allowed Operands Optional

IN Array of any data type. Data flow, I, Q, M, T,
S, SA, SB, SC, G,
discrete symbolic, I/O
variable

No

Q The value of the Array Dimension 2 property of the array assigned
to input IN. The value is set to 0 if a non-array is assigned to IN.

Note: Because the index of the first element of an array is zero, the
index of the last element is one less than the value assigned to Q.

DINT or DWORD
variable.

Data flow, I, Q, M, T,
G, R, P, L, AI, AQ,
W, symbolic,
I/O variable

No

Data Move Functions

7-84 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

To use a FOR_LOOP to access array elements by means of a variable index, you must

ensure that the FOR_LOOP does not iterate beyond the last element of the array.

In the following logic, MOVE_DINT initializes the variable D1_temp to 0. ARRAY_SIZE_DIM1

counts the number of elements of a one-dimensional array named D1_Array and outputs the

result to output Q. Because the index of the first element of an array is zero, the loop must

iterate (Q - 1) times. SUB_DINT performs the subtraction and the result is converted to an

INT value and assigned to variable D1_size.

In the following rungs, the FOR_LOOP executes when D1ON is set to On. The variable index

D1_Index increments by 1 from 0 through D1_size, the value calculated by

ARRAY_SIZE_DIM1 and SUB_DINT. In each loop, the value of D1_temp is assigned to the

element D1_Array[D1_Index] and D1_temp is increased by 1.

You can use a FOR_LOOP to iterate through an array’s second dimension in a method

similar to this example. You can also use nested FOR_LOOPs to ensure that operations on

elements using two variable indexes each do not exceed their array dimension. For additional

examples, refer to the online help.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-85

7

Block Clear

When the Block Clear (BLKCLR_WORD) function receives power flow, it fills the

specified block of data with zeros, beginning at the reference specified by IN.

When the data to be cleared is from BOOL (discrete) memory (%I, %Q, %M, %G,

or %T), the transition information associated with the references is updated.

BLKCLR_WORD passes power to the right whenever it receives power.

Note: The input parameter IN is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional

Length (??) The number of words to clear, starting at the IN

location. 1 Length 256 words.

Constant No

IN The first WORD of the memory block to clear to 0. All except %S and data flow. No

Example

At power-up, 32 words of %Q memory (512 points) beginning at %Q0001 are filled with

zeros. The transition information associated with these references will also be updated.

Data Move Functions

7-86 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Block Move

When the Block Move (BLKMOV) function receives power

flow, it copies a block of seven constants into consecutive

locations beginning at the destination specified in output

Q. BLKMOV passes power to the right whenever it

receives power.

Mnemonics:

BLKMOV_DINT

BLKMOV_DWORD

BLKMOV_INT

BLKMOV_REAL

BLKMOV_UINT

BLKMOV_WORD

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For

example, BLKMOV_DINT requires Q to be a DINT variable.

Parameter Description Allowed Operands Optional

IN1 to IN7 The seven constant values to move. Constants. Constant type must match function
type.

No

Q The first memory location of the destination
for the moved values. IN1 is moved to Q.

All except %S.

%SA, SB, SC are also prohibited on BLKMOV
REAL, BLK_MOV_INT, and BLK_MOV_UINT.

No

Example

When the enabling input represented by the name

#FST_SCN is ON, BLKMOV_INT copies the seven input

constants into memory locations %R0010 through

%R0016.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-87

7

BUS_ Functions

Four program functions allow the PACSystems CPU to communicate with modules in the

system.

■ Bus Read (BUS_RD)

■ Bus Write (BUS_WRT)

■ Bus Read/Modify/Write (BUS_RMW)

■ Bus Test and Set (BUS_TS)

These functions use the same parameters to specify which module on the bus will exchange

data with the CPU.

Note: Additional information related to addressing modules is required to use the BUS_

functions. For open VME modules in an RX7i system, refer to the PACSystems RX7i

User’s Guide to Integration of VME Modules, GFK-2235. For other modules, refer to

the product documentation provided by the manufacturer.

Rack, Slot, Subslot, Region, and Offset Parameters

The rack and slot parameters refer to a module in the hardware configuration. The region

parameter refers to a memory region configured for that module. The subslot is ordinarily set

to 0. The offset is a 0-based number that the function adds to the module’s base address

(which is part of the memory region configuration) to compute the address to be read or

written.

Data Move Functions

7-88 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

BUS Read

The BUS_RD function reads data from the bus. This

function should be executed before the data is needed in

the program. If the amount of data to be read is greater

than 32767 BYTES, WORDS, or DWORDS, use multiple

instructions to read the data.

When BUS_RD receives power flow, it accesses the

module at the specified rack (R), slot (S), subslot (SS),

address region (RGN) and offset (OFF). BUS_RD copies

the specified number (Length) of data units (DWORDS,

WORDs or BYTEs) from the module to the CPU,

beginning at output reference (Q).

The function passes power to the right when its operation

is successful. The status of the operation is reported in the

status location (ST).

Note: For each BUS_RD function type, use the

corresponding data type for the Q operand. For

example, BUS_RD_BYTE requires Q to be a

BYTE variable.

Note: An interrupt block can preempt the execution of a

BUS_RD function. On the bus, only 256 bytes are

read coherently (i.e., read without being

preempted by an interrupt).

Mnemonics:

BUS_RD_DINT

BUS_RD_DWORD

BUS_RD_WORD

Operands for BUS READ

Parameter Description Allowed Operands Optional

Length (??) The number of BYTEs, DWORDs, or WORDs. 1 to 32,767. Constant No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0). UINT constant or variable. All except %S—%SC Yes

RGN Region (defaults to 1). WORD constant or variable. All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or variable. All except %S—%SC No

ST The status of the operation. WORD variable. All except variables
located in %S—
%SC, and constants

Yes

Q Reference for data read from the module. DWORD variable. All except variables
located in %S—
%SC, and constants

No

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-89

7

BUS_RD Status in the ST Output

The BUS_RD function returns one of the following values to the ST output:

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

8 Region not enabled

10 Function parameter invalid.

BUS Read Modify Write

The BUS_RMW function updates one byte, word, or

double word of data on the bus. This function locks the

bus while performing the read-modify-write operation.

When the BUS_RMW function receives power flow

through its enable input, the function reads a dword, word

or byte of data from the module at the specified rack (R),

slot (S), subslot (SS) and optional address region (RGN)

and offset (OFF). The original value is stored in parameter

(OV).

The function combines the data with the data mask (MSK).

The operation performed (AND / OR) is selected with the

OP parameter. The mask value is dword data. When

operating on a word of data, only the lower 16 bits are

used. When operating on a byte of data, only the lower 8

bits of the mask data are used. The result is then written

back to the same address from which it was read.

The BUS_RMW function passes power to the right when

its operation is successful, and returns a status value to

the ST output.

Other mnemonic:

BUS_RMW_WORD

Data Move Functions

7-90 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for BUS_RMW

For BUS_RMW_WORD, the absolute bus address must be a multiple of 2. For

BUS_RMW_DWORD, it must be a multiple of 4.

The absolute bus address is equal to the base address plus the offset value.

Parameter Description Allowed Operands Optional

OP Type of operation:

0 = AND
1 = OR

Constant

No

MSK The data mask. DWORD constant or variable. All except %S—%SC No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (optional, defaults to 0). UINT constant or
variable.

All except %S—%SC
Yes

RGN Region (defaults to 1). WORD constant or variable. All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or variable. All except %S—%SC No

ST The status of the operation. WORD variable. All except variables located in
%S—%SC, and constants

Yes

OV Original value. DWORD variable. All except variables located in
%S—%SC, and constants

Yes

BUS_RMW Status in the ST Output

The BUS_RMW function returns one of the following values to the ST output:

0 Operation successful.

1 Bus error

2 Module does not exist at rack/slot location.

3 Module at rack/slot location is an invalid type.

4 Start address outside the configured range.

5 End address outside the configured address range.

6 Absolute address even but interface configured as odd byte only

7 For WORD type, absolute bus address is not a multiple of 2. For
DWORD type, absolute bus address is not a multiple of 4.

8 Region not enabled

9 Function type too large for configured access type.

10 Function parameter invalid.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-91

7

BUS Test and Set

The BUS_TS function uses semaphores to control

access to specific memory in a module located on

the bus. The BUS_TS function exchanges a Boolean

TRUE (1) for the value currently at the semaphore

location. If that value was already a 1, then the

BUSTST function does not acquire the semaphore. If

the existing value was 0, the semaphore is set and

the BUS_TS function has the semaphore and the use

of the memory area it controls. The semaphore can

be cleared and ownership relinquished by using the

BUSWRT function to write a 0 to the semaphore

location. This function locks the bus while performing

the operation.

When the BUS_TS function receives power flow

through its enable input, the function exchanges a

Boolean TRUE (1) with the address specified by the

RACK, SLOT, SUBSLOT, RGN, and OFF

parameters. The function sets the Q output on if the

semaphore was available (0) and was acquired. It

passes power flow to the right whenever power is

received and no errors occur during execution.

Other mnemonic:

BUS_TS_WORD

Operands for BUS Test and Set

BUS_TS can be programmed as BUS_TS_BYTE or BUS_TS_WORD. For BUS_TS_WORD,

the absolute address of the module must be a multiple of 2. The absolute address is equal to

the base address plus the offset value.

Parameter Description Allowed Operands Optional

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0). UINT constant or variable. All except %S—%SC Yes

RGN Region (defaults to 1). WORD constant or variable. All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or variable. All except %S—%SC No

ST The status of the bus test and set operation. WORD variable. All except variables
located in %S—
%SC, and constant

Yes

Q Output set on if the semaphore was available (0). Otherwise, Q is set off. Power flow Yes

Data Move Functions

7-92 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

BUS Write

When the BUS_WRT function receives power flow

through its enable input, it writes the data located at

reference (IN) to the module at the specified rack (R), slot

(S), subslot (SS) and optional address region (RGN) and

offset (OFF). BUSWRT writes the specified length (LEN)

of data units (DWORDS, WORDs or BYTEs).

The BUS_WRT function passes power to the right when

its operation is successful. The status of the operation is

reported in the status location (ST).

Note: For each BUS_WRT function type, use the

corresponding data type for the IN operand. For

example, BUS_WRT_BYTE requires IN to be a

BYTE variable.

Note: An interrupt block can preempt the execution of a

BUS_WRT function. On the bus, only 256 bytes

are written coherently (i.e., written without being

preempted by an interrupt).

Mnemonics:

BUS_WRT_DINT

 BUS_WRT_DWORD

BUS_WRT_WORD

Operands for Bus Write

Parameter Description Allowed Optional

Length (??) Length. The number of BYTEs, DWORDs, or WORDs. 1 to 32,767. Constant No

IN Reference for data to be written to the module. DWORD variable. All except variables
located in %S—%SC,
and constant

No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0) UINT constant or variable. All except %S—%SC Yes

RGN Region. (defaults to 1) WORD constant or variable. All except %S—%SC Yes

OFF The offset in bytes. DWORD constant or variable. All except %S—%SC No

ST The status of the operation. WORD variable. All except variables
located in %S—%SC,
and constant

Yes

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-93

7

Communication Request

The Communication Request (COMM_REQ) function communicates with an

intelligent module, such as a Genius Communications Module or High Speed

Counter.

Notes:

■ The information presented in this section shows only the basic format of
the COMM_REQ function. Many types of COMM_REQs have been
defined. You will need additional information to program the COMM_REQ
for each type of device. Programming requirements for each module that
uses the COMM_REQ function are described in the specialty module's
user documentation.

■ If you are using serial communications, refer to chapter 13, “Serial I/O,
SNP and RTU Protocols.”

■ A COMM_REQ instruction inside an interrupt block being executed may
cause the block to be preempted when a new, incoming interrupt has the
same priority.

When COMM_REQ receives power flow, it sends the command block of data specified by the

IN operand to the communications TASK in the intelligent or specialty module, at the rack/slot

location specified by the SYSID operand. The command block contents are sent to the

receiving device and the program execution resumes immediately. (Because PACSystems

does not support WAIT mode COMM_REQs, the timeout value is ignored.)

The COMM_REQ passes power flow unless the following fault conditions exist. The Function

Faulted (FT) output may be set ON if:

■ Control block is invalid

■ Destination is invalid (target module is not present or is faulted)

■ Target module cannot receive mail because its queue is full

The Function Faulted output may have these states:

Enable Error? Function Faulted Output

active no OFF

active yes ON

not active no execution OFF

Command Block

The command block provides information to the intelligent module on the command to be

performed. The command block starts at the reference specified by the operand IN. This

address may be in any word-oriented area of memory (%R, %P, %L, %W, %AI, %AQ, or

symbolic non-discrete variables). The length of the command block depends on the amount

of data sent to the device.

The Command Block contains the data to be communicated to the other device, plus

information related to the execution of the COMM_REQ. Information required for the

command block can be placed in the designated memory area using a programming function

such as MOVE, BLKMOV, or DATA_INIT_COMM.

Data Move Functions

7-94 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Command Block Structure

Address Data Block
Length (in words)

The number of data words starting with the data at
address+6 to the end of the command block, inclusive. The
data block length ranges from 1 to 128 words. Each
COMM_REQ command has its own data block length.
When entering the data block length, you must ensure that
the command block fits within the register limits

Address + 1 Wait/No Wait Flag Must be set to 0 (No Wait)

Address + 2 Status Pointer
Memory Type

Specifies the memory type for the location where the
COMM_REQ status word (CSR) returned by the device will
be written when the COMM_REQ completes.

Address + 3 Status Pointer
Offset

The word at address + 3 contains the offset for the status
word within the selected memory type.

Note: The status pointer offset is a zero-based value. For

example, %R00001is at offset zero in the register table.

Address + 4 Idle Timeout
Value

This parameter is ignored in No Wait mode.

Address + 5 Maximum
Communication
Time

This parameter is ignored in No Wait mode.

Address + 6
to Address + 133

Data Block The data block contains the command's parameters. The
data block begins with a command number in address + 6,
which identifies the type of communications function to be
performed. Refer to the specific device manual for
COMM_REQ command formats.

Status Pointer Memory Type

Status pointer memory type contains a numeric code that specifies the user reference

memory type for the status word. The table below shows the code for each reference type:

For this memory type Enter this decimal value

%I Discrete input table (BIT mode) 70

%Q Discrete output table (BIT mode) 72

%I Discrete input table (BYTE mode) 16

%Q Discrete output table (BYTE mode) 18

%R Register memory 8

%W Word memory 196

%AI Analog input table 10

%AQ Analog output table 12

Notes:

■ The value entered determines the mode. For example, if you enter the %I bit mode is 70,
then the offset will be viewed as that bit. On the other hand, if the %I value is 16, then the
offset will be viewed as that byte.

■ The high byte at address + 2 should contain zero.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-95

7

Operands for COMM_REQ

Parameter Description Allowed Operands Optional

IN The reference of the first WORD of the command block. Variables in %R, %P,
%L, %AI, %AQ, %W,
and symbolic non-
discrete variables

No

SYSID The rack number (most significant byte) and slot number (least significant
byte) of the target device (intelligent module).

Note: For systems that do not have expansion racks, SYSID must be

zero for the main rack.

All except flow and
variables in %S -
%SC

No

TASK The task ID of the process on the target device Constants; variables
in %R, %P, %L, %AI,
%AQ, %W, and
symbolic non-
discrete variables

No

FT Function Faulted output. FT is energized if an error is detected processing
the COMM_REQ:

■ This is a WAIT mode COMM_REQ and the CPU does not support it

■ The specified target address (SYSID operand) is not present.

■ The specified task (TASK operand) is not valid for the device.

■ The data length is 0.

■ The device's status pointer address (part of the command block) does
not exist. This may be due to an incorrect memory type selection, or
an address within that memory type that is out of range.

Power flow Yes

COMM_REQ Status Word

The CRS word consists of two byte values, a major code and a minor code.

00 01

CRS Word

(hexadecimal)

High Low

Minor Error Code (high byte)

Success and Major Error Code (low byte)

Refer to the specific device manual for CRS major and minor codes used by COMM_REQ

commands at that device.

Data Move Functions

7-96 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Examples for COMM_REQ

Example 1

When enabling input %M0020 is ON, a command block starting at %R0016 is sent to

communications task 1 in the device located at rack 1, slot 2 of the PLC. If an error occurs

processing the COMM_REQ, %Q0100 is set.

Example 2

The MOVE function can be used to enter the command block contents for the COMM_REQ

described in example 1.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-97

7

Input IN of the COMM_REQ specifies %R00016 as the beginning reference for the command

block. Successive references contain the following:

%R00016 Data Block Length

%R00017 Wait/No Wait Flag

%R00018 Status Pointer Memory Type

%R00019 Status Pointer Offset

%R00020 Idle Timeout Value (Because this parameter is ignored in NO WAIT
mode, no value is input).

%R00021 Maximum Communication Time Value (Because this parameter is
ignored in NO WAIT mode, no value is input).

%R00022 to end of data Data Block

MOVE functions supply the following command block data for the COMM_REQ.

■ The first MOVE function places the length of the data being communicated in

%R00016.

■ The second MOVE function places the constant 0 in %R00017. This specifies NO

WAIT mode.

■ The third MOVE function places the constant 8 in %R00018. This specifies the

register table as the location for the status pointer.

■ The fourth MOVE function places the constant 512 in reference %R00019. Therefore,

the status pointer is located at %R00513.

The programming logic displayed in example 2 can be simplified by replacing the six MOVE

functions with one DATA_INIT_COMM function.

Data Move Functions

7-98 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Data Initialization

Note: The mnemonics DATA_INIT_ASCII (page 7-99) and

DATA_INIT_COMM (page 7-100) operate differently

from the other six functions.

The Data Initialization (DATA_INIT) function copies a block of

constant data to a reference range.

When the DATA_INIT instruction is first programmed, the

constants are initialized to zeroes. To specify the constant

data to copy, double-click the DATA_INIT instruction in the LD

editor.

Mnemonics:

DATA_INIT_DWORD

DATA_INIT_DWORD

DATA_INIT_INT

DATA_INIT_UINT

DATA_INIT_REAL
DATA_INIT_LREAL

DATA_INIT_WORD

When DATA_INIT receives power flow, it copies the constant data to output Q. DATA_INIT's

constant data length (LEN) specifies how much constant data of the function type is copied to

consecutive reference addresses starting at output Q. DATA_INIT passes power to the right

whenever it receives power.

Notes:

■ The output parameter is not included in coil checking.

■ If you replace one DATA_INIT instruction (except DATA_INIT_ASCII or
DATA_INIT_COMM) with another (except DATA_INIT_ASCII or DATA_INIT_COMM),
Logic Developer - PLC attempts to keep the same data. For example, configuring a
DATA_INIT_INT with eight rows and then replacing the instruction with a
DATA_INIT_DINT would keep the data for the eight rows. Some precision may be lost
when replacing a DATA_INIT_ instruction, and a warning message will be displayed
when this case is detected.

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For

example, DATA_INIT_DINT requires Q to be a DINT variable.

Parameter Description Allowed Operands Optional

Length The quantity (default 1) of constant data copied
to consecutive reference addresses starting at
output Q.

Constants No

Q The beginning address of the area to which the
data is copied.

All, except %S. SA, SB, and SC are not
allowed for REAL, LREAL, INT, and UINT
versions.

No

Example

On the first scan (as restricted by the #FST_SCN

system variable), 100 words of initial data are copied to

%R00005 through %R00104.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-99

7

Data Initialize ASCII

The Data Initialize ASCII (DATA_INIT_ASCII) function copies a block of constant

ASCII text to a reference range.

When DATA_INIT_ASCII is first programmed, the constants are initialized to

zeroes. To specify the constant data to copy, double-click the DATA_INIT_ASCII

instruction in the LD editor.

When DATA_INIT_ASCII receives power flow, it copies the constant data to output Q.

DATA_INIT_ASCII’s constant data length (LEN) specifies how many bytes of constant text

are copied to consecutive reference addresses starting at output Q. LEN must be an even

number. DATA_INIT_ASCII passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional

Length The number (default 1) of bytes of constant text copied to
consecutive reference addresses starting at output Q. LEN
must be an even number.

Constants No

Q The beginning address of the area where the data is copied. All except %S. No

Example

On the first scan (as restricted by the #FST_SCN system variable) the decimal equivalent of

100 bytes of ASCII text is copied to %R00050 through %R00149. %Q00002 receives power.

Data Move Functions

7-100 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Data Initialize Communications Request

The Data Initialize Communications Request (DATA_INIT_COMM) function

initializes a COMM_REQ function with a block of constant data. The IN

parameter of the COMM_REQ must correspond with output Q of this

DATA_INIT_COMM function.

When DATA_INIT_COMM is first programmed, the constants are initialized to zeroes. To

specify the constant data to copy, double-click the DATA_INIT_COMM instruction in the LD

editor.

When DATA_INIT_COMM receives power flow, it copies the constant data to output Q.

DATA_INIT_COMM’s constant data length operand specifies how many words of constant

data to copy to consecutive reference addresses starting at output Q. The length should be

equal to the size of the COMM_REQ function’s entire command block. DATA_INIT_COMM

passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands

Parameter Description Allowed Operands Optional

Length The number of WORDs (default 7) of constant data copied to
consecutive reference addresses starting at output Q. Must
equal the size of the COMM_REQ function’s entire command
block, including the header (words 0-5).

Constant No

Q The beginning address of the area where the data is copied. R, W, P, L, AI, AQ,
and symbolic non-
discrete variables

No

Example

On the first scan (as restricted by the #FST_SCN

system variable), a command block consisting of 100

words of data, including the 6 header words, is copied

to %P00001 through %P00100. %Q00002 receives

power.

Data Initialize DLAN

The Data Initialize DLAN (DATA_INIT_DLAN) function is used with a DLAN Interface module,

which is a limited availability, specialty system. If you have a DLAN system, refer to the

DLAN/DLAN+ Interface Module User’s Manual, GFK-0729, for details.

Operands

Parameter Description Allowed Operands Optional

Q The beginning address of the area where the data is copied. flow, R, W, P, L, AI,
AQ, and symbolic
non-discrete
variables

No

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-101

7

Move

When the MOVE function receives power flow, it copies data as

individual bits from one location in PLC memory to another.

Because the data is copied in bit format, the new location does not

need to be the same data type as the original.

The MOVE function copies data from input operand IN to output

operand Q as bits. If data is moved from one location in BOOL

(discrete) memory to another, for example, from %I memory to %T

memory, the transition information associated with the BOOL

memory elements is updated to indicate whether or not the MOVE

operation caused any BOOL memory elements to change state.

Data at the input operand does not change unless there is an

overlap in the source and destination.

Mnemonics:

MOVE_BOOL
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_UINT
MOVE_WORD

Note: If an array of BOOL-type data specified in the Q operand does not include all the bits

in a byte, the transition bits associated with that byte (which are not in the array) are

cleared when the Move function receives power flow. The input IN can be either a

variable providing a reference for the data to be moved or a constant. If a constant is

specified, then the constant value is placed in the location specified by the output

reference. For example, if a constant value of 4 is specified for IN, then 4 is placed in

the memory location specified by Q. If the length is greater than 1 and a constant is

specified, then the constant is placed in the memory location specified by Q and the

locations following, up to the length specified. Do not allow overlapping of IN and Q

operands.

The result of the MOVE depends on the data type selected for the function, as shown below.

For example, if the constant value 9 is specified for IN and the length is 4, then 9 is placed in

the bit memory location specified by Q and the three locations following:

MOVE BOOL MOVE WORD

Enable MOVE

BOOL

4

OK

9 Output IN Q

Enable MOVE

WORD

4

OK

9 Output IN Q

1 2 3 4

MSB LSB

(Length = 4 bits)

9

9

9

9

(Length = 4 words)

The MOVE function passes power to the right whenever it receives power.

Data Move Functions

7-102 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

MOVE Operands

Parameter Description Allowed Operands Optional

Length (??) The length of IN; the number of bits, words,
or double words to copy.

If IN is a constant and Q is BOOL, then 1

Length 16; otherwise, 1 Length 256.

1 Length 32,767

Constant No

IN The location of the first data item to copy.

For MOVE_BOOL, any discrete reference
may be used. It does not need to be byte-
aligned. However 16 bits beginning with the
reference address specified are displayed
online.

If IN is a constant, it is treated as an array of
bits. The value of the least significant bit is
copied into the memory location specified by
Q. If Length is greater than one, the bits are
copied in order from the least significant to
the most significant into successive memory
locations, up to the length specified.

All. %S, %SA, %SB, %SC allowed
only for WORD, DWORD, BOOL
types.

No

Q The location of the first destination data item.

For MOVE_BOOL, any discrete reference
may be used. It does not need to be byte-
aligned. However 16 bits beginning with the
reference address specified are displayed
online.

All except %S. Also no %SA, SB, SC
except for WORD, DWORD, BOOL
types.

No

MOVE_BOOL Example

When %I00003 is set, the three bits

%M00001, %M00002, and %M00003

are moved to %M00100, %M00101, and

%M00102, respectively. Coil %Q00001

is turned on.

MOVE_WORD Example

V_M00001 and V_M00033 are both

WORD arrays of length 3, for a total of

48 bits in each array. Since PLCs do not

recognize arrays, Length has to be set at

3, for the total number of WORDs to be

moved. When enabling input V_Q0014 is

ON, MOVE_WORD moves 48 bits from

the memory location %M00001 to

memory location %M00033. Even though

the destination overlaps the source for 16

bits, the move is done correctly.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-103

7

Move Data

The MOVE_DATA function copies the variable assigned to the

input, IN to the variable assigned to the output, Q. If the constant 0

is assigned to IN, the variable assigned to Q is initialized to its

default value.

Mnemonic:

MOVE_DATA

MOVE_DATA Operands

Parameter Description Allowed Operands Optional

Length (??) The length of IN; the number of elements to
copy.

1 Length 32,767

Constant No

IN The location of the data item to copy.

If IN is 0, Q is set to its default value.

Enumerated variable, structure
variable, or array of these types; the
constant 0.

For details, refer to “Data Types and
Structures” in the PACMotion Multi-
Axis Motion Controller User’s Manual,
GFK-2448.

No

Q The location of the data copied from IN.

Q must be the same data type as IN, unless
IN is the constant 0.

Enumerated variable, structure
variable, or array of these types.

No

Data Move Functions

7-104 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Move Data Explicit

MOVE_DATA_EX provides optional data coherency by locking the

symbolic memory being written to during the copy operation. This

allows data to be copied coherently when accessed by multiple

logic threads (i.e. interrupt blocks). Note that copying large

amounts of data with coherency enabled can increase interrupt

latency.

MOVE_DATA_EX Operands

Parameter Description Allowed Operands Optional

Length
(??)

The length of IN; the number of elements to copy.

1 Length 32,767

Constant No

DC Data coherency.

If True memory being written to is locked, enabling coherent
copying of data from one Controller memory area to another.

If False (default), data is copied normally from one Controller
memory area to another without data coherency.

 The input DC should be used only when using interrupt blocks
and is required only when the same memory is used in more
than one interrupt block, or in the main program and an
interrupt block.

 If DC is True, an interrupt block cannot preempt the copy
operation.

 If DC is False or not present, then interrupts can preempt the
copy.

 Using DC can impact interrupt latency if the amount of data
copied is large.

Data flow. Yes

IN The location of the data item to copy.

If IN is 0 (LD only), length is assigned the constant 1 and the
variable or structure assigned to Q is set to its default value.

Enumerated variable or
structure variable, or array of
these types; the constant 0.

No

Q Variable or array to which IN is copied.

Q must be the same data type as IN, unless IN is the constant 0.

Enumerated variable or
structure variable, or array of
these types.

No

Example

Enum_Array and Enum_Array_Out

are arrays of enumerated variables,

with three elements each. To copy

all elements in Enum_Array, input

Length should be 3. When the

enabling input Q00014 is on,

MOVE_DATA_EX copies three

elements from memory location

Enum_Array to memory location

Enum_Array_Out.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-105

7

Move From Flat

MOVE_FROM_FLAT copies reference memory data to a User-

defined Data Type (UDT) variable or UDT array.

MOVE_FROM_FLAT provides optional data coherency by locking

the data being written to during the copy operation. This allows

data to be copied coherently when accessed by multiple logic

threads (i.e. interrupt blocks). Note that copying large amounts of

data with coherency enabled can increase interrupt latency.

Operation

Copying arrays and array elements

The constant value assigned to input LEN (Length) determines the number of UDT array

elements to be filled by copying data from reference memory to output Q.

Example: If constant value 6 is assigned to input LEN (Length), there should be a UDT array

of at least six elements assigned to output Q. During logic execution, n bytes of data are

copied from reference memory to the first six UDT array elements, where n is the length of

the UDT array element (in bytes) times six.

Copying to specified array elements

For output Q, a single element of a UDT array can be specified, for example,

myUDT_array[4] (5th element of myUDT_array). In this case, the input LEN (Length) operand

applies to the array elements starting from and including myUDT_array[4].

Example: myUDT_array is a UDT array of ten elements, of which each element is a UDT

variable, and myUDT_array[4] is assigned to output Q. This restricts the value of input LEN

(Length) to six or less because there are six remaining UDT array elements that can be filled

in myUDT_array.

Notes:

 Length determines how many UDT variable elements to overwrite in Q.

 If an array head is assigned to input IN, the Length determines how many UDT array

elements assigned to Q are filled by copying data from reference memory.

Data Move Functions

7-106 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

MOVE_FROM_FLAT Operands

Parameter Description Allowed Operands Optional

Length (??) Determines the number of UDT array elements to be filled by
copying data from reference memory to output Q.

1 Length 32,767

Constant No

DC Data coherency.

If True, memory being written to is locked, enabling coherent
copying of data from one Controller memory area to another.

If False (default), data is copied normally from one Controller
memory area to another; that is without data coherency.

 The input DC should be used only when using interrupt
blocks and is required only when the same memory is
used in more than one interrupt block, or in the main
program and an interrupt block.

 If DC is True, an interrupt block cannot preempt the copy
operation.

 If DC is False or not present, then interrupts can preempt
the copy.

 Using DC can impact interrupt latency if the amount of
data copied is large.

Data flow. Yes

IN Reference memory data being copied to UDT variable
elements in output Q as determined by the Length.

All except %S, symbolic, or
I/O variable.

No

Q UDT variable or UDT array to which IN is copied.

Discrete or non-discrete
symbolic, discrete or non-
discrete I/O variable.

No

Example

A WORD variable mapped to %R1 is assigned to input IN and a value of 1 is assigned to

Length. A UDT variable or UDT array is assigned to output Q.

When MOVE_FROM_FLAT executes, n bytes of data are copied, starting at %R1 to a UDT

variable or UDT array, where n is the UDT array element length (in bytes). If a UDT array is

assigned to output Q, n bytes of data are copied to the first UDT array element.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-107

7

Move to Flat

MOVE_TO_FLAT instruction copies data from symbolic or I/O

variable memory to reference memory. MOVE_TO_FLAT copies

across mismatched data types for an operation such as a Modbus

transfer.

MOVE_TO_FLAT provides optional data coherency by locking the

reference memory being written to during the copy operation. This

allows data to be copied coherently when accessed by multiple

logic threads (i.e. interrupt blocks). Note that copying large

amounts of data with coherency enabled can increase interrupt

latency.

Notes:

 The Data Coherency (DC) input should be used only when using interrupt blocks and

is required only when the same memory is used in more than one interrupt block, or

in the main program and an interrupt block.

 If DC is True, an interrupt block cannot preempt the copy operation.

 If DC is False or not present, then interrupts can preempt the copy.

 Using DC can impact interrupt latency if the amount of data copied is large.

Copying Arrays and Array Elements

The Length determines the number of UDT array elements to be copied to the reference

memory of the variable assigned to output Q.

Example: If the value 6 is assigned to Length, there should be a UDT array of at least six

elements assigned to input IN. When logic executes, n bytes of data are copied from the UDT

array elements to the reference memory of the variable assigned to output Q, where n is the

length of the UDT array element (in bytes) times six.

Data Move Functions

7-108 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

MOVE_TO_FLAT Operands

Parameter Description Allowed Operands Optional

Length
(??)

The length of IN; the number of elements to copy.

1 Length 32,767

Constant No

DC Data coherency.

If True, the memory being written to is locked. This enables a
coherent copy of a UDT to reference memory.

If False (default), data is copied normally from one Controller
memory area to another; that is without data coherency.

 DC should be used only when using interrupt blocks and
is required only when the same memory is used in more
than one interrupt block, or in the main program and an
interrupt block.

 If DC is True, an interrupt block cannot preempt the copy
operation.

 If DC is False or not present, interrupts can preempt the
copy.

 Using DC can impact interrupt latency if the amount of
data copied is large.

Data flow. Yes

IN UDT variable or UDT array. The data copied to the reference
memory mapped to the variable assigned to Q.

If IN is 0, length is assigned the constant 1 and the variable or
structure assigned to Q is set to its default value.

Discrete or non-discrete symbolic,
discrete or non-discrete I/O variable.

No

Q Variable or array to which IN is copied. The amount of data
copied is determined by the constant value assigned to input
LEN (Length).

All memory areas except %S,
discrete symbolic, discrete I/O
variable.

▪ Indirect referencing is available
for all register references (%R,
%P, %L, %W, %AI, and %AQ).

▪ BYTE arrays must be packed;
that is, they must be in discrete
memory.

No

Example

A UDT variable or UDT array is assigned to input IN.

The constant value 8 is assigned to input LEN (Length).

A DWORD variable mapped to %R1 is assigned to output Q.

If the constant value 8 is assigned to LEN (length), there should be a UDT array of at least

eight elements assigned to IN. When MOVE_TO_FLAT executes, n bytes of data are copied

from the UDT variable or array to %R memory, starting at %R1 in the example, where n is the

length of a UDT array element (in bytes) times eight.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-109

7

Shift Register

When the Shift Register (SHFR_BIT, SHFR_DWORD, or

SHFR_WORD) function receives power and the R operand does

not, SHFR shifts one or more data BITs, data DWORDs, or data

WORDs from a reference location into a specified area of memory.

A contiguous section of memory serves as a shift register. For

example, one word might be shifted into an area of memory with a

specified length of five words. As a result of this shift, another

word of data would be shifted out of the end of the memory area.

Mnemonics:

SHFR_BIT

SHFR_DWORD

SHFR_WORD

Warning

The use of overlapping input and output reference address ranges in multiword
functions is not recommended, as it may produce unexpected results.

The reset input (R) takes precedence over the function enable input. When the reset is

active, all references beginning at the shift register (ST) up to the length specified, are filled

with zeros.

If the function receives power flow and R is not active, each BIT, DWORD, or WORD of the

shift register is moved to the next highest reference. The elements shifted out of ST are

shifted into Q. The highest reference of IN is shifted into the vacated element starting at ST.

Note: The contents of the shift register are accessible throughout the program because

they are overlaid on absolute locations in logic addressable memory.

The function passes power to the right whenever it receives power flow and the R operand

does not.

Operands for Shift Register

Parameter Description Allowed Operands Optional

Length (??) The number of data items in the shift register,

ST. 1 Length 256.

 No

R Reset. When R is ON, the shift register located
at ST is filled with zeroes.

Power flow No

N The number of data items to shift into ST. Constants No

IN The value to shift into the first data item of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,

any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address
specified, is displayed online.

All

No

ST The first data item of the shift register.

Note: For %I, %Q, %M and %T memory, any

BOOL reference may be used; it does not
need to be byte-aligned. However, 16 bits,
beginning with the reference address
specified, are displayed online.

All except data flow, constants, S No

Data Move Functions

7-110 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Parameter Description Allowed Operands Optional

Q The data shifted out of ST. The same number
of data items will be shifted into Q as were
shifted out of ST.

SHFR_BIT: For %I, %Q, %M and %T memory,

any BOOL reference may be used; it does not
need to be byte-aligned. However, 1 bit,
beginning with the reference address
specified, is displayed online.

All except S No

Example

SHFR_WORD operates on register memory locations %R0001 through %R0100. When the

reset reference CLEAR is active, the Shift Register words are set to zero.

When the NXT_CYC reference is active and CLEAR is not, the two words at the starting

address V_Q00033 are shifted into the Shift Register at %R0001. The words shifted out of

the Shift Register from %R0100 are stored in output %M0005. Note that, for this example, the

length specified and the amount of data to be shifted (N) are not the same.

Data Move Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-111

7

Size Of

Counts the number of bits used by the variable assigned

to input IN and writes the number of bits to output Q.

Mnemonics:

SIZE_OF

Operands

Parameter Description Allowed Operands Optional

IN The variable whose size in bits is calculated. Variable of any data type except
BYTE arrays in non-discrete
memory and double-segment
structures.

No

Q The number of bits used by the variable
assigned to input IN.

DINT or DWORD variable.

ST also supports INT and WORD
variables.

No

Example

The single-segment structure named Var assigned to input IN contains eight BOOL elements

(8 × 1 = 8 bits) and twelve WORD elements (12 × 16 = 192 bits). SIZE_OF outputs the value

8 + 192 = 200 to the variable R00001 assigned to output Q.

Data Move Functions

7-112 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Swap

The SWAP function is used to swap two bytes within a
word (SWAP WORD) or two words within a double word
(SWAP DWORD). The SWAP can be performed over a
wide range of memory by specifying a length greater than
1. If that is done, the data in each word or double word
within the specified length is swapped.

Other mnemonic:

SWAP_WORD

When the SWAP function receives power flow, it swaps the data in reference IN and places

the swapped data into output reference Q. The function passes power to the right whenever it

receives power.

PACSystems CPUs use the Intel convention for storing word data in bytes. They store the

least significant byte of a word in address n and the most significant byte in address n+1.

Many VME modules follow the Motorola convention of storing the most significant byte in

address n and the least significant byte in address n+1.

The PACSystems CPU assigns byte address 1 to the same storage location regardless of the

byte convention used by the other device. However, because of the difference in byte

significance, word and multiword data, for example, 16 bit integers (INT, UINT), 32 bit

integers (DINT) or floating point (REAL) numbers, must be adjusted when being transferred

to or from Motorola-convention modules. In these cases, the two bytes in each word must be

swapped, either before or after the transfer. In addition, for multiword data items, the words

must be swapped end-for-end on a word basis. For example, a 64-bit real number transferred

to the PACSystems CPU from a Motorola-convention module must be byte-swapped and

word-reversed, either before or after reading, as shown below:

B1 B2 B3 B4 B5 B6 B7 B8

Character (ASCII) strings or BCD data require no adjustment since the Intel and Motorola

conventions for storage of character strings are identical.

Operands for Swap

The two parameters, IN and Q, must both be the same type, WORD or DWORD.

Parameter Description Allowed Operands Optional

Length (??) The number of WORDs or DWORDs to operate on. 1 Length 256. Constant No

IN Reference for data to be swapped. (must be the same type as Q) All No

Q Reference for swapped data. (must be the same type as IN) All except S No

Example for Swap

Two bytes located in bits %I00033 through %I00048 are swapped. The

result is stored in %L00007.

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-113

7

Data Table Functions
Function Mnemonic Description

Array Move ARRAY_MOVE_BOOL
ARRAY_MOVE_BYTE
ARRAY_MOVE_DINT
ARRAY_MOVE_INT
ARRAY_MOVE_WORD

Copies a specified number of data elements from a source memory block to
a destination memory block.

Note: The memory blocks do not need to be defined as arrays. You must

supply a starting address and the number of contiguous registers to use for
the move.

Array Range ARRAY_RANGE_DINT
ARRAY_RANGE_DWORD
ARRAY_RANGE_INT
ARRAY_RANGE_UINT
ARRAY_RANGE_WORD

Determines if a value is between the range specified in two tables

FIFO Read FIFO_RD_DINT
FIFO_RD_DWORD
FIFO_RD_INT
FIFO_RD_UINT
FIFO_RD_WORD

Removes the entry at the bottom of the First In First Out (FIFO) table, and
decrements the pointer by one

FIFO Write FIFO_WRT_DINT
FIFO_WRT_DWORD
FIFO_WRT_INT
FIFO_WRT_UINT
FIFO_WRT_WORD

Increments the table pointer and writes data to the bottom of the FIFO table

LIFO Read LIFO_RD_DINT
LIFO_RD_DWORD
LIFO_RD_INT
LIFO_RD_UINT
LIFO_RD_WORD

Removes the entry at the pointer location in the LIFO (Last In First Out)
table, and decrements the pointer by one

LIFO Write LIFO_WRT_DINT
LIFO_WRT_DWORD
LIFO_WRT_INT
LIFO_WRT_UINT
LIFO_WRT_WORD

Increments the LIFO table's pointer and writes data to the table

Search SEARCH_EQ_BYTE
SEARCH_EQ_DINT
SEARCH_EQ_DWORD
SEARCH_EQ_INT
SEARCH_EQ_UINT
SEARCH_EQ_WORD

Searches for all array values equal to a specified value

SEARCH_GE_BYTE
SEARCH_GE_DINT
SEARCH_GE_DWORD
SEARCH_GE_INT
SEARCH_GE_UINT
SEARCH_GE_WORD

Searches for all array values greater than or equal to a specified value

SEARCH_GT_BYTE
SEARCH_GT_DINT
SEARCH_GT_DWORD
SEARCH_GT_INT

SEARCH_GT_UINT
SEARCH_GT_WORD

Searches for all array values greater than a specified value

Data Table Functions

7-114 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Function Mnemonic Description

SEARCH_LE_BYTE
SEARCH_LE_DINT
SEARCH_LE_DWORD
SEARCH_LE_INT
SEARCH_LE_UINT
SEARCH_LE_WORD

Searches for all array values less than or equal to a specified value

SEARCH_LT_BYTE
SEARCH_LT_DINT
SEARCH_LT_DWORD
SEARCH_LT_INT
SEARCH_LT_UINT
SEARCH_LT_WORD

Searches for all array values less than a specified value

SEARCH_NE_BYTE
SEARCH_NE_DINT
SEARCH_NE_DWORD
SEARCH_NE_INT
SEARCH_NE_UINT
SEARCH_NE_WORD

Searches for all array values not equal to a specified value

Sort SORT_INT
SORT_UINT
SORT_WORD

Sorts a memory block in ascending order

Table Read TBL_RD_DINT
TBL_RD_DWORD
TBL_RD_INT
TBL_RD_UINT
TBL_RD_WORD

Copies a value from a specified table location to an output reference

Table Write TBL_WRT_DINT
TBL_WRT_DWORD
TBL_WRT_INT
TBL_WRT_UINT
TBL_WRT_WORD

Copies a value from an input reference to a specified table location

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-115

7

Array Move

Mnemonics:

ARRAY_MOVE_BOOL

ARRAY_MOVE_BYTE

ARRAY_MOVE_DINT

ARRAY_MOVE_DWORD

ARRAY_MOVE_INT

ARRAY_MOVE_UINT

ARRAY_MOVE_WORD

When the Array Move function receives power flow, it copies a specified number of elements

from a source memory block to a destination memory block. Starting at the indexed location

(SR+SNX-1) of the input memory block, it copies N elements to the output memory block,

starting at the indexed location (DS+DNX-1) of the output memory block.

Note: For ARRAY_MOVE_BOOL, when 16-bit registers are selected for the operands of

the source memory block and/or destination memory block starting address, the least

significant bit of the specified 16-bit register is the first bit of the memory block. The

value displayed contains 16 bits, regardless of the length of the memory block.

The indices in an Array Move instruction are 1-based. In using an Array Move, no element

outside either the source or destination memory blocks (as specified by their starting address

and length) may be referenced.

The function passes power flow unless one of the following conditions occurs:

■ It receives no power flow.

■ (N + SNX - 1) is greater than Length.

■ (N + DNX - 1) is greater than Length.

Note: For each mnemonic, use the corresponding data type for the SR and DS operands.

For example, ARRAY_MOVE_BYTE requires SR and DS to be BYTE variables.

Data Table Functions

7-116 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for Array Move

Parameter Description Allowed Operands Optional

Length (??) The length of each
memory block (source
and destination); the
number of elements in
each memory block.

1 Length 32,767.

Constant No

SR (must be the same data
type as DS)

The starting address of
the source memory block.

Note: For an Array

Move with the data type
BOOL, any reference
may be used; it does not
need to be byte-aligned.
Sixteen bits, beginning
with the reference
address specified, are
displayed online.

All except constants. %S -
%SC allowed only for BYTE,
WORD, DWORD types.

No

SNX The index of the source
memory block

All except variables in %S -
%SC.

No

DNX The index of the
destination memory block

All except variables in %S -
%SC.

No

N Count indicator All except variables in %S -
%SC

No

DS (must be the same data
type as SR)

The starting address of
the destination memory
block.

Note: For an Array

Move with the data type
BOOL, any reference
may be used; it does not
need to be byte-aligned.
Sixteen bits, beginning
with the reference
address specified, are
displayed online.

All, except S and constants.
%SA - %SC allowed only for
BYTE, WORD, DWORD
types

No

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-117

7

Examples for Array Move

Example 1

To define the input memory block %R0001 - %R0016 and

the output memory block %R0100 - %R0115, SR is set as

%R0001, DS is set as %R0100, and Length is set to 16.

To copy the five registers %R0003 - %R0007 to the

registers %R0104 - %R0108, N is set to 5, SNX=%R0100 is

set to 3 (to designate the third register, %R0003, of the

block starting at %R0001), and DNX is set to 5 (to designate

the fifth register, %R0104, of the block starting at %R0100).

Example 2

Using bit memory blocks, the input block starts at

SR=%M0009, the output block starts at %Q0022,

and the length of both blocks is 16 one-bit registers

(Length=16).

To copy the seven registers %M0011 - %M0017 to

%Q0026 - %Q0032, N is set to 7, SNX is set to 3 (to

designate the third register, %M0011, of the block

starting at %M0009), and DNX is set to 5 (to

designate the fifth register, %Q0026, of the block

starting at %Q0022).

Example 3

Sixteen (=N) bits that are not byte-aligned are moved from the two 16-bit registers that start

at %R00001 (SR) to the two 16-bit registers that

begin at %R00100 (DS). For the purposes of this

Boolean move, Length is set to 20, because the other

12 bits in either memory block are not considered.

By setting SNX to 3, N to 16, and DNX to 5, the third

(SNX) least significant bit of %R0001 through the

second least significant bit of %R0002 (for a total of

16 bits=N) are written into the fifth (DNX) least

significant bit of %R0100 through the fourth least

significant bit of %R0101 (for the same total of 16

bits).

Data Table Functions

7-118 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Array Range

The ARRAY_RANGE function compares a single

input value against two arrays of delimiters that

specify an upper and lower bound to determine if the

input value falls within the range specified by the

delimiters. The output is an array of bits that is set

ON (1) when the input value is greater than or equal

to the lower limit and less than or equal to the upper

limit. The output is set OFF (0) when the input is

outside this range or when the range is invalid, as

when the lower limit exceeds the upper limit.

Mnemonics:

ARRAY_RANGE_DINT

ARRAY_RANGE_DWORD

ARRAY_RANGE_INT

ARRAY_RANGE_UINT

ARRAY_RANGE_WORD

The ARRAY_RANGE function compares a single input value against two arrays of delimiters

that specify an upper and lower bound to determine if the input value falls within the range

specified by the delimiters. The output is an array of bits that is set ON (1) when the input

value is greater than or equal to the lower limit and less than or equal to the upper limit. The

output is set OFF (0) when the input is outside this range or when the range is invalid, as

when the lower limit exceeds the upper limit.

When ARRAY_RANGE receives power, it compares the value in input parameter IN against

each range specified by the array element values of LL and UL. Output Q sets a bit ON (1)

for each corresponding array element where the value of IN is greater than or equal to the

value of LL and is less than or equal to the value of UL. Output Q sets a bit OFF (0) for each

corresponding array element where the value of IN is not within this range or when the range

is invalid, as when the value of LL exceeds the value of UL. If the operation is successful,

ARRAY_RANGE passes power flow to the right.

Operands for Array Range

Notes:

■ For each mnemonic, use the corresponding data type for the LL, UL, and Q operands.
For example, ARRAY_RANGE_DINT requires LL, UL, and Q to be DINT variables.

■ Q is not aligned. It is displayed in bit format. It displays either a 1 (ON) or a 0 (OFF) for
the first array element. For BOOL references, it represents the reference displayed. For
other references, it represents the low order bit of the reference displayed.

Parameter Description Allowed Operands Operands Optional

Length (??) The number of elements in each array. Constant No

LL The lower limit of the range All except constants and %S - %SC
for INT, DINT.

No

UL The upper limit of the range All except constants and %S - %SC
for INT, DINT.

No

IN The value to compare against each range
specified by LL and UL

All except constants and %S - %SC
for INT, DINT.

No

Q Energized when the value in IN is within the
range specified by LL and UL, inclusive.

All except S

No

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-119

7

Examples for Array Range

Example 1

The lower limit (LL) values of %R00001 through %R00008 are 1, 20, 30, 100, 25, 50, 10, and

200. The upper limit (UL) values of %R00100 through %R00108 are 40, 50, 150, 2, 45, 90,

250, and 47. The resulting Q values will be placed in the first 8 bits of %R00200. The bit

values low order to high are: 1, 1, 1, 0, 1, 0, 1, and 0. The bit value displayed will be set ON

(1) for the low order bit of %R00200. The ok output will be set ON (1).

Example 2

The lower limit (LL) array contains %T00001 through %T00016, %T00017 through %T00032,

and %T00033 through %T00048. The lower limit values are 100, 65, and 1. The upper limit

(UL) values are 29, 165, and 2. The resulting Q values of 0, 1, and 0 will be placed in

%Q00001 through %Q00003. The bit value displayed will be 0 (OFF), representing the value

of %Q00001. The power output will be set ON (1).

Data Table Functions

7-120 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

FIFO Read

Mnemonics:

FIFO_RD_DINT

FIFO_RD_DWORD

FIFO_RD_INT

FIFO_RD_UINT

FIFO_RD_WORD

The First-In-First-Out (FIFO) Read (FIFO_RD) function moves data out of tables. Values are

always moved out of the bottom of the table. If the pointer reaches the last location and the

table becomes full, FIFO_RD must be used to remove the entry at the pointer location and

decrement the pointer by one. FIFO_RD is used in conjunction with the FIFO_WRT function,

which increments the pointer and writes entries into the table.

1. FIFO_RD copies the top location (entry 0) of the table to output parameter Q. Additional

program logic must then be used to place the data in the input reference.

2. The remaining items in the table are copied to a lower numbered position in the table.

3. FIFO_RD decrements the pointer by one.

4. Steps 1, 2, and 3 are repeated each time FIFO_RD is executed, until the table is empty

(PTR = 0).

The pointer does not wrap around when the table is full.

When FIFO_RD receives power flow, the data at the first location of the table is copied to

output Q. Next, each item in the table is moved down to the next lower location. This begins

with item 2 in the table, which is moved into position 1. Finally, the pointer is decremented. If

this causes the pointer location to become 0, the output EM is set ON, i.e., EM indicates

whether or not the table is empty.

FIFO_RD passes power to the right if the pointer is greater than zero and less than the value

specified for LEN.

Note: A FIFO table is a queue. A LIFO table is a stack.

Operands for FIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands.

For example, FIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1 Length 32,767. Constants No

TB

(must be the same type as Q)

The elements in the FIFO
table

All except constants No

PTR Pointer. Index of the last
element of the FIFO table.

All except constants, data flow,
and variables in %S -%SC

No

EM Energized when the last
element of the table is read

Flow No

Q (must be the same type as TB) The element read from the
FIFO table

All except constants, S; SA, SB,
SC allowed only for WORD,
DWORD

No

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-121

7

Example for FIFO Read

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input PACK_IT

is ON, the PRODUCT data item in the table location pointed to by STK_PTR is copied to the

reference location specified in CART. This table location pointed to would be the bottom, or

oldest data item in the table. The number in STK_PTR is then decremented. A copy of the

oldest data item in the PRODUCT table is left behind in each table location as the current

data is copied out during successive PACK_IT triggers. Output node EM passes power when

the PTR = 0, firing the coil EMPTY. No further data from the PRODUCT table can be read

without first copying data in using the FIFO_WRT function.

FIFO Write

Mnemonics:

FIFO_WRT_DINT

FIFO_WRT_DWORD

FIFO_WRT_INT

FIFO_WRT_UINT

FIFO_WRT_WORD

The First-In-First-Out (FIFO) Write (FIFO_WRT) function moves data into tables. The function

increments the table pointer by one and adds an entry at the new pointer location in a FIFO

table. Values are always moved in at the bottom of the table. If the pointer reaches the last

location and the table becomes full, FIFO_WRT can add no further values. The FIFO_RD

function must then be used to remove the entry at the pointer location and decrement the

pointer by one.

1. FIFO_WRT increments the pointer by one.

2. FIFO_WRT copies data from input parameter IN to the position in the table indicated

by the pointer. (It writes over any value currently at that location.) Additional program

logic must then be used to place the data in the input reference.

3. Steps 1 and 2 are repeated each time FIFO_WRT is executed, until the table is full

(PTR=0).

The pointer does not wrap around when the table is full.

When FIFO_WRT receives power flow, the pointer is incremented by 1. Then, input data is

written into the table at the pointer location. If the pointer was already at the last location in

the table, no data is written and FIFO_WRT does not pass power to the right. The pointer

always indicates the last item entered into the table. If the table becomes full, it is not

possible to add more entries to it.

FIFO_WRT passes power to the right after a successful execution (PTR < LEN).

Data Table Functions

7-122 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for FIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands.

For example, FIFO_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1 Length 32,767. Constants No

TB

(must be the same data type
as IN)

The elements in the FIFO
table

All except constants, data
flow, and S.

SA - SC allowed only for
WORD, DWORD types

No

PTR Pointer. Index of the last
element of the FIFO table.

All except constants, data
flow, S - SC.

No

IN (must be the same data
type as TB)

The element to write to the
FIFO table

All. S – SC allowed only for
WORD, DWORD types.

No

FL Energized when IN is written
to the last element of the
table

Power flow No

Example for FIFO Write

PRODUCT is a FIFO table with 100 word-sized elements. When the enabling input UNPACK

is ON, a data item from P_CODE is copied to the table location pointed to by the value in

STK_PTR. Output node FL passes power when PTR = LEN, firing the FULL coil. No further

data from P_CODE can be added to the table without first copying data out, using the

FIFO_RD function.

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-123

7

LIFO Read

Mnemonics:

LIFO_RD_DINT

LIFO_RD_DWORD

LIFO_RD_INT

LIFO_RD_UINT

LIFO_RD_WORD

The Last-In-First-Out (LIFO) Read (LIFO_RD) function moves data out of tables. Values are

always moved out of the top of the table. If the pointer reaches the last location and the table

becomes full, LIFO_RD must be used to remove the entry at the pointer location and

decrement the pointer by one. LIFO_RD is used in conjunction with the LIFO_WRT function,

which increments the pointer and writes entries into the table.

1. LIFO_RD copies data indicated by the pointer to output parameter Q. Additional

program logic must then be used to place the data in the input reference.

2. LIFO_RD decrements the pointer by one.

3. Steps 1 and 2 are repeated each time the instruction is executed, until the table is

empty (PTR = LEN).

The pointer does not wrap around when the table is full.

When LIFO_RD receives power flow, the data at the pointer location is copied to output Q,

then the pointer is decremented. If this causes the pointer location to become 0, the output

EM is set ON, i.e., EM indicates whether or not the table is empty. If the table is empty when

LIFO_RD receives power flow, no read occurs. The pointer always indicates the last item

entered into the table.

LIFO_RD passes power to the right if the pointer was in range for an element to be read.

Note: A LIFO table is a stack. A FIFO table is a queue.

Operands for LIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands.

For example, LIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1 Length 32,767. Constant No

TB

(must be the same type as Q)

The elements in the table All except constants No

PTR Pointer. Index of the next
element to read.

All except constants, S - SC,
and data flow

No

EM Energized when the last
element of the table is
read

Power flow No

Q (must be the same type as
TB)

The element read from
the table

All except constants and S.
SA, SB, SC allowed only for
WORD, DWORD.

No

Data Table Functions

7-124 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example for LIFO Read

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input PACK_IT

is ON, the data item at the top of the table is copied into the reference indicated by the

nickname CART. The reference identified by STK_PTR contains the table pointer. Output coil

EMPTY indicates when the table is empty.

LIFO Write

Mnemonics:

LIFO_WRT_DINT

LIFO_WRT_DWORD

LIFO_WRT_INT

LIFO_WRT_UINT

LIFO_WRT_WORD

The Last-In-First-Out (LIFO) Write (LIFO_WRT) function increments the table pointer by one

and then adds an entry at the new pointer location in a table. Values are always moved in at

the top of the table. If the pointer reaches the last location and the table becomes full,

LIFO_WRT cannot add further values. LIFO_RD must then be used to remove the entry at

the pointer location and decrement the pointer by one.

1. LIFO_WRT increments the table pointer by one.

2. LIFO_WRT copies data from input parameter IN to the position in the table indicated

by the pointer. (It writes over any value currently at that location.) Additional program

logic must then be used to place the data in the input reference.

3. Steps 1 and 2 are repeated each time LIFO_WRT is executed, until the table is full

(PTR=LEN).

The pointer does not wrap around when the table is full.

When LIFO_WRT receives power flow, the pointer increments by 1; then the new data is

written at the pointer location. If the pointer was already at the last location in the table, no

data is written and LIFO_WRT does not pass power to the right. The pointer always indicates

the last item entered into the table. If the table is full, it is not possible to add more entries to

it.

LIFO_WRT passes power to the right after a successful execution (PTR < LEN).

Note: A LIFO table is a stack. A FIFO table is a queue.

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-125

7

Operands for LIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands.

For example, LIFO_WRT_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1 Length 32,767. Constants No

TB

(must be the same type as IN)

The elements in the table All except constants, S, data
flow. SA - SC allowed only for
WORD, DWORD.

No

PTR Pointer. Index of the next
element to write.

All except constants, S - SC,
and data flow

No

IN (must be the same type as
TB)

The element to write to the table All. S – SC allowed only for
WORD, DWORD

No

FL Energized when IN is written to
the last element of the table

All No

Example for LIFO Write

PRODUCT is a LIFO table with 100 word-sized elements. When the enabling input STORE is

ON, a data item from NEW_ITEM is copied to the table location pointed to by the value in

STK_PTR. Output FL passes power when PTR = LEN, firing the FULL coil. No further data

from NEW_ITEM can be added to the table without first copying data out, using the LIFO_RD

function.

Data Table Functions

7-126 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Search

When the Search function receives power, it searches the specified

memory block for a value that satisfies the search criteria. For

example, SEARCH_GE_DWORD searches for a DWORD that is

greater than or equal to the specified value (the IN operand).

Search can evaluate six different relationships for six data types, for

a total of thirty-six mnemonics.

Search Relationships:

SEARCH_EQ_... searches for a value of the specified data type equal to the IN

operand.

SEARCH_GE_... searches for a value of the specified data type greater than

or equal to IN.

SEARCH_GT_... searches for a value of the specified data type greater than IN.

SEARCH_LE_... searches for a value of the specified data type less than or equal to

IN.

SEARCH_LT_... searches for a value of the specified data type less than IN.

SEARCH_NE_... searches for a value of the specified data type that is not equal to

IN.

Data types:

BYTE, DINT, DWORD, INT, UINT, WORD

Searching begins at AR+INX, where AR is the starting address and INX is the index value

into the memory block. The search continues either until a register that satisfies the search

criteria is found or until the end of the memory block is reached.

■ If a register is found, the Found Indication (FD) is set ON and the Output Index (ONX) is

set to the relative position of this register within the block.

■ If no register is found before the end of the block is reached, the Found Indication (FD) is

set OFF and the Output Index (ONX) is set to zero.

The input index (INX) is zero-based, that is, 0 the means first reference, whereas the output

index (ONX) is one-based, that is, 1 means the first reference.

The valid values for INX are 0 to (Length - 1). The valid values for ONX are 1 to Length.

INX should be set to zero to begin searching at the memory block's first register. This value

increments by one at the time of execution. If the value of input INX is outofrange,

(< 0 or > Length-1), INX is set to the default value of zero.

SEARCH passes power flow to the right when it performs without error. If INX is out of range,

SEARCH does not pass power flow to the right.

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-127

7

Operands for the Search Function

Note: For each mnemonic, use the corresponding data type for the AR and IN operands.

For example, SEARCH_EQ_BYTE requires AR and IN to be BYTE variables.

Parameter Description Allowed
Operands

Optional

Length (??) The number of registers starting at AR that make up the memory block to

search. 1 Length 32,767 8-bit or 16-bit registers.

Constants No

AR (must be the
same type as IN)

The starting address of the memory block to search; the address of the
first register in the memory block.

All except
constants

No

INX The zero-based index into the memory block at which to begin the search.

Zero points to the first reference. Valid range: 0 INX (Length-1). If INX
is out of range, it is set to the default value of 0.

All except
constants

No

IN (must be the
same type as
AR)

The value that the search is based on. For example:

SEARCH_GT_DINT searches for a DINT value that is greater than IN.

SEARCH_NE_UINT searches for a UINT value that is not equal to IN.

SEARCH_GE_WORD searches for a WORD value that is greater than or
equal to IN.

All No

ONX The one-based position within the memory block of the search target. A

value of 1 points to the first reference. Valid range: 1 ONX Length

data flow, I, Q, M,
T, G, R, P, L, AI,
AQ

No

FD Found indicator. This power flow indicator is energized when a register that
satisfies the search criteria is found and the function was successful.

Power flow No

Example for the Search Function

To search the memory block %AI00001 - %AI00016,

AR is set as %AI00001 and Length is set as 16. The

values of the 16 registers are 100, 20, 0, 5, 90, 200,

0, 79, 102, 80, 24, 34, 987, 8, 0, and 500. Initially,

the search index into AR, %AQ0001, is 5. When

power flow input is ON, each scan searches the

memory block looking for a match to the IN value of

0. The first scan starts searching at %AI00006 and

finds a match at %AI00007, so FD turns ON and

%AQ00001 becomes 7. The second scan starts searching at %AI00008 and finds a match at

%AI00015, so FD remains ON and %AQ0001 becomes 15. The next scan starts at

%AI00016. Since the end of the memory block is reached without a match, FD is set OFF

and %AQ0001 is set to zero. The next scan starts searching at the beginning of the memory

block.

Data Table Functions

7-128 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Sort

When it receives power flow, the SORT function sorts the

elements of the memory block 'IN' in ascending order. The

output memory block Q contains integers that give the index

that the sorted elements had in the original memory block or

list. Q is exactly the same size as IN. It also has a

specification (LEN) of the number of elements to be sorted.

Mnemonics:

SORT_INT

SORT_UINT

SORT_WORD

SORT operates on memory blocks of no more than 64 elements. When EN is ON, all of the

elements of IN are sorted into ascending order, based on their data type. The array Q is also

created, giving the original position that each sorted element held in the unsorted array. OK is

always set ON.

Notes: The SORT function is executed each scan it is enabled.

 Do not use the SORT function in a timed or triggered input program block.

Operands

Note: For each mnemonic, use the corresponding data type for the IN and Q operands. For

example, SORT_INT requires IN and Q to be INT variables.

Parameter Description Allowed Operands Optional

Length (??) The number (1—64) of
elements that make up the
memory block to sort.

Constants No

IN The memory block that
contains the elements to
sort. After the sort, IN
contains the elements in the
sorted order.

All except data flow, S,
constants. SA – SC valid
only for WORD type

No

Q (must be the same type as
IN)

An array of indexes that
gives the position of the
sorted elements in the
original memory block

All except S - SC and
constants

No

Example

New part numbers (%I00017 - %I00032) are pushed onto a parts array PLIST every time

%Q00014 is ON. When the array is filled, it is sorted and the output %Q00025 is turned on.

The array PPOSN then contains the

original position that the now-sorted

elements held before the sort was done

on PLIST.

If PLIST was an array of five elements

and contained the values 25, 67, 12,

35, 14 before the sort, then after the

sort it would contain the values 12, 14,

25, 35, 67. PPOSN would contain the

values 3, 5, 1, 4, 2.

Data Table Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-129

7

Table Read

The Table Read (TBL_RD) function sequentially reads

values in a table. When the pointer reaches the end of the

table, it wraps around to the beginning of the table. (TBL_RD

is like FIFO_RD with a wrap-around.)

Mnemonics:

TBL_RD_DINT

TBL_RD_DWORD

TBL_RD_INT

TBL_RD_UINT

TBL_RD_WORD

When TBL_RD receives power flow:

1. TBL_RD increments the pointer by one.

2. TBL_RD copies data indicated by the pointer to output parameter Q. Additional

program logic must then be used to capture the data from the output reference.

3. Steps 1 and 2 are repeated each time the instruction is executed, until the end of the

table is reached (PTR=the length specified in Length). When the end of the table is

reached, the pointer wraps around to the beginning of the table.

When TBL_RD receives power flow, the pointer (PTR) increments by one. If this new pointer

location is the last item in the table, the output EM is set ON. The next time TBL_RD

executes, PTR is automatically set back to 1. After PTR is incremented, the content at the

new pointer location is copied to output Q.

TBL_RD always passes power to the right when it receives power.

Note: The TBL_RD and TBL_WRT functions can operate on the same or different tables.

By specifying a different reference for the pointer, these functions can access the

same data table at different locations or at different rates.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and Q operands.

For example, TBL_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1 Length 32,767 Constants No

TB (must be the same
type as Q)

The elements in the table All except constants No

PTR Pointer. Index of the next element. All except data flow, S - SC, constants No

EM Energized when the last element of
the table is read

Power flow No

Q (must be the same
type as TB)

The element read from the table All except constants, S. SA, SB, SC allowed
only for WORD, DWORD

No

Example

WIDGETS is a table with 20 integer elements.

When the enabling input %M00346 is ON, the

pointer increments and the contents of the

next element of the table are copied into

ITEM_CT. %L00001 functions as the pointer

into the data table. %M01001 is used to

signal when all items of the data table have

been accessed.

Data Table Functions

7-130 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Table Write

The Table Write (TBL_WRT) function sequentially updates

values in a table that never becomes full. When the pointer

(PTR) reaches the end of the table, it automatically returns to

the beginning of the table.

1. TBL_WRT increments the pointer by one.

2. TBL_WRT copies data from input parameter IN to the

position in the table indicated by the pointer. (It writes over

any value currently at that location.) Additional program

logic must then be used to place the data in the input

reference.

3. Steps 1 and 2 are repeated each time the instruction is

executed, until the table is full (PTR=LEN).

Mnemonics:

TBL_WRT_DINT

TBL_WRT_DWORD

TBL_WRT_INT

TBL_WRT_UINT

TBL_WRT_WORD

When the table is full, the pointer wraps around to the beginning of the table.

Note: The TBL_WRT and TBL_RD functions can operate on the same or different tables.

By specifying a different reference for the pointer, these functions can access the

same data table at different locations or at different rates.

When TBL_WRT receives power flow, the pointer (PTR) increments by 1. If this new pointer

location is the last item in the table, the output FL is set to ON. The next time TBL_WRT

executes, PTR is automatically set back to 1. After incrementing PTR, TBL_WRT writes the

content of the input reference to the current pointer location, overwriting data already stored

there.

TBL_WRT always passes power to the right when it receives power.

Note: TBL_WRT is like FIFO_WRT with a wrap-around.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and IN operands.

For example, TBL_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length 1 Length 32,767. Constants No

TB (must be the same
data type as IN)

The elements in the table All except S, constants, data flow. SA – SC
allowed only for WORD, DWORD

No

PTR Pointer. Index of the next element. All except constants, data flow, %S - %SC No

IN (must be the same
data type as TB)

The element to write to the table All. %S - %SC allowed only for WORD,
DWORD

No

FL Energized when IN is written to the
last element of the table

Power flow No

Table Write Example

WIDGETS is a table with 20 integer elements. When the

enabling input %I00012 is ON, the pointer increments and

the contents of %P00077 are written into the table at the

pointer location. %L00001 functions as the pointer into the

data table.

Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-131

7

Math Functions
Your program may need to include logic to convert data to a different type before using a

Math or Numerical function. The description of each function includes information about

appropriate data types. The “Conversion Functions” section on page 7-63 explains how to

convert data to a different type.

Function Mnemonics Description

Absolute
Value

ABS_DINT, ABS_INT,
ABS_REAL, ABS_LREAL

Finds the absolute value of a double- precision integer (DINT), signed
single-precision integer (INT), or floating-point (REAL or LREAL) value. The
mnemonic specifies the value's data type.

Add ADD_DINT, ADD_INT,
ADD_REAL,
ADD_LREAL, ADD_UINT

Addition. Adds two numbers.

Divide
†
 DIV_DINT, DIV_INT,

DIV_MIXED, DIV_REAL,
DIV_LREAL, DIV_UINT

Division. Divides one number by another and outputs the quotient.

Note: Take care to avoid overflow conditions when performing divisions.

Modulus MOD_DINT, MOD_INT,
MOD_UINT

Modulo Division. Divides one number by another and outputs the remainder.

Multiply
†
 MUL_DINT, MUL_INT,

MUL_MIXED,
MUL_REAL,
MUL_LREAL, MUL_UINT

Multiplication. Multiplies two numbers.

Note: Take care to avoid overflow conditions when performing

multiplications.

Scale SCALE Scales an input parameter and places the result in an output location.

Subtract SUB_DINT, SUB_INT,
SUB_REAL,
SUB_LREAL, SUB_UINT

Subtraction. Subtracts one number from another.

† To avoid overflows when multiplying or dividing 16-bit numbers, use the conversion functions described on page 7-63 to convert the

numbers to a 32-bit format.

Overflow

When an operation results in overflow, there is no power flow.

If an operation on signed operands (INT, DINT, REAL) results in overflow, the output

reference is set to its largest possible value for the data type. For signed numbers, the sign is

set to show the direction of the overflow. If signed or double precision integers are used, the

sign of the result for DIV and MUL functions depends on the signs of I1 and I2.

Maximum
Values

MAXINT16 Maximum signed 16-bit 7FFF hex 32,767

MAXUINT16 Maximum unsigned 16-bit FFFF hex 65,535

MAXINT32 Maximum signed 32-bit 7FFFFFFF hex 2,147,483,647

Minimum
Values

MININT16 Minimum signed 16-bit 8000 hex –32,768

MININT32 Minimum signed 32-bit 80000000 hex –2,147,483,648

If an operation on unsigned operands (UINT) results in overflow or underflow, the output

value wraps around. For example the ADD_UINT operation, 65535+16, yields a result of 15.

Math Functions

7-132 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Absolute Value

Mnemonics:

ABS_DINT
ABS_INT
ABS_REAL
ABS_LREAL

When the function receives power flow, it places the absolute value of input IN into output Q.

The function outputs power flow, unless one of the following conditions occurs:

■ For INT type, IN is –32,768.

■ For DINT type, IN is –2,147,483,648.

■ For REAL or LREAL type, IN is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN (must be same type as Q) The value to process. All except S, SA, SB, SC No

Q (must be same type as IN) The absolute value of IN. All except S, SA, SB, SC and
constant

No

Example

The absolute value of –2,976, which is 2,976, is placed in %R00010:

Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-133

7

Add

Mnemonics:

ADD_DINT
ADD_INT
ADD_REAL
ADD_LREAL
ADD_UINT

When the ADD function receives power flow, it adds the two operands IN1 and IN2 of the

same data type and stores the sum in the output variable assigned to Q, also of the same

data type.

The power flow output is energized when ADD is performed, unless an invalid operation or

overflow occurs. (For more information, see “Overflow” on page 7-131.)

Mnemonic Operation Displays as

ADD_INT Q(16 bit) = IN1(16 bit) + IN2(16 bit) base 10 number with sign, up to 5 digits long

ADD_DINT Q(32 bit) = IN1(32 bit) + IN2(32 bit) base 10 number with sign, up to 10 digits long

ADD_REAL Q(32 bit) = IN1(32 bit) + IN2(32 bit) base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

ADD_LREAL Q(64 bit) = IN1(64 bit) + IN2(64 bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

ADD_UINT Q(16 bit) = IN1(16 bit) + IN2(16 bit) base 10 number, unsigned, up to 5 digits long

Operands of the ADD Function

Operand Description Allowed Operands Optional

IN1 The value to the left of the plus sign (+) in
the equation IN1+IN2=Q.

All except S, SA, SB, SC No

IN2 The value to the right of the plus sign (+)
in the equation IN1+IN2=Q.

All except S, SA, SB, SC No

Q The result of IN1+IN2. If an ADD of
signed operands results in overflow, Q is
set to the largest possible value and there
is no power flow.

If an ADD_UINT operation results in
overflow, Q wraps around.

All except S, SA, SB, SC and constant. No

Math Functions

7-134 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Examples for ADD

The first example is a failed attempt to create a counter circuit that would count the number of

times switch %I00001 closes. The running total is stored in register %R00002. The intent of

this design is that when %I0001 closes, the ADD instruction should add one to the value in

%R00002 and place the new value right back into %R0002. The problem with this design is

that the ADD instruction executes once every PLC scan while %I0001 is closed. For

example, if %I0001 stays closed for five scans, the output increments five times, even though

%I00001 only closed once during that period.

To correct the above problem, the enable input to the ADD instruction should come from a

transition (“one-shot”) coil, as shown below. In the improved circuit, the %I0001 input switch

controls a transition coil, %M0001, whose contact turns on the enable input of the ADD

function for only one scan each time contact %I00001 closes. In order for the %M00001

contact to close again, contact %I0001 has to open and close again.

Note: If IN1 and/or IN2 is NaN (Not a Number), ADD_REAL passes no power flow.

Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-135

7

Divide

When the DIV function receives power flow, it divides the operand IN1 by the operand

IN2 of the same data type as IN1 and stores the quotient in the output variable assigned

to Q, also of the same data type as IN1 and IN2.

The power flow output is energized when DIV is performed, unless an invalid operation

or overflow occurs. (For more information, see “Overflow” on page 7-131.)

Mnemonics:

DIV_DINT
DIV_INT
DIV_MIXED
DIV_REAL
DIV_LREAL
DIV_UINT

Notes:

■ DIV rounds down; it does not round to the closest integer. For example,

24 DIV 5 = 4.

■ DIV_MIXED uses mixed data types.

■ Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for DIV:

■ Any number divided by 0. This operation yields a result of 65535.

■ ∞ divided by ∞

■ I1 and/or I2 is NaN (Not a Number)

Mnemonic Operation Displays as

DIV_UINT Q(16 bit) = IN1(16 bit) / IN2(16 bit) base 10 number, unsigned, up to 5 digits long

DIV_INT Q(16 bit) = IN1(16 bit) / IN2(16 bit) base 10 number with sign, up to 5 digits long

DIV_DINT Q(32 bit) = IN1(32 bit) / IN2(32 bit) base 10 number with sign, up to 10 digits long

DIV_MIXED Q(16 bit) = IN1(32 bit) / IN2(16 bit) base 10 number with sign, up to 5 digits long

DIV_REAL Q(32 bit) = IN1(32 bit) / IN2(32 bit) base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

DIV_LREAL Q(64 bit) = IN1(64 bit) / IN2(64 bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

Operands for the DIV Function

Parameter Description Allowed Operands Optional

IN1 The value to be divided; the value to the left of “DIV” in the

equation IN1 DIV IN2=Q.
All except S, SA, SB, SC No

IN2 The value to divide IN1 with; the value to the right of “DIV” in

the equation IN1 DIV IN2=Q.
All except S, SA, SB, SC No

Q The quotient of IN1/IN2. If a DIV operation on signed operands
results in overflow, Q is set to the largest possible value and
there is no power flow.

If a DIV_UINT operation results in overflow, Q wraps around.

All except S, SA, SB, SC and
constant

No

Math Functions

7-136 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

DIV_MIXED Operands

Parameter Description Allowed Operands Optional

IN1 The value to be divided; the value to the left of “DIV” in the

equation IN1 DIV IN2=Q.
All except S, SA, SB, SC No

IN2 The value to divide IN1 with; the value to the right of “DIV” in

the equation IN1 DIV IN2=Q.
All except S, SA, SB, SC No

Q The quotient of IN1/IN2. If an overflow occurs, the result is the
largest value with the proper sign and no power flow.

All except S, SA, SB, SC and
constant

No

DIV_MIXED Example

DIV_DINT can be used in conjunction with a MUL_DINT function to scale a ±10 volt input to

±25,000 engineering units. See “Example – Scaling an Analog Input” on page 7-137.

Modulus

Mnemonics:

MOD_DINT

MOD_INT

MOD_UINT

When the Modulo Division (MOD) function receives power flow, it divides input IN1 by input

IN2 and outputs the remainder of the division to Q.

All three operands must be of the same data type. The sign of the result is always the same

as the sign of input parameter IN1. Output Q is calculated using the formula:

Q = IN1-((IN1 DIV IN2) × IN2)

where DIV produces an integer number.

The power flow output is always ON when the function receives power flow, unless there is

an attempt to divide by zero. In that case, the power flow output is set to OFF.

Operands for Modulus Function

Parameter Description Allowed Operands Optional

IN1 The value to be divided to obtain the remainder; the
value to the left of “MOD” in the equation IN1

MOD IN2=Q.

All except S, SA, SB, SC No

IN2 The value to divide IN1 with; the value to the right of
“MOD” in the equation IN1 MOD IN2=Q.

All except S, SA, SB, SC No

Q The remainder of IN1/IN2. All except S, SA, SB, SC and constant No

Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-137

7

Multiply

When the MUL function receives power flow, it multiplies the

two operands IN1 and IN2 of the same data type and stores

the result in the output variable assigned to Q, also of the

same data type.

The power flow output is energized when the function is

performed, unless an invalid operation or overflow occurs.

(For more information, see “Overflow” on page 7-131.)

Mnemonics:

MUL_DINT
MUL_INT
MUL_MIXED
MUL_REAL
MUL_LREAL
MUL_UINT

Note: MUL_MIXED uses mixed data types. Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for MUL:

■ 0 x ∞

■ I1 and/or I2 is NaN (Not a Number).

Mnemonic Operation Displays as

MUL_INT Q(16 bit) = IN1(16 bit) × IN2(16 bit) base 10 number with sign, up to 5 digits long

MUL_DINT Q(32 bit) = IN1(32 bit) × IN2(32 bit) base 10 number with sign, up to 10 digits long

MUL_REAL Q(32 bit) = IN1(32 bit) × IN2(32 bit) base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

MUL_LREAL Q(64 bit) = IN1(64 bit) × IN2(64 bit) base 10 number, sign and decimals, up to 17
digits long (excluding the decimals)

MUL_UINT Q(16 bit) = IN1(16 bit) × IN2(16 bit) base 10 number, unsigned, up to 5 digits long

MUL_MIXED Q(32 bit) = IN1(16 bit) × IN2(16 bit) base 10 number with sign, up to 10 digits long

Operands for Multiply

Parameter Description Allowed Operands Optional

IN1 The first value to multiply; the value to the left of the
multiply sign (×) in the equation IN1 × IN2=Q.

All except S, SA, SB, SC No

IN2 The second value to multiply; the value to the right of
the multiply sign (×) in the equation IN1 × IN2=Q.

All except S, SA, SB, SC No

Q The result of IN1 × IN2. If a MUL operation on signed
operands results in overflow, Q is set to the largest
possible value and there is no power flow.

If a MUL_UINT operation results in overflow, Q wraps
around.

All except S, SA, SB, SC and constant No

Math Functions

7-138 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example – Scaling Analog Input Values

A common application is to scale analog input values with a MUL operation followed by a DIV

and possibly an ADD operation. A 0 to ±10 volt analog input will place values of 0 to ±32,000

in its corresponding %AI input register. Multiplying this input register using an MUL_INT

function will result in an overflow since an INT type instruction has an input and output range

of 32,767 to –32,768. Using the %AI value as in input to a MUL_DINT also does not work as

the 32-bit IN1 will combine 2 analog inputs at the same time. To solve this problem, you can

move the analog input to the low word of a double register, then test the sign and set the

second register to 0 if the sign tests positive or –1 if negative. Then use the double register

just created with a MUL_DINT which gives a 32-bit result, and which can be used with a

following DIV_DINT function.

For example, the following logic could be used to scale a ±10 volt input %AI1 to ±25000

engineering units in %R5.

An alternate, but less accurate, way of programming this circuit using INT values involves

placing the DIV_DINT instruction first, followed by the MUL_DINT instruction. The value of

IN2 for the DIV instruction would be 32, and the value of IN2 for the MUL would be 25. This

maintains the scaling proportion of the above circuit and keeps the values within the working

range of the INT type instructions. However, the DIV instruction inherently discards any

remainder value, so when the DIV output is multiplied by the MUL instruction, the error

introduced by a discarded remainder is multiplied. The percent of error is non-linear over the

full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DIV operation

is performed last, so the discarded remainder is not multiplied. If even greater precision is

required, substitute REAL type math instructions in this example so that the remainder is not

discarded.

Math Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-139

7

Scale

When the SCALE function receives power flow, it scales

the input operand IN and places the result in the output

variable assigned to output operand OUT. The power

flow output is energized when SCALE is performed

without overflow.

Mnemonics:

SCALE_DINT

SCALE_INT

SCALE_DINT

SCALE_UINT

Operands

Parameter Description Allowed
Operands

Optional

IHI (Inputs High) Maximum input value (module-related). The upper limit of the
unscaled data. IHI is used with ILO, OHI and OLO to calculate the scaling factor
applied to the input value IN.

All except S,
SA, SB, SC

No

ILO (Inputs Low) Minimum input value (module-related). The lower limit of the
unscaled data. Must be the same data type as IHI.

All except S,
SA, SB, SC

No

OHI (Outputs High) Maximum output value. The upper limit of the scaled data. Must be
the same data type as IHI. When the IN input is at the IHI value, the OUT value is
the same as the OHI value.

All except S,
SA, SB, SC

No

OLO (Outputs Low) Minimum output value. The lower limit of the scaled data. Must be
the same data type as IHI. When the IN input is at the ILO value, the OUT value is
the same as the OLO value.

All except S,
SA, SB, SC

No

IN (INput value) The value to be scaled. Must be the same data type as IHI All except S,
SA, SB, SC

No

OUT (OUTput value) The scaled equivalent of the input value. Must be the same data
type as IHI.

All except S,
SA, SB, SC

No

Example

In the example, the registers %R0120 through %R0123
are used to store the high and low scaling values. The
input value to be scaled is analog input %AI0017. The
scaled output data is used to control analog output
%AQ0017. The scaling is performed whenever %I0001 is
ON.

Math Functions

7-140 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Subtract

Mnemonics:

SUB_DINT
SUB_INT
SUB_REAL
SUB_LREAL
SUB_UINT

When the SUB function receives power flow, it subtracts the operand IN2 from the operand

IN1 of the same data type as IN2 and stores the result in the output variable assigned to Q,

also of the same data type.

The power flow output is energized when SUB is performed, unless an invalid operation or

overflow occurs. (For more information, see “Overflow” on page 7-131.)

If a SUB_UINT operation results in a negative number, Q wraps around, yielding a result that

is the highest possible value (65535) minus the absolute value of the difference -1.

The following REAL and LREAL operations are invalid for SUB:

■ (± ∞) – (± ∞)

■ I1 and/or I2 is NaN (Not a Number)

Mnemonic Operation Displays as

SUB_INT Q(16 bit) = IN1(16 bit) – IN2(16 bit) base 10 number with sign, up to 5 digits long

SUB_DINT Q(32 bit) = IN1(32 bit) – IN2(32 bit) base 10 number with sign, up to 10 digits long

SUB_REAL Q(32 bit) = IN1(32 bit) – IN2(32 bit) base 10 number, sign and decimals, up to 8 digits long (excluding
the decimals)

SUB_LREAL Q(64 bit) = IN1(64 bit) – IN2(64 bit) base 10 number, sign and decimals, up to 17 digits long
(excluding the decimals)

SUB_UINT Q(16 bit) = IN1(16 bit) – IN2(16 bit) base 10 number, unsigned, up to 5 digits long

Operands for Subtract

Parameter Description Allowed Operands Optional

IN1 The value to subtract from; the value to the left of the minus
sign (-) in the equation IN1-IN2=Q.

All except S, SA, SB, SC No

IN2 The value to subtract from IN1; the value to the right of the
minus sign (-) in the equation IN1-IN2=Q.

All except S, SA, SB, SC No

Q The result of IN1-IN2. If a SUB operation on signed operands
results in underflow, Q is set to the smallest possible value
and there is no power flow.

If a SUB_UINT operation results in overflow, Q wraps
around. For example,

The SUB_UINT operation 600 – 601 = –1 sets Q to 65535

The SUB_UINT operation 600 – 602 = –2 sets Q to 65534

All except S, SA, SB, SC and
constant

No

Program Flow Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-141

7

Program Flow Functions
The program flow functions limit program execution or change the way the CPU executes the

application program.

Function Mnemonic Description

Argument
Present

ARG_PRES Determines whether an input or output parameter value was present when the function
block instance of the parameter was invoked. For example, a parameter can be optional
(pass by value).

Call CALL Causes program execution to go to a specified block.

Comment COMMENT Places a text explanation in the program.

End Master
Control Relay

ENDMCRN Nested End Master Control Relay. Indicates that the subsequent logic is to be executed with
normal power flow.

End of Logic END Provides an unconditional end of logic. The program executes from the first rung to the last
rung or the END instruction, whichever is encountered first.

Jump JUMPN Nested jump. Causes program execution to jump to a specified location indicated by a
LABELN. JUMPN/LABELN pairs can be nested within one another. Multiple JUMPNs can
share the same LABELN.

Label LABELN Nested label. Specifies the target location of a JUMPN instruction.

Master Control
Relay

MCRN Nested Master Control Relay. Causes all rungs between the MCR and its subsequent
ENDMCRN to be executed without power flow. Up to MCRN/ENDMCRN pairs can be
nested within one another. All the MCRNs share the same ENDMCRN.

Wires H_WIRE Horizontally connects elements of a line of LD logic, to complete the power flow.

V_WIRE Vertically connects elements of a line of LD logic, to complete the power flow.

Argument Present

The ARG_PRES function determines whether an input

parameter value was present when the function block instance

of the parameter was invoked. This may be necessary if the

parameter is optional.

This function must be called from a function block instance or

a parameterized block.

The standard output parameter ENO is false only when EN is

false.

Operands for ARG_PRES

Parameter Description Allowed Operands Optional

IN Parameter name. Must be a parameter of the function block that
contains the ARG_PRES instruction. Cannot be an array element or
structure element. An alias to a parameter should resolve only to the
parameter name.

All except flow and
constants.

No

Q True if the parameter is present, otherwise false.

Must be flow in LD. In
other languages all
types allowed except S,
SA, SB, SC and
constants.

No

Program Flow Functions

7-142 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example for ARG_PRES

The following sample rung calls the user defined function block, ReadTemp, which has two

parameters, TempVal and Temp1.

The function block ReadTemp contains the following logic, which uses an ARG_PRES

function to determine whether a value for TempVal is present. If TempVal does not have a

value, Temp_Pres is OFF and Idle is ON. If a value exists for TempVal, the ARG_PRES

function sets Temp_Pres ON. When Temp_Pres and Switch are both ON, Start is set ON.

Program Flow Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-143

7

Call

Non-parameterized Parameterized. May call a parameterized external block or a parameterized

block. May have up to 7 input and 8 output parameters.

When the CALL function receives power flow, it causes the logic execution to go immediately

to the designated program block, external C block (parameterized or not), or parameterized

block and execute it. After the block’s execution is complete, control returns to the point in the

logic immediately following the CALL instruction.

Notes:

■ A CALL function can be used in any program block, including the _MAIN block, or a

parameterized block. It cannot be used in an external block.

■ You cannot call a _MAIN block.

■ The called block must exist in the target before making the call.

■ There is no limit to the number of calls that can be made from or to a given block.

■ You can set up recursive subroutines by having a block call itself. When stack size is

configured to be the default (64K), the PLC guarantees a minimum of eight nested calls

before an “Application Stack Overflow” fault is logged.

■ Each block has a predefined parameter, Y0, which the CPU sets to 1 upon each

invocation of the block. Y0 can be controlled by logic within the block and provides the

output status of the block. When the Y0 parameter of a Program Block, parameterized

block, or external C block returns ON, the CALL passes power to the right; when it

returns OFF, the CALL does not pass power to the right.

Program Flow Functions

7-144 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for Call

Parameter Description
Block Name (????) Block name; the name of the block to transfer to.

You cannot CALL the _MAIN block.

A program block or a parameterized block can call itself.
(Parameterized calls only)

Input parameters (0 – 7)

Output parameters (1 – 8)

Notes for External (C) blocks:

■ You must define the TYPE, LENGTH, and NAME for each external C block parameter.

■ The valid data type, value range, and memory area for each parameter are stated in
the external block's written documentation.

■ Data flow is permitted for any parameter.

■ For additional information, see the section on External Blocks in chapter 5.

Notes for Parameterized Blocks:

■ You must define the TYPE, LENGTH, and NAME for each parameter. Valid operands
on the CALL instruction include variables, flow, and indirect references. Input
operands can also be constants.

■ If a formal parameter is an array of BOOL type and has a length evenly divisible by 16,
then a variable or array residing in word-oriented memory can be passed on to the
parameterized block as an operand. For example, if a parameterized block has a
formal parameter Y1 of data type BIT and length 48, you can pass a WORD array of
length 3 to Y1.

■ The BOOL parameter Y0 is automatically defined for all parameterized blocks and can
be used in the parameterized block's logic. When the parameterized block stops
executing and Y0 is ON, the CALL passes power flow to the right. If Y0 is OFF, the
CALL passes no power flow.

■ A parameterized block is not required to have the same number of inputs and outputs.

■ For additional information, see “Using Parameters With a Parameterized Block” in
chapter 5.

Program Flow Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-145

7

Examples for Call

Example 1

In the following example, if Enable is set, the C block named C_123 is executed. C_123

operates on the input data located at reference addresses Data1, Data2, and Data 3, and

produces values located at reference addresses Data4, Data5, and Data6. Logic within

C_123 controls the power flow output.

Example 2

Parameterized blocks are useful for building libraries of user-

defined functions. For example, if you have an equation such

as:

E=(A+B+C+D)/4, a parameterized block named AVG_4 could

be called as shown in the example to the right.

In this example, the average of the values in R00001, R00002,

R00003, and R00004 would be placed in R00005.

The logic within the parameterized block would be defined as

shown below.

Program Flow Functions

7-146 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Logic for AVG_4 Parameterized Block

Comment

The Comment function is used to enter a text explanation in the program. When you insert a

Comment instruction into the LD logic, it displays ????. After you key in a comment, the first

few words are displayed.

You can set the Comment mode option to Brief or Full.

Notes:

■ Editing a comment makes the Programmer lose equality.

■ Comment text is downloaded to the controller and retrieved upon Logic Upload.

Program Flow Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-147

7

Jump

Mnemonic Description Always associated with...

JUMPN Nested form of Jump instruction. a LABELN instruction

A JUMPN instruction causes a portion of the program logic to be bypassed. Program

execution continues at the LABELN specified in the same block. Power flow jumps directly

from the JUMPN to the rung with the named LABELN.

When the Jump is active, any functions between the jump and the label are not executed. All

coils between JUMPN and its associated LABELN are left at their previous states. This

includes coils associated with timers, counters, latches, and relays.

Any JUMPN can be either a forward or a backward jump, i.e., its LABELN can be either in a

further or previous rung. The LABELN must be in the same block.

Note: To avoid creating an endless loop with forward and backward JUMPN instructions, a

backward JUMPN should contain a way to make it conditional.

A JUMPN and its associated LABELN can be placed anywhere in a program, as long as the

JUMPN / LABELN range:

■ does not overlap the range of a MCRN / ENDMCRN pair.

■ does not overlap the range of a FOR_LOOP / END_FOR pair.

Nothing can be connected to the right side of a JUMPN instruction.

Operands

Parameter Description Optional

Label (????) Label name; the name assigned to the destination LABEL(N). No

Program Flow Functions

7-148 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Master Control Relay/End Master Control Relay

Mnemonics Description Always associated with...

MCRN Nested form of the Master Control
Relay

an ENDMCRN instruction

ENDMCRN Nested End Master Control Relay an MCRN instruction

MCRN

An MCRN instruction marks the beginning of a section of logic that will be executed with no

power flow. The end of an MCRN section must be marked with an ENDMCRN having the

same name as the MCRN. ENDMCRNs must follow their corresponding MCRNs in the logic.

All rungs between an active MCRN and its corresponding ENDMCRN are executed with

negative power flow from the power rail. The ENDMCRN function associated with the MCRN

causes normal program execution to resume, with positive power flow coming from the power

rail.

With a Master Control Relay, functions within the scope of the Master Control Relay are

executed without power flow, and coils are turned off.

Block calls within the scope of an active Master Control Relay will not execute. However, any

timers in the block will continue to accumulate time.

A rung may not contain anything after an MCRN.

Unlike JUMP instructions, MCRNs can only move forward. An ENDMCRN instruction must

appear after its corresponding MCRN instruction in a program.

The following controls are imposed by an MCRN:

■ Timers do not increment or decrement. TMR types are reset. For an ONDTR function, the

accumulator holds its value.

■ Normal outputs are off; negated outputs are on.

Note: When an MCRN is energized, the logic it controls is scanned and contact status is

displayed, but no outputs are energized. If you are not aware that an MCRN is

controlling the logic being observed, this might appear to be a faulty condition.

An MCRN and its associated ENDMCRN can be placed anywhere in a program, as long as

the MCRN / ENDMCRN range:

■ Is completely nested within another MCRN / ENDMCRN range, up to a maximum 255

levels of nesting, or is completely outside of the range of another MCRN / ENDMCRN

range.

■ Is completely nested within a FOR_LOOP / END_FOR range or is completely outside of

the range of a FOR_LOOP / END_FOR.

Program Flow Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-149

7

EndMCRN

The End Master Control Relay instruction marks the end of a section of logic begun with a

Master Control Relay instruction. When the MCRN associated with the ENDMCRN is active,

the ENDMCRN causes program execution to resume with normal power flow. When the

MCRN associated with the ENDMCRN is not active, the ENDMCRN has no effect.

ENDMCRN must be tied to the power rail; there can be no logic before it in the rung;

execution cannot be conditional.

ENDMCRN has a name that identifies it and associates it with the corresponding MCRN(s).

The ENDMCRN function has no outputs; there can be nothing after an ENDMCR instruction

in a rung.

Operands for MCRN/ENDMCRN

The Master Control Relay function has a single operand, a name that identifies the MCRN.

This name is used again with an ENDMCRN instruction. The MCRN has no output.

Parameter Description Optional

Name
(????)

The name associated with the MCRN that starts the section of logic. No

Example of MCRN/ENDMCRN

The following example shows an MCRN

named “Sec_MCRN” nested inside the

MCRN named “First_MCRN.” Whenever

the V_I0002 contact allows power flow into

the MCRN function, program execution will

continue without power flow to the coils

until the associated ENDMCRN is reached.

If the V_I0001 and V_I0003 contacts are

ON, the V_Q0001 coil is turned OFF and

the SET coil V_Q0003 maintains its current

state.

Program Flow Functions

7-150 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Wires

Horizontal and vertical wires (H_WIRE and V_WIRE)

are used to connect elements of a line of LD logic

between functions. Their purpose is to complete the

flow of logic (“power”) from left to right in a line of

logic.

A horizontal wire transmits the BOOLEAN ON/OFF

state of the element on its immediate left to the

element on its immediate right.

A vertical wire may intersect with one or more

horizontal wires on each side. The state of the vertical

wire is the inclusive OR of the ON states of the

horizontal wires on its left side. The state of the

vertical wire is copied to all of the attached horizontal

wires on its right side.

Note: Wires can be used for data flow, but you cannot route data flow leftwards. Nor can

two separate data flow lines come into the left side of the same vertical wire.

Relational Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-151

7

Relational Functions
Relational functions compare two values of the same data type or determine whether a

number lies within a specified range. The original values are unaffected.

Function Mnemonic Description

Compare CMP_DINT
CMP_INT
CMP_REAL
CMP_LREAL
CMP_UINT

Compares two numbers, IN1 and IN2, of the data type
specified by the mnemonic.

■ If IN1 < IN2, the LT output is turned ON.

■ If IN1 = IN2, the EQ output is turned ON.

■ If IN1 > IN2, the GT output is turned ON.

Equal EQ_DATA
EQ_DINT
EQ_INT
EQ_REAL
EQ_LREAL
EQ_UINT

Tests two numbers for equality

Greater or
Equal

GE_DINT
GE_INT
GE_REAL
GE_LREAL
GE_UINT

Tests whether one number is greater than or equal to another

Greater Than GT_DINT
GT_INT
GT_REAL
GT_LREAL
GT_UINT

Tests whether one number is greater than another

Less or Equal LE_DINT
LE_INT
LE_REAL
LE_LREAL
LE_UINT

Tests whether one number is less than or equal to another

Less Than LT_DINT
LT_INT
LT_REAL
LT_LREAL
LT_UINT

Tests whether one number is less than another

Not Equal NE_DINT
NE_INT
NE_REAL
NE_LREAL
NE_UINT

Tests two numbers for nonequality

Range RANGE_DINT
RANGE_DWORD
RANGE_INT
RANGE_UINT
RANGE_WORD

Tests whether one number is within the range defined by two
other supplied numbers

Relational Functions

7-152 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Compare

Mnemonics:

CMP_DINT
CMP_INT
CMP_REAL
CMP_LREAL
CMP_UINT

When the Compare (CMP) function receives power flow, it compares the value IN1 to the

value IN2.

■ If IN1 < IN2, CMP energizes the LT (Less Than) output.

■ If IN1 = IN2, CMP energizes the EQ (Equal) output.

■ If IN1 > IN2, CMP energizes the GT (Greater Than) output.

IN1 and IN2 must be the same data type. CMP compares data of the following types: DINT,

INT, REAL, LREAL, and UINT.

Tip: To compare values of different data types, first use conversion functions to make the

types the same.

When it receives power flow, CMP always passes power flow to the right, unless IN1 and/or

IN2 is NaN (Not a Number).

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to compare. All except S, SA, SB, SC No

IN2 The second value to compare. All except S, SA, SB, SC No

LT Output LT is energized when I1 < I2. Power flow No

EQ Output EQ is energized when I1 = I2. Power flow No

GT Output GT is energized when I1 > I2. Power flow No

Example

When %I00001 is ON, the integer variable SHIPS is

compared with the variable BOATS. Internal coils

%M0001, %M0002, and %M0003 are set to the results of

the compare.

Relational Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-153

7

Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than

Other data
types:

_INT
_REAL
_LREAL
_UINT

When the relational function receives power flow, it compares input IN1 to input IN2. These

operands must be the same data type. If inputs IN1 and IN2 are equal, the function passes

power to the right, unless IN1 and/or IN2 is NaN (Not a Number). The following relational

functions can be used to compare two numbers:

Function Definition Relational Statement

EQ Equal IN1=IN2

NE Not Equal IN1≠IN2

GE Greater Than or Equal IN1≥IN2

GT Greater Than IN1>IN2

LE Less Than or Equal IN1≤IN2

LT Less Than IN1<IN2

Note: If an overflow occurs with a _UINT operation, the result wraps around – see

“Overflow” on page 7-131.

 If the _DINT or _INT operations are fed the largest possible value with any sign, they

cannot determine if it is an overflow value. The power flow output of the previous

operation would need to be checked. If an overflow occurred on a previous DINT, or

INT operation, the result was the largest possible value with the proper sign and no

power flow.

Tip: To compare values of different data types, first use conversion functions to make the

types the same. The relational functions require data to be one of the following types:

DINT, INT, REAL, LREAL, or UINT.

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to be compared; the value on the left side of the
relational statement.

All except S, SA, SB, SC No

IN2 The second value to be compared; the value on the right side of the
relational statement. IN2 must be the same data type as IN1.

All except S, SA, SB, SC No

Q The power flow. If the relational statement is true, Q is energized,
unless IN1 or IN2 is NaN.

Power flow No

Relational Functions

7-154 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

EQ_DATA

Mnemonic:

EQ_DATA

The EQ_DATA function compares two input variables, IN1 and IN2 of the same data type. If

IN1 and IN2 are equal, output Q is energized. If they are not equal, Q is cleared.

Operands

Parameter Description Allowed Operands Optional

IN1 The first value to be compared; the value on the left side of the
relational statement.

PACMotion ENUM
variable or structure
variable.

For details, refer to “Data
Types and Structures” in
the PACMotion Multi-Axis
Motion Controller User’s
Manual, GFK-2448.

No

IN2 The second value to be compared; the value on the right side of the
relational statement. IN2 must be the same data type as IN1.

PACMotion ENUM
variable or structure
variable.

No

Q If IN1 or IN2 is true, Q is energized,. Power flow No

Relational Functions

GFK-2222S Chapter 7 Ladder Diagram Programming 7-155

7

Range

Mnemonics:

RANGE_DINT

RANGE_DWORD

RANGE_INT

RANGE_UINT

RANGE_WORD

When the Range function is enabled, it compares the value of input IN against the range

delimited by operands L1 and L2. Either L1 or L2 can be the high or low limit. When L1 IN

L2 or L2 IN L1, output parameter Q is set ON (1). Otherwise, Q is set OFF (0).

If the operation is successful, it passes power flow to the right.

Operands

Parameter Description Allowed Operands Optional

IN The value to compare against the range delimited by L1 and L2. Must be
the same data type as L1 and L2.

All except S, SA, SB,
SC

No

L1 The start point of the range. May be the upper limit or the lower limit.
Must be the same data type as IN and L2.

All except S, SA, SB,
SC

No

L2 The end point of the range. May be the lower or upper limit. Must be the
same data type as IN and L1.

All except S, SA, SB,
SC

No

Q If L1 IN L2 or L2 IN L1, Q is energized; otherwise, Q is off. Power flow No

Example

When RANGE_INT receives power flow from the normally open contact %I0001, it

determines whether the value in %R00003 is within the range 0 to 100 inclusively. Output coil

%M00002 is ON only if 0 %AI0050 100.

Timers

7-156 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Timers
This section describes the PACSystems timed contacts and timer function blocks that are

implemented in the LD language.

Timed Contacts

The PACSystems has four timed contacts that can be used to provide regular pulses of

power flow to other program functions. Timed contacts cycle on and off, in square-wave form,

every 0.01 second, 0.1 second, 1.0 second, and 1 minute. Timed contacts can be read by an

external communications device to monitor the state of the CPU and the communications

link. Timed contacts are also often used to blink pilot lights and LEDs.

The timed contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second),

T_SEC (1.0 second), and T_MIN (1 minute). These contacts represent specific locations in

%S memory:

#T_10MS 0.01 second timed contact %S0003

#T_100MS 0.1 second timed contact %S0004

#T_SEC 1.0 second timed contact %S0005

#T_MIN 1.0 minute timed contact %S0006

These contacts provide a pulse having an equal on and off time duration. The following timing

diagram illustrates the on/off time duration of these contacts.

X

X/2

SEC

T XXXXX

X/2

SEC

SEC

Caution

Do not use timed contacts for applications requiring accurate measurement of
elapsed time. Timers, time-based subroutines, and PID blocks are preferred for
these types of applications.

The CPU updates the timed contact references based on a free-running timer
that has no relationship to the start of the CPU sweep. If the sweep time
remains in phase with the timed contact clock, the contact will always appear
to be in the same state. For example, if the CPU is in constant sweep mode
with a sweep time setting of 100ms, the T_10MS and T_100MS bits will never
toggle.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-157

7

Timer Function Blocks

Function Function Block
Type

Mnemonic Description

Off Delay Timer Built-in

(instance data is
WORD array)

See page 7-157.

OFDT_HUNDS
OFDT_SEC
OFDT_TENTHS
OFDT_THOUS

The timer's Current Value (CV) resets to zero when
power flow input is on. CV increments while power flow
is off. When CV=PV (Preset Value), power flow is no
longer passed to the right until power flow input is on
again.

On Delay
Stopwatch Timer

ONDTR_HUNDS
ONDTR_SEC
ONDTR_TENTHS
ONDTR_THOUS

Retentive on delay timer. Increments while it receives
power flow and holds its value when power flow stops.

On Delay Timer TMR_HUNDS
TMR_SEC
TMR_TENTHS
TMR_THOUS

Simple on delay timer. Increments while it receives
power flow and resets to zero when power flow stops.

Timer Off Delay Standard

(instance data is a
structure variable)

See page 7-169.

TOF When the input IN transitions from ON to OFF, the
timer starts timing until a specified period of time has
elapsed, then sets the output Q to OFF.

Timer On Delay TON When the input IN transitions from OFF to ON, the
timer starts timing until a specified period of time has
elapsed, then sets the output Q to ON.

Timer Pulse TP When the input IN transitions from OFF to ON, the
timer sets the output Q to ON for a specified time
interval.

Built-In Timer Function Blocks

Note: Special care must be taken when programming timers in program blocks that are not

called every sweep, and in parameterized blocks and UDFBs. For details, see:

“Using OFDT, ONDTR and TRM in Program Blocks not Called Every Sweep,” page 7-159

“Timers that are Skipped by the Jump Instruction,” page 7-159

“Using OFDT, ONDTR and TMR in Parameterized Blocks,” page 7-159, and

“Using OFDT, ONDTR and TMR in UDFBs,” page 7-161,

Timers

7-158 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Data Required for Built-in Timer Function Blocks

The data associated with these functions is retentive through power cycles. Each timer uses

a three-word array of %R, %W, %P, %L or symbolic memory to store the following

information:

Current value (CV) Word 1

Preset value (PV) Word 2

Control word Word 3

Warning

Do not use two consecutive words (registers) as the starting addresses of two
timers. Logic Developer - PLC does not check or warn you if register blocks
overlap. Timers will not work if you place the current value of a second timer
on top of the preset value for the previous timer.

Word 1: Current value (CV)

Warning

The first word (CV) can be read but should not be written to, or the function
may not work properly.

Word 2: Preset value (PV)

When the Preset Value (PV) operand is a variable, it is normally set to a different location

than word 2 in the timer’s or counter’s three-word array.

■ If you use a different address and you change word 2 directly, your change will have no

effect, as PV will overwrite word 2.

■ If you use the same address for the PV operand and word 2, you can change the Preset

Value in word 2 while the timer or counter is running and the change will be effective.

Word 3: Control word

The control word stores the state of the Boolean inputs and outputs of its associated timer or

counter, as shown in the following diagram:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Q (counter/timer status output)

EN (enable input

Reset input

Enable input, previous execution

Warning

The third word (Control) can be read but should not be written to; otherwise,
the function will not work.

Note: Bits 0 through 13 are used for timer accuracy.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-159

7

Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep

Care should be taken when timers (ONDTR, TMR, and OFDTR) are used in program blocks

that are not called every sweep. The timers accumulate time across calls to the sub-block

unless they are reset. This means that they function like timers operating in a program with a

much slower sweep than the timers in the main program block. For program blocks that are

inactive for large periods of time, the timers should be programmed in such a manner as to

account for this catch up feature.

Timers that are Skipped by the Jump Instruction

You should not program a Jump around an instance of OFTD, ONDTR or TMR. Timers that

are skipped will not catch up and will therefore not accumulate time in the same manner as if

they were executed every sweep.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a

result of an interrupt.

Using OFDT, ONDTR and TMR in Parameterized Blocks

Special care must be taken when programming timers in PACSystems parameterized blocks.

Timers in parameterized blocks can be programmed to track true real-time as long as the

guidelines and rules below are followed. If the guidelines and rules described here are not

followed, the operation of the timer functions in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to

ensure these rules are followed.

The best use of a timer function is to invoke it with a particular reference address exactly one

time each scan. With parameterized blocks, it is important to use the appropriate reference

memory with the timer function and to call the parameterized block an appropriate number of

times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that

appears above the parameterized block in the call tree. To determine the source block for a

given parameterized block, determine which block invoked that parameterized block. If the

calling block is _MAIN or of type Block, it is the source block. If the calling block is any other

type (parameterized block or function block), apply the same test to the block that invoked

this block. Continue back up the call tree until the _MAIN block or a block of type Block is

found. This is the source block for the parameterized block.

Programming OFDT, ONDTR and TMR in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the

parameterized block in more than one place in your program logic.

Timers

7-160 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Parameterized block called from one block

If your parameterized block that contains a timer will be called from only one logic block,

follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.

2. Choose a reference address for the timer that will not be manipulated anywhere else.

The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L

memory corresponds to %P memory when the source block is _MAIN.

Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the

timer reference memory used by each call to the parameterized block. Follow these rules and

guidelines:

1. Call the parameterized block exactly one time per execution of each source block in

which it appears.

2. Choose a %L reference or parameterized block formal parameter for the timer reference

memory. Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

■ The strongly recommended choice is a %L location, which is inherited from the

parameterized block’s source block. Each source block has its own %L memory space

except the _MAIN block, which has a %P memory area instead. When the _MAIN block

calls another block, the %P mappings from the _MAIN block are accessed by the called

block as %L mappings.

■ If you use a parameterized block formal parameter (word array passed-by-reference), the

actual parameter that corresponds to this formal parameter must be a %L, %R, %P, %W,

or symbolic reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a

unique reference address must be used by each source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and your

parameterized block contains an OFDT, ONDTR, or TMR, you must follow two additional

rules:

■ Program the source block so that it invokes the parameterized block before making any

recursive calls to itself.

■ Do not program the parameterized block to call itself directly.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-161

7

Using OFDT, ONDTR and TMR in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on

these and other types of blocks, refer to Chapter 5.

When a timer function is present inside a UDFB, and a member variable is used for the

control block of a timer, the behavior of the timer may not match your expectations. If multiple

instances of the UDFB are called during a logic sweep, only the first-executed instance will

update its timer. If a different instance is then executed, its timer value will remain

unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed

time to its timer functions. This behavior matches the behavior of timers in a normal program

block.

Example

A UDFB is defined that uses a member variable for a timer function block. Two instances of

the function block are created: timer_A and timer_B. During each logic scan, both timer_A

and timer_B are executed. However, only the member variable in timer_A is updated and the

member variable in timer_B always remains at 0.

Timers

7-162 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Off Delay Timer

Mnemonics:
OFDT_SEC
OFDT_TENTHS
OFDT_HUNDS
OFDT_THOUS

The Off-Delay Timer (OFDT) increments while

power flow is off, and the timer's Current Value (CV)

resets to zero when power flow is on. OFDT passes

power until the specified interval PV (Preset Value)

has elapsed.

Time may be counted in the following increments:

■ Seconds

■ Tenths (0.1) of a second

■ Hundredths (0.01) of a second

■ Thousandth (0.001) of a second

The range for PV is 0 to +32,767 time units. If PV is out of range, it has no effect on the

timer's word 2. The state of this timer is retentive on power failure; no automatic initialization

occurs at power-up.

When OFDT receives power flow, CV is set to zero and the timer passes power to the right.

The output remains on as long as OFDT receives power flow.

Each time the OFDT is invoked with its power flow input turned OFF, CV is updated to reflect

the elapsed time since the timer was reset. OFDT continues passing power to the right until

CV equals or exceeds PV. When this happens, OFDT stops passing power flow to the right

and stops accumulating time. If PV is 0 or negative, the timer stops passing power flow to the

right the first time that it is invoked with its power flow input OFF.

When the function receives power flow again, CV resets to zero.

Notes:

■ The best way to use an OFDT function is to invoke it with a particular reference address

exactly one time each scan. Do not invoke an OFDT with the same reference address

more than once per scan (inappropriate accumulation of time would result). When an

OFDT appears in a program block, it accumulates time once per scan. Subsequent calls

to that program block within the same scan will have no effect on its OFDTs.

■ Do not program an OFDT function with the same reference address in two different

blocks. You should not program a JUMP around a timer function. Also, if you use

recursion (where a block calls itself either directly or indirectly), program the program

block so that it invokes the timer before it makes any recursive calls to itself.

■ For information on using timers inside parameterized blocks, see page 7-159.

■ An OFDT expires (turns OFF power flow to the right) the first scan that it does not receive

power flow if the previous scan time was greater than PV.

■ When OFDT is used in a program block that is not called every scan, the timer

accumulates time between calls to the program block unless it is reset. This means that

OFDT functions like a timer operating in a program with a much slower scan than the

timer in the main program block. For program blocks that are inactive for a long time,

OFDT should be programmed to allow for this catch-up feature. For example, if a timer in

a program block is reset and the program block is not called (is inactive) for four minutes,

when the program block is called, four minutes of time will already have accumulated. If

the enable input is OFF, these four minutes are applied to the timer (that is, CV is set to 4

minutes).

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-163

7

Timing diagram

ENABLE

Q

A B C D E F G H

A. ENABLE and Q both go high; timer is reset (CV = 0).

B. ENABLE goes low; timer starts accumulating time.

C. CV reaches PV; Q goes low and timer stops accumulating time.

D. ENABLE goes high; timer is reset (CV = 0).

E. ENABLE goes low; timer starts accumulating time.

F. ENABLE goes high; timer is reset (CV = 0) before CV had a chance to reach PV. (The

diagram is not to scale.)

G. ENABLE goes low; timer begins accumulating time.

H. CV reaches PV; Q goes low and timer stops accumulating time.

Operands for OFDT

Warning

Do not use the Address, Address+1, or Address+2 addresses with other
instructions. Overlapping references cause erratic timer operation.

Parameter Description Allowed Operands Optional

Address
(????)

The beginning address of a three-
word WORD array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

PV The Preset Value, used when the

timer is enabled or reset. 0 PV
+32,767. If PV is out of range, it
has no effect on Word 2.

All except S, SA, SB, SC Optional

CV The current value of the timer. All except S, SA, SB, SC, constant Optional

Timers

7-164 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Example for OFDT

The output action is reversed by the use of a negated output coil. In this circuit, the OFDT

timer turns off negated output coil %Q0001 whenever contact %I0001 is closed. After %I0001

opens, %Q0001 stays off for 2 seconds then turns on.

On Delay Stopwatch Timer

Mnemonics:
ONDTR_SEC
ONDTR_TENTHS
ONDTR_HUNDS
ONDTR_THOUS

The retentive On-Delay Stopwatch Timer (ONDTR) increments while it receives power flow

and holds its value when power flow stops. Time may be counted in the following increments:

■ Seconds

■ Tenths (0.1) of a second

■ Hundredths (0.01) of a second

■ Thousandths (0.001) of a second

The range is 0 to +32,767 time units. The state of this timer is retentive on power failure; no

automatic initialization occurs at power-up.

When ONDTR first receives power flow, it starts accumulating time (Current Value (CV)).

When the CV equals or exceeds Preset Value (PV), output Q is energized, regardless of the

state of the power flow input.

As long as the timer continues to receive power flow, it continues accumulating until CV

equals the maximum value (+32,767 time units). Once the maximum value is reached, it is

retained and Q remains energized regardless of the state of the enable input.

When power flow to the timer stops, CV stops incrementing and is retained. Output Q, if

energized, will remain energized. When ONDTR receives power flow again, CV again

increments, beginning at the retained value.

When reset (R) receives power flow and PV is not equal to zero, CV is set back to zero and

output Q is de-energized.

Note: If PV equals zero, the time is disabled and the reset is activated, and the output of

the time becomes high. Subsequent removal of the reset or activation of input will

have no effect on the timer output; the output of the time remains high.

ONDTR passes power flow to the right when CV is greater than or equal to PV. Since no

automatic initialization to the outgoing power flow state occurs at power-up, the power flow

state is retentive across power failure.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-165

7

Notes:

■ The best way to use an ONDTR function is to invoke it with a particular reference

address exactly one time each scan. Do not invoke an ONDTR with the same reference

address more than once per scan (inappropriate accumulation of time would result).

When an ONDTR appears in a program block, it will only accumulate time once per scan.

Subsequent calls to that same program block within the same scan will have no effect on

its ONDTRs. Do not program an ONDTR function with the same reference address in two

different blocks. You should not program a JUMPN around a timer function. Also, if you

use recursion (that is, having a block call itself either directly or indirectly), program the

program block so that it invokes the timer before it makes any recursive calls to itself.

■ For information on using timers inside parameterized blocks, see page 7-159.

■ An ONDTR expires (passes power flow to the right) the first scan that is enabled and not

reset if the previous scan time was greater than PV.

■ When ONDTR is used in a program block that is not called every scan, it accumulates

time between calls to the program block unless it is reset. This means that ONDTR

functions like a timer operating in a program with a much slower scan than the timer in

the main program block. For program blocks that are inactive for a long time, ONDTR

should be programmed to allow for this catch-up feature. For example, if a timer in a

program block is reset and the program block is not called (is inactive) for four minutes,

when the program block is called, four minutes of time will already have accumulated. If

the enable input is ON and the reset input is OFF, these four minutes are applied to the

timer (that is, CV is set to 4 minutes).

Timing diagram

A B C D E F G H

ENABLE

RESET

Q

A. ENABLE goes high; timer starts accumulating.

B. Current value (CV) reaches preset value (PV); Q goes high. Timer continues to

accumulate time until ENABLE goes low, RESET goes high or current value becomes

equal to the maximum time.

C. RESET goes high; Q goes low, accumulated time is reset (CV=0).

D. RESET goes low; timer then starts accumulating again, as ENABLE is high.

E. ENABLE goes low; timer stops accumulating. Accumulated time stays the same.

F. ENABLE goes high again; timer continues accumulating time.

G. CV becomes equal to PV; Q goes high. Timer continues to accumulate time until

ENABLE goes low, RESET goes high or CV becomes equal to the maximum time.

H. ENABLE goes low; timer stops accumulating time.

Timers

7-166 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Operands for On Delay Stopwatch Timer

Warning

Do not use the Address, Address+1, or Address+2 addresses with other
instructions. Overlapping references cause erratic timer operation.

Parameter Description Allowed Operands Optional

Address
(????)

Beginning address of a three-word
WORD array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

R When R is ON, it resets the Current
Value (Word 1) to zero.

Power flow Optional

PV The Preset Value, used when the

timer is enabled or reset. 0 PV
+32,767. If PV is out of range, it has
no effect on Word 2.

All except S, SA, SB, SC Optional

CV Current Value of the timer All except S, SA, SB, SC and
constant

Optional

Example for On Delay Stopwatch Timer

A retentive on-delay timer is used to create a signal (%Q0011) that turns on 8.0 seconds after

%Q0010 turns on, and turns off when %Q0010 turns off.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-167

7

On Delay Timer

Mnemonics:

TMR_SEC
TMR_TENTHS
TMR_HUNDS
TMR_THOUS

The On-Delay Timer (TMR) increments while it receives

power flow and resets to zero when power flow stops. The

timer passes power after the specified interval PV (Preset

Value) has elapsed, as long as power is received.

The range for PV is 0 to +32,767 time units. If PV is out of range, it has no effect on the

timer's word 2. The state of this timer is retentive on power failure; no automatic initialization

occurs at power-up.

Time may be counted in the following increments:

■ Seconds

■ Tenths (0.1) of a second

■ Hundredths (0.01) of a second

■ Thousandths (0.001) of a second

When TMR is invoked with its power flow input turned OFF, its Current Value (CV) is reset to

zero, and the timer does not pass power flow to the right. Each time the TMR is invoked with

its power flow input turned ON, CV is updated to reflect the elapsed time since the timer was

reset. When CV reaches PV, the timer function passes power flow to the right.

Notes:

■ The best way to use a TMR function is to invoke it with a particular reference address

exactly one time each scan. Do not invoke a TMR with the same reference address more

than once per scan (inappropriate accumulation of time would result). When a TMR

appears in a program block, it will only accumulate time once per scan. Subsequent calls

to that same program block within the same scan will have no effect on its TMRs. Do not

program a TMR function with the same reference address in two different blocks. You

should not program a JUMP around a timer function. Also, if you use recursion (that is,

having a block call itself either directly or indirectly), program the program block so that it

invokes the timer before it makes any recursive calls to itself.

■ For information on using timers inside parameterized blocks, see page 7-159.

■ A TMR timer expires (passes power flow to the right) the first scan that it is enabled if the

previous scan time was greater than PV.

■ When TMR is used in a program block that is not called every scan, TMR accumulates

time between calls to the program block unless it is reset. This means that it functions like

a timer operating in a program with a much slower sweep than the timer in the main

program block. For program blocks that are inactive for a long time, TMR should be

programmed to allow for this catch-up feature. For example, if a timer in a program block

is reset and the program block is not called (is inactive) for 4 minutes, when the program

block is called, four minutes of time will already have accumulated. If the enable input is

ON, these four minutes are applied to the timer (i.e. CV is set to 4 minutes).

Timers

7-168 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Timing Diagram

A. ENABLE goes high; timer begins accumulating time.

B. CV reaches PV; Q goes high and timer continues accumulating time.

C. ENABLE goes low; Q goes low; timer stops accumulating time and CV is cleared.

D. ENABLE goes high; timer starts accumulating time.

E. ENABLE goes low before current value reaches PV; Q remains low; timer stops

accumulating time and is cleared to zero (CV=0).

Operands for On Delay Timer

Warning

Do not use the Address, Address+1, or Address+2 addresses with other
instructions. Overlapping references cause erratic timer operation.

Parameter Description Allowed Operands Optional

???? The beginning address of a three-word WORD array:

Word 1: Current value (CV)

Word 2: Preset value (PV)

Word 3: Control word

R, W, P, L, symbolic No

PV The Preset Value, used when the timer is enabled or

reset. 0 PV +32,767. If PV is out of range, it has no
effect on Word 2.

All except S, SA, SB, SC Yes

CV The current value of the timer. All except S, SA, SB, SC
and constant

Yes

Example for On Delay Timer

An on-delay timer with address

TMRID is used to control the length of time

that a coil is on. This coil has been

assigned the variable DWELL. When the

normally open (momentary) contact

DO_DWL is ON, coil DWELL is

energized.

The contact of coil DWELL keeps coil

DWELL energized (when contact

DO_DWL is released) and also starts the timer TMRID. When TMRID reaches its preset

value of five tenths of a second, coil REL energizes, interrupting the latched-on condition of

coil DWELL. The contact DWELL interrupts power flow to TMRID, resetting its current value

and de-energizing coil REL. The circuit is then ready for another momentary activation of

contact DO_DWL.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-169

7

Standard Timer Function Blocks

The standard timers are a pulse timer (TP), an on-delay timer (TON), and an off-delay timer

(TOF). The pulse timer block can be used to generate output pulses of a given duration. The

on-delay timer can be used to delay setting an output ON for a fixed period after an input is

set ON. The off-delay timer can be used to delay setting an output OFF for a fixed period

after an input goes OFF so that the output is held on for a given period longer than the input.

Notes:

 Any block type can contain calls to the standard timers. (See Chapter 5 for a discussion

of the various block types.)

 Interrupt blocks can contain standard timers.

 An instance of a timer can be passed by reference to a parameterized block or UDFB.

 When the timer stops timing as a result of reaching its Preset Time (PT), the Elapsed

Time (ET) contains the actual timer duration. For example, if the Preset Time was

specified as 333 ms, but the timer actually timed to 350 ms, the 350 ms value is saved

in ET.

Data Required for Standard Timer Function Blocks

Each invocation of a timer has associated instance data that persists from one execution of

the timer to the next. Instance variables are automatically located in symbolic memory. (You

cannot specify an address.) You can specify a stored value for each element. The user logic

cannot modify the values.

Each timer instance variable has the following structure. Elements of a timer structure cannot

be published.

The instance data type for each timer must be the same as the timer type:

The TOF timer requires an instance variable of type TOF.

The TON timer requires an instance variable of type TON.

The TP timer requires an instance variable of type TP.

Element Type Description Details

IN BOOL Timer input Cannot be accessed in user logic.

PT DINT Preset time Cannot be accessed in user logic.

ET DINT Elapsed time Read only. Accessible in user
logic.

Q BOOL Set ON when timer finishes timing Read only. Accessible in user
logic.

ENO BOOL Enable output Read only. Accessible in user
logic.

TI BOOL Set ON when the timer instance is
timing (that is, ET is incrementing).

Read only. Accessible in user
logic.

Timers

7-170 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Resetting the Timer

The preset time (PT) may be changed while the timer is timing to affect the duration.

When the timer reaches PT, the timer stops timing and the elapsed time parameter (ET)

contains the actual timer duration.

To reset the timer function block, set the PT input to 0. When the function block resets:

ET is set to 0

Q is set to off (0)

The TI element is set to 0
The IN parameter is ignored

Operands

TOF, TON and TP have the same input and output parameters, except for the instance

variable, which must be the same type as the instruction.

Note: Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI may

cause erratic operation of the timer function block.

Parameter Description Allowed Types Allowed Operands Optional

???? Structure variable containing the internal data for the
timer instance. (See “Data Required for Standard
Timer Function Blocks” on page 7-169.)

TOF, TON, or TP. Must
be same type as the
instruction.

NA No

IN Timer input. Controls when the timer will accumulate
time.

TON and TP will begin to time when IN transitions
from OFF to ON.

TOF will begin to time when IN transitions from ON
to OFF.

Flow NA Yes

PT Preset time (in milliseconds). Indicates the amount of
time the timer will time until turning Q either ON or
OFF, depending on the timer type.

Setting PT to 0 resets the timer.

DINT All except S, SA,
SB, SC

Yes

Q Timer output. Action depends on the timer type.

When TP is timing, Q is ON.

When TON is done timing, Q turns ON.

When TOF is done timing, Q turns OFF.

Flow NA Yes

ET Elapsed time. Indicates the length of time, in
milliseconds, that the timer has been measuring time.

DINT All except S, SA,
SB, SC and
constants

Yes

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-171

7

Timer Off Delay

When the input IN transitions from ON to OFF, the timer starts timing until a specified
period of time (PT) has elapsed, then sets the output Q to OFF.

Timing Diagram

t0 t1 t2

t4 t5

IN

Q

ET

t3

PT PT

t0 When input IN is set to ON, the output Q follows and remains ON. The elapsed time,

ET, does not increment.

t1 When IN goes OFF, the timer starts to measure time and ET increments. ET

continues to increment until its value equals the preset time, PT.

t2 When ET equals PT, Q is set to OFF and ET remains at the preset time, PT.

t3 When input IN is set to ON, the output Q follows and remains ON. ET is set to 0.

t4 When IN is set to OFF, ET, begins incrementing. When IN is OFF for a period shorter

than that specified by PT, Q remains ON.

t5 When IN is set to ON, ET is set to 0.

Example

In the following sample rung, a TOF function block is used to keep Light ON for 30,000 ms

(30 seconds) after Door_Open is set to OFF. As long as Door_Open is ON, Light remains

ON.

Timers

7-172 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

7

Timer On Delay

When the input IN transitions from OFF to ON, the timer starts timing until a specified
period of time (PT) has elapsed, then sets the output Q to ON.

Timing Diagram

t0 t1

t2

t4

IN

Q

ET

t3

PT PT

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time

output ET starts to increment. The output Q remains OFF and ET continues to

increment until its value equals the preset time, PT.

t1 When ET equals PT, the output Q is goes ON, and ET remains at the preset time,

PT. Q remains ON until IN goes OFF.

t2 When IN is set to OFF, Q goes OFF and ET is set to 0.

t3 When IN is set to ON, ET starts to increment.

t4 If IN is ON for a shorter time than the delay specified in PT, the output Q remains

OFF. ET is set to 0 when IN is set to OFF.

Example

In the following sample rung, a TON function block is used to delay setting Start to ON for 1

minute (60,000 ms) after Preheat is set to ON.

Timers

GFK-2222S Chapter 7 Ladder Diagram Programming 7-173

7

Timer Pulse

When the input IN transitions from OFF to ON, the timer sets the output Q to ON for
the specified time interval, PT

Timing Diagram

t0 t1

t2

t4

t5

IN

Q

ET

t3

PT PT

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time

output, ET, increments until its value equals that of the specified preset time, PT. Q is

set to 0 on until ET equals PT.

t1 When ET equals PT, Q is set to OFF. The value of ET is held until IN is set to OFF.

t2 When IN is set to OFF, ET is set to 0.

t3 When IN is set to ON, the timer starts to measure time and ET begins incrementing.

Q is set to ON.

t4 If the input is OFF for a period shorter than the input PT, the output Q remains on and

ET continues incrementing.

t5 When ET equals PT, Q is set to OFF and ET is set to 0.

Example

In the following sample rung, a TP function block is used to set Sprayers to ON for a

5-second (5000 ms) pulse.

GFK-2222S 8-1

Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that

represents the behavior of functions, function blocks and programs as a set of interconnected

graphical blocks.

The block types Block, Parameterized Block, and Function Block can be programmed in

FBD. The _MAIN program block can also be programmed in FBD. For details on blocks, refer

to chapter 6, “Program Organization.” For information on using the FBD editor in the

programming software, refer to the online help.

For an overview of the types of operands that can be used with instructions, refer to

“Operands for Instructions” in chapter 6.

Most functions and function blocks implemented in FBD are the same as their LD

counterparts. Instructions that are implemented differently are discussed in detail in this

chapter. FBD has the following general differences compared to LD:

 In FBD, except for timers and counters, functions and function blocks do not have EN

or ENO parameters.

 In FBD, all functions and function blocks display a solve order, which is calculated by

the FBD editor.

The FBD implementation of the PACSystems instruction set includes the following

categories:

 Advanced Math .. 8-2

 Bit Operations .. 8-4

 Comment Block .. 8-9

 Communication ...

Consists of the PNIO_DEV_COMM function. For details, refer to the PACSystems

RX3i PROFINET Controller Manual, GFK-2571.

 Comparison Functions ... 8-10

 Control Functions ... 8-13

 Counters ... 8-15

 Data Move Functions ... 8-16

 Math Functions... 8-22

 Program Flow Functions .. 8-30

 Timers .. 8-31

 Type Conversion Functions ... 8-33

8

Chapter

8-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Advanced Math Functions
The Advanced Math functions perform logarithmic, exponential, square root, trigonometric,

and inverse trigonometric operations.

Function Description

Absolute value. Finds the absolute value of a double- precision integer (DINT), signed single-
precision integer (INT), REAL or LREAL (floating-point) value. The mnemonic specifies the value's
data type.

For details, see “Math Functions” in chapter 7.

Exponential. Raises e to the value specified in IN (e
IN

). Calculates the inverse natural logarithm of the

IN operand.

For details, see “Advanced Math Functions” in chapter 7.

Exponential. Calculates IN1 to the IN2 power (IN1
IN2

).

For details, see page 8-3.

Inverse trig. Calculates the inverse cosine of the IN operand and expresses the result in radians.

For details, see “Advanced Math Functions” in chapter 7.

Inverse trig. Calculates the inverse sine of the IN operand and expresses the result in radians.

For details, see “Advanced Math Functions” in chapter 7.

Inverse trig. Calculates the inverse tangent of the IN operand and expresses the result in radians.

For details, see “Advanced Math Functions” in chapter 7.

Logarithmic. Calculates the natural logarithm of the operand IN.

For details, see “Advanced Math Functions” in chapter 7.

Logarithmic. Calculates the base 10 logarithm of the operand IN.

For details, see “Advanced Math Functions” in chapter 7.

Square root. Calculates the square root of the operand IN and stores the result in Q.

For details, see “Advanced Math Functions” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-3

8

Function Description

Trig. Calculates the cosine of the operand IN, where IN is expressed in radians.

For details, see “Advanced Math Functions” in chapter 7.

Calculates the sine of the operand IN, where IN is expressed in radians.

For details, see “Advanced Math Functions” in chapter 7.

Calculates the tangent of the operand IN, where IN is expressed in radians.

For details, see “Advanced Math Functions” in chapter 7.

EXPT Function

The Power of X (EXPT) function raises the value of input IN1 to the power specified

by the value IN2 and places the result in Q. The EXPT function operates on REAL or

LREAL input value(s) and place the result in output Q. The instruction is not carried

out if one of the following invalid conditions occurs:

■ IN1 < 0, for EXPT

■ IN1 or IN2 is a NaN (Not a Number)

Invalid operations (error cases) may yield results that are different from those in the

LD implementation of this function.

Operands of the EXPT Function

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN or IN1 For EXP, LOG, and LN, IN
contains the REAL value to be
operated on.

The EXPT function has two
inputs, IN1 and IN2. For
EXPT, IN1 is the base value
and IN2 is the exponent.

REAL, LREAL All except variables located in
%S—%SC

No

IN2 (EXPT) The REAL exponent for EXPT. REAL, LREAL All except variables located in
%S—%SC

No

Q Contains the REAL
logarithmic/exponential value
of IN or of IN1 and IN2.

REAL, LREAL All except constants and
variables located in %S—%SC

No

8-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Bit Operation Functions
The Bit Operation functions perform comparison, logical, and move operations on bit strings.

Bit Operation functions treat each WORD or DWORD data as a continuous string of bits, with

bit 1 of the WORD or DWORD being the Least Significant Bit (LSB). The last bit of the

WORD or DWORD is the Most Significant Bit (MSB).

Warning

Overlapping input and output reference address ranges in multiword
functions is not recommended, as it can produce unexpected results.

Function Description

Logical AND. Compares the bit strings IN1 and IN2 bit by bit. When the corresponding bits are both
1, places a 1 in the corresponding location in output string Q; otherwise, places a 0 in the
corresponding location in Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the string in
Q and the result is placed in Q.

For details, see page 8-6.

Logical OR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of corresponding bits are
both 0, places a 0 in the corresponding location in output string Q; otherwise, places a 1 in the
corresponding location in Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the string in
Q and the result is placed in Q.

For details, see page 8-6.

Logical XOR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of corresponding bits are
different, places a 1 in the corresponding location in the output bit string Q; when a pair of
corresponding bits are the same, places a 0 in Q.

If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the string in
Q and the result is placed in Q.

For details, see page 8-6.

Logical NOT. Sets the state of each bit in output bit string Q to the opposite state of the
corresponding bit in bit string IN1.

For details, see page 8-8.

Rotate Bits Left. Rotates all the bits in a string a specified number of places to the left.

For details, see “Bit Operation Functions” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-5

8

Function Description

Rotate Bits Right. Rotates all the bits in a string a specified number of places to the right.

For details, see “Bit Operation Functions” in chapter 7.

Shift Bits Left. Shifts all the bits in a word or string of words to the left by a specified number of
places.

For details, see “Bit Operation Functions” in chapter 7.

Shift Bits Right. Shifts all the bits in a word or string of words to the right by a specified number of
places.

For details, see “Bit Operation Functions” in chapter 7.

8-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Logical AND, Logical OR, and Logical XOR

The Logical functions examine each bit in bit string IN1 and the corresponding bit in bit string

IN2, beginning with the least significant bit in each string, and places the result in Q. If

additional inputs (IN3 up to IN8) are used, the function compares each bit in the input with the

corresponding bit in Q and places the result in Q. The comparison is repeated for each input

that is used. The input bit strings specified in IN1 … IN8 may overlap.

Logical AND

If both bits examined by the Logical AND function are 1, AND

places a 1 in the corresponding location in output string Q. If

either bit is 0 or both bits are 0, AND places a 0 in string Q in that

location.

Tip: You can use the Logical AND function to build masks or

screens, where only certain bits are passed (the bits

opposite a 1 in the mask), and all other bits are set to 0.

Minimum number of inputs = 2

Maximum number of inputs = 8

Minimum number
of inputs = 2

Maximum number
of inputs = 8

Logical OR

If either bit examined by the Logical OR function is 1, OR places

a 1 in the corresponding location in output string Q. If both bits

are 0, Logical OR places a 0 in string Q in that location.

Tips:

■ You can use the Logical OR function to combine strings or to
control many outputs with one simple logical structure. The
Logical OR function is the equivalent of two relay contacts in
parallel multiplied by the number of bits in the string.

■ You can use the Logical OR function to drive indicator lamps
directly from input states or to superimpose blinking
conditions on status lights.

GFK-2222S Chapter 8 Function Block Diagram 8-7

8

Minimum number
of inputs = 2

Maximum number
of inputs = 8

Logical XOR

If the bits in the strings examined by XOR are different, a 1 is

placed in the corresponding position in the output bit string.

For each pair of bits examined, if only one bit is 1, XOR places a

1 in the corresponding location in string Q.

If both bits are 0, XOR places a 0 in the corresponding location in

string Q.

Tips:

 If string IN2 and output string Q begin at the same reference,

a 1 placed in string IN1 will cause the corresponding bit in

string IN2 to alternate between 0 and 1, changing state with

each scan as long as input is received.

 You can program longer cycles by pulsing the input to the

function at twice the desired rate of flashing. The input pulse

should be one scan long (oneshot type coil or self resetting

timer).

 You can use XOR to quickly compare two bit strings, or to

blink a group of bits at the rate of one ON state per two

scans.

 XOR is useful for transparency masks.

Operands for AND, OR, and XOR

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD
editor.

NA NA No

IN1 The value to operate
on.

BOOL, WORD
DWORD

All No

IN2 (Must be the same data type as IN1.) The value to operate
on.

BOOL, WORD
DWORD

All No

IN3 … IN8 (Must be the same data type as
IN1.)

Values to operate on. BOOL, WORD
DWORD

All Yes

Q (Must be the same data type as IN1 and
IN2.)

The operation’s result. BOOL, WORD
DWORD

All except constants
and variables
located in %S
memory

No

Properties for AND, OR, and XOR

Property Valid Range

Number of Inputs 2 to 8

8-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Logical NOT

The Logical Not or Logical Invert (NOT) function sets the state of each bit in the output

bit string Q to the opposite of the state of the corresponding bit in bit string IN1.

All bits are altered on each scan that input is received, making output string Q the
logical complement of input string IN1.

Operands

Parameter Description Allowed Types Allowed
Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 The input string to NOT. WORD
DWORD

All No

Q The NOT's result. WORD
DWORD
(Must be the same
data type as IN1)

All except
constants and
variables located in
%S memory

No

GFK-2222S Chapter 8 Function Block Diagram 8-9

8

Comments

Text Block

The Text block is used to place an explanation in the program. When you
type in a comment, the first few words are displayed.

To increase the size of the text box and display more text, select the box
and drag one of the handles.

There are no operands for the Text block.

■ Editing a comment makes the Programmer lose equality.

■ Comment text is downloaded to the controller and retrieved upon Logic Upload.

8-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Comparison Functions
Comparison functions compare two values of the same data type or determine whether a

number lies within a specified range. The original values are unaffected.

Function Description

Compare. Compares two numbers, IN1 and IN2.

For details, see “Relational Functions” in chapter 7.

Equal. Tests two numbers for equality.

For details, see page 8-12.

Greater Than or Equal. Tests whether one number is greater than or equal to
another.

For details, see page 8-12.

Greater Than. Tests whether one number is greater than another.

For details, see page 8-12.

Less Than or Equal. Tests whether one number is less than or equal to another.

For details, see page 8-12.

Less Than. Tests whether one number is less than another.

For details, see page 8-12.

GFK-2222S Chapter 8 Function Block Diagram 8-11

8

Function Description

Not Equal. Tests whether two numbers are not equal.

For details, see page 8-12.

Range. Tests whether one number is within the range defined by two other supplied
numbers.

For details, see “Relational Functions” in chapter 7.

8-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than

The relational functions compare input IN1 to input IN2. These operands must be the same

data type. If inputs IN1 and IN2 are equal, the function outputs the result to Q, unless IN1

and/or IN2 is NaN (Not a Number). The following relational functions can be used to compare

two numbers:

Function Definition Relational Statement

EQ Equal IN1=IN2

NE Not Equal IN1≠IN2

GE Greater Than or
Equal

IN1≥IN2

GT Greater Than IN1>IN2

LE Less Than or Equal IN1≤IN2

LT Less Than IN1<IN2

Tip: To compare values of different data types, first use conversion functions to make the

types the same.

Operands

Parameter Description Allowed Types Allowed
Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 The first value to be compared; the value
on the left side of the relational statement.

BOOL (for EQ and NE functions
only), BYTE, DINT, DWORD, INT,
REAL, LREAL, UINT, WORD

All except S,
SA, SB, SC

No

IN2 The second value to be compared; the
value on the right side of the relational
statement. IN2 must be the same data type
as IN1.

No

Q If the relational statement is true, Q=1. BOOL I, Q, G, M, T,
SA, SB, SC

No

Bit reference in a non-BOOL
variable.

All except
constants.

GFK-2222S Chapter 8 Function Block Diagram 8-13

8

Control Functions
The control functions limit program execution and change the way the CPU executes the

application program.

Function Description

Do I/O Interrupt. For one scan, immediately services a specified range of inputs
or outputs. (All inputs or outputs on a module are serviced if any reference
locations on that module are included in the DO I/O function. Partial I/O module
updates are not performed.) Optionally, a copy of the scanned I/O can be
placed in internal memory, rather than at the real input points.

For details, see “Control Functions” in chapter 7.

Mask I/O Interrupt. Mask or unmask an interrupt from an I/O board when using
I/O variables. If not using I/O variables, use SVC_REQ 17, described in Chapter
9.

For details, see “Control Functions” in chapter 7.

Proportional Integral Derivative (PID) Control.
Provides two PID closed-loop control
algorithms:

 Standard ISA PID algorithm (PID_ISA)

 Independent term algorithm (PID_IND)

Note: For details, refer to chapter 10.

Service Request. Requests a special control system service.

Note: For details, refer to chapter 9.

8-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Function Description

Scan Set I/O. Scans the IO of a specified scan set.

For details, see “Control Functions” in chapter 7.

Suspend I/O. Suspends for one sweep all normal I/O updates, except those
specified by DO I/O instructions.

For details, see “Control Functions” in chapter 7.

Suspend I/O Interrupt. Suspend or resume an I/O interrupt when using I/O
variables. If not using I/O variables, use SVC_REQ 32, described in Chapter 9.

For details, see “Control Functions” in chapter 7.

Falling Edge Trigger. Detects a high-to-low transition of a Boolean input.

Produces a single output pulse when a falling edge is detected.

For details, see “Control Functions” in chapter 7.

Rising Edge Trigger. Detects a low-to-high transition of a Boolean input.
Produces a single output pulse when a rising edge is detected.

For details, see “Control Functions” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-15

8

Counters
Function Description

Down Counter. Counts down from a preset value. The output is ON

whenever the Current Value is 0.

The parameter that appears above the function block is a one-dimensional,
three-word array in %R, %W, %P, %L, or symbolic memory that the counter
uses to store its current value, preset value and control word.

For details, see “Counters” in chapter 7.

Up Counter. Counts up to a designated value. The output is ON whenever

the Current Value is the Preset Value.

The parameter that appears above the function block is a one-dimensional,
three-word array in %R, %W, %P, %L, or symbolic memory that the counter
uses to store its current value, preset value and control word.

For details, see “Counters” in chapter 7.

8-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Data Move Functions
The Data Move functions provide basic data move capabilities.

Function Description

Array Size. Counts the number of elements in an array.

For details, see “Data Move Functions” in chapter 7.

Array Size Dim1. Returns the value of the Array Dimension 1
property of an array.

For details, see “Data Move Functions” in chapter 7.

Array Size Dim2. Returns the value of the Array Dimension 2
property of an array.

For details, see “Data Move Functions” in chapter 7.

Bus Read. Reads data from the bus.

For details, see “Data Move Functions” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-17

8

Function Description

Bus Read Modify Write. Uses a read/modify/write cycle to
update a data element in a module on the bus.

Other BUS_RMW functions:

 BUS_RMW_DWORD
 BUS_RMW_WORD

For details, see “Data Move Functions” in chapter 7.

Bus Test and Set. Handles semaphores on the bus.

Other BUS_TS function:

 BUS_TS_WORD

For details, see “Data Move Functions” in chapter 7.

Bus Write. Writes data to a module on the bus.

For details, see “Data Move Functions” in chapter 7.

8-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Function Description

Communication Request. Allows the program to communicate
with an intelligent module, such as a Genius Bus Controller or
a High Speed Counter.

For details, see “Communication Request” in chapter 7.

Minimum Outputs = 2

Maximum Outputs = 8

Fan Out. Copies the input
value to multiple outputs of the
same data type as the input.

For details, see page 8-18.

Move Data. Copies data as individual bits, so the new location
does not have to be the same data type. Data can be moved
into a different data type without prior conversion.

For details, see page 8-18.

Move Data Explicit. Provides data coherency by locking
symbolic memory being written to during the copy operation.

For details, see “Data Move Functions” in chapter 7.

Note: FBD and ST do not support the constant 0 as a value

for the input IN.

GFK-2222S Chapter 8 Function Block Diagram 8-19

8

Function Description

Move From Flat. Copies reference memory data to a UDT
variable or UDT array. Provides the option of locking the
symbolic or I/O variable memory area being written to during
the copy operation.

For details, see “Data Move Functions” in chapter 7.

Move to Flat. Copies data from symbolic or I/O variable
memory to reference memory. Copies across mismatching
data types.

For details, see “Data Move Functions” in chapter 7.

Size Of. Counts the number of bits used by a variable.

For details, see “Data Move Functions” in chapter 7.

Fan Out

Copies the input IN to multiple outputs.

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The input to copy to the outputs. BOOL, DINT,
DWORD, INT,
REAL, UINT, or
WORD variable or
constant

All except SA, SB, SC. No

OUT1 …OUT8 Variables of the same data type as
the IN operand. The outputs.
Minimum: two outputs. Maximum:
eight outputs.

Must be same type
as IN.

All except S, SA, SB, SC
and constant.

No

8-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Move Data

When the input operand, EN, is set to ON, the MOVE instruction copies

data as bits from one location in PACSystems controller memory to

another. Because the data is copied as bits, the new location does not

need to use the same type of memory area as the source. For example,

you can copy data from an analog memory area into a discrete memory

area, or vice versa.

MOV sets its output, ENO, whenever it receives data unless one of the following occurs:

 When the input, EN, is set to OFF, then the output, ENO, is set to OFF.

 When the input, EN is set to ON, and the input, IN, contains an indirect reference, and

the memory of IN is out of range, then the output, ENO, is set to OFF.

The value to store at the destination Q is acquired from the IN parameter. If IN is a variable,

the value to store in Q is the value stored at the IN address. If IN is a constant, the value to

store in Q is that constant

The result of the MOVE depends on whether the data type for the Q operand is a bit

reference or a non-bit reference:

 If Q is a non-bit reference, LEN (the length) indicates the number of memory locations in

which the IN value should be repeated, starting at the location specified by Q.

 If Q is a bit reference, IN is treated as an array of bits. LEN therefore indicates the

number of bits to acquire from the IN parameter to make up the stored value. If IN is a

constant, bits are counted from the least-significant bit. If IN is a variable, LEN indicates

the number of bits to acquire starting at the IN location. Regardless, only LEN bits are

stored starting at address Q.

For example, if IN was the constant value 29 and LEN is 4, the results of a MOV operation

are as follows:

 Q is a WORD reference: The value 29 is repeatedly stored in locations Q, Q+1, Q+2, and

Q+3.

 Q is a BOOL reference: The binary representation of 29 is 11101. Since LEN is 4, only

the four least-significant bits are used (1101). This value is stored at location Q in the

same order, so 1 is stored in Q, 1 is stored in Q+1, 0 is stored in Q+2, and 1 is stored in

Q+3.

If data is moved from one location in discrete memory to another, such as from %I memory to

%T memory, the transition information associated with the discrete memory elements is

updated to indicate whether or not the MOVE operation caused any discrete memory

elements to change state.

Note: If an array of BOOL-type data specified in the Q operand does not include all the bits

in a byte, the transition bits associated with that byte (which are not in the array) are

cleared when the Move instruction receives data.

Data at the IN operand does not change unless there is an overlap in the source and

destination—a situation that is to be avoided.

GFK-2222S Chapter 8 Function Block Diagram 8-21

8

MOV Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

EN Enable BOOL variable data flow, I, Q, M, T, G, S,
SA, SB, SC, discrete
symbolic, I/O variable

No

Bit reference in a
non-BOOL variable

R, P, L, AI, AQ, W, non-
discrete symbolic, I/O
variable

IN The source of the data to copy into
the output Q. This can be either a
constant or a variable whose
reference address is the location of
the first source data item to move.

IN must have the same data type as
the variable in the Q parameter.

If IN is a BOOL variable or a bit
reference, an %I, %Q, %M, or %T
reference address need not be byte-
aligned, but 16 bits beginning with
the reference address specified are
displayed online.

DINT, DWORD, INT,
REAL, LREAL,
UINT, WORD, or bit
reference in a non-
BOOL variable

All. S, SA, SB, SC allowed
only for WORD, DWORD,
BOOL types.

No

LEN The length of IN; the number of bits
to move.

If IN is a constant and Q is BOOL:

1 LEN 16;

If IN is a constant and Q is not BOOL:

1 LEN 256.

All other cases: 1 LEN 32,767

LEN is also interpreted differently
depending on the data type of the Q
location. For details, see discussion
on page 8-18.

Constant Constant No

ENO Indicates whether the operation was
successfully completed.

If ENO = ON (1), the operation was
initiated. Results of the operation are
indicated in the FT output.

If ENO = OFF (0), the operation was
not performed. If EN was ON, the FT
output indicates an error condition. If
EN was OFF, FT is not changed.

BOOL variable data flow, I, Q, M, T, G,
discrete symbolic, I/O
variable

Yes

Bit reference in a
non-BOOL variable

I, Q, M, T, G, R, P, L, AI,
AQ, W, non-discrete
symbolic, I/O variable

Q The location of the first destination
data item. Q must have the same
data type as the variable in the IN
parameter.

If Q is a BOOL variable or a bit
reference, an %I, %Q, %M, or %T
reference address does not need to
be byte-aligned, but 16 bits beginning
with the specified reference address
are displayed online.

DINT, DWORD, INT,
REAL, LREAL,
UINT, WORD, or bit
reference in a non-
BOOL variable

data flow, I, Q, M, T, S,
SA, SB, SC, G, R, P, L,
AI, AQ, W, symbolic, I/O
variable

No

8-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Math Functions
Your program may need to include logic to convert data to a different type before using a

Math or Numerical function. The description of each function includes information about

appropriate data types. The “Conversion Functions” section on page 8-33 explains how to

convert data to a different type.

Function Description

Addition. Adds two or up to eight numbers.

For details, see page 8-24.

Division. Divides one number by another and outputs the quotient.

Note: Take care to avoid overflow conditions when performing divisions.

For details, see page 8-25.

Modulo Division. Divides one number by another and outputs the remainder.

For details, see page 8-26.

Multiplication.* Multiplies two or up to eight numbers.

Note: Take care to avoid overflow conditions when performing multiplications.

For details, see page 8-27.

Negate. Multiplies a number by –1 and places the result in an output location.

For details, see page 8-28.

GFK-2222S Chapter 8 Function Block Diagram 8-23

8

Function Description

Scales an input parameter and places the result in an output location.

For details, see “Math Functions” in chapter 7.

Subtraction. Subtracts one or up to seven numbers from the input IN1 and
places the result in an output location.

For details, see page 8-29.

* To avoid overflows when multiplying or dividing 16-bit numbers, use the conversion functions described on

page 8-33 to convert the numbers to a 32-bit format.

The output is calculated when the instruction is performed without overflow, unless an invalid

operation occurs.

Overflow

If an operation on integer operands results in overflow, the output value wraps around.

Examples:

 If the ADD operation, 32767 + 1, is performed on signed integer operands, the result

is -32768

 If the SUB operation, -32767 – 1, is performed on signed integer operands, the result

is 32767

 If an ADD_UINT operation is performed on 65535 + 16, the result is 15.

8-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Add

Adds the operands IN1 and IN2 … IN8 and stores the sum in Q.

IN1 … IN8 and Q must be of the same data type.

The result is output to Q when ADD is performed without

overflow, unless one of the following invalid conditions occurs:

■ (+ ∞)

■ IN1 and/or IN2 … IN8 is NaN (Not a Number).

If an ADD operation results in overflow, the result wraps around.

For example:

■ If an ADD_DINT, ADD_INT or ADD_REAL operation is

performed on 32767 + 1, Q will be set to -32768.

■ If an ADD_UINT operation is performed on 65535 + 16,

Q will be set to 15.

Minimum number of
inputs = 2

Maximum number of
inputs = 8.

Operands of the ADD Function

Operand Description Allowed Types Allowed Operands Optional

Solve
Order

Calculated by the FBD editor. NA NA No

IN1 … IN8 The values to be added. INT, DINT, REAL,
LREAL, UINT

Must be same data type
as Q.

All except S, SA, SB, SC and
data flow

No

Q The sum of IN1 … IN8. If an
overflow occurs, Q wraps
around.

INT, DINT, REAL,
LREAL, UINT variable

Must be same data type
as IN1 …. IN8.

All except S, SA, SB, SC,
constant and data flow

No

Properties for ADD

Property Valid Range

Number of Inputs 2 to 8

GFK-2222S Chapter 8 Function Block Diagram 8-25

8

Divide

Divides the operand IN1 by the operand IN2 of the same data type as IN1

and stores the quotient in the output variable assigned to Q, also of the same

data type as IN1 and IN2.

The result is output to Q when DIV is performed without overflow, unless one

of the following invalid conditions occurs:

■ 0 divided by 0 (Results in an application fault.)

■ IN1 and/or IN2 is NaN (Not a Number).

If an overflow occurs, the result wraps around.

Notes:

■ DIV rounds down; it does not round to the closest integer. For example, 24 DIV 5 = 4.

■ Be careful to avoid overflows.

Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 The value to be divided; the value to the left
of “DIV” in the equation IN1 DIV IN2=Q.

INT, DINT, UINT,
REAL, LREAL

All except S, SA, SB, SC No

IN2 The value to divide IN1 with; the value to the
right of “DIV” in the equation IN1 DIV IN2=Q.

INT, DINT, UINT,
REAL, LREAL

All except S, SA, SB, SC No

Q The quotient of IN1/IN2. If an overflow
occurs, the result is the largest value with the
proper sign.

INT, DINT, UINT,
REAL or LREAL
variable

All except S, SA, SB, SC
and constant

No

8-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Modulus

Divides input IN1 by input IN2 and outputs the remainder of the division to

Q.

All three operands must be of the same data type. The sign of the result is

always the same as the sign of input parameter IN1. Output Q is

calculated using the formula:

Q = IN1-((IN1 DIV IN2) * IN2)

where DIV produces an integer number.

The result is output to Q unless one of the following invalid conditions

occurs:

■ 0 divided by 0 (Results in an application fault.)

■ IN1 and/or IN2 is NaN (Not a Number)

Operands for Modulus Function

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 The value to be divided to obtain the
remainder; the value to the left of
“MOD” in the equation IN1 MOD

IN2=Q.

INT, DINT, UINT All except S, SA, SB, SC No

IN2 The value to divide IN1 with; the
value to the right of “MOD” in the

equation IN1 MOD IN2=Q.

INT, DINT, UINT All except S, SA, SB, SC No

Q The remainder of IN1/IN2. INT, DINT, UINT variable All except S, SA, SB, SC
and constant

No

GFK-2222S Chapter 8 Function Block Diagram 8-27

8

Multiply

Multiplies two through eight operands (IN1 … IN8) of the same

data type and stores the result in the output variable assigned to

Q, also of the same data type.

The output is calculated when the function is performed without

overflow, unless an invalid operation occurs.

If an overflow occurs, the result wraps around.

Minimum number of
inputs = 2

Maximum number of
inputs = 8.

Mnemonic Operation Displays as

INT Q(16 bit) = IN1(16 bit) * IN2(16 bit) base 10 number with sign, up to 5 digits long

DINT Q(32 bit) = IN1(32 bit) * IN2(32 bit) base 10 number with sign, up to 10 digits long

REAL Q(32 bit) = IN1(32 bit) * IN2(32 bit) base 10 number, sign and decimals, up to 8
digits long (excluding the decimals)

UINT Q(16 bit) = IN1(16 bit) * IN2(16 bit) base 10 number, unsigned, up to 5 digits long

Operands for Multiply

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 … IN8 The values to multiply. Must be the same
data type as Q.

INT, DINT, UINT,
REAL

All except S, SA, SB,
SC

No

Q The result of the multiplication. INT, DINT, UINT,
REAL variable

All except S, SA, SB,
SC and constant

No

Properties for Multiply

Property Valid Range

Number of Inputs 2 to 8

8-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Negate

Multiplies a number by –1 and places the result in the output location, Q.

Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to be negated. INT, DINT, REAL All except S, SA, SB,
SC

No

Q The result, -1(IN) INT, DINT, REAL
variable

All except S, SA, SB,
SC and constant

No

GFK-2222S Chapter 8 Function Block Diagram 8-29

8

Subtract

Subtracts the operands IN2 …IN8 from the

operand IN1 and stores the result in the output

variable assigned to Q.

The calculation is carried out when SUB is

performed without overflow, unless an invalid

operation occurs.

If a SUB operation results in overflow, the result

wraps around. For example:

■ If a SUB_DINT, SUB_INT or SUB_REAL

operation is performed on 32768 - 1, Q will be

set to -32767.

If a SUB_UINT operation results in a negative

number, Q wraps around. (For example, a result of

–1 sets Q to 65535.)

Minimum number of
inputs = 2

Maximum number of
inputs = 8.

Mnemonic Operation Displays as

SUB_INT Q(16 bit) = IN1(16 bit) – IN2(16 bit) base 10 number with sign, up to 5 digits long

SUB_DINT Q(32 bit) = IN1(32 bit) – IN2(32 bit) base 10 number with sign, up to 10 digits long

SUB_REAL Q(32 bit) = IN1(32 bit) – IN2(32 bit) base 10 number, sign and decimals, up to 8 digits long (excluding the
decimals)

SUB_UINT Q(16 bit) = IN1(16 bit) – IN2(16 bit) base 10 number, unsigned, up to 5 digits long

Operands for Subtract

Parameter Description Allowed
Types

Allowed
Operands

Optional

Solve Order Calculated by the FBD editor. NA NA No

IN1 The value to subtract from. DINT, INT,
REAL, UINT

All except S, SA,
SB, SC

No

IN2 … IN8 The value(s) to subtract from IN1. Must be the same
data type as IN1.

All except S, SA,
SB, SC

No

Q The result of the subtraction. Must be the same data
type as IN1.

DINT, INT,
REAL, UINT
variable

All except S, SA,
SB, SC and
constant

No

Properties for Subtract

Property Valid Range

Number of Inputs 2 to 8

8-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Program Flow Functions
The program flow functions limit program execution or change the way the CPU executes the

application program.

Function Description

The CALL function causes the logic execution to go

immediately to the designated program block, external C

block (parameterized or not), or parameterized block and

execute it. After the block’s execution is complete, control

returns to the point in the logic immediately following the

CALL instruction.

For details, see “Program Flow Functions” in chapter 7.

Non-parameterized
CALL

Parameterized CALL.

May call a parameterized
external block or a
parameterized block.

The ARG_PRES (Argument Present) function determines

whether a parameter value was present when the function

block instance of the parameter was invoked.

For details, see “Program Flow Functions” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-31

8

Timers
This section describes the PACSystems timing functions that are implemented in the FBD

language.

Built-in Timer Function Blocks

These function blocks use WORD Array instance data. The parameter that appears above

the function block is a one-dimensional, three-word array in %R, %W, %P, %L, or symbolic

memory that the timer uses to store its current value, preset value and control word.

Function Description

Off Delay Timer. The timer's Current Value (CV) resets to zero when its
enable parameter (EN) is set to ON.. CV increments while EN is OFF. When
CV=PV (Preset Value), ENO is set to OFF until EN is set to ON again.

Other OFDT functions:

OFDT_SEC
OFDT_TENTHS
OFDT_THOUS

For details, see “Timers” in chapter 7.

On Delay Stopwatch Timer. Retentive on delay timer. Increments while EN is
ON and holds its value when EN is OFF.

ONDTR_SEC
ONDTR_TENTHS
ONDTR_THOUS

For details, see “Timers” in chapter 8.

On Delay Timer. Simple on delay timer. Increments while EN is ON and
resets to zero when EN is OFF.

TMR_SEC
TMR_TENTHS
TMR_THOUS

For details, see “Timers” in chapter 7.

8-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Standard Timer Function Blocks

These functions blocks use Structure Variable instance data. Each invocation of a timer has

associated instance data that persists from one execution of the timer to the next. Instance

variables are automatically located in symbolic memory. (You cannot specify an address.)

You can specify a stored value for each element. The user logic cannot modify the values.

Function Description

Timer Off Delay. When the input IN transitions from ON to OFF, the
timer starts timing until a specified period of time has elapsed, then
sets the output Q to OFF.

For details, see “Timers” in chapter 7.

Timer On Delay. When the input IN transitions from OFF to ON, the
timer starts timing until a specified period of time has elapsed, then
sets the output Q to ON.

For details, see “Timers” in chapter 7.

Timer Pulse. When the input IN transitions from OFF to ON, the timer
sets the output Q to ON for a specified time interval.

For details, see “Timers” in chapter 7.

GFK-2222S Chapter 8 Function Block Diagram 8-33

8

Type Conversion Functions
The Conversion functions change a data item from one number format (data type) to another.

Many programming instructions, such as math functions, must be used with data of one type.

As a result, data conversion is often required before using those instructions.

Function Description

Convert Angles

DEG_TO_RAD: Converts degrees to radians.

RAD_TO_DEG: Converts radians to degrees.

For details, see “Conversion Functions” in chapter 7.

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BDC4: Converts UINT (16-bit unsigned integer) to BCD4.

INT_TO_BCD4: Converts INT (16-bit signed integer) to BCD4.

For details, see “Conversion Functions” in chapter 7.

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BD8: Converts DINT (32-bit signed integer) to BCD8.

For details, see “Conversion Functions” in chapter 7.

Convert to INT (16-bit signed integer)

BCD4_TO_INT: Converts BCD to INT.

UINT_TO_INT: Converts UINT to INT

DINT_TO_INT: Converts DINT to INT..

REAL_TO_INT: Converts REAL to INT.

For details, see “Conversion Functions” in chapter 7.

Converts a 16-bit string (WORD) value to INT.

For details, see page 8-35.

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT: Converts BCD4 to UINT.

INT_TO_UINT: Converts INT to UINT.

DINT_TO_UINT: Converts DINT to UINT.

REAL_TO_UINT: Converts REAL to UINT.

For details, see “Conversion Functions” in chapter 7.

WORD_TO_UINT: Converts a 16-bit string (WORD) value to UINT.

For details, see page 8-36.

8-34 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Function Description

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT: Converts BCD8 to DINT.

UINT_TO_DINT: Converts UINT to DINT.

For details, see “Conversion Functions” in chapter 7.

INT_TO_DINT: Converts INT to DINT.

REAL_TO_DINT: Converts REAL (32-bit signed real or floating-point values) to DINT.

For details, see “Conversion Functions” in chapter 7.

DWORD_TO_DINT: Converts a 32-bit bit string (DWORD) value to DINT.

For details, see page 8-36.

Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL: Converts BCD4 to REAL.

BCD8_TO_REAL: Converts BCD8 to REAL.

UINT_TO_REAL: Converts UINT to REAL.

INT_TO_REAL: Converts INT to REAL.

DINT_TO_REAL: Converts DINT to REAL.

LREAL_TO_REAL: Converts LREAL to REAL.

For details, see “Conversion Functions” in chapter 7.

Convert to LREAL(64-bit signed real or floating-point values)

Converts a REAL value to LREAL.

For details, see “Conversion Functions” in chapter 7.

Convert to WORD (16-bit string)

Converts an INT (16-bit signed integer) value to a WORD value.

For details, see page 8-37.

Converts an unsigned single-precision integer (UINT) to WORD.

For details, see page 8-37.

Convert to DWORD (32-bit bit string)

Converts a double-precision signed integer (DINT) value to DWORD.

For details, see page 8-37.

GFK-2222S Chapter 8 Function Block Diagram 8-35

8

Function Description

Truncate

Rounds a REAL (32-bit signed real or floating-point) number down to a DINT number

For details, see “Conversion Functions” in chapter 7.

Rounds a REAL (32-bit signed real or floating-point) number down to an INT number

For details, see “Conversion Functions” in chapter 7.

Convert WORD to INT

Converts the input data into the equivalent single-precision signed integer (INT)

value, which it outputs to Q. This function does not change the original input data.

The output data can be used directly as input for another program function, as in

the examples.

The function passes data to Q, unless the data is out of range (0 through +65,535).

Operands

Parameter Description Allowed
Types

Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to INT. WORD All except S, SA, SB, and SC No

Q The INT equivalent value of the
original value in IN.

INT All except S, SA, SB, SC and
constant

No

8-36 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

8

Convert WORD to UINT

These functions convert the input data into the equivalent single-precision unsigned

integer (UINT) value, which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be

used directly as input for another program function, as in the example.

The function passes the converted data to Q, unless the resulting data is outside the
range 0 to +65,535.

Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to UINT. WORD All except S, SA, SB, and
SC

No

Q The UINT equivalent value of the original
input value in IN.

UINT All except S, SA, SB, SC
and constant

No

Convert DWORD to DINT

Converts DWORD data into the equivalent signed double-precision integer (DINT)

value and stores the result in Q. The conversion to DINT does not change the

original data.

The output data can be used directly as input for another program function. The
function passes data to Q unless the data is out of range.

Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to DINT. DWORD All except S, SA, SB, and
SC

No

Q The DINT equivalent value of the original
input value in IN.

UINT All except S, SA, SB, SC
and constant

No

GFK-2222S Chapter 8 Function Block Diagram 8-37

8

Convert INT or UINT to WORD

Converts an unsigned single-precision integer (UINT) operand IN to a 16-bit
bit string (WORD) value and stores the result in the variable assigned to Q.

Converts a 16-bit signed integer (INT) operand IN to a 16-bit bit string
(WORD) value and stores the result in the variable assigned to Q.

The output data can be used directly as input for another program function. The function
passes data to Q unless the data is out of range.

Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to WORD. INT or UINT, depending
on function

All except S, SA,
SB, and SC

No

Q The WORD equivalent value of the

original value in IN. 0 Q 65,535.

WORD All except S, SA,
SB, SC and
constant

No

Convert DINT to DWORD

When DINT_TO_DWORD receives data, it converts the input double-
precision signed integer (DINT) data into the equivalent DWORD (32-bit
bit string) value, which it outputs to Q. DINT_TO_DWORD does not
change the original DINT data.

The output data can be used directly as input for another program
function. The function passes data to Q unless the data is out of range.

Operands

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

IN The value to convert to DWORD. DINT All except S, SA,
SB, and SC

No

Q The DWORD equivalent value of the

original value in IN. 0 Q
4,294,967,295.

DWORD All except S, SA,
SB, SC and
constant

No

GFK-2222S 9-1

Service Request Function

Use a Service Request function to request one of the following control system services:

Service Request Description Page

SVC_REQ 1 Change/read constant sweep timer 9- 0H5

SVC_REQ 2 Read window modes and time values 9- 1H7

SVC_REQ 3 Change controller communications window mode and timer value 9- 2H8

SVC_REQ 4 Change backplane communications window mode and timer value 9- 3H9

SVC_REQ 5 Change background task window mode and timer value 9- 4H10

SVC_REQ 6 Change/read number of words to checksum 9- 5H11

SVC_REQ 7 Read or change the time-of-day clock 9- 6H13

SVC_REQ 8 Reset watchdog timer 9- 7H20

SVC_REQ 9 Read sweep time from beginning of sweep - milliseconds 9- 8H21

SVC_REQ 10 Read target name 9- 9H22

SVC_REQ 11 Read controller ID 9- 10H23

SVC_REQ 12 Read controller run state 9- 11H24

SVC_REQ 13 Shut down (stop) controller 9- 12H25

SVC_REQ 14 Clear controller or I/O fault tables 9- 13H26

SVC_REQ 15 Read last-logged fault table entry 9- 14H27

SVC_REQ 16 Read elapsed time clock - microseconds 9- 15H30

SVC_REQ 17 Mask/unmask I/O interrupt 9- 16H32

SVC_REQ 18 Read I/O override status 9- 17H34

SVC_REQ 19 Set run enable/disable 9- 18H35

SVC_REQ 20 Read fault tables 9- 19H36

SVC_REQ 21 User-defined fault logging 9- 20H41

SVC_REQ 22 Mask/unmask timed interrupts 9- 21H43

SVC_REQ 23 Read master checksum 9- 22H44

SVC_REQ 24 Reset module 9- 23H45

SVC_REQ 25 Disable/enable EXE Block and standalone C program checksums 9- 24H46

SVC_REQ 26 Role switch (redundancy)
1

SVC_REQ 27 Write to reverse transfer area (Hot Standby Redundancy)
1

SVC_REQ 28 Read from reverse transfer area (Hot Standby Redundancy)
1

1
 For information on Service Requests used in CPU HSB redundancy applications, refer to the

PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308. For non-HSB applications,
refer to TCP/IP Ethernet Communications for PACSystems, GFK-2224.

9

Chapter

9-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Service Request Description Page

SVC_REQ 29 Read elapsed power down time 9- 25H47

SVC_REQ 32 Suspend/resume I/O interrupt 9- 26H48

SVC_REQ 43 Disable data transfer copy in backup unit (Hot Standby Redundancy)
1

SVC_REQ 45 Skip next I/O scan 9- 27H50

SVC_REQ 50 Read elapsed time clock – nanoseconds 9- 28H51

SVC_REQ 51 Read sweep time from beginning of sweep - nanoseconds 9- 29H53

SVC_REQ 55 Set application redundancy mode (non-Hot Standby Redundancy)
1

SVC_REQ 56 Read from nonvolatile storage 9- 29H5454

SVC_REQ 57 Write to nonvolatile storage 9- 29H5459

GFK-2222S Chapter 9 Service Request Function 9-3

9

Operation of SVC_REQ Function
PACSystems supports the Service Request function in LD and FBD.

Ladder Diagram

When SVC_REQ receives power flow, it requests the CPU to perform the

special service identified by the FNC operand.

Parameters for SVC_REQ are located in the parameter block, which begins

at the reference identified by the PRM operand. The number of 16-bit

references required depends on the type of special controller service being

requested. The parameter block is used to store both the function's inputs

and outputs.

SVC_REQ passes power flow unless an incorrect function number, incorrect parameters,

or out-of-range references are specified. Specific SVC_REQ functions may have

additional causes for failure.

Because the service request continues to be invoked each time power flow is enabled to

the function, additional enable/disable logic preceding the request may be necessary,

depending upon the application. (For example, repeated calling of SVC_REQ 24 would

continually reset a module, probably not the intended behavior.) In many cases a

transition contact or coil will be sufficient. Alternatively, you could use more complex

logic, such as having the function contained within a block that is only called a single

time.

Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W,

%AI, and %AQ).

Operand Data Type Memory Area Description

FNC INT variable or
constant

All except %S - %SC Function number; Service Request number. The
constant or reference that identifies the requested
service.

PRM WORD variable All except flow, %S - %SC
and constant

The first WORD in the parameter block for the
requested service. Successive 16-bit locations store
additional parameters.

Example

When the enabling input %I0001 is ON, SVC_REQ function number 7 is called, with the

parameter block starting at %R0001. If the operation succeeds, output coil %Q0001 is set

ON.

9-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Function Block Diagram

The SVC_REQ function requests the CPU to perform the special

service identified by the FNC operand.

Parameters for SVC_REQ are located in the parameter block,

which begins at the reference identified by the PRM operand. The

number of 16-bit references required depends on the type of

special controller service being requested. The parameter block is

used to store both the function's inputs and outputs.

Operands

Note: Indirect referencing is available for all register references (%R, %P, %L, %W,

%AI, and %AQ).

Parameter Description Allowed Types Allowed Operands Optional

Solve Order Calculated by the FBD editor. NA NA No

EN Enable input. When set to ON, the SVC_REQ
executes

BOOL data flow, I, Q, M, T, G, S, SA,
SB, SC, discrete symbolic, I/O
variable

No

Bit reference in
a non-BOOL
variable

I, Q, M, T, G, R, P, L, AI, AQ,
W, non-discrete symbolic, I/O
variable

FNC Function number; Service Request number.
The constant or variable that identifies the
requested service.

INT, DINT,
UINT, WORD,
DWORD

All except %S - %SC

You can use data flow only if
the parameter block requires
only one WORD

If you use a symbolic variable
or an I/O variable, ensure that
its Array Dimension 1 property
is set to a value large enough
to contain the entire
parameter block.

No

PRM The first word in the parameter block for the
requested service. Successive 16-bit
locations store additional parameters.

INT, DINT,
UINT, WORD,
DWORD

All except flow, %S - %SC
and constant

No

ENO Set to ON unless an incorrect function
number, incorrect parameters, or out-of-range
references are specified. Specific SVC_REQ
functions may have additional causes for
failure.

BOOL data flow, I, Q, M, T, G, non-
discrete symbolic, I/O variable

Yes

Bit reference in
a non-BOOL
variable.

I, Q, M, T, G, R, P, L, AI, AQ,
W, non-discrete symbolic, I/O
variable

GFK-2222S Chapter 9 Service Request Function 9-5

9

SVC_REQ 1: Change/Read Constant Sweep Timer
Use SVC_REQ function 1 to:

■ Disable Constant Sweep mode

■ Enable Constant Sweep mode and use the old Constant Sweep timer value

■ Enable Constant Sweep mode and use a new Constant Sweep timer value

■ Set a new Constant Sweep timer value only

■ Read Constant Sweep mode state and timer value.

The parameter block has a length of two words used for both input and output.

SVC_REQ executes successfully unless:

■ A number other than 0, 1, 2, or 3 is entered as the requested operation:

■ The scan time value is greater than 2550 ms (2.55 seconds)

■ Constant sweep time is enabled with no timer value programmed or with an old

value of 0 for the timer.

To disable Constant Sweep mode:

Enter SVC_REQ 1 with this parameter block:

Address 0

Address + 1 Ignored

To enable Constant Sweep mode and use the old timer value:

Enter SVC_REQ 1 with this parameter block:

Address 1

Address + 1 0

If the timer value does not already exist, entering 0 causes the function to set the OK

output to OFF.

To enable Constant Sweep mode and use a new timer value:

Enter SVC_REQ 1 with this parameter block:

Address 1

Address + 1 New timer value

Note: If the timer value does not already exist, entering 0 causes the function

to set the OK output to OFF.

To change the timer value without changing the selection for sweep mode state:

Enter SVC_REQ 1 with this parameter block:

Address 2

Address + 1 New timer value

9-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

To read the current timer state and value without changing either:

Enter SVC_REQ 1 with this parameter block:

Address 3

Address + 1 ignored

Output

SVC_REQ 1 returns the timer state and value in the same parameter block references:

Address 0 = Normal Sweep

1 = Constant Sweep

Address + 1 Current timer value

If the word address + 1 contains the hexadecimal value FFFF, no timer value has been

programmed.

Example

If contact OV_SWP is set, the Constant Sweep Timer is read, the timer is increased by

two milliseconds, and the new timer value is sent back to the CPU. The parameter block

is at location %R3050. The example logic uses discrete internal coil %M0001 as a

temporary location to hold the successful result of the first rung line. On any sweep in

which OV_SWP is not set, %M00001 is turned off.

GFK-2222S Chapter 9 Service Request Function 9-7

9

SVC_REQ 2: Read Window Modes and Time Values
Use SVC_REQ 2 to obtain the current window mode and time values for the controller

communications window and the backplane communications and the background task

window.

The parameter block has a length of three words. All parameters are output parameters.

It is not necessary to enter values in the parameter block to program this function.

Output

Address Window High Byte Low Byte

address Controller Communications Window Mode Value in ms

address+1 Backplane Communications Window Mode Value in ms

address+2 Background Window Mode Value in ms

Note: A window is disabled when the time value is zero.

Mode Values

Mode Name Value Description
Limited Mode 0 The execution time of the window is limited to its respective

default value or to a value defined using SVC_REQ 3 for the
controller communications window or SVC_REQ 4 for the
systems communications window. The window will terminate
when it has no more tasks to complete.

Constant Mode 1 Each window will operate in a Run to Completion mode, and the
CPU will alternate among the three windows for a time equal to
the sum of each window's respective time value. If one window
is placed in Constant mode, the remaining two windows are
automatically placed in Constant mode. If the CPU is operating
in Constant Window mode and a particular window's execution
time is not defined using the associated SVC_REQ function, the
default time for that window is used in the constant window time
calculation.

Run to Completion Mode 2 Regardless of the window time associated with a particular
window, whether default or defined using a service request
function, the window will run until all tasks within that window are
completed.

Example

When %Q00102 is set, the CPU places the current time values of the windows in the

parameter block starting at location %R0010.

9-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 3: Change Controller Communications Window Mode
Use SVC_REQ 3 to change the controller communications window mode and timer

value. The change takes place during the next CPU sweep after the function is called.

The parameter block has a length of one word.

SVC_REQ 3 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is

selected.

To disable the controller communications window:

Enter SVC_REQ 3 with this parameter block:

Address High Byte Low Byte

Address 0 0

To re-enable or change the controller communications window mode:

Enter SVC_REQ 3 with this parameter block:

Address High Byte Low Byte

Address Mode: 0 = Limited
 2 = Run to Completion

1ms value 255ms in 1ms increments

Example

When enabling input %I00125 transitions on, the controller communications window is

enabled and assigned a value of 25 ms. When the contact transitions off, the window is

disabled. The parameter block is in global memory location %P00051.

GFK-2222S Chapter 9 Service Request Function 9-9

9

SVC_REQ 4: Change Backplane Communications Window Mode
and Timer Value

Use SVC_REQ 4 to change the Backplane Communications window mode and timer

value. The change takes place during the next CPU sweep after the function is called.

SVC_REQ 4 executes unless a mode other than 0 (Limited) or 2 (Run to Completion) is

selected.

The parameter block has a length of one word.

To disable the Backplane Communications window:

Enter SVC_REQ 4 with this parameter block:

Address High Byte Low Byte

Address 0 0

To enable the Backplane Communications window mode:

Enter SVC_REQ 4 with this parameter block:

Address High Byte Low Byte

Address Mode 0 = Limited
 2 = Run to Completion

1ms value 255ms

Example

When enabling output %M0125 transitions on, the mode and timer value of the

Backplane Communications window is read. If the timer value is greater than or equal to

25 ms, the value is not changed. If it is less than 25 ms, the value is changed to 25 ms. In

either case, when the rung completes execution the window is enabled. The parameter

block for all three windows is at location %R5051. Since the mode and timer for the

Backplane Communications window is the second value in the parameter block returned

from the Read Window Values function (SVC_REQ 2), the location of the existing window

time for the Backplane Communications window is in the low byte of %R5052.

9-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 5: Change Background Task Window Mode and Timer Value
Use SVC_REQ 5 to change the Background Task window mode and timer value. The

change takes place during the next CPU sweep after the function is called.

SVC_REQ 5 executes unless a mode other than 0 (Limited) or 2 (Run-to-Completion) is

selected.

The parameter block has a length of one word.

To disable the Background Task window:

Enter SVC_REQ 5 with this parameter block:

Address High Byte Low Byte

Address 0 0

To enable the Background Task window mode:

Enter SVC_REQ 5 with this parameter block:

Address High Byte Low Byte

Address Mode 0 = Limited
 2 = Run to Completion

1ms value 255ms

Example

When enabling contact #FST_SCN is set in the first scan, the MOVE function establishes

a value of 20ms for the Background task window, using a parameter block beginning at

%P00050. Later in the program, when input %I00500 transitions on, the state of the

Background task window toggles on and off. The parameter block for all three windows is

at location %P00051. The time for the Background task window is the third value in the

parameter block returned from the Read Window Values function (function #2); therefore,

the location of the existing window time for the Background window is %P00053.

GFK-2222S Chapter 9 Service Request Function 9-11

9

SVC_REQ 6: Change/Read Number of Words to Checksum
Use SVC_REQ 6 to read the current word count in the program to be checksummed or

set a new word count. By default, 16 words are checked. The function is successful

unless some number other than 0 or 1 is entered as the requested operation.

The parameter block has a length of 2 words.

To read the word count:

Enter a zero in the first word of the parameter block.

Address 0

Address + 1 Ignored

The function returns the current checksum (word count) in the second word of the

parameter block. No range is specified for the read function; the value returned is the

number of words currently being checksummed.

Address 0

Address + 1 Current word count

To set a new word count:

Enter a one in the first word of the parameter block and the new word count in the second

word.

Address 1

Address + 1 New word count

The CPU changes the number of words to be checksummed to the value given in the

second word of the parameter block, rounded up to the next multiple of 8. To disable

checksumming, set the new word count to 0.

9-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Example

When enabling contact #FST_SCN is set, the parameter blocks for the checksum task

function are built. Later in the program, when input %I00137 transitions on, the number of

words being checksummed is read from the CPU operating system. This number is

increased by 16, with the results of the ADD_UINT function being placed in the “hold new

count for set” parameter. The second service request block requests the CPU to set the

new word count.

The example parameter blocks are located at address %L00150. They have the following

contents:

%L00150 0 = read current count

%L00151 hold current count

%L00152 1 = set current count

%L00153 hold new count for set

GFK-2222S Chapter 9 Service Request Function 9-13

9

SVC_REQ 7: Read or Change the Time-of-Day Clock
Use SVC_REQ 7 to read or change the time of day clock in the CPU. The function is

successful unless:

■ An invalid number is entered for the requested operation.

■ An invalid data format is specified.

■ Data is provided in an unexpected format.

Parameter Block Formats

In the first two words of the parameter block, you specify whether to read or set the time

and date, and which format to use.

Address 2-Digit Year Format 4-Digit Year Format

Address (word 1) 0 = read time and date 0 = read time and date

1 = set time and date 1 = set time and date

Address+1 (word 2) 0 = numeric data format 80h – numeric data format

1 = BCD format 81h = BCD format

2 = unpacked BCD format 82h = unpacked BCD format

3 = packed ASCII format (with
embedded spaces and colons)

83h = packed ASCII format

4 = POSIX format n/a

Address+2 (word 3)
to the end

Data Data

Words 3 to the end of the parameter block contain output data returned by a read

function, or new data being supplied by a change function. In both cases, format of these

data words is the same. When reading the date and time, words (address + 2) to the end

of the parameter block are ignored on input.

The format and length of the parameter block depends on the data format and number of

digits required for the year:

Data Format and N-digit Year Length of parameter block
(number of words)

BCD, 2-digit year 6

BCD, 4-digit year 6

POSIX format 6

Unpacked BCD 2 9

Unpacked BCD 4 10

Numeric (2 and 4 digit years) 9

Packed ASCII, 2-digit year 12

Packed ASCII, 4-digit year 13

9-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

In any format:

■ Hours are stored in 24-hour format.

■ Day of the week is a numeric value ranging from 1 (Sunday) to 7 (Saturday).

Value Day of the Week

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

BCD, 2-Digit Year

In BCD format, each time and date item occupies one byte, so the parameter block has

six words. The last byte of the sixth word is not used. When setting the date and time,

this byte is ignored; when reading date and time, the function returns a null character

(00).

Parameter Block
Format

Address Example
(Sun., July 3, 2005, at 2:45:30 p.m.

 = 14:45:30 in 24-hour format)

1 = change or 0 = read address 0 (read)

1 (BCD format) address+1 1 (BCD format)

High Byte Low Byte Address High Byte Low Byte

month year address+2 07 (July) 05 (year)

hours day of month address+3 14 (hours) 03 (day)

seconds minutes address+4 30 (seconds) 45 (minutes)

(null) day of week address+5 00 01 (Sunday)

BCD, 4-Digit Year

In this format, all bytes are used.

Parameter Block
Format

Address

Example
(Sun., July 3, 2005, at 2:45:30 p.m.

 = 14:45:30 in 24-hour format)

1 = change or 0 = read address 00 (read)

81h (BCD format, 4-digit) address+1 81h (BCD format, 4-digit)

High Byte Low Byte Address High Byte Low Byte

year year address+2 20 (year) 05 (year)

day of month month address+3 03 (day) 07 (July)

minutes hours address+4 45 (minutes) 14 (hours)

day of week seconds address+5 01 (Sunday) 30 (seconds)

GFK-2222S Chapter 9 Service Request Function 9-15

9

POSIX

The POSIX format of the Time-of-Day clock uses two signed 32-bit integers (two DINTs)

to represent the number of seconds and nanoseconds since midnight January 1, 1970.

Reading the clock in POSIX format might make it easier for your application to calculate

time differences. This format can also be useful if your application communicates to other

devices using the POSIX time format. To read and/or change the date and time using

POSIX format, enter SVC_REQ 7 with this parameter block:

Parameter Block Format Address Example: December 1, 2000 at 12 noon

1 = change or 0 = read address 0

4 (POSIX format) address+1 4

Seconds (LSW) address+2 975,672,000

(MSW) address+3

Nanoseconds (LSW) address+4 0

(MSW) address+5

The PACSystems CPU’s maximum POSIX clock value is F48656FE (hexadecimal)

seconds and 999,999,999 (decimal) nanoseconds, which corresponds to December 31st,

2099 at 11:59 pm. This is the maximum POSIX value that SVC_REQ 7 will accept for

changing the clock. This is also the maximum POSIX value SVC_REQ 7 will return once

the Time-Of-Day clock passes this date.

If SVC_REQ 7 receives an invalid POSIX time to write to the clock, it does not change

the Time-Of-Day clock and disables its power-flow output.

Note: When reading the PACSystems CPU clock in POSIX format, the data returned is

not easily interpreted by a human viewer. If desired, it is up to the application

logic to convert the POSIX time into year, month, day of month, hour, and

seconds.

Unpacked BCD (2-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order

four bits of a byte. The upper four bits of each byte are always zero. This format requires

nine words. Values are hexadecimal.

Parameter Block
Format

Address Example
(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1 = change or 0 = read address 0h

2 (Unpacked BCD format) address+1 2h

High Byte Low Byte High Byte Low Byte

 year address+2 00h 02h

 month address+3 01h 02h

 day of month address+4 02h 08h

 hours address+5 00h 09h

 minutes address+6 03h 04h

 seconds address+7 05h 07h

 day of week address+8 00h 05h

9-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Unpacked BCD (4-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order

four bits of a byte. The upper four bits of each byte are always zero. This format requires

nine words. Values are hexadecimal.

Parameter Block
Format

Address Example
(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1 = change or 0 = read address 0h

82h (Unpacked 4-digit BCD format) address+1 82h

High Byte Low Byte High Byte Low Byte

 year address+2 00h 02h

 month address+3 01h 02h

 day of month address+4 00h 08h

 hours address+5 00h 09h

 minutes address+6 03h 04h

 seconds address+7 05h 07h

 day of week address+8 00h 05h

Numeric, 2-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of

week each occupy one unsigned integer. To read and/or change the date and time using

the numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block
Format

Address

Example
Wed., June 15, 2005, at 12:15:30 a.m.

1 = change or 0 = read address 0

0 (Numeric format, 2-digit year) address+1 0

High Byte Low Byte Value

 year address+2 05

 month address+3 06

 day of month address+4 15

 hours address+5 12

 minutes address+6 15

 seconds address+7 30

 day of week address+8 04

GFK-2222S Chapter 9 Service Request Function 9-17

9

Numeric, 4-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of

week each occupy one unsigned integer. To read and/or change the date and time using

the numeric format, enter SVC_REQ function #7 with this parameter block:

Parameter Block
Format

Address

Example
Wed., June 15, 2005, at 12:15:30 a.m.

1 = change or 0 = read address 0

80h (Numeric format, 4 digit year) address+1 80h

High Byte Low Byte Value

 year address+2 2005

 month address+3 06

 day of month address+4 15

 hours address+5 12

 minutes address+6 15

 seconds address+7 30

 day of week address+8 04

Packed ASCII, 2-Digit Year

In Packed ASCII format, each digit of the time and date items is an ASCII formatted byte.

Spaces and colons are embedded into the data to format it for printing or display. ASCII

format for a 2-digit year requires 12 words in the parameter block. Values are

hexadecimal.

Parameter
Block Format

Address

Example
(Mon., Oct. 5, 2005, at 11:13:25 p.m. =

23:13:25 in 24-hour format)

1 = change or 0 = read address 0h (read)

3 (ASCII format) address+1 3h (ASCII format)

High Byte Low Byte High Byte Low Byte

year year address+2 35h (5) 30h (0)

month (space) address+3 31h (1) 20h (space)

(space) month address+4 20h (space) 30h (0)

day of month day of month address+5 35h (5) 30h (leading 0)

hours (space) address+6 32h (2) 20h (space)

: (colon) hours address+7 3Ah (:) 33h (3)

minutes minutes address+8 33h (3) 31h (1)

seconds : (colon) address+9 32h (2) 3Ah (:)

(space) seconds address+1
0

20h (space) 35h (5)

day of week day of week address+1
1

32h (2 = Mon.) 30h (leading 0)

9-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Packed ASCII, 4-Digit Year

ASCII format for a 4-digit year requires 13 words in the parameter block. Values are

hexadecimal.

Parameter
Block Format

Address

Example
(Mon., Oct. 5, 2005, at 11:13:25 p.m. =

23:13:25 in 24-hour format)

1 = change or 0 = read address 0h (read)

83 (ASCII format) address+1 83h (ASCII format, 4-digit)

High Byte Low Byte High Byte Low Byte

year (hundreds) year (thousands) address+2 30h (0) 32h (2)

year (ones) year (tens) address+3 35h (5) 30h (0)

month (tens) (space) address+4 31h (1) 20h (space)

(space) month (ones) address+5 20h (space) 30h (0)

day of month (ones) day of month (tens) address+6 35h (5) 30h (leading 0)

hours (tens) (space) address+7 32h (2) 20h (space)

: (colon) hours (ones) address+8 3Ah (:) 33h (3)

minutes (ones) minutes (tens) address+9 33h (3) 31h (1)

seconds (tens) : (colon) address+10 32h (2) 3Ah (A)

(space) seconds (ones) address+11 20 (space) 35 (5)

day of week (ones) day of week (tens) address+12 32h (2 = Mon.) 30h (leading 0)

GFK-2222S Chapter 9 Service Request Function 9-19

9

SVC_REQ 7

In this example, the time of day is set to 12:00 pm without changing the current year,

BCD format requires six contiguous memory locations for the parameter block.

Rung 1 sets up the new time of day in two-digit year BCD format. It writes the value 4608

(equivalent to 12 00 BCD) to NOON and the value 0 to MIN_SEC.

Rung 2 requests the current date and time using the parameter block located at

%P00300.

Rung 3 moves the new time value into the parameter block starting at R00300. It uses

AND and ADD operations to retrieve the current clock value from %P00303 and replace

the hours, minutes and seconds portion of the value with the values in NOON and

MIN_SEC.

Rung 4 uses the parameter block beginning at %R00300 to set the new time.

9-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 8: Reset Watchdog Timer
Use SVC_REQ 8 to reset the watchdog timer during the scan.

Ordinarily, when the watchdog timer expires, the CPU goes to Stop-Halt mode without

warning. SVC_REQ 8 allows the timer to keep going during a time-consuming task (for

example, while waiting for a response from a communications line).

Warning

Be sure that resetting the watchdog timer does not adversely affect
the controlled process.

SVC_REQ 8 has no associated parameter block; however, you must specify a dummy

parameter, which SVC_REQ 8 will not use.

Example

In the following LD example, power flow through enabling output %Q0127 or input

%I1476 or internal coil %M00010 causes the watchdog timer to be reset.

GFK-2222S Chapter 9 Service Request Function 9-21

9

SVC_REQ 9: Read Sweep Time from Beginning of Sweep
Use SVC_REQ 9 to read the time in milliseconds since the start of the sweep. The data

format is unsigned 16-bit integer.

Output

The parameter block is an output parameter block only; it has a length of one word.

address time since start of scan

Example

The elapsed time from the start of the scan is read into location %R00200. If it is greater

than 100ms, internal coil %M0200 is turned on.

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 51,

described on page 9-53.

9-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 10: Read Target Name
Use SVC_REQ 10 to read the name of the currently executing target.

Output

The output parameter block has a length of four words. It returns eight ASCII characters:

the target name (from one to seven characters) followed by null characters (00h). The

last character is always a null character. If the target name has fewer than seven

characters, null characters are appended to the end.

Address Low Byte High Byte

Address character 1 character 2

Address+1 character 3 character 4

Address+2 character 5 character 6

Address+3 character 7 00

Example

When enabling input %I0301 goes ON, register location %R0099 is loaded with the value

10, which is the function code for the Read Target Name function. The program block

READ_ID is then called to retrieve the target name. The parameter block is located at

address %R0100.

Program block READ_ID:

GFK-2222S Chapter 9 Service Request Function 9-23

9

SVC_REQ 11: Read Controller ID
Use SVC_REQ 11 to read the name of the controller executing the program.

Output

The output parameter block has a length of four words. It returns eight ASCII characters:

the Controller ID (from one to seven characters) followed by null characters (00h). The

last character is always a null character

If the Controller ID has fewer than seven characters, null characters are appended to the

end.

Address Low Byte High Byte

address character 1 character 2

address+1 character 3 character 4

address+2 character 5 character 6

address+3 character 7 00

Example

When enabling input %I0303 is ON, register

location %R0099 is loaded with the value 11,

which is the function code for the Read

Controller ID function. The program block

READ_ID is then called to retrieve the ID. The

parameter block is located at address %R0100.

Program Block READ_ID:

9-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 12: Read Controller Run State
Use SVC_REQ 12 to read the current RUN state of the CPU.

Output

The output parameter block has a length of one word.

address 1 = run/disabled

2 = run/enabled

Example

When contact V_I00102 is ON, the CPU run state is read into location %R4002. If the

state is Run/Disabled, the CALL function calls program block DISPLAY.

GFK-2222S Chapter 9 Service Request Function 9-25

9

SVC_REQ 13: Shut Down (Stop) CPU
Use SVC_REQ 13 to stop the CPU after the specified number of scans has been

performed. All outputs go to their designated default states at the start of the next CPU

scan. An informational “Shut Down Controller” fault is placed in the controller fault table.

The I/O scan continues as configured.

SVC_REQ 13 has an input parameter block with a length of one word.

Address Number of scans. Valid values:

 -1: The CPU uses the Number of Last Scans value configured in the Hardware
Configuration Scan tab to determine when to transition to Stop mode. For details on
Hardware Configuration parameters, refer to chapter 3.

 1 through 5: The CPU finishes executing this scan, then executes this number of
scans –1, and transitions to Stop mode.

Note: For CPUs with firmware version earlier than 2.00, the value must be set to 0;

otherwise the CPU does not stop.

Example

When a “Loss of I/O Module” fault occurs, the #LOS_IOM contact turns ON and

SVC_REQ 13 executes.

In this example, if the Shut Down CPU function executes, the JUMPN to the end of the

program prevents the logic that follows the JUMPN from executing in the current sweep.

The block's last instruction is a LABELN:

9-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 14: Clear Controller or I/O Fault Table
Use SVC_REQ 14 to clear either the controller fault table or the I/O fault table. The

SVC_REQ output is set ON unless some number other than 0 or 1 is entered as the

requested operation.

The parameter block has a length of 1 word. It is an input parameter block only. There is

no output parameter block.

Address 0 = clear controller fault table

1 = clear I/O fault table

Example

When inputs %I0346 and %I0349 are on, the controller fault table is cleared. When inputs

%I0347 and %I0349 are on, the I/O fault table is cleared. When input %I0348 is on and

input %I0349 is on, both are cleared. Positive transition coils V_M00001 and V_M00002

are used to trigger these service requests to prevent the fault tables from being cleared

multiple times.

The parameter block for the controller fault table is located at %R0500; for the I/O fault

table the parameter block is located at %R0550.

Note: Both parameter blocks are set up elsewhere in the program.

GFK-2222S Chapter 9 Service Request Function 9-27

9

SVC_REQ 15: Read Last-Logged Fault Table Entry
Use SVC_REQ 15 to read the last entry logged in the controller fault table or the I/O fault

table. The SVC_REQ output is set ON unless some invalid number is entered as the

requested operation or the fault table is empty.

The non-extended parameter block has a length of 22 words and the extended parameter

block has a length of 24 words.

Input Parameter Block

Address Format

address+0 0 = Read controller fault table

1 = Read I/O fault table

80h = Read extended controller fault table

81h = Read extended I/O fault table

Output Parameter Block

The format of the output parameter block depends on whether SVC_REQ 15 reads the

controller fault table, the extended controller fault table, the I/O fault table or the extended

I/O fault table.

Controller Fault Table Output Format
Address

I/O Fault Table Output Format

High Byte Low Byte High Byte Low Byte

 0 address+0 1

unused long/short
(always 01)

address+1 reference address
memory type

long/short
(always 03)

unused unused address+2 reference address offset

slot rack address+3 slot rack

 task address+4 block bus

fault action fault group address+5 point

error code address+6 fault action fault category

fault extra data

address+7 fault type fault category

address+8 to
 address+18

fault extra data fault description

minutes seconds address+19 minutes seconds

day of month hour address+20 day of month hour

year month address+21 year month

milliseconds (extended format only) address+22 milliseconds (extended format only)

not used (extended format only) address+23 not used (extended format only)

9-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Long/Short Value

The first byte (low byte) of word address +1 contains a number that indicates the length

of the fault-specific data in the fault entry. Possible values are as follows:

Controller extended and non extended fault
tables

00 = 8 bytes
(short)

01 = 24 bytes
(long)

I/O extended and non extended fault tables 02 = 5 bytes (short) 03 = 21 bytes (long)

Note: PACSystems CPUs always return the Long values for both extended and non-

extended formats.

Example 1

When inputs %I0250 and %I0251 are both on, the first

Move function places a zero (read controller fault table) into

the parameter block for SVC_REQ 15. When input %I0250

is on and input %I0251 is off, the Move instruction instead

places a one (read I/O fault table) in the SVC_REQ

parameter block. The parameter block is located at location

%R0600.

GFK-2222S Chapter 9 Service Request Function 9-29

9

Example 2

The CPU is shut down when any fault occurs on an I/O module

except when the fault occurs on modules in rack 0, slot 9 and in rack

1, slot 9. If faults occur on these two modules, the system remains

running. The parameter for "table type" is set up on the first scan. The

contact IO_PRES, when set, indicates that the I/O fault table contains

an entry. The CPU sets the normally open contact in the scan after

the fault logic places a fault in the table. If faults are placed in the

table in two consecutive scans, the normally open contact is set for

two consecutive scans.

The example uses a parameter block located at %R0600. After the

SVC_REQ function executes, the second, third, and fourth words of

the parameter block identify the I/O module that faulted:

 High Byte Low Byte

%R0600 1

%R0601 reference
address
memory type

long/short

%R0602 reference address offset

%R0603 slot number rack number

%R0604 block (bus
address)

I/O bus no.

%R0605 point address

%R0606 fault data

In the program, the EQ_INT blocks compare the rack/slot address in

the table to hexadecimal constants. The internal coil %M0007 is

turned on when the rack/slot where the fault occurred meets the

criteria specified above. If %M0007 is on, its normally closed contact

is off, preventing the shutdown. Conversely, if %M0007 is off because

the fault occurred on a different module, the normally closed contact

is on and the shutdown occurs.

9-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 16: Read Elapsed Time Clock
Use SVC_REQ 16 to read the system's elapsed time clock. The elapsed time clock

measures the time in seconds since the CPU was powered on. The parameter block has

a length of three words used for output only.

Output

address Seconds from power on (low order)

address+1 Seconds from power on (high order)

address+2 100 microsecond ticks

The first two words are the elapsed time in seconds. The last word is the number of 100

microsecond ticks in the current second.

The resolution of the CPU's elapsed time clock is 100 microseconds. The overall

accuracy of the elapsed time clock is ± 0.01%. The accuracy of an individual sample of

the elapsed time clock is approximately 105 microseconds.

Warning

The SVC_REQ instruction is not protected against operating system
and user interrupts. The timing and length of these interrupts are
unpredictable. The clock sample returned by SVC_REQ 16 can
sometimes be much more than 105 microseconds old by the time
execution is returned to the LD logic

Example

The following logic is used in a block that is called infrequently. The screen shot was

taken between calls to the block. The logic displayed calculates the number of seconds

that have elapsed since the last time the block was called. It performs the final operation

on rung 4 by subtracting the time obtained by SVC_REQ 16 the last time the block was

called (vetum) from the time currently obtained by SVC_REQ 16 (novum) and storing the

calculated value in the variable named diff.

On rung 2, SVC_REQ 16 returns three WORDs, stored in the 3-WORD array tempus.

The first two WORDs (16-bit values) are moved to a DINT (a 32-bit value). This move

amounts to a rough data type conversion that ignores the fact that the DINT type is

actually a signed value. Despite that, the subsequent calculations are correct until the

time since power-on reaches approximately 50 years. The DINT is converted to REAL to

yield the number of whole seconds elapsed since power-on, stored in variable sec. On

rung 3, the third word returned by SVC_REQ 16, tempus[2], is converted to REAL. This is

the number of 100 microsecond ticks. To obtain a fraction of a second, stored in the

variable fractio, the value is divided by 10,000. On rung 4, sec and fractio are added to

express the exact number of seconds elapsed since power-on, and this value is stored in

the variable novum. On rung 1, the previous value of novum was saved as vetum, the

exact number of seconds elapsed since power-on the last time the block was called. The

last instruction on the fourth rung subtracts vetum from novum to yield the number of

seconds that have elapsed since the last time the block was called.

GFK-2222S Chapter 9 Service Request Function 9-31

9

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 50,

described on page 9-51.

9-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 17: Mask/Unmask I/O Interrupt
Use SVC_REQ 17 to mask or unmask an interrupt from an input/output board. When an

interrupt is masked, the CPU does not execute the corresponding interrupt block when

the input transitions and causes an interrupt.

The parameter block is an input parameter block only; it has a length of three words.

address 0 = unmask input

1 = mask input

address+1 memory type

address+2 reference (offset)

“Memory type” is a decimal number that resides in the low byte of word address + 1. It

corresponds to the memory type of the input:

70 %I memory in bit mode

10 %AI memory

12 %AQ memory

Successful execution occurs unless:

■ Some number other than 0 or 1 is entered as the requested operation.

■ The memory type of the input/output to be masked or unmasked is not %I, %AI

or %AQ memory.

■ The I/O board is not a supported input/output module.

■ The reference address specified does not correspond to a valid interrupt trigger

reference.

■ The specified channel does not have its interrupt enabled in the configuration.

Masking/Unmasking Module Interrupts

During module configuration, interrupts from a module can be enabled or disabled. If a

module's interrupt is disabled, it cannot be used to trigger logic execution in the

application program and it cannot be unmasked. However, if an interrupt is enabled in the

configuration, it can be dynamically masked or unmasked by the application program

during system operation.

The application program can mask and unmask interrupts that are enabled using Service

Request Function Block #17. To mask or unmask an interrupt from an open VME

module, the application logic should pass VME_INT_ID (17 decimal, 11H) as the memory

type and the VME interrupt id as the offset to SVC_REQ 17.

When the interrupt is not masked, the CPU processes the interrupt and schedules the

associated program logic for execution. When the interrupt is masked, the CPU

processes the interrupt but does not schedule the associated program logic for execution.

When the CPU transitions from Stop to Run, the interrupt is unmasked.

For additional information on configuring and using VME module interrupts in a

PACSystems RX7i control system, refer to PACSystems RX7i User's Guide to Integration

of VME Modules, GFK-2235.

GFK-2222S Chapter 9 Service Request Function 9-33

9

Example 1

In this example, interrupts from input %I00033 are masked. The following values are

moved into the parameter block, which starts at %P00347, on the first scan:

address %P00347 1 Interrupts from input are masked.

address + 1 %P00348 70 Input type is %I.

address + 2 %P00349 33 Offset is 33.

Example 2

When %T00001 transitions on, alarm interrupts from input %AI0006 are masked. The

parameter block at %R00100 is set up on the first scan.

9-34 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 18: Read I/O Forced Status
Use SVC_REQ 18 to read the current status of forced values in the CPU's %I and %Q

memory areas.

Note: SVC_REQ 18 does not detect overrides in %G or %M memory types. Use

%S0011 (#OVR_PRE) to detect overrides in %I, %Q, %G, %M, and symbolic

memory types.

The parameter block has a length of one word used for output only.

Output

address 0 = No forced values are set

1 = Forced values are set

Example

SVC_REQ reads the status of I/O forced values into location %R1003. If the returned

value in %R1003 is 1, there is a forced value, and EQ INT turns the %T0001 coil ON.

GFK-2222S Chapter 9 Service Request Function 9-35

9

SVC_REQ 19: Set Run Enable/Disable
Use SVC_REQ 19 to permit the LD program to control the RUN mode of the CPU.

The parameter passed indicates which function to perform. The OK output is turned ON if

the function executes successfully. It is set OFF if the requested operation is not SET

RUN DISABLE mode (1) or SET RUN ENABLE mode (2).

The parameter block is an input parameter block only with this format:

address 1 = SET RUN DISABLE mode

2 = SET RUN ENABLE mode

Example

When input %I00157 transitions to on, the RUN DISABLE mode is set. When the

SVC_REQ function successfully executes, coil %Q00157 is turned on. When %Q00157

is on and register %R00099 is greater than zero, the mode is changed to RUN ENABLE

mode. When the SVC_REQ successfully executes, coil %Q00157 is turned off.

9-36 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 20: Read Fault Tables
Use SVC_REQ 20 to retrieve the entire Controller or I/O fault table and return it to the LD

program in designated registers.

The first input parameter designates which table is to be read. A second input parameter

(always zero for the standard Read Fault Tables) is used by the extended format to read

a designated fault entry or to read a range of fault entries. The fault table data is placed in

the parameter block following the input parameters.

The OK output is turned on if the function executes successfully. It is off if the requested

operation is not Read Controller Fault Table (00h), Read I/O Fault Table (01h), Read

Extended Controller Fault Table (80h), or Read Extended I/O Fault Table (81h), or if

there is not enough of the specified memory reference to hold the fault data. If the

specified fault table is empty, the function sets the OK output on, but returns only the fault

table header information.

The parameter block is an input and output parameter block. The parameter block comes

in two formats:

■ Non-Extended: Read Controller Fault Table (00h), Read I/O Fault Table (01h)

■ Extended: Read Extended Controller Fault Table (80h), Read Extended I/O Fault

Table (81h)

Non-Extended Formats

For non-extended formats, SVC_REQ 20 requires 693 registers available.

Input Parameter Block Format

address + 0 00h = Read Controller fault table
01h = Read I/O fault table

address + 1 Always 0

Non-Extended Output Parameter Block Format

Controller Fault Table Output Format
Address

I/O Fault Table Output Format

High Byte Low Byte High Byte Low Byte

Unused 0 = Controller Fault
Table

address+0 Unused 1 = I/O Fault Table

Unused Always zero (0) address+1 Unused Always zero (0)

Unused Unused address+2 Unused Unused

Unused Unused address+3—
address+14

Unused Unused

Minutes Seconds address+15—
address+17
(time since last
clear, in BCD
format)

Minutes Seconds

Day Of Month Hour Day of month Hour

Year Month Year Month

Number of faults since last clear address+18 Number of faults since last clear

Number of faults in queue address+19 Number of faults in queue

Number of faults read address+20 Number of faults read

Start of fault data address+21 Start of fault data

GFK-2222S Chapter 9 Service Request Function 9-37

9

For the non-extended formats, the returned data for each fault consists of 21 words (42

bytes). This request returns 16 controller fault table entries or 32 I/O fault table entries, or

the actual number of faults if it is fewer. If the fault table read is empty, no data is

returned.

The following table shows the return format of a controller fault table entry and an I/O

fault table entry.

Format of Returned Data for Fault Table Entries

Controller Fault Table Output Format
Address

I/O Fault Table Output Format

High Byte Low Byte High Byte Low Byte

Unused Long/short address+21 Memory type Long/Short
2

Unused Unused address+22 Offset

Slot Rack address+23 Slot Rack

 Task address+24 Bus address I/O Bus Number
(block)

Fault action Fault group address+25 Point

 Error code address+26 Fault action Fault group

Fault extra data

address+27 Fault type Fault category

address+28 Fault extra data Fault
description

address+29—
address+38

Fault extra data

Minutes Seconds address+39—
address+41
(time stamp, in
BCD format)

Minutes Seconds

Day of month Hour Day of month Hour

Year Month Year Month

Start of next fault output parameter
block

address+42 Start of next fault output parameter
block

2
 The Long/Short indicator in the low byte of Address + 21 specifies the amount of fault data

present in the fault entry:

Fault Table Long/Short Value Fault Data Returned

Controller 00 8 bytes of fault extra data present in the fault entry

01 24 bytes of fault extra data

I/O 02 5 bytes of fault extra data

03 21 bytes of fault extra data

9-38 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Extended Formats

Each extended format request can read a maximum of 64 faults, or the size of the fault

table if it contains less than 64 faults.

For extended formats (Read Extended Controller Fault Table (80h), or Read Extended

I/O Fault Table (81h)), the controller calculates the number of entries being read. You

must ensure that enough registers are available to receive the amount of fault entries

requested. If the amount of data requested exceeds the registers available, the CPU

returns a fault indicating that reference memory is out of range.

The total size of the fault table for the extended fault format is

Header Size + ((# fault entries) × (size of fault entry))

Input Parameter Block Format

address+0 80h = Read extended controller fault table

81h = Read extended I/O fault table

address+1 Starting index of faults to be read

address+2 Number of faults to be read

Extended Format Output Parameter Block Format

Controller Fault Table
Output Format

Address

I/O Fault Table
Output Format

High Byte Low Byte High Byte Low Byte

Unused 80h = Extended
controller fault
table

address Unused 81h = Extended
I/O fault table

Starting index of faults to be read address+1 Starting index of faults
to be read

Number of faults to be read address+2 Number of faults to be read

Unused Unused address+3—address+14 Unused Unused

Minutes Seconds address+15—address+17
(time since last clear, in
BCD format)

Minutes Seconds

Day of Month Hour Day of month Hour

Year Month Year Month

Number of faults since last clear address+18 Number of faults since
last clear

Number of faults in queue address+19 Number of faults in queue

Number of faults read address+20 Number of faults read

Unused address+21—address+36 Unused

Start of fault data address+37 Start of fault data

For Read Extended Controller Fault Table (80h) and Read Extended I/O Fault Table

(81h), the returned data for each fault entry consists of 23 words (46 bytes).

GFK-2222S Chapter 9 Service Request Function 9-39

9

Format of Returned Data for Fault Table Entries

Controller Fault Table
Output Format

Address

I/O Fault Table
Output Format

High Byte Low Byte High Byte Low Byte

Unused Long/Short address+37 Reference
address memory
type

Long/Short (See
page 9-28.)

Unused Unused address+38 Reference address offset

Slot Rack address+39 Slot Rack

 Task address+40 Bus address I/O bus number
(block)

Fault action Fault group address+41 point

 Error code address+42 Fault action Fault group

Fault extra data

address+43 Fault type Fault category

address+44 Fault extra data Fault description

address+45—
address+54

Fault extra data

Minutes Seconds address+55—
address+58
(time stamp in BCD
format)

Minutes Seconds

Day of month Hour Day of month Hour

Year Month Year Month

Milliseconds Milliseconds

Not used address+59 Not used

Start of next fault output
parameter block

address+60 Start of next fault output
parameter block

9-40 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 20 Examples

Example 1: Non-Extended Format

When Read_PLC transitions on, a value of 0 is moved to the parameter block, which is

located at %R00500, and the controller fault table is read. When Read_IO transitions on,

a value of 1 is moved to the parameter block and the I/O fault table is read. When the

SVC_REQ function successfully executes, coil OK is turned on.

Example 2: Extended Format

When Read_PLC_Xt transitions on, the Extended controller fault table is read. The

parameter block begins at %R00500. %R00500 contains the fault table type (Controller

Extended); %R00501 contains the starting fault to read, and %R00502 contains the

number of faults to read starting with the fault number in %R00501. When the SVC_REQ

function successfully executes, coil OK is turned on.

GFK-2222S Chapter 9 Service Request Function 9-41

9

SVC_REQ 21: User-Defined Fault Logging
Use SVC_REQ 21 to define a fault that can be displayed in the controller fault table. The

fault contains binary information or an ASCII message. The user-defined fault codes start

at 0 hex.

The error code information for the fault must be within the range 0 to 2047 for an

“Application Msg:” to be displayed. If the error code is in the range 81 to 112 decimal, the

CPU sets a fault bit of the same number in %SA system memory. This allows up to 32

bits to be individually set.

Error Code Status Bit

Errors 0—80 No bit set

Errors 81—112 Sets %SA

Errors 113—2047 No bit set

Errors 2048—32,767 Reserved

When EN is active, the fault data array referenced by IN is logged as a fault to the

controller fault table. If EN is not enabled, the ok bit is cleared. If the error code is out of

range, the ok bit is cleared and the fault will not be logged as requested.

The parameter block is an input parameter block only with this format:

Parameter address

Error code

MSB LSB

address+1 Text2 Text1

address+2 Text4 Text3

address+3 Text6 Text5

address+4 Text8 Text7

address+5 Text10 Text9

address+6 Text12 Text11

address+7 Text14 Text13

address+8 Text16 Text15

address+9 Text18 Text17

address+10 Text20 Text19

address+11 Text22 Text21

address+12 Text24 Text23

The input parameter data allows you to select an error code in the range 0 to 2047 and

text information that will be placed in the fault extra data portion of a long controller fault.

The controller fault address, fault group, and fault action are filled in by the function block.

The fault text bytes 1 – 24 can be used to pass binary or ASCII data with the fault. If the

first byte of the fault text data is non-zero, the data will be an ASCII message string. This

message will then be displayed in the fault description area of the fault table. If the

message is less than 24 characters, the ASCII string must be NULL byte-terminated. The

programmer will display “Application Msg:” and the ASCII data will be displayed as a

message immediately following “Application Msg:”. If the error code is between 1 and

2047, the error code number will be displayed immediately after “Msg” in the

9-42 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

“Application Msg:” string. (If the error code is greater than 2047, the function is ignored

and its output is set to OFF.)

If the first byte of text is zero, then only “Application Msg:” will display in the fault

description. The next 1-23 bytes will be considered binary data for user data logging. This

data is displayed in the controller fault table.

Note: When a user-defined fault is displayed in the controller fault table, a value of

-32768 (8000 hex) is added to the error code. For example, the error code 5 will

be displayed as -32763.

Example

The value passed to IN1 is the fault error code. The value passed in, 16x0057,

represents an error code of 87 decimal and will appear as part of the fault message. The

values of the next inputs give the ASCII codes for the text of the error message. For IN2,

the input is 2D45. The low byte, 45, decodes to the letter E and the high byte, 2D,

decodes to -. Continuing in this manner, the string continues with S T O P O and N. The

final character, 00, is the null character that terminates the string. In summary, the

decoding yields the string message E_STOP ON.

GFK-2222S Chapter 9 Service Request Function 9-43

9

SVC_REQ 22: Mask/Unmask Timed Interrupts
Use SVC_REQ 22 to mask or unmask timed interrupts and to read the current mask.

When the interrupts are masked, the CPU does not execute any timed interrupt block

timed program that is associated with a timed interrupt. Timed interrupts are

masked/unmasked as a group. They cannot be individually masked or unmasked.

Successful execution occurs unless some number other than 0 or 1 is entered as the

requested operation or mask value.

The parameter block is an input and output parameter block.

To determine the current mask, use this format:

address 0 = Read interrupt mask

The CPU returns this format:

address 0 = Read interrupt mask

address+1 0 = Timed interrupts are unmasked

1 = Timed interrupts are masked

To change the current mask, use this format:

address 1 = Mask/unmask interrupts

address+1 0 = Unmask timed interrupts

1 = Mask timed interrupts

Example

When input %I00055 transitions on, timed interrupts are masked.

9-44 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 23: Read Master Checksum
Use SVC_REQ 23 to read master checksums for the set of user program(s) and the

configuration, and to read the checksum for the block from which the service request is

made.

There is no input parameter block for this service request. The output parameter block

requires 15 words of memory.

Output

When a RUN MODE STORE is active, the program checksums may not be valid until the

store is complete. To determine when checksums are valid, three flags (one each for

Program Block Checksum, Master Program Checksum, and Master Configuration

Checksum) are provided at the beginning of the output parameter block.

Address Description

Address Program Checksum Valid (0 = not valid, 1 = valid)

Address + 1 Master Program Checksum Valid (0 = not valid, 1 = valid)

Address + 2 Master Configuration Checksum Valid (0 = not valid, 1 = valid)

Address + 3 Number of LD/SFC Blocks (including _MAIN)

Address + 4 Size of User Program in Bytes (DWORD data type)

Address + 6 Program Set Additive Checksum

Address + 7 Program CRC Checksum (DWORD data type)

Address + 9 Size of Configuration Data in Kbytes

Address + 10 Configuration Additive Checksum

Address + 11 Configuration CRC Checksum (DWORD data type)

Address + 13 high byte: always zero

low byte: Currently Executing Block’s Additive Checksum

Address + 14 Currently Executing Block’s CRC Checksum

Example – SVC_REQ 23

When the timer using registers

%P00013 through %P00015

expires, the checksum read is

performed. The checksum data

returns in registers %P00016

through %P00030. The master

program checksum in registers

%P00022 and %P00023 (the

program checksum is a DWORD

data type and occupies two

adjacent registers) is compared

with the last saved master

program checksum. If these are

different, coil %M00055 is

latched on. The current master

program checksum is then saved

 in registers %P00031 and %P00032.

GFK-2222S Chapter 9 Service Request Function 9-45

9

SVC_REQ 24: Reset Module
Use SVC_REQ 24 to reset a daughterboard or some modules. Modules that support

SVC_REQ 24 include:

RX3i IC693BEM331, IC694BEM331, IC693APU300, IC694APU300, IC695ETM001,

IC693ALG2222, IC694ALG2222, IC695PNC001

RX7i: Embedded Ethernet Interface module, IC697BEM731, IC698BEM731,

IC697HSC700, IC697ALG230, IC698ETM001

The SVC_REQ output is set ON unless one of the following conditions exists:

-An invalid number for rack and/or slot is entered.

-There is no module at the specified location.

-The module at the specified location does not support a runtime reset.

-The CPU was unable to reset the module at the specified location.

For this function, the parameter block has a length of 1 word. It is an input parameter

block only.

address Module slot (low byte)
Module rack (high byte)

Rack 0, Slot 1 indicates that a reset is to be sent to the daughterboard.

Note: It is important to invoke SVC_REQ #24 for a given module for only one sweep at

a time. Each time this function executes, the target module will be reset

regardless of whether it has finished starting up from a previous reset.

 After sending a SVC_REQ #24 to a module, you must wait a minimum of 5

seconds before sending another SVC_REQ #24 to the same module. This

ensures that the module has time to recover and complete its startup.

Example

This example resets the

module in rack 0/slot 2. In

rung 1, when contact

%I00200 is closed, the

positive transition coil sets

%I00250 to ON for one

sweep. The MOVE_WORD

instruction in rung 2

receives power flow and

moves the value 2 into

%R00500. The SVC_REQ

function in rung 3 then

receives power flow and

resets the module indicated

by the rack/slot value in

%R00500.

9-46 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program
Checksums

Use SVC_REQ 25 to enable or disable the inclusion of EXE in the background checksum

calculation. The default is to include the checksums.

This service request uses only an input parameter block.

address 0 = Disable C applications inclusion in checksum calculation

1 = Enable C application inclusion in checksum calculation

The parameter block is unchanged after execution of the service request.

Example

When the coil TEST transitions from OFF to ON, SVC_REQ 25 executes to disable the

inclusion of EXE blocks in the background checksum calculation. When coil TEST

transitions from ON to OFF, the SVC_REQ executes to again include EXE blocks in the

background checksum calculation.

GFK-2222S Chapter 9 Service Request Function 9-47

9

SVC_REQ 29: Read Elapsed Power Down Time

Use SVC_REQ 29 to read the amount of time elapsed between the last power-down and

the most recent powerup. If the watchdog timer expired before power-down, the CPU is

not able to calculate the power down elapsed time, so the time is set to 0.

This service request cannot be accessed from a C block.

This function has an output parameter block only. The parameter block has a length of

three words.

address Power-down elapsed seconds (low order)

address + 1 Power-down elapsed seconds (high order)

address + 2 100µS ticks

The first two words are the power-down elapsed time in seconds. The last word is the

number of 100 microsecond ticks in the current second.

Note: Although this request responds with a resolution of 100µS, the actual accuracy is

1 second. The battery-backed clock, which is used when the controller is

powered down, is accurate to within 1 second.

Example of SVC_REQ 29

When input %I0251 is ON, the elapsed power-down time is placed into the parameter

block that starts at %R0050. The output coil (%Q0001) is turned on.

CONST
00029

 SVC_
 REQ

FNC

PARM %R0050

%I0251 %Q0001

9-48 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 32: Suspend/Resume I/O Interrupt
Use SVC_REQ 32 to suspend a set of I/O interrupts and cause occurrences of these

interrupts to be queued until these interrupts are resumed. The number of I/O interrupts

that can be queued depends on the I/O module’s capabilities. The CPU informs the I/O

module that its interrupts are to be suspended or resumed. The I/O module’s default is

resumed. The Suspend applies to all I/O interrupts associated with the I/O module.

Interrupts are suspended and resumed within a single scan.

SVC_REQ 32 uses only an input parameter block. Its length is three words.

Address 0 = resume interrupt
1 = suspend interrupt

Address + 1 memory type

Address + 2 reference (offset)

Successful execution occurs unless:

■ Some number other than 0 or 1 is passed in as the first parameter.

■ The memory type parameter is not 70 (%I memory).

■ The I/O module associated with the specified address is not an appropriate module

for this operation.

■ The reference address specified is not the first %I reference for the High Speed

Counter.

■ Communication between the CPU and this I/O module has failed. (The board is not

present, or it has experienced a fatal fault.)

GFK-2222S Chapter 9 Service Request Function 9-49

9

Example – SVC_REQ 32

Interrupts from the high speed counter module whose starting point reference address is

%I00065 will be suspended while the CPU solves the logic of the second rung. Without

the Suspend, an interrupt from the HSC could occur during execution of the third rung

and %T00006 could be set while %R000001 has a value other than 3,400. (%AI00001 is

the first non-discrete input reference for the High Speed Counter.)

Note: I/O interrupts, unless suspended or masked, can interrupt the execution of a

function block. The most often used application of this Service Request is to

prevent the effects of the interrupts for diagnostic or other purposes.

9-50 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 45: Skip Next I/O Scan
Use the SVC_REQ function #45 to skip the next output and input scans. Any changes to

the output reference tables during the sweep in which the SVC_REQ #45 was executed

will not be reflected on the physical outputs of the corresponding modules. Any changes

to the physical input data on the modules will not be reflected in the corresponding input

references during the sweep after the one in which the SVC_REQ #45 was executed.

This function has no parameter block.

Note: This service request is provided for conversion of Series 90-30 applications. The

Suspend I/O (SUS_IO) function block, which is supported by all PACSystems

firmware versions, should be used in new applications.

Note: The DOIO Function Block is not affected by the use of SVC_REQ #45. It will still

update the I/O when used in the same logic program as the SVC_REQ #45.

Example

In the following LD example, when the “Idle” contact passes power flow, the next Output

and Input Scan are skipped.

GFK-2222S Chapter 9 Service Request Function 9-51

9

SVC_REQ 50: Read Elapsed Time Clock
Use SVC_REQ 50 to read the system's elapsed time clock. The elapsed time clock

measures the time in seconds since the CPU was powered on. The parameter block has

a length of four words used for output only.

Output

address Seconds from power on (low order)

address+1 Seconds from power on (high order)

address+2 nanosecond ticks (low order)

address+3 nanosecond ticks (high order)

The first two words are the elapsed time in seconds. The second two words are the

number of nanoseconds elapsed in the current second.

The resolution of the CPU's elapsed time clock is 100 microseconds. The overall

accuracy of the elapsed time clock is ± 0.01%. The accuracy of an individual sample of

the elapsed time clock is approximately 105 microseconds.

Warning

The SVC_REQ instruction is not protected against operating system
and user interrupts. The timing and length of these interrupts are
unpredictable. The clock sample returned by SVC_REQ 50 can
sometimes be much more than 105 microseconds old by the time
execution is returned to the LD logic

9-52 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Example – SVC_REQ 50

The following logic is used in a block that is called once in a while. The screen shot was

taken between calls to the block. The second rung of logic calculates the number of

seconds that have elapsed since the last time the block was called. The third rung

calculates the number of nanoseconds to be added to, or subtracted from, the number of

seconds. The first rung saves the previous value of novum[0] and novum[1] into vetum[0]

and vetum[1] before the second rung of logic places the current time values in novum[0]

and novum[1].

GFK-2222S Chapter 9 Service Request Function 9-53

9

SVC_REQ 51: Read Sweep Time from Beginning of Sweep
Use SVC_REQ 51 to read the time in nanoseconds since the start of the sweep. The

data is unsigned 32-bit integer.

Output

The parameter block is an output parameter block only; it has a length of two words.

address time (nanoseconds) since start of scan – low order

address+1 time (nanoseconds) since start of scan – high order

Example

The elapsed time from the start of the scan is read into locations %R00200 and

%R00201 if it is greater than 10,020ns, internal coil %M0200 is turned on.

9-54 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
PACSystems controllers support a 64KB nonvolatile flash memory area, which can be

accessed by the logic-driven read/write service requests. Values are stored in the

nonvolatile storage area using SVC_REQ 57 (see page 9-59). These values are applied

to the controller user memory on powerup.

If you want only to write to nonvolatile storage and have the values restored on a power

cycle, you may not need to use SVC_REQ 56. However, a logic driven read from

nonvolatile storage can be commanded as needed. For example, you can use

#FST_SCN with SVC_REQ 56 calls to force a reload on each Stop to Run transition.

SVC_REQ 56 specifies a read operation from nonvolatile storage when the PACSystems

is running. You can specify which reference address range to read and optionally a

different destination memory location in CPU memory in which to place the read data.

Using different memory locations enables you to set up a comparison between existing

values in CPU memory with values in nonvolatile storage.

SVC_REQ 56 execution time will vary depending on the number of values stored in

nonvolatile storage, as it will find the most recent value for the requested reference

address range.

You can read up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 56.

Discrete Memory

Discrete memory can be read as individual bits or as bytes. For more information,

see Memory Type Codes” on page 9-56.

If a discrete memory destination is forced, the forced value remains intact in CPU

memory even though the count in word 10 (address + 10) indicates that all the data was

read and transferred.

If a memory location has an associated transition bit and SVC_REQ 56 causes a

transition on that value, the transition bit is set.

Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 56 until logic is written to

nonvolatile storage:

■ Run Mode Store (RMS), even if a second RMS reverts everything to the

original state.

■ Test-Edit session, even when you cancel your edits.

■ Word-for-word change.

■ Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded

contents are equal to the contents already on the nonvolatile storage. Setting bit 0

of input word 8 (address + 7) to a value of 1 enables SVC_REQ 56 despite the

above conditions.

GFK-2222S Chapter 9 Service Request Function 9-55

9

Maximum of One Active Instruction

When SVC_REQ 56 is active, it does not support an interrupt that attempts to activate

SVC_REQ 57 or a second instance of SVC_REQ 56. If an attempt fails, an error

indicating that another instance is active will be returned.

ENO and Power Flow To The Right

If the status is Success or Partial Read (see address+9), on the SVC_REQ instruction,

ENO is set to True in FBD and ST, and power flow passes to the right in LD.

Parameter Block
address+0 Memory type. See “Memory Type Codes” on page 9-56.

address+1 The zero-based offset N to read from nonvolatile storage. Contains the complete offset for any
memory area except %W, which also requires the use of address + 2 for offsets greater than 65,535.

▪ For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-based
reference address. For example, to read from the one-based bit reference address %T33, enter
the byte offset 4: (33 - 1) / 8 = 4.

▪ For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G memory in bit mode, N
= Ra - 1. For example, to read from the one-based reference address %R200, enter the zero-
based reference offset 199; to read from %I73 in bit mode, enter offset 72. For memory in bit
mode, the offset must be set on a byte boundary, that is, a number exactly divisible by 8: 0, 8, 16,
24, and so on.

address+2

address+3 Length. The number of items to read from nonvolatile storage beginning at the reference address
calculated from the offset defined at [address + 1 and address + 2]. The length can be one of the
following:

Description Valid range

The number of words (16-bit registers) to read
from %W, %R, %AI, or %AQ nonvolatile storage

1 through 32 words

The number of bytes to read from %I, %Q, %M,
%T, or %G in byte mode nonvolatile storage

1 through 64 bytes

The number of bits to read from %I, %Q, %M,
%T, or %G in bit mode nonvolatile storage

1 through 512 bits in
increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set to zero.

address + 4 Destination memory. The CPU memory area to write the read data to. This does not need to be the
same memory area as specified at [address]. Writing to a different memory area enables you to
compare the values that were already in the CPU with the values read from nonvolatile storage.

9-56 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

address+5 The zero-based offset N in CPU memory to start writing the read data to. Address + 5, the least
significant word, contains the complete offset for any memory area except %W, which also requires
the use of address + 6 for offsets greater than 65,535.

▪ For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-based
reference address. For example, to write to the one-based bit reference address %T33, enter the
byte offset 4: (33 - 1) / 8 = 4.

▪ For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G memory in bit mode, N
= Ra - 1. For example, to write to the one-based reference address %R200, enter the zero-based
reference offset 199; to write to %I73 in bit mode, enter offset 72.

address+6

address+7 ▪ When bit 0 is set to 1, storage disabled conditions are ignored. A read is allowed even if the logic
in RAM has changed since nonvolatile storage was read or written.

▪ Bits 1 through 15 must be set to zero; otherwise, the read fails.

address+8 Reserved. Must be set to zero; otherwise, the read fails.

address+9 Response status. The status read from nonvolatile storage. The low byte contains the major error
code; the high byte contains the minor error code.

For definitions, see “Response Status Codes” on page 9-57.

address+10 Response Count. The number of words, bytes, or bits copied.

Memory Type Codes

Type Decimal Value Type Decimal Value

%R 8 %G (byte mode) 56

%AI 10 %I (bit mode) 70

%AQ 12 %Q (bit mode) 72

%I (byte mode) 16 %T (bit mode) 74

%Q (byte mode) 18 %M (bit mode) 76

%T (byte mode) 20 %G (bit mode) 86

%M (byte mode) 22 %W 196

GFK-2222S Chapter 9 Service Request Function 9-57

9

Response Status Codes for SVC_REQ 56

Minor Major Description

00 01 Success. All values requested were found and copied.

01 01 Partial Read. All values found were copied, but some or all values were not
in storage.

01 02 Insufficient Destination Memory. The Destination memory location is not
large enough to store the requested values.

02 02 Invalid Length. The length requested is larger than 64 bytes or less than 1
byte or the number of bits is not an exact multiple of 8.

03 02 Invalid storage or destination reference address. A specified memory area
is not %I, %Q, %T, %M, %G, %R, %AI, %AQ, or %W, or the offset is out of
range, or the offset is not byte-aligned for discrete memory in bit mode.

04 02 Invalid request. Spare bits or spare words in parameter block are not set
to zero.

01 03 Storage Busy. A SVC_REQ 57 or another SVC_REQ 56 instruction is
active. For example, an interrupt block is attempting to execute SVC_REQ
56 when the block it interrupted was executing SVC_REQ 56.

01 04 Storage Disabled. The logic in RAM differs from the logic in nonvolatile
storage. See Storage disabled conditions.

02 04 Storage Closed. Either the storage has not been created or a previous
corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected Read Failure. A command to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. A corrupted checksum or storage header caused a
read to fail.

9-58 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

SVC_REQ 56 Example

The following LD logic reads ten continuous bytes written to nonvolatile storage from

%G1—%G80 into %G193—%G273. The value applied to IN1, 56, selects byte mode.

The parameter block starts at %R00040. The response words are returned to %R00049

and %R00050.

Parameter Block for SVC_REQ 56 Example

Address + Offset Address Input Value Definition

address+0 %R00040 56 Data type = %G (byte mode)

address+1 %R00041 0 Address written from, low word

address+2 %R00042 0 Address written from, high word

address+3 %R00043 10 Length = 10 bytes

address+4 %R00044 56 Data type to write to = %G (byte mode)

address+5 %R00045 24 Address to write to, low word

address+6 %R00046 0 Address to write to, high word

address+7 %R00047 0 Storage disabled conditions are enforced

address+8 %R00048 0 Reserved, must be set to 0

address+9 %R00049 NA Response status.

address+10 %R00050 NA Response count.

GFK-2222S Chapter 9 Service Request Function 9-59

9

SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
PACSystems controllers support a 65,500 byte nonvolatile flash memory area that can be

accessed by the logic-driven read/write service requests. Values are stored in the

nonvolatile storage area using SVC_REQ 57. These values are applied to the controller

user memory on power up.

SVC_REQ 57 specifies a range of reference addresses to read from a running

PACSystems CPU and write to nonvolatile storage. This feature is intended to retain a

limited set of values, such as set points or tuning parameters that need to change when

the PACSystems is running.

This feature uses 65,536 bytes of nonvolatile storage. But not all of this memory is
available for the actual data being written by the service request. Some of the memory is
used internally by the controller to maintain information about the data being stored.

Note: Nonvolatile storage is intended for storing values that do not change frequently.

Once the nonvolatile storage area fills up, a power cycle or stop mode store is

required to store more values. The logic-driven write is not a replacement for

battery backed RAM for values that change frequently or during every sweep.

(See “When nonvolatile storage is full” on page 9-61.)

Length of Data Written

SVC_REQ 57 scans the nonvolatile storage to find the most recent values stored for the

specified range. If it finds no values for the range or the most recent stored values are

different, the new values are written to nonvolatile storage.

SVC_REQ 57 reports the length of data written in word 8 (starting address + 7) of the

parameter block. The number of words written is calculated from the first word that

changed to the end of the array. For example, if you specify 8 words to be written, but

only the values of words 3 and 4 are changed, the SVC_REQ identifies the first mismatch

at word 3 and writes the values of words 3 through 8 (a length of 6 words).

You can write up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 57. Each

invocation requires 4 words of command data (8 bytes). A 1-byte write requires 9 bytes

whereas a 64-byte write requires 72 bytes. You can generally make the most efficient use

of nonvolatile storage by transferring data in 56-byte increments, since this will actually

write 64 bytes to the device. Given the bookkeeping overhead required by the Controller

and possible fragmentation, at least 54,912 bytes and no more than 64,000 bytes will be

available for the reference data and the 8 bytes of command data for each invocation.

For additional information on fragmentation, see page 9-61.

Write Frequency

Multiple calls to SVC_REQ 57 in a single sweep may cause CPU watchdog timeouts.

The number of calls to SVC_REQ 57 that can be made requires consideration of many

variables: the software watchdog timeout value, how much data is being written, how

long the sweep is, age of nonvolatile storage (flash), etc. If the application attempts to

write to flash too frequently, the CPU could experience a watchdog timeout while waiting

for a preceding write operation to complete.

The Logic Driven Read/Write to Flash service requests are not intended for high

frequency use. We recommend limiting the number of calls to SVC_REQ 57 to one call

per sweep to avoid the potential of for causing a watchdog timeout and the resulting

transition to Stop-Halt mode.

9-60 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Erase Cycles

The flash component on the PACSystems CPU is rated for 100K erase cycles. Erase

cycles occur under the following conditions:

■ Write to flash is commanded from the programmer.

■ Clear flash operation.

■ Flash compaction after a power cycle when flash memory allotted for SVC_REQ 57

has become full.

Discrete memory

Discrete memory can be written to as individual bits or as bytes. For more information,

see Address.

Force and transition information is not written to nonvolatile storage.

Retentiveness

Writing values to nonvolatile storage for non-retentive memory such as %T does not
make the memory retentive. For example, all values stored to %T memory are set to zero
on power-up or a stop to run transition. You can, however, read such values from storage

after power-up or stop to run transition by using SVC_REQ 56.

Maximum of one active instruction

When SVC_REQ 57 is active, it does not support an interrupt that attempts to activate

SVC_REQ 56 or a second instance of SVC_REQ 57.

Storage disabled conditions

By default, the following write operations disable SVC_REQ 57 until logic is written to

nonvolatile storage:

■ Run Mode Store (RMS), even if a second RMS reverts everything to the original

state

■ Test-Edit session, even when you cancel your edits

■ Word-for-word change

■ Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded

contents are equal to the contents already on the nonvolatile storage

Setting bit 0 of input word 4 (address + 4) to a value of 1 enables SVC_REQ 57 despite

the above conditions.

Error checking

When writing to nonvolatile storage, error checking is provided to ensure that logic and

the Hardware Configuration (HWC) in nonvolatile memory match the logic and HWC in

PACSystems RAM.

GFK-2222S Chapter 9 Service Request Function 9-61

9

Fragmentation

Due to the nature of the media in PACSystems CPUs, writes may produce fragmentation

of the memory. That is, small portions of the memory may become unavailable,

depending upon the sequence of the writes and the size of each one. Data is stored on

the device in 128 512-byte sections. Each section uses 12 bytes of bookkeeping

information, leaving a maximum of 64,000 bytes devoted to the reference data and

command data for each invocation. However, the data for a single invocation cannot be

split across sections. So, if there is insufficient space in the currently used section to

contain the new data, the unused portion of that section becomes lost.

Example: Suppose that the current operation is writing 64 bytes of reference data and 8

bytes of command data (72 bytes total). If there are only 71 bytes remaining in the

current section, the new data will be written to a new section and the unused 71 bytes in

the old section become unavailable.

When nonvolatile storage is full

When logic driven user nonvolatile storage is full, a fault is logged. Before you can use

SVC_REQ 57 to write again, use one of the following solutions:

To retain the most up-to-date data and continue writing with SVC_REQ 57 to

nonvolatile storage:

1. Stop the PACSystems.

2. Power cycle the PACSystems.

A power cycle when nonvolatile storage is full triggers a compaction of existing

data. During compaction, multiple writes of the same reference memory address

are removed, which leaves only the most recent data, and contiguous reference

memory addresses are combined into the fewest number of records necessary.

If compaction cannot take place, a second fault is logged and you need to use

one of the following two solutions.

To retain specific data from nonvolatile storage, clear nonvolatile storage, and then

return the data to nonvolatile storage:

1. While the controller is still running, use SVC_REQ 56 to read the desired values

into PACSystems memory.

2. Upload the current values from controller memory as initial values to your project.

3. Stop the controller.

4. Do one of the following:

Clear the flash memory, or

Write to flash. The flash is erased prior to writing, which frees up some space.

5. Download the initial values to the controller.

6. Start the controller.

7. Use SVC_REQ 57 to write the desired values from controller memory to

nonvolatile storage.

9-62 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

To write to flash to erase everything:

1. Stop the Controller.

2. Write to flash. The flash is erased prior to writing, which frees up some space.

Equality

Because data in nonvolatile storage is not considered part of the project, writing to

nonvolatile storage does not impact equality between the CPU and Logic Developer.

Redundancy

Redundancy systems can benefit from the use of logic driven user nonvolatile storage as

long as all of the references saved to nonvolatile storage are included in the transfer lists.

Each redundancy CPU maintains its own separate logic driven user nonvolatile storage

by means of SVC_REQ 57 during its logic scan. If the values of reference addresses to

be stored to user nonvolatile storage are synchronized, the logic driven user nonvolatile

storage data in each CPU is identical. If the values to be stored are not synchronized,

then each CPU’s user nonvolatile storage may be different.

ENO and power flow to the right

If the status is Success or Partial Read, then on the SVC_REQ instruction, ENO is set to

True in FBD and ST, and power flow passes to the right in LD.

GFK-2222S Chapter 9 Service Request Function 9-63

9

Parameter Block for SVC_REQ 57
address+0 Memory type. See “Memory Type Codes” on page 9-56.

address+1 The zero-based offset N to write to nonvolatile storage. Contains the complete offset
for any memory area except %W, which also requires the use of address + 2 for
offsets greater than 65,535.

▪ For %I, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where
Ra = one-based reference address. For example, to read from the one-based bit
reference address %T33, enter the byte offset 4: (33 - 1) / 8 = 4.

▪ For %W, %R, %AI, and %AQ memory, and for %I, %Q, %M, %T, and %G
memory in bit mode, N = Ra - 1. For example, to read from the one-based
reference address %R200, enter the zero-based reference offset 199; to read
from %I73 in bit mode, enter offset 72. For memory- in- bit mode, the offset must
be set on a byte boundary, that is, a number exactly divisible by 8: 0, 8, 16, 24,
and so on.

address+2

address+3 Length. The number of items to write to nonvolatile storage beginning at the reference
address calculated from the offset defined at [address + 1 and address + 2]. The
length can be one of the following:

Description Valid range

The number of words (16-bit registers) to read
from %W, %R, %AI, or %AQ nonvolatile storage

1 through 32 words

The number of bytes to read from %I, %Q, %M,
%T, or %G in byte mode nonvolatile storage

1 through 64 bytes

The number of bits to read from %I, %Q, %M,
%T, or %G in bit mode nonvolatile storage

1 through 512 bits in
increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set
to zero.

address + 4 When bit 0 is set to 1, storage disabled conditions, described on page 9-60, are
ignored. A write is allowed even if the logic in RAM has changed since nonvolatile
storage was read or written.

Bits 1 through 15 must be set to zero; otherwise, the write fails.

address+5 Reserved. Value must be set to zero.

address+6 Response status. The low byte contains the major error code; the high byte contains
the minor error code.

address+7 Count of items written: Words, bytes or bits. Calculated from the first word that
changed to the end of the array.

address+8 The number of bytes available in nonvolatile storage.

address+9

address+10 Reserved.

address+11

9-64 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

9

Response Status Codes for SVC_REQ 57

Minor Major Description

00 01 Success. All values requested were written.

01 01 Existing values found. All values requested are in storage, but one or more
values were already stored.

01 02 Insufficient source memory. Counting from the offset, not enough reference
addresses are left in the specified memory area.

02 02 Invalid length. The length requested was larger than 64 bytes or less than 1
byte or the number of bits is not divisible by 8.

03 02 Invalid source reference address. The memory area specified is not supported,
the starting or ending offset is out of range, or the offset is not byte-aligned for
discrete memory areas.

04 02 Invalid request. Spare bits or spare words in the parameter block are not set
to zero.

01 03 Storage busy. A SVC_REQ 56 or another SVC_REQ 57 instruction is active.
For example, an interrupt block is attempting to execute SVC_REQ 57 when
the block it interrupted was executing SVC_REQ 57.

01 04 Storage disabled. The logic in RAM differs from the logic stored in nonvolatile
storage. See “Storage Disabled Conditions” on page 9-60,

02 04 Storage closed. Either the storage has not been created or a previous
corruption error or unexpected read/write failure closed the storage.

01 05 Unexpected write failure. The command to the storage hardware failed
unexpectedly.

02 05 Corrupted storage. The write failed due to a bad checksum or corrupted
storage header information.

01 06 Write failed. Storage is full.

GFK-2222S Chapter 9 Service Request Function 9-65

9

SVC_REQ 57 Example

The following LD logic writes ten continuous bytes to nonvolatile storage, ranging from

%G1 through %G80. The value applied to IN1, 56, determines byte mode.

The parameter block starts at %R00050. The response words are returned to

%R00056—%R00059.

Parameter Block for SVC_REQ 57 Example

Address +
Offset

Address
Input
Value

Definition

address+0 %R00050 56 Data type = %G (byte mode)

address+1 %R00051 0 Address written from, low word

address+2 %R00052 0 Address written from, high word

address+3 %R00053 10 Length = 10 bytes

address+4 %R00054 0 Storage disabled conditions are enforced

address+5 %R00055 0 Reserved, must be set to 0

address+6 %R00056 NA Response status. The low byte contains the major error
code; the high byte contains the minor error code.

address+7 %R00057 NA Count of items written: Words, bytes or bits.

address+8 %R00058 NA The number of bytes available in nonvolatile storage.

address+9 %R00059 NA

address+10 %R00060 NA Reserved

address+11 %R00061 NA Reserved

GFK-2222S 10-1

PID Built-in Function Block

This chapter describes the PID (Proportional plus Integral plus Derivative) built-in function

block, which is used for closed-loop process control. The PID function compares feedback

from a process variable (PV) with a desired process set point (SP) and updates a control

variable (CV) based on the error.

The PID function uses PID loop gains and other parameters stored in a 40-word reference

array of 16-bit integer words to solve the PID algorithm at the desired time interval.

Ladder Diagram Function Block Diagram

This chapter presents the following topics:

■ Operands of the PID Function

■ Reference Array for the PID Function

■ PID Algorithm Selection and Gain Calculations

■ Determining the Process Characteristics

■ Setting and Tuning Loop Gains

■ Example

10
Chapter

10-2 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Operands of the PID Function

Operands for LD Version of PID Function Block

Parameter Description Allowed Types Allowed
Operands

Optional

(????)

Instance Variable name of the PID Parameter Block array,
which contains user-configurable and internal parameters,
described on page 10-4. Uses 40 words that cannot be
shared.

WORD R, L, P, W
and symbolic

No

SP The control loop or process Set Point. Set using Process
Variable counts, the PID function adjusts the output Control
Variable so that the Process Variable matches the Set Point
(zero error).

INT, BOOL
array of length
16 or more,
Constant

All except S,
SA, SB, and SC

No

PV Process Variable input from the process being controlled.
Often a %AI input.

INT, BOOL
array of length
16 or more

All except S,
SA, SB, and
SC, and
constant

No

MAN While Power Flow is received, the PID function block is held
in manual mode. If no Power Flow is received the PID
function block is in Auto mode.

Power Flow NA No

UP While Power Flow is received, the Manual Command is
increased by 1 each user configured Sample Period.

Power Flow NA No

DN While Power Flow is received, the Manual Command is
decreased by 1 each user configured Sample Period.

Power Flow NA No

CV The Control Variable output to the process. Often a %AQ
output.

INT, BOOL
array of length
16 or more

All except %S
and constant

No

GFK-2222S Chapter 10 PID Built-in Function Block 10-3

10

Operands for FBD Version of PID Function Block

Parameter Description Allowed Types Allowed Operands Optional

Control Structure
Variable

Instance Variable name of the PID Parameter
Block array, which contains user-configurable
and internal parameters, described on page
10-4. Uses 40 words that cannot be shared.

WORD R, L, P, W
and symbolic

No

Function block solve
order – FBD version

Calculated by the FBD editor. Can be
changed by the user.

NA NA No

SP The control loop or process Set Point. Set
using Process Variable counts, the PID
function adjusts the output Control Variable
so that the Process Variable matches the
Set Point (zero error).

INT, BOOL array
of length 16 or
more, Constant

All except S, SA, SB,
and SC

No

PV Process Variable input from the process
being controlled. Often a %AI input.

INT, BOOL array
of length 16 or
more

All except S, SA, SB, SC
and constant

No

MAN When energized to 1 (through a contact),
the PID function block is in manual mode. If
this input is 0, the PID block is in automatic
mode.

BOOL, Power
Flow

All No

UP If energized along with MAN, increases the
Control Variable by 1 CV count per solution
of the PID function block.

BOOL, Power
Flow

All No

DN If energized along with MAN, decreases the
Control Variable by 1 CV count per solution
of the PID function block.

BOOL, Power
Flow

All No

CV The Control Variable output to the process.
Often a %AQ output.

INT, BOOL array
of length 16 or
more

All except %S and
constant

No

10-4 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Reference Array for the PID Function
This parameter block for the PID function occupies 40 words of memory, located at the

starting Instance Variable specified in the PID function block operands. Some of the words

are configurable. Other words are used by the CPU for internal PID storage and are normally

not changed.

Every PID function call must use a different 40-word memory area, even if all the configurable

parameters are the same.

The configurable words of the reference array must be specified before executing the PID

function. Zeros can be used for most default values. Once suitable PID values have been

chosen, they can be defined as constants in BLKMOV functions so the program can set and

change them as needed.

The LD version of the PID function does not pass power flow if there is an error in the

configurable parameters. The function can be monitored using a temporary coil while

modifying data.

Scaling Input and Outputs

All parameters of the PID function are 16 bit integer words for compatibility with 16 bit analog

process variables. Some parameters must be defined in either PV counts or units or in CV

counts or units.

The SP input must be scaled over the same range as the PV, because the PID function

calculates error by subtracting these two inputs.

The process PV and control CV counts do not have to use the same scaling. Either may be -

32000 or 0 to 32000 to match analog scaling, or from 0 to 10000 to display variables as

0.00% to 100.00%. If the process PV and control CV do not use the same scaling, scale

factors are included in the PID gains.

GFK-2222S Chapter 10 PID Built-in Function Block 10-5

10

Reference Array Parameters

Note: Machine Edition software allows you to modify the configurable parameters for a PID

instruction in real time in online programmer mode. To customize PID parameters,

right click the PID function and select Tuning.

Words Parameter/Description Low Bit Units Range

1

(Address + 0)

Loop Number

Optional number of the PID block. It provides a common identification in the
CPU with the loop number defined by an operator interface device.

Integer 0 to 255 (for
user display
only)

2

(Address + 1)

Algorithm

1 = ISA algorithm
2 = Independent algorithm

- Set by the CPU

3

(Address + 2)

Sample Period

The shortest time, in 10 ms. increments, between solutions of the PID
algorithm. For example, use a 10 for a 100 ms. sample period. Minimum time
of 10 mS is enforced by the block if the sweep<10 mS)

10 ms. 0 (every sweep)
to 65535
(10.9 Min) At
least 10ms.

4,5

(Address + 3,
Address + 4)

Dead Band +
Dead Band –

Integral values defining the upper (+) and lower (-) Dead Band limits. If no
Dead Band is required, these values must be 0. If the PID Error (SP - PV) or
(PV - SP) is above the (-) value and below the (+) value, the PID calculations
are solved with an Error of 0. If non-zero, the (+) value must greater than 0
and the (-) value less than 0 or the PID block will not function.

Leave these at 0 until the PID loop gains are set up or tuned. A Dead Band
might be added to avoid small CV output changes due to variations in error.

PV Counts Dead Band +: 0
to 32767
 (never
negative)

Dead Band -: -
32768 to 0
 (never positive)

6

(Address + 5)

PID_IND: Proportional Gain (Kp)
PID_ISA: Controller gain (Kc = Kp)

PID_IND: Change in the Control Variable in CV Counts for a 100 PV Count
change in the Error term. Entered as an integer representing a fixed-point
decimal ratio with two decimal places. Displayed as a ratio of percentages
with two decimal places.

For example, a Kp entered as 450 is displayed as 4.50 and results in a
Kp * Error / 100 or 450 * Error / 100 contribution to the PID Output.

PID_ISA: Same as PID_IND.

Kp is generally the first gain set when adjusting a PID loop.

0.01 CV%/PV%
%CV / %PV

0 to 327.67%

7

(Address + 6)

PID_IND: Derivative Gain (Kd)
PID_ISA: Derivative Time (Td = Kd)

PID_IND: Change in the Control Variable in CV Counts if the Error or PV
changes 1 PV Count every 10 ms. Entered as an integer representing a
fixed-point decimal time in seconds with two decimal places. The least
significant digit represents 0.01 second (10 ms.) units. Displayed as seconds
with two decimal places.

For example, Kd entered as 120 is displayed as 1.20 Sec and results in a
Kd * Δ Error / delta time or 120 * 4 / 3 contribution to the PID Output if Error
changes by 4 PV Counts every 30ms. Kd can be used to speed up a slow
loop response, but is very sensitive to PV input noise. This noise sensitivity
can be reduced by using the derivative filter, which is enabled by setting bit 5
of the Config Word (see page 10-7.)

PID_ISA: The ISA derivative time in seconds, Td, is entered and displayed in
the same way as Kd. Total derivative contribution to PID Output is
Kc * Td * Δ Error / dt.

0.01 seconds 0 to 327.67 sec

10-6 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Words Parameter/Description Low Bit Units Range

8

(Address + 7)

PID_IND: Integral Rate (Ki)
PID_ISA: Integral Rate (1/Ti = Ki)

PID_IND: Rate of change in the Control Variable in CV Counts per second
when the Error is a constant 1 PV Count. Entered as an integer representing
a fixed-point decimal rate with three decimal places. The least significant digit
represents 0.001 counts per second, or 1 count per 0.001 second. Displayed
as Repeats/Sec with three decimal places.

For example, Ki entered as 1400 is displayed as 1.400 Repeats/Sec and
results in a Ki * Error * dt or 1400 * 20 * 50/1000 = 1,400 contribution to PID
Output for an Error of 20 PV Counts and a 50 ms. CPU sweep time (Sample
Period of 0).

PID_ISA: The ISA Integral Time in seconds, Ti, must be inverted and entered,
as integral rate, as described for PID_IND. Total integral contribution to PID
Output is Kc * Ki * Error * dt.

Ki is usually the second gain set after Kp.

Repeats/0.001
Sec.

0 to 32.767
repeats/sec

9

(Address + 8)

CV Bias/Output Offset

Number of CV Counts added to the PID Output before the rate and amplitude
clamps. It can be used to set non-zero CV values when only Kp Proportional
gains are used, or for feed-forward control of this PID loop output from
another control loop.

CV Counts -32768 to 32767
 (add to PID
output)

10, 11

(Address + 9.
Address + 10)

CV Upper Clamp
CV Lower Clamp

Number of CV Counts that define the highest and lowest value that CV is
allowed to take. These values are required. The Upper Clamp must have a
more positive value than the Lower Clamp, or the PID block will not work.
These are usually used to define limits based on physical limits for a CV
output. They are also used to scale the Bar Graph display for CV. The PID
block has anti-reset-windup, controlled by bit 4 of the Config Word, to modify
the integral term value when a CV clamp is reached.

CV Counts -32768 to 32767
(Word 10 must
be greater than
word 11.)

12

(Address + 11)

Minimum Slew Time

Minimum number of seconds for the CV output to move from 0 to full travel of
100% or 32000 CV Counts. It is an inverse rate limit on how fast the CV
output can change.

If positive, CV cannot change more than 32000 CV Counts times the solution
time interval (seconds) divided by Minimum Slew Time.

For example, if the Sample Period is 2.5 seconds and the Minimum Slew
Time is 500 seconds, CV cannot change more than 32000 * 2.5 / 500 or 160
CV Counts per PID solution.

The integral term value is adjusted if the CV rate limit is exceeded.

When Minimum Slew Time is 0, there is no CV rate limit. Set Minimum Slew
Time to 0 while tuning or adjusting PID loop gains.

Seconds / Full
Travel

0 (none) to
32000 sec
to move full CV
travel

GFK-2222S Chapter 10 PID Built-in Function Block 10-7

10

Words Parameter/Description Low Bit Units Range

13

(Address + 12)

Config Word

The low 6 bits of this word are used to modify default PID settings. The other
bits should be set to 0.

Bit 0: Error Term Mode.

When this bit has the default value of 0, the error term is SP - PV.

If the Error=SP-PV is positive, the CV output will decrease.
If the Error=SP-PV is negative, the CV output will increase.

This is type of operation is known as reverse acting. A good example is your
home heating system.

When this bit is 1, the error term is PV - SP.

If the Error=PV-SP is positive, the CV output will increase.
If the Error= PV-SP is negative, the CV output will decrease.

This type of operation is known as direct acting. A good example is your home
cooling system.

Bit 1: Output Polarity.

When this bit is 0, the CV output is the output of the PID calculation. When it
is set to 1, the CV output is the negated output of the PID calculation. Setting
this bit to 1 inverts the Output Polarity so that CV is the negative of the PID
output rather than the normal positive value.

Bit 2: Derivative Action on PV.

When this bit is 0, the derivative action is applied to the error term. When it is
set to 1, the derivative action is applied to PV only.

Bit 3: Deadband action.

When the Deadband action bit is 0, the actual error value is used for the PID
calculation.

When the Deadband action bit is 1, deadband action is chosen. If the error
value is within the deadband limits, the error used for the PID calculation is
forced to be zero. If, however, the error value is outside the deadband limits,
the magnitude of the error used for the PID calculation is reduced by the
deadband limit (|error| = |error – deadband limit|).

Bit 4: Antireset windup action.

When this bit is 0, the antireset-windup action uses a reset (integral term)
back-calculation. When the output is clamped, the accumulated integral term
is replaced with whatever value is necessary to produce the clamped output
exactly.

When the bit is 1, the accumulated integral term is replaced with the value of
the integral term at the start of the calculation. In this way, the preclamp
integral value is retained as long as the output is clamped. This option is not
recommended for new applications. See “CV Amplitude and Rate Limits” on
page 10-14.

Bit 5: Enable derivative filtering.

When this bit is set to 0, no filtering is applied to the derivative term.

When set to 1, a first order filter is applied. This will limit the effects of higher
frequency process disturbances, such as measurement noise, on the
derivative term.

Low 6 bits used Boolean

14

(Address + 13)

Manual Command

Set to the current CV output while the PID block is in Automatic mode. When
the block is switched to Manual mode, this value is used to set the CV output
and the internal value of the integral term within the Upper and Lower Clamp
and Slew Time limits.

CV Counts Tracks CV in
Auto or sets CV
in Manual

10-8 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Words Parameter/Description Low Bit Units Range

15

(Address + 14)

Control Word

If the Override bit (bit 0) is set to 1, the Control Word and the internal SP, PV
and CV parameters must be used for remote operation of the PID block (see
below). This allows a remote operator interface device, such as a computer,
to take control away from the application program.

Caution: If you do not want to allow remote operation of the PID block, make
sure the Control Word is set to 0. If the low bit is 0, the next 4 bits can be read
to track the status of the PID input contacts as long as the PID Enable contact
has power.

Control Word is a discrete data structure with the first five bit positions defined
in the following format:

Bit: Word
Value:

Function: Status or External Action if Override bit is set to 1:

0 1 Override If 0, monitor block contacts below. If 1, set them
externally.

1 2 Manual
/Auto

If 1, block is in Manual mode. If other numbers, it is in
Automatic mode.

2 4 Enable Should normally be 1. Otherwise block is never called.

3 8 UP
/Raise

If 1 and Manual (Bit 1) is 1, CV is incremented every
solution.

4 16 DN
/Lower

If 1 and Manual (Bit 1) is 1, CV is decremented every
solution.

Maintained by the
CPU, unless bit 0
(Override) is set to
1.

Boolean

16

(Address + 15)

Internal SP

Tracks the SP input. If Override = 1, must be set externally to solve the PID
algorithm using an alternate SP value. The original SP value is maintained
until overwritten.

Set and
maintained by the
CPU, unless bit 1 0
(Override) of
Control Word is
set to 1.

Non-
configurable,
unless bit 1 0
(Override) of
Control Word is
set to 1.

17

(Address + 16)

Internal CV

Tracks CV output.

Set and
maintained by the
CPU.

Non-
configurable.

18

(Address + 17)

Internal PV

Tracks PV input. Must be set externally if Override bit is set to 1.

Set and
maintained by the
CPU, unless bit 1 0
(Override) of
Control Word is set
to 1.

Non-
configurable,
unless bit 1 0
(Override) of
Control Word
is set to 1.

19

(Address + 18)

Output

A Signed word value representing the output of the function block before the
optional inversion. If the output polarity bit in the Config Word is set to 0, this
value equals the CV output. If the output polarity bit is set to 1, this value
equals the negative of the CV output.

Set and
maintained by the
CPU.

Non-
configurable.

20

(Address + 19)

Derivative Term Storage

Used internally for storage of intermediate values. Do not write to this location.

21, 22

(Address + 20.
Address + 21)

Integral Term Storage

Used internally for storage of intermediate values. Do not write to these
locations.

23

(Address +22)

Slew Term Storage

Used internally for storage of intermediate values. Do not write to this location.

24 – 26

(Address + 23 –
Address + 25)

Previous Solution Time

Internal storage of time of last PID solution. Normally do not write to these
locations. Some special circumstances may justify writing to these locations.

Note: If you call the PID block in Automatic mode after a long delay, you
might want to use SVC_REQ #16 or SVC_REQ #51 to load the current CPU
elapsed time clock into Word 24 to update the last PID solution time to avoid a
step change of the integral term.

Set and
maintained by the
CPU.

Non-
configurable.

GFK-2222S Chapter 10 PID Built-in Function Block 10-9

10

Words Parameter/Description Low Bit Units Range

27

(Address + 26)

Integral Remainder Storage

Holds remainder from integral term scaling.

Set and
maintained by the
CPU.

Non-
configurable.

28, 29

(Address +
27,Address + 28)

SP, PV Lower Range
SP, PV Upper Range

Optional integer values in PV Counts that define high and low display values
for SP and PV. (Word 29 must be greater than word 28.)

PV Counts -32768 to 32767

30

(Address + 29)

Reserved

Word 30 is reserved. Do not use this location.

N/A Non-
configurable.

31, 32

(Address + 30,
Address + 31)

Previous Derivative Term Storage

Used in calculations for derivative filter. Do not write to these locations.

Set and
maintained by the
CPU.

Non-
configurable.

33 – 40

(Address + 32 –
Address + 39)

Reserved

Words 32-39 are reserved. Do not use these references.

N/A Non-
configurable

10-10 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Operation of the PID Function

Automatic Operation

When the PID function block is called, it compares the current CPU time with the last PID

solution time stored in the reference array. If the interval between the two times is equal to or

greater than the Sample Period (word 3 of the reference array) and also equal to or greater

than 10 milliseconds, the PID algorithm is solved using this time interval. Both the last

solution time and CV output are updated. In Automatic mode, the output CV is copied to the

Manual Command parameter (word 14 of the reference array).

Note: If you call the PID block in Auto mode after a long delay, you may want to use

SVC_REQ 16 or SVC_REQ 51 to load the current CPU time into the stored previous

solution time (word 24 of the reference array, described on page 10-8). This will

update the last PID solution time and avoid a large step change of the integral term.

Another method to prevent the step change is to copy the PV value to the SP before

placing the loop into Auto.

Manual Operation

The PID function block is placed in Manual mode by providing power flow to both the Enable

and Manual input contacts. The output CV is set from the Manual Command parameter. If

either the UP or DN inputs have power flow, the Manual Command word is incremented (UP)

or decremented (DN) by one CV count every PID Sample Period. For faster manual changes

of the output CV, it is also possible to add or subtract any CV count value directly to/from the

Manual Command word (word 14 of the reference array).

The PID function block uses the CV Upper Clamp and CV Lower Clamp parameters to limit

the CV output. If a positive Minimum Slew Time (word 12 of the reference array) is defined, it

is used to limit the rate of change of the CV output. If either CV Clamp or the rate of change

limit is exceeded, the value of the integral (reset) term is adjusted so that CV is at the limit.

The anti-reset-windup feature assures that when the error term tries to drive CV above (or

below) the clamps for a long period of time, the CV output will move off the clamp

immediately when the error term changes sufficiently.

This operation, with the Manual Command tracking CV in Automatic mode and setting CV in

Manual mode, provides a bump-less transfer from Automatic to Manual mode. The CV

Upper and Lower Clamps and the Minimum Slew Time always apply to the CV output in

Manual mode and the integral term is always updated. This assures that when a user rapidly

changes the Manual Command value in Manual mode, the CV output cannot change any

faster than the slew rate limit set by the Minimum Slew Time, and the CV cannot go above

the CV Upper Clamp limit or below the CV Lower Clamp limit.

In order to assure a bump-less transfer from Manual back to Automatic mode, the user

program should copy the PV to the SP before switching back to Automatic mode. This allows

the algorithm to update the last sample period time and prepare to re-calculate CV based

upon the new Auto Mode SP commanded.

GFK-2222S Chapter 10 PID Built-in Function Block 10-11

10

Time Interval for the PID Function

The start time of each CPU sweep is used as the current time when calculating the time

interval between solutions of the PID function. The times and time intervals have a resolution

of 100 microseconds. When an application uses multiple PID functions, all of them use the

same time value.

The PID algorithm is solved when the current time is equal to or greater than the time of the

last PID solution plus the Sample Period or 10 milliseconds; whichever is larger. If the

Sample Period is set for execution on every sweep (value = 0), the PID function is restricted

to a minimum of 10 milliseconds between solutions. If the sweep time is less than 10

milliseconds, the PID function waits until enough sweeps have occurred to accumulate

an elapsed time of at least 10 milliseconds. For example, if the sweep time is 9

milliseconds, the PID function executes every other sweep, and the time interval between

solutions is 18 milliseconds. If a specific PID function is executed more than once per sweep

(by referencing the same reference array location in multiple PID function blocks), the

algorithm is solved only on the first call.

The longest possible interval between executions is 65,535 times 10 milliseconds, or 10

minutes, 55.35 seconds.

10-12 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations

The PID function supports both the Independent Term (PID_IND) and ISA standard

(PID_ISA) forms of the PID algorithm. The Independent Term form takes its name from the

fact that the coefficients for the proportional, integral and derivative terms act independently.

The ISA algorithm is named for the Instrument Society of America (now the International

Society for Measurement and Control), which standardized and promoted it.

The two algorithms differ in how words 6 through 8 of the reference array are used and in

how the PID output (CV) is calculated.

The Independent term PID (PID_IND) algorithm calculates the output as:

PID Output = Kp * Error + Ki * Error * dt + Kd * Derivative + CV Bias

where Kp is the proportional gain, Ki is the integral rate, Kd is the derivative time, and dt is the time

interval since the last solution.

The ISA (PID_ISA) algorithm has different coefficients for the terms:

PID Output = Kc * (Error + Error * dt/Ti + Td * Derivative) + CV Bias

where Kc is the controller gain, Ti is the Integral time and Td is the Derivative time. The

advantage of PID_ISA is that adjusting Kc changes the contribution for the integral and

derivative terms as well as the proportional term, which can simplify loop tuning.

If you have the PID_ISA Kc, Ti and Td values, use the following equations to convert them to

use as PID_IND parameters:

Kp = Kc, Ki = Kc/Ti, and Kd = Kc * Td

The following diagram shows how the PID_IND algorithm works:

Ki * Error * ΔTime

Integral Term =

Proportional Term =

Kp * Error

Dead

Band

CV

Bias

Slew
Limit Clamp

Upper / Lower Polarity CV

SP

PV

Error Term
Sign

Deriv Action

+/-

Δ Value

Δ Time
Derivative Term =

Δ Time Kd *
Δ Value

-/+

+ Previous Integ. Term +

The ISA Algorithm (PID_ISA) is similar except that its Kc gain coefficient is applied after the

three terms are summed, so that the integral gain is Kc / Ti and the derivative gain is Kc * Td.

Bits 0, 1 and 2 in the Config Word set the Error sign, Output Polarity and Derivative Action,

respectively.

GFK-2222S Chapter 10 PID Built-in Function Block 10-13

10

Derivative Term

The Derivative Term is Kd (word 7 of the reference array) multiplied by the time rate of

change of the Error term in the interval since the last PID solution.

Derivative = Kd * ΔError / dt = Kd * (Error – previous Error) / dt

where

dt = Current controller time – controller time at previous PID solution.

Two bits in the Config Word (word 13 of the reference array) affect the calculation of ΔError:

Error Term Mode and Derivative Action. For additional information about the operation of

these bits, see “Config Word” on page 10-7.

Error Term Mode

The sign of the Error term is determined by the value of a mode bit in the reference array for

the PID function.

In reverse acting mode, the change in the error term is:

ΔError = (Error – previous Error) = ΔSP – ΔPV

where

ΔPV = (PV – previous PV), and ΔSP = (SP – previous SP).

However, in direct acting mode, the error term is (PV – SP), the sign of the change in the

error term is reversed:

ΔError = (Error – previous Error) = = ΔPV – ΔSP.

Derivative Action on PV Bit

By default, the change in the error term depends on changes in both SP and PV. If SP is

constant, ΔSP = 0, and SP has no effect on the derivative term. When SP changes, however,

it can cause large transient swings in the derivative term and hence the output. Loop stability

can be improved by eliminating the effect of SP changes on the derivative term.

To calculate the Derivative based only on the change in PV, set bit 2 of the Config Word to 1.

This modifies the equations above by assuming SP is constant (ΔSP = 0).

Combined Operation of Error Term and Derivative Action Modes

Bit 0 of Config Word Bit 2 of Config Word
Error Term Value

Value Error Term Mode Value Derivative Action

0 Reverse Acting (default) 0 ΔSP included ΔSP –Δ PV

1 Direct Acting 0 ΔSP included ΔPV –Δ SP

0 Reverse Acting (default) 1 ΔSP ignored –ΔPV

1 Direct Acting 1 ΔSP ignored ΔPV

10-14 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

CV Bias Term

The CV Bias term (word 9 in the reference array) is an additive term separate from the PID

inputs. It may be useful if you are using only Proportional gain (Kp) and you want the CV to

be a non-zero value when the PV equals the SP and the Error is 0. In this case, set the CV

Bias to the desired CV when the PV is at the SP. CV Bias can also be used for feed forward

control where another PID loop or control algorithm is used to adjust the CV output of this

PID loop.

If a non-zero Integral rate is used, the CV Bias will normally be 0 as the integral term acts as

an automatic bias or “reset.” Just start up in Manual mode and use the Manual Command

word (word 14 of the reference array) to set the desired CV, and then switch to Automatic

mode. This will immediately calculate the required value for the integral term.

CV Amplitude and Rate Limits

The PID block does not send the calculated Output directly to CV. Both PID algorithms can

impose amplitude and rate of change limits on the output Control Variable. If the Minimum

Slew Time (word 12 of the reference array) is non-zero, the rate of change (slew rate) limit is

determined by dividing the maximum CV value (32,000) by the Minimum Slew Time. For

example, if the Minimum Slew Time is 100 seconds, the rate limit will be 320 CV counts per

second. If the solution interval was 50 milliseconds, the new CV output cannot change more

than 320*50/1000 or 16 CV counts from the previous CV output.

The CV output is then compared to the CV Upper Clamp and CV Lower Clamp values (words

10 and 11 of the reference array). If CV is outside either limit, the CV output is clamped to the

appropriate limit value. When the CV output is modified to impose either slew rate or

amplitude limits (or both) the stored integral term would normally accumulate a large value

over time. This phenomenon is known as “reset windup.” Reset windup introduces errors in

CV after the PID output no longer needs to be limited. For example, windup would prevent

the CV output from moving off a clamp value immediately.

There are two optional methods for preventing reset windup. If the Anti-reset-windup Action

bit (bit 4) of Config Word (word 13 of the reference array) is zero (the default), the integral

term is adjusted at each PID solution to match the error input and limited CV output exactly.

When PV changes while CV is clamped, or when CV is both rate and amplitude limited in a

particular PID solution, this option assures that a smooth transition will always occur after CV

is no longer limited.

If the Anti-reset-windup Action bit of Config Word is set, then the integral term stored on the

previous PID solution is simply retained as long as CV is limited. This option was added to

assure compatibility with existing PID applications when the default action described above

was introduced. This option is not recommended for new applications.

Finally, the PID block checks the Output Polarity (bit 2 of the Config Word) and changes the

sign of the output if the bit is 1.

CV = – (Clamped PID Output) if Output Polarity bit set, or

CV= (Clamped PID Output) if Output Polarity bit cleared.

If the block is in Automatic mode, the final CV is placed in the Manual Command (word 14 of

the reference array). If the block is in Manual mode, the PID equation is skipped because CV

is set by the Manual Command, but the slew rate and amplitude limits are still checked. This

assures that the Manual Command cannot change the output above the CV Upper Clamp or

below the CV Lower Clamp, and the output cannot change faster than allowed by the

Minimum Slew Time.

GFK-2222S Chapter 10 PID Built-in Function Block 10-15

10

Sample Period and PID Function Block Scheduling

The PID function block is a digital implementation of an analog control function, so the dt

sample time in the PID Output equation is not the infinitesimally small sample time available

with analog controls. The majority of processes being controlled can be approximated as a

gain with a first or second order lag and (possibly) a pure time delay. The PID function block

sets a CV output to the process and uses the process feedback PV to determine an Error to

adjust the next CV output. A key process parameter is the total time constant, which is how

fast the process can change PV when the CV is changed. As discussed in “Determining the

Process Characteristics” on page 10-16, the total time constant, Tp+Tc, for a first order

system is the time required for PV to reach 63% of its final value when CV is stepped. The

PID function block will not be able to control a process unless its Sample Period is well under

half the total time constant. Larger Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or down to

5 worst case). For example, if PV seems to reach about 2/3 of its final value in 2 seconds, the

Sample Period should be less than 0.2 seconds, or 0.4 seconds worst case. On the other

hand, the Sample Period should not be too small, such as less than the total time constant

divided by 1000, or the Ki * Error * dt term for the PID integral term will round down to 0. For

example, a very slow process that takes 10 hours or 36,000 seconds to reach the 63% level

should have a Sample Period of 40 seconds or longer.

Variations of the time interval between PID function solutions can have short-term effects on

the CV output. For example, if a step change to PV caused by measurement noise occurs

between solutions, the value of the derivative term will be inversely proportional to the time

interval. The performance of PID loops that are tuned for quick response may be improved

when the solution interval is held constant by configuring the CPU for constant sweep mode.

Depending on the CPU model and the application, constant sweep times of 10 milliseconds,

integer multiples of 10 milliseconds, or exact divisors of 10 milliseconds (1, 2 or 5

milliseconds) will be possible. The Sample Period can then be set for a suitable multiple of 10

milliseconds.

If many PID loops are used, allowing the application to solve all the loops on the same sweep

may lead to wide variations in CPU sweep time. If the loops have a common Sample Period

that is at least equal to the number of PID loops times the sweep time, a simple solution is to

sequence one or more 1’s through an array of zero‘s and use these bits to enable power flow

to individual PID function blocks. The logic should assure that each PID function block is

enabled no more often than its Sample Period.

10-16 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Determining the Process Characteristics

The PID loop gains, Kp, Ki and Kd, are determined by the characteristics of the process

being controlled. Two key questions when setting up a PID loop are:

1. How big is the change in PV when CV is changed by a fixed amount, or what is the open

loop gain of the process?

2. How fast does the system respond, or how quickly does PV change after the CV output is

stepped?

Many processes can be approximated by a process gain, first or second order lag and a pure

time delay. In the frequency domain, the transfer function for a first order lag system with a

pure time delay is:

 sCV

sPV
 = sG =

)1/(sTT cpKe

Plotting the response to a step input at time t0 in the time domain provides an open-loop unit

reaction curve:

t0

Tc

K

0.632K

1

Tp

t0

CV Unit Step Output to Process PV Unit Reaction Curve Input from Process

The following process model parameters can be determined from the PV unit reaction curve:

K Process open loop gain = final change in PV/change in CV at time t0
(Note no subscript on K)

Tp Process or pipeline time delay or dead time after t0 before the process output PV starts moving

Tc First order Process time constant, time required after Tp for PV to reach 63.2% of the final PV

Usually the quickest way to measure these parameters is by putting the PID function block in

Manual mode, making a small step change in the CV output by changing the Manual

Command (word 14 of the reference array), and then plotting the PV response over time. For

slow processes this can be done manually, but for faster processes a chart recorder or

computer graphic data-logging package will help. The CV step size should be large enough

to cause an observable change in PV, but not so large that it disrupts the process being

measured. A good step size may be from 2 to 10% of the difference between the CV Upper

and CV Lower Clamp values.

GFK-2222S Chapter 10 PID Built-in Function Block 10-17

10

Setting Tuning Loop Gains

Basic Iterative Tuning Approach

Because PID parameters are dependent on the process being controlled, there are no

predetermined values that will work. However, a simple iterative process can be used to find

acceptable values for Kp, Ki, and Kd gains.

1. Set all the reference array parameters to 0, then set the CV Upper and CV Lower Clamps

to the highest and lowest CV expected. Set the Sample Period to a value within the range

Tc/10 to Tc/100, where Tc is the estimated process time constant defined on page 10-16.

2. Put the PID function block in Manual mode and set the Manual Command (word 14 in the

reference array) to different values to check if CV can be moved to Upper and Lower

Clamp. Record the PV value at some CV point and load it into SP.

3. Set a small gain, such as 100 * Maximum CV/Maximum PV, into Kp and turn off Manual

mode. Step SP by 2% to 10% of the Maximum PV range and observe PV response.

Increase Kp if PV step response is too slow or reduce Kp if PV overshoots and oscillates

without reaching a steady value.

4. Once a Kp is found, start increasing Ki to get overshooting that dampens out to a steady

value in two to three cycles. This may require reducing Kp. Also try different SP step

sizes and CV operating points.

5. After suitable Kp and Ki gains are found, try adding Kd to get quicker responses to input

changes, providing it doesn't cause oscillations. Kd is often not needed and will not work

with noisy PV.

6. Check gains over different SP operating points and add Dead Band and Minimum Slew

Time if needed. Some Reverse Acting processes may need setting of Config Word Error

Term or Output Polarity bits.

Setting Loop Gains Using the Ziegler and Nichols Tuning Approach

This approach provides good response to system disturbances with gains producing an

amplitude ratio of 1/4. The amplitude ratio is the ratio of the second peak over the first peak in

the closed loop response.

1. Determine the three process model parameters, K, Tp and Tc for use in estimating initial

PID loop gains.

2. Calculate the Reaction rate:

 R = K/Tc

3. For Proportional control only, calculate Kp as:

 Kp = 1/(R * Tp) = Tc/(K * Tp)

For Proportional and Integral control, use:

 Kp = 0.9/(R * Tp) = 0.9 * Tc/(K * Tp) Ki = 0.3 * Kp/Tp

For Proportional, Integral and Derivative control, use:

 Kp = G/(R * Tp) where G is from 1.2 to 2.0

 Ki = 0.5 * Kp/Tp

 Kd = 0.5 * Kp * Tp

4. Check that the Sample Period is in the range

 (Tp + Tc)/10 to (Tp + Tc)/1000

10-18 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

Ideal Tuning Method

The “Ideal Tuning" procedure provides the best response to SP changes that are delayed

only by the Tp process delay or dead time.

1. Determine the three process model parameters, K, Tp and Tc for use in estimating initial

PID loop gains.

2. Calculate Kp, Ki, and Kd as follows:

 Kp = 2 * Tc/(3 * K * Tp)

 Ki = Tc

 Kd = Ki/4 if Derivative term is used

3. Once initial gains are determined, convert them to integers.

4. Calculate the Process gain, K, as a change in input PV Counts divided by the resulting

output step change in CV Counts. (Not in process PV or CV engineering units.) Specify

all times in seconds.

5. Once Kp, Ki and Kd are determined, Kp and Kd are multiplied by 100 while Ki is

multiplied by 1000. The resulting values are entered into the corresponding reference

array word locations.

GFK-2222S Chapter 10 PID Built-in Function Block 10-19

10

Example

The following PID example has a sample period of 100 ms, a Kp gain of 4.00 and a Ki gain of

1.500. The set point is stored in %R0001, the control variable is output in %AQ0002, and the

process variable is returned in %AI0003. CV Upper and CV Lower Clamps must be set, in

this case to 20000 and 4000, and an optional small Dead Band of +5 and -5 is included. The

40-word reference array starts in %R0100. Normally, user parameters are set in the

reference array, but %M0006 can be set to re-initialize the 14 words starting at %R0102

(word 3) from constants stored in logic (a useful technique).

The block can be switched to Manual mode with %M1 so that the Manual Command, %R113,

can be adjusted. Bits %M4 or %M5 can be used to increase or decrease %R113 and the PID

CV by 1 every 100 ms solution. For faster manual operation, bits %M2 and %M3 can be used

to add or subtract the value in %R2 to/from %R113 every CPU sweep. The %T1 output is on

when the PID is OK.

Reference Array Initialization using %M00006

For details on the contents of the reference array, refer to page 10-4.

Word Function Address Value

3 Sample Period %R102 10

4 + Dead Band %R103 5

5 - Dead Band %R104 5

6 Kp %R105 400

7 Kd %R106 0

8 Ki %R107 1500

9 CV Bias %R108 0

10 CV Upper Clamp %R109 2000

11 CV Lower Clamp %R110 400

12 Minimum Slew Time %R111 0

13 Config Word %R112 0

14 Manual Command %R113 0

15 Control Word %R114 0

16 Internal SP %R115 0

10-20 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

10

GFK-2222S 11-1

Structured Text Programming

The Structured Text (ST) programming language is an IEC 61131-3 textual programming

language. This chapter describes how structured text is implemented in PACSystems. For

information on using the structured text editor in the programming software, refer to the online

help.

The block types Block, Parameterized Block, and Function Block (UDFB) can be

programmed in ST. The _MAIN program block can also be programmed in ST. For details on

blocks, refer to chapter 5, “Program Organization.”

Language Overview

Statements

A structured text program consists of a series of statements, which are constructed from

expressions and language keywords. A statement directs the PACSystems controller to

perform a specified action. Statements provide variable assignments, conditional evaluations,

iteration, and the ability to call built-in functions. PACSystems supports the statements

described in “Statement Types” on page 11-4.

Expressions

Expressions use operators to calculate values from variables and constants. An example of a

simple expression is (x + 5).

Composite expressions can be created by nesting simpler expressions, for example,

(a + b) * (c + d) – 3.0 ** 4.

11
Chapter

11-2 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Operators

The table below lists the operators that you can use within an expression. They are

listed according to their evaluation precedence, which determines the sequence in

which they are executed within the expression. The operator with the highest

precedence is applied first, followed by the operator with the next highest

precedence. Operators of equal precedence are evaluated left to right. Operators

in the same group, for example + and -, have the same precedence.

Any address operators used in LD can be used on ST operands. Address

operators have precedence over the ST language operators. Address operators

include indirect addressing (for example, @Var1), array indexing (for example,

Var1[3]), bit within word addressing (for example, Var1.X[3]), and structure fields

(for example, Var1.field1).

Precedence Operator Operand Types Description

Group 1 (Highest) (…) Parenthesized
expression

Group 2 - INT, DINT, REAL, LREAL Negation

 NOT BOOL, BYTE, WORD, DWORD Boolean complement

Group 3 **,^ INT, DINT, UINT, REAL, LREAL
1
 Exponentiation

3, 5

Group 4 * INT, DINT, UINT, REAL, LREAL Multiplication
3

 / INT, DINT, UINT, REAL, LREAL Division
2, 3

 MOD INT, DINT, UINT Modulus operation
2

Group 5 + INT, DINT, UINT, REAL, LREAL Addition
3

 - INT, UINT, DINT, REAL, LREAL Subtraction
3

Group 6 <, >, <=,
>=

INT, DINT, UINT, REAL, LREAL, BYTE, WORD,
DWORD

Comparison

Group 7 = ANY
4
 Equality

 <>, != ANY
4
 Inequality

Group 8 AND, & BOOL, BYTE, WORD, DWORD Boolean AND

Group 9 XOR BOOL, BYTE, WORD, DWORD Boolean exclusive OR

Group 10
(Lowest)

OR BOOL, BYTE, WORD, DWORD Boolean OR

1
The base must be type REALor LREAL. If the base is REAL, the power can be type INT, DINT, UINT, or REAL

and the result is type REAL. If the base is type LREAL, the power must be LREAL and the result will be LREAL.

2
The CPU flags a divide by 0 error as an application fault.

3
Use of math operators can cause overflow or underflow. Overflow results are truncated.

4
Operators that can take operands of type ANY can be used with any of the supported elementary data types.

The supported data types are: BOOL, INT, DINT, UINT, BYTE, WORD, DWORD, LREAL and REAL. STRING

and TIME data types are not supported.

5
If either operand is positive or negative infinity, the result is undefined.

Some comparison and math operators have corresponding built-in functions. For instance the

‘+’ operator is similar to the ADD_INT function. You can use either the language operator or

the built-in function. The built-in function has the advantage of returning an ENO status. For

information on built-in functions, see page 11-5.

GFK-2222S Chapter 11 Structured Text Programming 11-3

11

Operand Types

Type casting is not supported. To convert a type, use one of the built-in conversion functions.

Use of built-in functions is described in “Function Call” on page 11-5.

For untyped operators (+, *, …), the types of the operands must match.

Structured Text Syntax

The syntax of the ST implementation for PACSystems follows the IEC 61131-3 standard.

■ Structured Text statements must end in a semi-colon (;).

■ Structured Text variables must be declared in the variable list for the target.

These symbols have the following functions.

:= assigns an expression to a variable

; required to designate the end of a statement

[] used for array indexing where the array index is an integer. For example, this sets the

third element of an array to the value j+10: intarray[3]: = j + 10;

(* *) designates a comment. These comments can span multiple lines. For example,

 (*This comment spans

 multiple lines.*)

// or ‘ designates a single line comment. For example,

 c :=a+b; //This is a single line comment.

 c :=a+b; ‘This is a single line comment.

11-4 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Statement Types
The Structured Text statements, which specify the actual program execution, consist of the

following types, which are described in more detail on the following pages.

Statement Type Description Example

Assignment Sets an object to a specified value. A := 1; B := A; C := A + B;

CASE Provides for the conditional execution of a set of
statements.

CASE A OF
 1,2 : C := 3;
 3: C := 4;
 4..5: C := 5;
 ELSE
 C := 0;
END_CASE;

COMMENT Places a text explanation in the program. Ignored by the
ST compiler.

(* This is a block comment *)
‘ This is a line comment

// This is a line comment //

Function call Calls a function for execution. FbInst(IN1 := 1, OUT1 => A);

RETURN Causes the program to return from a subroutine. The
return statement provides an early exit from a block.

RETURN;

EXIT Terminates iterations before the terminal condition
becomes TRUE (1).

EXIT;

IF Specifies that one or more statements be executed
conditionally.

IF (A < B) THEN

 C := 4;

ELSIF (A = B) THEN

 C:= 5;

ELSE

 C := 6

END_IF;

FOR … DO Executes a statement sequence repeatedly based on the
value of a control symbol.

FOR I := 1 TO 100 BY 2 DO
 IF (Var1 – I) = 40 THEN
 Key := I;
 EXIT;
 END_IF;
END_FOR;

WHILE Indicates that a statement sequence be executed
repeatedly until a Boolean expression evaluates to FALSE
(0).

WHILE J <= 100 DO

 J := J + 2;

END_WHILE;

REPEAT Indicates that a statement sequence be executed
repeatedly until a Boolean expression evaluates to TRUE
(1).

REPEAT
 J := J + 2;
UNTIL J >= 100
END_REPEAT;

ARG_PRESENT Determines whether a parameter value was present when
the function block instance of the parameter was invoked.
For example, a parameter can be optional (pass by value).

ARG_PRES (IN :=In1, Q:>Out1,
ENO:>Out2);

Empty Statement ;

GFK-2222S Chapter 11 Structured Text Programming 11-5

11

Assignment Statement

The assignment statement replaces the value of a variable with the result of evaluating an

expression (of the same data type).

Notes:

■ Assignment statements can affect transition bits.

■ Assignment statements take override bits into account.

Format

Variable := Expression;

Where:

Variable is a simple variable, array element, etc.

Expression is a single value, expression, or complex expression.

Examples

Boolean assignment statements:

VarBool1 := 1;

VarBool2 := (val <= 75);

Array element assignment:

Array_1[13] := (RealA /RealB)* PI;

Function Call

The structured text function call executes a predefined algorithm that performs a

mathematical, bit string or other operation. The function call consists of the name of the

function or block followed by required input or output parameters.

The structured text logic can call blocks or the PACSystems built-in functions listed in the

table below. The call must be made in a single statement and cannot be part of a nested

expression.

Calls to some functions, such as communications request (COMM_REQ), require a

command block or parameter block. For these functions, an array is declared, initialized in

logic, and then passed as a parameter to the function.

11-6 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Built-in Functions Supported for ST Calls

Note: Only the functions listed in the following table are supported in the current

PACSystems version. Other built-in functions are not supported.

Example: cos(IN := inReal, Q => outReal, ENO => outBool);

Category Functions More information

Advanced Math ASIN, ATAN, ACOS, COS, SIN, TAN

LOG, LN, EXP, EXPT,

SQRT_INT, SQRT_DINT, SQRT_REAL

Chapter 7

Math ABS_INT, ABS_DINT, ABS_REAL

SCALE_DINT, SCALE_INT, SCALE_UINT

Chapter 7

Communication PNIO_DEV_COMM PACSystems RX3i PROFINET
Controller Manual, GFK-2571

Control DO_IO, MASK_IO_INTR, SCAN_SET_IO, SUS_IO,
SUS_IO_INTR, SVC_REQ, SWITCH_POS, F_TRIG, R_TRIG

Chapter 7

Data
Conversion

BCD4_TO_INT, BCD4_TO_UINT, BCD4_TO_REAL

BCD8_TO_DINT, BCD8_TO_REAL

DINT_TO_BCD8, DINT_TO_DWORD, DINT_TO_INT,
DINT_TO_UINT, DINT_TO_REAL, DINT_TO_LREAL

DWORD_TO_DINT

INT_TO_BCD4, INT_TO_DINT, INT_TO_UINT,
INT_TO_REAL, INT_TO_WORD

UINT_TO_BCD4, UINT_TO_BCD8, UINT_TO_INT,
UINT_TO_DINT, UINT_TO_REAL, UINT_TO_WORD

REAL_TO_INT, REAL_TO_UINT, REAL_TO_DINT,
REAL_TO_LREAL

LREAL_TO_DINT, LREAL_TO_REAL

TRUNC_INT, TRUNC_DINT

DEG_TO_RAD, RAD_TO_DEG

WORD_TO_INT, WORD_TO_UINT

Chapter 7

Data Move ARRAY_SIZE, ARRAY_SIZE_DIM1, ARRAY_SIZE_DIM2,
COMM_REQ, MOVE_DATA_EX, SIZE_OF

Chapter 7

PACMotion The RX3i CPUs support 56 PLCopen compliant motion
functions and function blocks.

PACMotion Multi-Axis Motion
Controller User’s Manual, GFK-2448

GFK-2222S Chapter 11 Structured Text Programming 11-7

11

Calls to Standard Function Blocks

Standard function blocks are instructions that have instance data in the form of a structure

variable. (For more information on function blocks and their instance data, refer to “Functions

and Function Blocks” in chapter 5.) Standard function blocks are called in the same way that

a UDFB is called.

PACSystems controllers support three standard function blocks:

Pulse timer (TP) Generates output pulses of a given duration

On-delay timer (TON) Delays setting an output ON for a fixed period after an input is set ON.

Off-delay timer (TOF) Delays setting an output OFF for a fixed period after an input

goes OFF so that the output is held on for a given period longer

than the input.

For details on the operation of TP, TON and TOF, refer to “Standard Timer Function Blocks”

in chapter 7.

Format of Calls to Standard Timer Function Blocks

Notes: TOF, TON and TP have the same input and output parameters, except for the

instance variable, which must be the same type as the instruction.

 Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or TI may

cause erratic operation of the timer function block.

 Instance data can be a variable or a parameter of the current UDFB or parameterized

block.

Formal Convention

myTOF_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>

outBoolSuccess);

myTON_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>

outBoolSuccess);

myTP_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>

outBoolSuccess);

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses

the formal convention, the state of outBoolSuccess is set to 1 (call was successful) or

0 (call failed).

Informal Convention

myTOF_Instance_Data(inBool, inDINT, outDINT, outBool);

myTON_Instance_Data(inBool, inDINT, outDINT, outBool);

myTP_Instance_Data(inBool, inDINT, outDINT, outBool);

Note: When using the informal convention, the operands must be assigned in the order

shown above (that is, IN, PT, ET, Q and ENO).

11-8 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Block Types Supported for ST Calls

An ST block can call blocks of type Block, Parameterized Block, or user defined Function

Block (UDFB) or External Block (C block). For more information on block types, refer to

chapter 5.

Formal Calls vs. Informal Calls

PACSystems supports formal and informal calls in ST.

Formal Calls Informal Calls

Input parameter assignments use the ‘:=’ notation while
output assignments use the ‘=>’ notation.

Input and output parameters are listed in parentheses.

Optional parameters can be omitted. Parameters cannot be omitted.

Parameters can be in any order. Parameters must be in the correct order as follows:

 Inputs

 Instance location (if required)

 Length parameter (if required)

 Outputs, starting with the last output parameter.

The ENO parameter is specified in a formal function or
block call.

All built-in functions and user-defined blocks have an
optional ENO output parameter indicating the success of
the function or block. Either ENO or Y0 can be used as this
output parameter name.

The ENO parameter is not specified in an informal
function or block call.

Format of Formal Function Call

FunctionName(IN1 := inparam1, IN2 := inparam2, OUT1 => outparam1, ENO => enoparam);

Format of Informal Function Call

FunctionName(inparam1, inparam2, outparam1);

Example

This code fragment shows the TAN function call.

TAN(AnyReal, Result);

GFK-2222S Chapter 11 Structured Text Programming 11-9

11

RETURN Statement

The return statement provides an early exit from a block. For example, in the following lines

of code the third line will never execute. The variable a will have the value 4.

a := 4;

RETURN;

a := 5;

11-10 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

IF Statement

The IF construct offers conditional execution of a statement list. The condition is determined

by result of a Boolean expression. The IF construct includes two optional parts, ELSE and

ELSIF, that provide conditional execution of alternate statement list(s). One ELSE and any

number of ELSIF sections are allowed per IF construct.

Format

IF BooleanExpression1 THEN

 StatementList1;

[ELSIF BooleanExpression2 THEN (*Optional*)

 StatementList2;]

[ELSE (*Optional*)

 StatementList3;]

END_IF;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of structured text statements.

Note: Either ELSIF or ELSEIF can be used for the else if clause in an IF statement.

Operation

The following sequence of evaluation occurs if both optional parts are present:

■ If BooleanExpression1 is TRUE (1), StatementList1 is executed. Program execution

continues with the statement following the END_IF keyword.

■ If BooleanExpression1 is FALSE (0) and BooleanExpression2 is TRUE (1), StatmentList2

is executed. Program execution continues with the statement following the END_IF

keyword.

■ If both Boolean expressions are FALSE (0), StatmentList3 is executed. Program

execution continues with the statement following the END_IF keyword.

If an optional part is not present, program execution continues with the statement following

the END_IF keyword.

Example

The following code fragment puts text into the variable Status, depending on the value of I/O

point input value.

IF Input01 < 10.0 THEN

 Status := Low_Limit_Warning;

ELSIF Input02 > 90.0 THEN

 Status := Upper_Limit_Warning;

ELSE

 Status := Limits_OK;

END_IF;

GFK-2222S Chapter 11 Structured Text Programming 11-11

11

CASE Statement

The CASE …. OF construct offers conditional execution of statement lists. It uses the value

of an ST integer expression to determine whether to execute a statement list. The statement

list to be executed can be selected from multiple statement lists, depending on the value of

the associated integer expression.

Conditions can be expressed as a single value, a list of values, or a range of values. The

single-value, list of values, or range forms can be used by themselves or in combination. The

optional ELSE keyword can be used to execute a statement list when the associated value

does not meet any of the specified conditions.

You can have a maximum of 1024 cases in a single CASE … OF construct. Additional cases

can be handled by adding the ELSE keyword to the construct and specifying a nested CASE

… OF construct or an IF … THEN construct after the ELSE.

The number of nested CASE … OF constructs and the number of levels are limited by the

memory in your computer.

The number of constants and constant ranges in a single conditional statement is limited by

the memory in your computer.

Format

CASE Integer_Expression OF

 Int1: (*Single Value*)

 StatementList_1;

 Int2,Int3,Int4: (*List of Values*)

 StatementList_2;

 Int5..Int6: (*Range of Values*)

 StatementList_3;

[ELSE (*Optional*)

 StatementList_Else;]

END_CASE;

Where:

Integer_Expression An ST expression that resolves to an integer (INT, DINT or

 UINT) value.

Int A constant integer value.

StatementList_1 … StatementList_n

 Structured Text statements.

Operation

The Int values are compared to Integer_Expression. The statement list following the first Int

value that matches Integer_Expression is executed. If the optional ELSE keyword is used

and no Int value matches Integer_Expression, the statement list following ELSE is executed.

Otherwise, no statement list is executed.

11-12 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Requirements for Conditional Statements

 All constants must be of type INT, DINT or UINT.

 In range declarations, the beginning value must be less than the ending value (reading

from left to right). For example, 10..3 and 5..5 are invalid.

 Overlapping values in different case conditions are not allowed. For example, 5..10 and 7

cannot be specified as conditions in the same CASE … OF construct.

Examples

The following code fragment assigns a value to the variable ColorVariable.

CASE ColorSelection OF

 0: ColorVariable:= Red;

 1: ColorVariable:= Yellow;

 2,3,4: ColorVariable:= Green;

 5..9: ColorVariable:= Blue;

ELSE ColorVariable:= Violet;

END_CASE;

The following code fragment uses a nested CASE…OF…END_CASE construct.

CASE ColorSelection OF

 0: ColorVariable:= Red;

 1: ColorVariable:= Yellow;

 2,3,4: ColorVariable:= Green;

 5..9: ColorVariable:= Blue;

ELSE

 CASE ColorSelection OF

 10: ColorVariable:= Violet;

 ELSE ColorVariable:= Black;

 END_CASE;

 ColorError: 1;

END_CASE;

GFK-2222S Chapter 11 Structured Text Programming 11-13

11

FOR … DO Statements

The FOR loop repeatedly executes a statement list contained within the

FOR … DO … END_FOR construct. It is useful when the number of iterations can be

predicted in advance, for example to initialize an array. The number of iterations is

determined by the value of a control variable which is incremented (or decremented) from an

initial value to a final value by the FOR statement.

By default, each iteration of the FOR statement changes the value of the control variable by

1. The optional BY keyword can be used to specify an increment or decrement of the control

variable by specifying a (non-zero) positive or negative integer or an expression that resolves

to an integer.

FOR loops can be nested to a maximum of ten levels.

Format

FOR Control_Variable := Start_Value TO End_Value [BY Step_Value] DO

 Statement list;

END_FOR;

Where:

Control_Variable The control variable. Can be an INT, DINT or UINT variable or

parameter.

Start_Value The starting value of the control variable. Must be an expression,

variable, or constant of the same data type as Int_Variable.

End_Value The ending value of the control variable. Must be an expression,

variable, or constant of the same data type as Int_Variable.

Step_Value (Optional) The increment or decrement value for each iteration of the

loop. Must be an expression, variable, or constant of the same data

type as Int_Variable. If Step_Value is not specified, the control

variable is incremented by 1.

Statement list Any list of Structured Text statements.

Operation

The values of Start_Value, End_Value and Step_Value are calculated at the beginning of the

FOR loop. On the first iteration, Control_Variable is set to Start_Value.

At the beginning of each iteration, the termination condition is tested. If it is satisfied,

execution of the loop is complete and the statements after the loop will proceed. If the

termination condition is not satisfied, the statements within the FOR…END_FOR construct

are executed. At the end of each iteration, the value of Control_Variable is incremented by

Step_Value (or 1 if Step_Value is not specified).

The termination condition of a FOR loop depends on the sign of the step value.

Step Value Termination Condition

> 0 Control_Variable > End_Value

< 0 Control Variable < End Value

 0 None. A termination condition is never reached and the loop will repeat infinitely.

11-14 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

As with the other iterative statements (WHILE and REPEAT), loop execution can be

prematurely halted by an EXIT statement.

To avoid infinitely repeating or unpredictable loops, the following precautions are

recommended:

 Do not allow the statement list logic within the FOR loop to modify the control

variable.

 Do not use the control variable in logic outside the FOR loop.

Examples

The following code fragment initializes an array of 100 elements starting at %R1000 (given

that R1000 is at %R1000) by assigning a value of 10 to all array elements.

FOR R1000 := 1 TO 100 DO

 @R1000 := 10;

END_FOR;

The following code fragment assigns the values of an I/O point to array elements over ten I/O

scans. The last entry is put in the array element with the smallest index.

FOR R1000 := 10 TO 1 BY -1 DO

 @R1000 := Input01;

END_FOR;

GFK-2222S Chapter 11 Structured Text Programming 11-15

11

WHILE Statement

The WHILE loop repeatedly executes (iterates) a statement list contained within the

WHILE…END_WHILE construct as long as a specified condition is TRUE (1). It checks the

condition first, then conditionally executes the statement list. This looping construct is useful

when the statement list does not necessarily need to be executed.

Format

WHILE <BooleanExpression> DO

 <StatementList>;

END_WHILE;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

If BooleanExpression is FALSE (0), the loop is immediately exited; otherwise, if the

BooleanExpression is TRUE (1), the StatementList is executed and the loop repeated. The

statement list may never execute, since the Boolean expression is evaluated at the beginning

of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.

Avoid infinite loops.

Example

The following code fragment increments J by a value of 2 as long as J is less than or equal to

100.

WHILE J <= 100 DO

 J := J + 2;

END_WHILE;

11-16 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

REPEAT Statement

The REPEAT loop repeatedly executes (iterates) a statement list contained within the

REPEAT…END_REPEAT construct until an exit condition is satisfied. It executes the

statement list first, then checks for the exit condition. This looping construct is useful when

the statement list needs to be executed at least once.

Format

REPEAT

 StatementList;

UNTIL BooleanExpression END_REPEAT;

Where:

BooleanExpression Any expression that resolves to a Boolean value.

StatementList Any set of Structured Text statements.

Operation

The StatementList is executed. If the BooleanExpression is FALSE (0), then the loop is

repeated; otherwise, if the BooleanExpression is TRUE (1), the loop is exited. The statement

list executes at least once, since the BooleanExpression is evaluated at the end of the loop.

Note: It is possible to create an infinite loop that will cause the watchdog timer to expire.

Avoid infinite loops.

Example

The following code fragment reads values from an array until a value greater than 5 is found

(or the upper bound of the array is reached). Since at least one array value must be read, the

REPEAT loop is used. All variables in this example are of type DINT, UINT, or INT.

Index :=1;

REPEAT

 Value:= @Index;

 Index:=Index+1;

UNTIL Value > 5 OR Index >= UpperBound END_REPEAT;

GFK-2222S Chapter 11 Structured Text Programming 11-17

11

ARG_PRES Statement

The ARG_PRES function determines whether an input parameter value was present when

the function block instance of the parameter was invoked. This may be necessary if the

parameter is optional (pass by value).

This function must be called from a function block instance or a parameterized block.

Format

ARG_PRES (IN :=In1, Q:>Out1, ENO:>Out2);

Where:

In1 Must be an input parameter of the function block that contains the

ARG_PRES instruction. Cannot be an array element or structure element. An

alias to a parameter should resolve only to the parameter name.

 Can be a BOOL, DINT, DWORD, INT, REAL, UINT, WORD variable,

variable array head name or variable array head name element [000]. Input

or output parameter value of a function block instance or a parameterized

block

Out2 A BOOL variable. True if the parameter is present, otherwise false.

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses

the formal convention, the state of Out2 is set to 1 (call was successful) or 0 (call

failed).

Example

The parameter TempVal is an input to the function block CheckTemp. In the following code

fragment, ARG_PRES is used to determine whether a value existed for the parameter

TempVal when an instance of CheckTemp was invoked. If TempVal had a value, the BOOL

output Temp_Pres is set to 1.

ARG_PRES (TempVal, Temp_Pres);

11-18 PACSystems*RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

11

Exit Statement

The EXIT statement is used to terminate and exit from a loop (FOR, WHILE, REPEAT)

before it would otherwise terminate. Program execution resumes with the statement following

the loop terminator (END_FOR, END_WHILE, END_REPEAT). An EXIT statement is

typically used within an IF statement.

Format

EXIT;

Where:

ConditionForExiting An expression that determines whether to terminate early.

Example

The following code fragment shows the operation of the EXIT statement. When the variable

number equals 10, the WHILE loop is exited and execution continues with the statement

immediately following END_WHILE.

while (1) do

 a := a + 1;

 IF (a = 10) THEN

 EXIT;

 END_IF;

END_WHILE;

GFK-2222S 12-1

Communications

This chapter describes the Ethernet and Serial communications features of the

PACSystems CPU. The following information is included:

Ethernet Communications 12-2

Ethernet Port Pin Assignments 12-3

Serial Communications 12-4

Serial Port Communications Capabilities 12-4

Serial Port Pin Assignments 12-5

Serial Port Baud Rates 12-8

Series 90-70 Communications and Intelligent Option Modules (RX7i only) 12-9

Communications Coprocessor Module (CMM) 12-9

Programmable Coprocessor Module (PCM) 12-10

DLAN/DLAN+ (Drives Local Area Network) Interface 12-11

12
Chapter

12-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

12

Ethernet Communications
For details on Ethernet communications for PACSystems, please refer to the following

manuals:

TCP/IP Ethernet Communications for PACSystems User’s Guide, GFK-2224

PACSystems TCP/IP Communications Station Manager Manual, GFK-2225

Embedded Ethernet Interface

RX3i

 RX3i CPE305 and CPE310 CPUs have an embedded Ethernet interface that provides

TCP/IP communications with programming software and other control systems. These

communications use the proprietary SRTP protocol and the standard Modbus/TCP

protocol. The embedded Ethernet interface has one RJ-45 Ethernet port that

automatically senses the data rate (10Mbps or 100Mbps), duplex (half duplex or full

duplex), and cabling arrangement (straight through or crossover) of the attached link. On

the CPE3xx models, the same shared processor performs Ethernet port processing and

Controller logic processing.

RX7i

RX7i CPUs have an embedded Ethernet interface that provides TCP/IP communications

with programming software and other control systems. These communications use the

proprietary SRTP protocol and the standard Modbus/TCP protocol over a four-layer

TCP/IP (Internet) stack. The Ethernet interface also supports Ethernet Global Data

protocol using UDP (user datagram protocol).

The embedded Ethernet interface has two RJ-45 Ethernet ports. Either or both of these

ports may be attached to other Ethernet devices. Each port automatically senses the data

rate (10Mbps or 100Mbps), duplex (half duplex or full duplex), and cabling arrangement

(straight through or crossover) of the attached link.

Caution

The two ports on the Ethernet Interface must not be connected, directly or
indirectly to the same device. The hub or switch connections in an Ethernet
network must form a tree, otherwise duplication of packets may result.

GFK-2222S Chapter 12 Communications 12-3

12

10Base-T/100Base-Tx Port Pin Assignments

Pin assignments are the same for the RX3i and RX7i embedded Ethernet ports.

Pin Number Signal Description

1 TD+ Transmit Data +

2 TD- Transmit Data -

3 RD+ Receive Data +

4 NC No connection

5 NC No connection

6 RD- Receive Data -

7 NC No connection

8 NC No connection

Ethernet Interface Modules

The RX7i and RX3i support rack-based Ethernet Interface modules. (These modules are

not interchangeable.) For details about the capabilities, installation, and operation of

these modules, refer to TCP/IP Ethernet Communications for PACSystems, GFK-2224

and Station Manager for PACSystems, GFK-2225.

Type Catalog Number Description

RX7i IC698ETM001 Ethernet peripheral VME module

RX3i IC695ETM001 Ethernet peripheral PCI module

12-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

12

Serial Communications
The CPU’s independent on-board serial ports are accessed by connectors on the front of

the module. Ports 1 and 2 provide serial interfaces to external devices. Port 1 is also

used for firmware upgrades. The RX7i CPUs provide a third serial port that is used as the

Ethernet station manager port. All serial ports are isolated.

Serial Port Communications Capabilities

Ports 1 and 2 can each be configured for one of the following modes. For details on CPU

configuration, refer to chapter 3.

■ RTU Slave – The port can be used for the Modbus RTU slave protocol. This mode

also permits connection to the port by an SNP master, such as the Winloader utility

or the programming software. For details, refer to chapter 13, “Serial I/O, RTU and

SNP Protocols.”

■ Message Mode – The port is available for access by user logic. This enables C

language blocks to perform serial port I/O operations via C Runtime Library functions.

■ Available – The port is not to be used by the CPU firmware.

■ SNP Slave – The port can only be used for the SNP slave protocol. For details, refer

to chapter 13, “Serial I/O, RTU and SNP Protocols.”

■ Serial I/O – The port can be used for general-purpose serial communication through

use of COMMREQ functions. For details, refer to chapter 13, “Serial I/O, RTU and

SNP Protocols.”

Features Supported

Feature Port 1
(COM 1)

Port 2
(COM 2)

Port 3
(Station Mgr)

RX7i only

RTU Slave protocol Yes Yes No

SNP Slave Yes Yes No

Serial I/O – used with COMMREQs Yes Yes No

Firmware Upgrade
(Winloader utility)

CPU in
STOP/No IO mode

No No

Message Mode –used only with C blocks

(C Runtime Library Functions:
serial read, serial write, sscanf, sprintf)

Yes Yes No

Station Manager (RX7i only) No No Yes

RS-232 Yes No Yes

RS-485 No Yes No

GFK-2222S Chapter 12 Communications 12-5

12

Configurable Stop Mode Protocols

You can configure the protocol to be used in Stop mode, based upon the configured Port

(Run mode) protocol. The Run/Stop protocol switching is independently configured for

each serial port.

The Run mode protocol setting determines which choices are available for Stop mode. If

a Stop mode protocol is not selected, the default Stop mode protocol is used. For details,

refer to “Port 1 and Port 2 Parameters” in chapter 3.

Serial Port Pin Assignments

Port 1 (RS-232, 9-pin Subminiature D Connector)

This port has a 9-pin, female, D-sub connector with a standard pin out. This is a DCE

(data communications equipment) port that allows a simple straight-through cable to

connect with a standard AT-style RS-232 port.

The CPE310 provides the DCD and RI signals to support point-to-point protocol (PPP).

Port 1 RS-232 Signals

RX3i CPU, RX3i CRU,
and RX7i CPE Models

Optocoupler Isolated

RX3i CPE310 Model

Non-Isolated

Pin No. Signal Name Description Pin No. Signal Name Description

1
1
 NC No Connection 1 DCD Data Carrier Detect

2 TXD Transmit Data 2 TXD Transmit Data

3 RXD Receive Data 3 RXD Receive Data

4 DSR Data Set Ready 4 DSR Data Set Ready

5 0V Signal Ground 5 COM Signal Ground

6 DTR Data Terminal Ready 6 DTR Data Terminal Ready

7 CTS Clear to Send 7 CTS Clear to Send

8 RTS Request to Send 8 RTS Request to Send

9 NC No Connection 9 RI Ring Indicator

Port 1 (RS-232, RJ-25 Connector)

The CPE305 provides RS-232 communications via an RJ-25 connector and requires

shielded cable (IC693CBL316). This port is non-isolated.

CPE305 Port 1 RS-232 Signals

Pin No. Signal Name Description

1 CTS Clear to Send

2 TXD Transmit Data

3 0V Signal Ground

4 0V Signal Ground

5 RXD Received Data

6 RTS Request to Send

1
 Pin 1 is at the bottom right of the connector as viewed from the front of the module.

12-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

12

Port 2 (RS-485, 15-pin, Female D-sub Connector) –RX7i CPU/CRU Models

On RX7i CPUs, this port is opto-coupler isolated.

This port does not supply +5V volts, therefore RS-485 to RS-232 conversion requires a

converter that is self-powered. It does not support the RS-485 to RS-232 adapter

IC690ACC901.

This is a DCE port that allows a simple straight-through cable to connect with a standard

AT-style RS-232 port.

Port 2 RS-485 Signals

Pin No. Signal Name Description

1 Shield Cable Shield
Located at the bottom right of the connector
as viewed from the front of the module.

2 NC No Connection

3 NC No Connection

4 NC No Connection

5 NC No Connection

6 RTS(A) Differential Request to Send A

7 0V Signal Ground

8 CTS(B‘) Differential Clear To Send

9 RT
2
 Resistor Termination

10 RD(A‘)
2
,

3
 Differential Receive Data A

11 RD(B‘)
3
 Differential Receive Data B

12 SD(A) Differential Send Data A

13 SD(B) Differential Send Data B

14 RTS(B’) Differential Request To Send B

15 CTS(A’) Differential Clear To Send A

2
 To provide termination using the built-in 120Ω resistor, install a jumper between pins 9 and 10.

3
 To provide termination using an external resistor, connect a user-supplied resistor across pins 10

and 11.

GFK-2222S Chapter 12 Communications 12-7

12

Port 2 (RS-485, 15-pin, Female D-sub Connector) – All RX3i CPU and CRU Models and RX3i CPE310

This port is not isolated.

This is a DCE port that allows a simple straight-through cable to connect with a standard

AT-style RS-232 port.

Pin No. Signal Name Description

1 Shield Cable Shield
Located at the bottom right of the connector as viewed from the front
of the module.

2 NC No Connection

3 NC No Connection

4 NC No Connection

5 +5VDC Logic Power: Provides isolated +5VDC power (300mA maximum) for
powering external options.

6 RTS(A) Differential Request to Send A

7 0V Signal Ground

8 CTS(B‘) Differential Clear To Send B

9 RT
4
 Resistor Termination

10 RD(A‘)
4, 5

 Differential Receive Data A

11 RD(B‘)
5
 Differential Receive Data B

12 SD(A) Differential Send Data A

13 SD(B) Differential Send Data B

14 RTS(B’) Differential Request To Send B

15 CTS(A’) Differential Clear To Send A

Port 3 (RX7i only)

Port 3, the Station Manager serial port used by the embedded Ethernet Interface, is

RS-232 compatible and isolated. Port 3 has a 9-pin, female, D-connector. This is a DCE

port that allows a simple straight-through cable to connect with a standard AT-style

RS-232 port. This port contains full use of the standard RS-232 signals for future use with

point-to-point protocol (PPP).

Station Manager RS-232 Signals

Pin Number Signal Name Description

1
6
 DCD Data Carrier Detect

2 TXD Transmit Data

3 RXD Receive Data

4 DSR Data Set Ready

5 0V Signal Ground

6 DTR Data Terminal Ready

7 CTS Clear To Send

8 RTS Request to Send

9 RI Ring Indicator

4
 To provide termination using the built-in 120 Ω resistor, install a jumper between pins 9 and 10

5
 To provide termination using an external resistor, connect a user-supplied resistor across pins 10

and 11.
6
 Pin 1 is at the bottom right of the connector as viewed from the front of the module.

12-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

12

Serial Cable Lengths and Shielding

The connection from a CPU serial port to the serial port on a computer or other serial

device requires a serial cable. Maximum cable lengths (the total distance from the CPU

to the last device attached to the serial cable) are:

Port
Maximum Cable

Length
Cable Type

COM 1/Port 1 (RS-232) 15 meters (50 ft.) Shielded cable required for RX3i;

Shielded cable optional for RX7i

COM 2/Port 2 (RS-485) 1200 meters (4000 ft.) Shielded cable required for all
models that support this port

STA MGR/Port 3 (RS-232) 15 meters (50 ft.) Shielded cable optional (RX7i only)

Note: For details on conformance to radiated emissions standards, refer to Appendix A

in the following manuals:

PACSystems RX7i Installation Manual, GFK-2223

PACSystems RX3i System Manual, GFK-2314

Serial Port Baud Rates

Protocol
Port 1

(RS-232)
Port 2

(RS-485)
Station Mgr (Port 3)

(RS-232)

RTU Slave 1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

not supported

Firmware
Upgrade via
WinLoader

1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

Not supported not supported

Message Mode 1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

not supported

SNP Slave 1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

not supported

Serial I/O 1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

1200, 2400, 4800,
9600, 19.2K, 38.4K,
57.6K, 115.2K

not supported

GFK-2222S Chapter 12 Communications 12-9

12

Series 90-70 Communications and Intelligent Option Modules
PACSystems RX7i supports the following Series 90-70 communications and intelligent

option modules:

 Communications Coprocessor Module (CMM), IC697CMM711

 Programmable Coprocessor Module (PCM), IC697PCM711

 DLAN Interface Module, IC697BEM763

Communications Coprocessor Module (CMM)

PACSystems RX7i CPUs with versions 1.50 and higher support IC697CMM711 modules

with firmware versions 4.20 and higher. You must ensure that you are using a valid

version of the CMM firmware because the CPU cannot check the CMM’s firmware

version. (The module’s firmware version can be found on a label attached to the

EEPROM.)

PACSystems does not support the following with an IC697CMM711:

 Access to Symbolic variables

 WAIT mode COMMREQs.

 Connecting the programming software to the CPU through the CMM’s serial ports.

 Permanent datagrams.

The following restrictions apply when using the IC697CMM711 with PACSystems:

 Access to %W references is partially supported. Only offsets 0—65535 of %W can

be accessed via the CMM.

 The Program Name is currently always LDPROG1 for PACSystems.

 Reads and writes beyond currently configured reference table limits will report a

minor code error of 90 (REF_OUT_OF_RANGE) instead of F4

(INVALID_PARAMETER) as reported on the Series 90-70.

 In case of ERROR NACK, the Control Program number, privilege level and other

piggyback status data will be set to 0.

 PACSystems CPUs return the major/minor type of the 90-70 CPX935 (major type 12,

minor type 35) to the CMM scratch pad memory when communicating with a CMM.

 Control Program Number will be returned as 01 in PACSystems instead of FF as

reported on the Series 90-70.

 If your RX7i application program needs to access the dual port memory of a CMM,

use the BUS READ and WRITE functions. When accessing the CMM, set the Region

parameter on the function block to 1. (For the CMM, region 1 is predefined to be the

module's entire dual port memory.)

Note: For details on operation of the IC697CMM711, refer to the Serial

Communications User’s Manual, GFK-0582.

12-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

12

Programmable Coprocessor Module (PCM)

PACSystems RX7i CPUs with versions 1.50 and higher support IC697PCM711modules

with firmware versions 4.05 and higher. You must ensure that you are using a valid

version of the PCM firmware because the CPU cannot check the PCM’s firmware

version. (The module’s firmware version can be found on a label attached to the

EEPROM.)

PACSystems does not support the following with an IC697PCM711:

 Connecting the programming software to the CPU through the PCM’s serial ports.

 Access to Symbolic variables.

 WAIT mode COMMREQs.

 The following C functions are not supported:

 chk_genius_bus

 chk_genius_device

 get_cpu_type_rev

 get_memtype_sizes

 get_one_rackfault

 get_rack_slot_faults

 The C function write_dev will not write to “read only” references (%S references,

transition bits, and override bits). If this is attempted, the call will fail at run time and

return an error code.

The following restrictions apply when using the IC697PCM711 with PACSystems:

 Access to %W references is partially supported. Only offsets 0—65535 of %W can

be accessed via the PCM.

 The Program Name is currently always LDPROG1 for PACSystems.

 In case of ERROR NACK, the Control Program number, privilege level and other

piggyback status data will be set to 0.

 If an application program running on the PCM accesses the VME bus, the VME

addresses being used by that program must be in agreement with the PACSystems

RX7i VME address assignments. The PACSystems RX7i VME address assignments

are described in the PACSystems RX7i User’s Guide to Integration of VME Modules,

GFK-2235.

 PACSystems CPUs return the major/minor type of the Series 90-70 CPX935 (major

type 12, minor type 35) to the PCM scratch pad memory when communicating with a

PCM.

 If your RX7i application program needs to access the PCM’s dual port memory, use

the BUS READ and WRITE functions. When accessing the PCM, set the Region

parameter on the function block to 1. (For the PCM, region 1 is predefined to be the

module's entire dual port memory.)

Note: For details on operation of the IC697PCM711, refer to Programmable

Coprocessor Module and Support Software, GFK-0255.

GFK-2222S Chapter 12 Communications 12-11

12

DLAN/DLAN+ (Drives Local Area Network) Interface

PACSystems RX7i CPUs with versions 1.50 and higher support IC697BEM763 modules

with firmware versions 3.00 and higher. You must ensure that you are using a valid

version of the PCM firmware because the CPU cannot check the DLAN’s firmware

version. (The module’s firmware version can be found on a label attached to the

EEPROM.)

If your RX7i application program needs to access the DLAN’s dual port memory, use the

BUS READ and WRITE functions. When accessing a DLAN module, set the Region

parameter on the function block to 1. (For the DLAN module, region 1 is predefined to be

the module's entire dual port memory.)

Note: The DLAN Interface module is a specialty module with limited availability. If

 you have a DLAN system, refer to the DLAN/DLAN+ Interface Module User’s

 Manual, GFK-0729 for details.

GFK-2222S 13-1

Serial I/O, SNP and RTU Protocols

This chapter discusses the following topics related to communications on CPU serial

ports 1 and 2:

■ Configuring Serial Ports Using COMMREQ Function 65520

■ Serial I/O Protocol

■ RTU Slave Protocol

■ SNP Slave Protocol

Details of the RTU and SNP protocol are described in the Serial Communications

User’s Manual (GFK-0582).

13
Chapter

13-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Configuring Serial Ports Using COMM_REQ Function 65520

The Serial Port Setup COMM_REQ function 65520 (FFF0 hex) may be used to

activate a serial communication protocol for a serial port, overriding the protocol that

was specified in the port settings of the CPU configuration. The COMM_REQ

installed protocol remains active as long as the CPU is in run mode. When the CPU

is stopped, the COMM_REQ installed protocol is removed, and the protocol settings

from the CPU configuration are reactivated.

The COMM_REQ requires that all its command data be placed in the correct order (in

a command block) in the CPU memory before it is executed. The COMM_REQ should

be executed by a contact of a oneshot coil to prevent sending the data multiple times.

For details on the operands and command block format used by the COMM_REQ

function, refer to chapter 7, “Ladder Diagram Programming.”

The COMM_REQ uses the following TASKs to specify the port for which the operation

is intended:

 task 19 for port 1

 task 20 for port 2

Note: Because address offsets are stored in a 16-bit word field, the full range of %W

 memory type cannot be used with COMM_REQs.

COMM_REQ Function Example

In the example, when %M0021 is ON, a Command Block located starting at %R0032

is sent to port 2 (communications task 20) of the CPU (rack 0, slot 0). If an error

occurs processing the COMM_REQ, %Q0110 is set.

Timing
If a port configuration COMM_REQ is sent to a serial port that currently has an SNP

master (for example, the programmer) connected to it, the COMM_REQ function

returns an error code to the COMM_REQ status word.

Sending Another COMM_REQ to the Same Port
After sending a COMM_REQ to configure a serial port, the application program should

monitor the COMM_REQ status word to determine when it can begin sending protocol

specific COMM_REQs to that port. It is recommended that the application clear the

COMM_REQ status word prior to issuing the configuration change. The status word

will be set to a nonzero value when the request has been processed.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-3

13

Invalid Port Configuration Combinations

The Machine Edition programming software safeguards against the download of some

hardware configurations that would prevent the programmer from communicating

serially with the CPU. In a system that does not have an embedded Ethernet module,

if a rack-based Ethernet is not present, a serial connection is required for programmer

communications.

For CPE305/CPE310 CPUs, which have an embedded Ethernet port that, when

configured, is available for programmer communications, the safeguards on serial port

configurations are still enforced.

COMM_REQ Command Block Parameter Values

The following table lists common parameter values that are used within the

COMM_REQ command blocks for configuring a serial port. All values are in decimal.

Parameter Values

Protocol Selector 1 = SNP

3 = RTU

5 = Serial I/O

7 = Message Mode

Data Rate 0 = 300

1 = 600

2 = 1200

3 = 2400

4 = 4800

5 = 9600

6 = 19200

7 = 38400

8 = 57600

9 = 115200

Parity 0 = None

1 = Odd

2 = Even

Flow Control 0 = Hardware [RTS / CTS]

1 = None

2 = Software [XON / XOFF] (Serial I/O only)

Bits Per Character 0 = 7 bits

1 = 8 bits

Stop Bits 0 = 1 stop bit

1 = 2 stop bits

Duplex Mode 0 = 2-wire

1 = 4-wire

2 = 4-wire transmitter always on

Turnaround Delay (SNP only) 0 = none

1 = 10 ms

2 = 100 ms

3 = 500 ms

Timeout (SNP only) 0 = Long (8 sec)

1 = Medium (2 sec)

2 = Short (500 ms)

3 = “None” (200 ms)

13-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Sample COMM_REQ Command Blocks for Serial Port Setup function
The following COMM_REQ command blocks provide examples for configuring the

various protocols. All values are in decimal unless followed by an H indicating

hexadecimal.

Note that an example is not provided for Message Mode, but it can be setup with a

command block similar to the one for Serial I/O, with a value of 7 for the protocol

selector.

Example COMM_REQ Command Block for Configuring SNP Protocol

 Values Meaning

Address 16 Data Block Length

Address + 1 0 = No Wait (WAIT mode not supported) WAIT/NOWAIT Flag

Address + 2 0008 = %R, register memory Status Word Pointer Memory
Type

Address + 3 Zero-based number that gives the address of the COMM_REQ
status word (for example, a value of 99 gives an address of 100
for the status word)

Status Word Pointer Offset

Address + 4 not used Idle Timeout Value

Address + 5 not used Maximum Communication
Time

Address + 6 FFF0H Command Word (serial port
setup)

Address + 7 1 = SNP Protocol

Address + 8 0 = Slave Port Mode

Address + 9 See “COMM_REQ Command Block Parameter Values” on
page 13-3.

Data Rate

Address + 10 0 = None, 1 = Odd, 2 = Even Parity

Address + 11 not used (SNP always chooses NONE by default) Flow Control

Address + 12 0 = None, 1 = 10ms, 2 = 100ms, 3 = 500ms Turnaround Delay

Address + 13 0 = Long, 1 = Medium, 2 = Short, 3 = None Timeout

Address + 14 not used (SNP always chooses 8 bits by default) Bits Per Character

Address + 15 0 = 1 Stop Bit, 1 = 2 Stop bits Stop Bits

Address + 16 not used Interface

Address + 17 not used (SNP always chooses 4-wire mode by default) Duplex Mode

Address + 18 user-provided
1
 Device identifier bytes 1 and 2

Address + 19 user-provided
1
 Device identifier bytes 3 and 4

Address + 20 user-provided
1
 Device identifier bytes 5 and 6

Address + 21 user-provided
1
 Device identifier bytes 7 and 8

1
 The device identifier for SNP Slave ports is packed into words with the least significant

character in the least significant byte of the word. For example, if the first two characters are “A”
and “B,” the Address + 18 will contain the hex value 4241.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-5

13

Example COMM_REQ Data Block for Configuring RTU Protocol

 Values Meaning

Address 13, or 17 Data Block Length

Address + 1 0 = No Wait (WAIT mode not supported) WAIT/NOWAIT Flag

Address + 2 0008 = %R, register memory Status Word Pointer Memory
Type

Address + 3 Zero-based number that gives the address of the
COMM_REQ status word (for example, a value of 99 gives an
address of 100 for the status word)

Status Word Pointer Offset

Address + 4 not used Idle Timeout Value

Address + 5 not used Maximum Communication Time

Address + 6 FFF0H Command Word (serial port
setup)

Address + 7 3 = RTU Protocol

Address + 8 0 = Slave Port Mode

Address + 9 See “COMM_REQ Command Block Parameter Values” on
page 13-3.

Data Rate

Address + 10 0 = None, 1 = Odd, 2 = Even Parity

Address + 11 0 = Hardware, 1 = None Flow Control

Address + 12 not used Turnaround delay

Address + 13 not used Timeout

Address + 14 not used (RTU always chooses 8 bits by default) Bits per Character

Address + 15 not used (RTU always chooses 1 stop bit by default) Stop Bits

Address + 16 not used Interface

Address + 17 0 = 2-wire, 1 = 4-wire, 2 = 4-wire transmitter always on Duplex Mode

Address + 18 Station Address (1-247) Device Identifier

Address + 19 Count of 100 microseconds units (0 = 3.5 character times) End-of-frame timeout
2

Address + 20 not used

Address + 21 not used

Address + 22 Count of 10 millisecond units (range 0-255) Receive-to-transmit delay
2

2
 The End-of-frame timeout and Receive-to-transmit delay values were added in Release 6.70

for the RX3i. They are discussed in the RTU Slave Protocol section.

13-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Example COMM_REQ Data Block for Configuring Serial I/O Protocol

 Values Meaning

Address 12 Data Block Length

Address + 1 0 = No Wait (WAIT mode not supported) WAIT/NOWAIT Flag

Address + 2 0008 = %R, register memory Status Word Pointer Memory
Type

Address + 3 Zero-based number that gives the address of the COMM_REQ
status word (for example, a value of 99 gives an address of
100 for the status word)

Status Word Pointer Offset

Address + 4 not used Idle Timeout Value

Address + 5 not used Maximum Communication Time

Address + 6 FFF0H Command Word (serial port
setup)

Address + 7 5 = Serial I/O Protocol

Address + 8 not used Port Mode

Address + 9 See “COMM_REQ Command Block Parameter Values” on
page 13-3.

Data Rate

Address + 10 0 = None, 1 = Odd, 2 = Even Parity

Address + 11 0 = Hardware, 1 = None, 2 = Software Flow Control

Address + 12 not used Turnaround Delay

Address + 13 not used Timeout

Address + 14 0=7 bits, 1=8 bits Bits per Character

Address + 15 0 = 1 stop bit, 1 = 2 stop bits Stop Bits

Address + 16 not used Interface

Address + 17 0 = 2-wire, 1 = 4-wire, 2 = 4-wire transmitter always on Duplex Mode

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-7

13

Serial I/O Protocol
Serial I/O protocol is a communication protocol that is driven entirely by the

application program. Serial I/O protocol is active only when the CPU is in run mode,

since it is driven completely by COMM_REQ functions in the application program.

Those COMM_REQ functions are described in detail within this section.

When the CPU is stopped, a port configured for Serial I/O protocol will revert to a stop

mode protocol as specified in the port settings of the CPU configuration. If a stop

mode protocol was not specified, RTU slave protocol is used by default.

Calling Serial I/O COMM_REQs from the CPU Sweep

Implementing a serial protocol using Serial I/O COMM_REQs may be restricted by the

sweep time. For example, if the protocol requires that a reply to a certain message

from the remote device be initiated within 5 ms of receiving the message, this method

may not be successful if the sweep time is 5 ms or longer, since timely response is

not guaranteed.

Compatibility

The COMM_REQ function blocks supported by Serial I/O are not supported by other

currently existing protocols (such as SNP slave and RTU slave). Errors are returned if

they are attempted for a port configured for one of those protocols.

13-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Status Word for Serial I/O COMM_REQs

A value of 1 is returned in the COMM_REQ status word upon successful completion
of the COMM_REQ. Any other value returned is an error code where the low byte is a
major error code and the high byte is a minor error code.

Major Error
Code

Description

 1 (01h) Successful Completion (this is the expected completion value in the COMM_REQ status word).

12 (0Ch) Local error —Error processing a local command. The minor error code identifies the specific error.

 2 (02h) COMM_REQ command is not supported.

 6 (06h) Invalid CPU memory type specified.

 7 (07h) Invalid CPU memory offset specified.

 8 (08h) Unable to access CPU memory.

 12 (0Ch) COMM_REQ data block length too small.

 14 (0Eh) COMM_REQ data is invalid.

 15 (0Fh) Could not allocate system resources to complete COMM_REQ.

13 (0Dh) Remote error — Error processing a remote command. The minor error code identifies the error.

 2 (02h) Number of bytes requested to read is greater than input buffer size OR number bytes
requested to write is zero or greater than 250 bytes.

 3 (03h) COMM_REQ data block length is too small. String data is missing or incomplete.

 4 (04h) Receive timeout awaiting serial reception of data

 6 (06h) Invalid CPUmemory type specified.

 7 (07h) Invalid CPUmemory offset specified.

 8 (08h) Unable to access CPU memory.

 12 (0Ch) COMM_REQ data block length too small.

 16 (10h) Operating system service error. The operating system service used to perform the request has
returned an error.

 17 (11h) Port device error. The port device used to perform the service has detected an error. Either a
break was received or a UART Error (parity, framing, overrun) occurred.

 18 (12h) Request cancelled. The request was terminated before it could complete.

 48 (30h) Serial output timeout. The serial port was unable to transmit the string. (Could be due to
missing CTS signal when the serial port is configured to use hardware flow control.)

14 (0Eh) Autodial Error — An error occurred while attempting to send a command string to an attached external modem.
The minor error code identifies the specific error.

 2 (02h) The modem command string length exceeds end of reference memory type.

 3 (03h) COMM_REQ Data Block Length too small. Output command string data missing or
incomplete.

 4 (04h) Serial output timeout. The serial port was unable to transmit the modem autodial output.

 5 (05h) Response was not received from modem. Check modem and cable.

 6 (06h) Modem responded with BUSY. Modem is unable to complete the requested connection. The
remote modem is already in use; retry the connection request later.

 7 (07h) Modem responded with NO CARRIER. Modem is unable to complete the requested
connection. Check the local and remote modems and the telephone line.

 8 (08h) Modem responded with NO DIALTONE. Modem is unable to complete the requested
connection. Check the modem connections and the telephone line.

 9 (09h) Modem responded with ERROR. Modem is unable to complete the requested command.
Check the modem command string and modem.

 10 (0Ah) Modem responded with RING, indicating that the modem is being called by another modem.
Modem is unable to complete the requested command. Retry the modem command later.

 11 (0Bh) Unknown response received from the modem. Modem unable to complete the request. Check
the modem command string and modem. Response should be CONNECT or OK.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-9

13

Serial I/O COMM_REQ Commands

The following COMM_REQs are used to implement Serial I/O:

■ Local COMM_REQs - do not receive or transmit data through the serial port.

 Initialize Port (4300)

 Set Up Input Buffer (4301)

 Flush Input buffer (4302)

 Read port status (4303)

 Write port control (4304)

 Cancel Operation (4399)

■ Remote COMM_REQs - receive and/or transmit data through the serial port.

 Autodial (4400)

 Write bytes (4401)

 Read bytes (4402)

 Read String (4403)

Overlapping COMM_REQs

Some Serial I/O COMM_REQs must complete execution before another COMM_REQ

can be processed. Others can be left pending while others are executed.

COMM_REQS that Must Complete Execution

■ Autodial (4400)

■ Initialize Port (4300)

■ Set Up Input Buffer (4301)

■ Flush Input buffer (4302)

■ Read port status (4303)

■ Write port control (4304)

■ Cancel Operation (4399)

■ Serial Port Setup (FFF0)

COMM_REQs that can be Pending While Others Execute

The table below shows whether Write Bytes, Read Bytes and Read String

COMM_REQs can be pending when other COMM_REQs are executed.

 NEW COMM_REQ

Currently-pending
COMM_REQs

Autodial
(4400)

Write
Bytes
(4401)

Initialize
Port

(4300)

Set Up
Input
Buffer
(4301)

Flush
Input
Buffer
(4302)

Read
Port

Status
(4303)

Write
Port

Control
(4304

Read
Bytes
(4402)

Read
String
(4403)

Cancel
Operation

(4399)

Serial
Port

Setup
(FFF0)

Write Bytes (4401) No No Yes Yes Yes Yes Yes Yes Yes Yes No

Read Bytes (4402) No Yes Yes No No Yes Yes No No Yes No

Read String (4403) No Yes Yes No No Yes Yes No No Yes No

13-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Initialize Port Function (4300)

This function causes a reset command to be sent to the specified port. It also cancels

any COMM_REQ currently in progress and flushes the internal input buffer. RTS and

DTR are set to inactive.

Example Command Block for the Initialize Port Function

 Value
(decimal)

Value
(hexadecimal)

Meaning

address 0001 0001 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4300 10CC Initialize port command

Operating Notes

Remote COMM_REQs that are cancelled due to this command executing will return a

COMM_REQ status word indicating request cancellation (minor code 12H).

CAUTION

If this COMM_REQ is sent when a Write Bytes (4401)
COMM_REQ is transmitting a string from a serial port,
transmission is halted. The position within the string where the
transmission is halted is indeterminate. In addition, the final
character received by the device to which the CPU is sending is
also indeterminate.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-11

13

Set Up Input Buffer Function (4301)

This function is provided for compatibility with legacy Serial I/O applications. In

PACSystems releases 5.70 and later, the internal input buffer is always set to 2097

bytes. In earlier PACSystems implementations, the internal input buffer is set to

2K bytes.

The Set Up Input Buffer function returns a success status to the COMM_REQ status

word, regardless of the buffer length specified in the command block.

As data is received from the serial port it is placed in the input buffer. If the buffer

becomes full, any additional data received from the serial port is discarded and the

Overflow Error bit in the Port Status word (See Read Port Status Function) is set.

Retrieving Data from the Buffer

Data can be retrieved from the buffer using the Read String or Read Bytes function. It

is not directly accessible from the application program.

If data is not retrieved from the buffer in a timely fashion, some characters may be

lost.

Example Command Block for the Set Up Input Buffer Function

 VALUE
(decimal)

VALUE
(hexadecimal)

MEANING

address 0002 0002 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4301 10CD Setup input buffer command

address +7 0064 0040 Buffer length (in words)

Flush Input Buffer Function (4302)

This operation empties the input buffer of any characters received through the serial

port but not yet retrieved using a read command. All such characters are lost.

Example Command Block for the Flush Input Buffer Function

 VALUE
(decimal)

VALUE
(hexadecimal)

MEANING

address 0001 0001 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4302 10CE Flush input buffer command

13-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Read Port Status Function (4303)

This function returns the current status of the port. The following events can be

detected:

1. A read request was initiated previously and the required number of characters has

now been received or the specified time-out has elapsed.

2. A write request was initiated previously and transmission of the specified number

of characters is complete or a time-out has elapsed.

The status returned by the function indicates the event or events that have completed.

More than one condition can occur simultaneously, if both a read and a write were

initiated previously.

Example Command Block for the Read Port Status Function

 VALUE
(decimal)

VALUE
(hexadecimal)

MEANING

address 0003 0003 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4303 10CF Read port status command

address +7 0076 004C Port status memory type (%M)

address +8 0101 0065 Port status memory offset (%M101)

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-13

13

Port Status

The port status consists of a status word and the number of characters in the input

buffer that have not been retrieved by the application (characters which have been

received and are available).

word 1 Port status word (see below)

word 2 Characters available in the input buffer

The Port Status Word can be:

Bit Name Definition Meaning

15 RP Read In progress

Set Read Bytes or Read String invoked

Cleared
Previous Read bytes or String has timed out, been canceled,
or finished

14 RS Read Success
Set Read Bytes or Read String has successfully completed

Cleared New Read Bytes or Read String invoked

13 RT Read Time-out
Set Receive timeout occurred during Read Bytes or Read String

Cleared New Read Bytes or Read String invoked

12 WP Write In progress

Set New Write Bytes invoked

Cleared
Previously-invoked Write Bytes has timed out, been canceled,
or finished

11 WS Write Success
Set Previously-invoked Write Bytes has successfully completed

Cleared New Write Bytes invoked

10 WT Write Time-out
Set Transmit timeout occurred during Write Bytes

Cleared New Write Bytes invoked

9 CA Character Available
Set Unread characters are in the buffer

Cleared No unread characters in the buffer

8 OF Overflow error
Set Overflow error occurred on the serial port or internal buffer

Cleared Read Port Status invoked

7 FE Framing Error
Set Framing error occurred on the serial port

Cleared Read Port Status invoked

6 PE Parity Error
Set Parity error occurred on the serial port

Cleared Read Port Status invoked

5 CTS Clear to Send
Set Clear to Send signal is active

Cleared Clear to Send signal is not active

4 DSR Data Set Ready
Set Data Set Ready signal is active

Cleared Data Set Ready signal is not active

3 RI Ring Indicator
Set Ring Indicator signal is active

Cleared Ring Indicator signal is not active

2 DCD Data Carrier Detect
Set Data Carrier Detect signal is active

Cleared Data Carrier Detect signal is not active

1 - 0 n/a Not used These bits are always set to 0

13-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Operating Notes

For reference, see the tables under Serial Port Pin Assignments in Chapter 12.

Support for the DSR status bit is provided for Port 1 only, on all RX7i and RX3i

models (except CPE305), in Rel. 7.16 and later releases.

Support for the RP and DCD status bits is provided only for Port 1 on the CPE310, in

Rel. 7.16 and later releases.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-15

13

Write Port Control Function (4304)

This function controls output signals on the specified port:

Example Command Block for the Write Port Control Function

 VALUE
(decimal)

VALUE
(hexadecimal)

MEANING

address 0002 0002 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4304 10D0 Write port control command

address +7 xxxx xxxx Port control word

Port Control Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTS DTR -- -- -- -- -- -- -- -- -- -- -- -- -- --

The Port Control Word can be:

15 RTS

Commanded state of Request to Send signal

 1 = Activates RTS

 0 = Deactivates RTS

14 DTR

Commanded state of Data Terminal Ready signal

 1 = Activates DTR

 0 = Deactivates DTR

13-0 n/a Unused (should be zero)

Operating Notes

For reference, see the tables under Serial Port Pin Assignments in Chapter 12.

Support for the DTR output signal is provided for Port 1 only, on all RX7i and RX3i

models (except CPE305), in Rel 7.16 and later releases.

For CPU port 2 (RS-485), the RTS signal is also controlled by the transmit driver.

Therefore, control of RTS is dependent on the current state of the transmit driver. If

the transmit driver is not enabled, asserting RTS with the Write Port Control

COMM_REQ will not cause RTS to be asserted on the serial line. The state of the

transmit driver is controlled by the protocol and is dependent on the current Duplex

Mode of the port. For 2-wire and 4-wire Duplex Mode, the transmit driver is only

enabled during transmitting. Therefore, RTS on the serial line will only be seen active

on port 2 (configured for 2-wire or 4-wire Duplex Mode) when data is being

transmitted. For point-to-point Duplex Mode, the transmit driver is always enabled.

Therefore, in point-to-point Duplex Mode, RTS on the serial line will always reflect

what is chosen with the Write Port Control COMM_REQ.

13-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Cancel COMM_REQ Function (4399)

This function cancels the current operations in progress. It can be used to cancel both

read operations and write operations.

If a read operation is in progress and there are unprocessed characters in the input

buffer, those characters are left in the input buffer and available for future reads. The

serial port is not reset.

Example Command Block for the Cancel Operation Function

 Value
(decimal)

Value
(hexadecimal)

Meaning

address 0002 0002 Data block length (2)

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4399 112F Cancel operation command

address +7 0001 0001 Transaction type to cancel

 1 All operations
 2 Read operations
 3 Write operations

Operating Notes

Remote COMM_REQs that are cancelled due to this command executing will return a

COMM_REQ status word indicating request cancellation (minor code 12H).

Caution

If this COMM_REQ is sent in either Cancel All or Cancel Write
mode when a Write Bytes (4401) COMM_REQ is transmitting a
string from a serial port, transmission is halted. The position
within the string where the transmission is halted is
indeterminate. In addition, the final character received by the
device to which the CPU is sending is also indeterminate.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-17

13

Autodial Function (4400)

This feature allows the CPU to automatically dial a modem and send a specified byte

string.

To implement this feature, the port must be configured for Serial I/O. After the autodial

function is executed and the modem has established a connection, other serial I/O

functions (Write Bytes, Set Up Input Buffer, Flush Input Buffer, Read Port Status,

Write Port Control, Read Bytes, Read String, and Cancel Operation) can be used.

Example

Pager enunciation can be implemented by three commands, requiring three

COMM_REQ command blocks:

Autodial: 04400

(1130h)
Dials the modem.

Write Bytes:

04401 (1131h)
Specifies an ASCII string, from 1 to 250 bytes in length, to send from the
serial port.

Autodial: 04400

(1130h)
It is the responsibility of the application program to hang up the phone
connection. This is accomplished by reissuing the autodial command and
sending the hang up command string.

Autodial Command Block

The Autodial command automatically transmits an Escape sequence that follows the

Hayes convention. If you are using a modem that does not support the Hayes

convention, you may be able to use the Write Bytes command to dial the modem.

Examples of commonly used command strings for Hayes-compatible modems are

listed below:

Command String Length Function

ATDP15035559999<CR> 16 (10h) Pulse dial the number 1-503-555-9999

ATDT15035559999<CR> 16 (10h) Tone dial the number 1-503-555-9999

ATDT9,15035559999<CR> 18 (12h) Tone dial using outside line with pause

ATH0<CR> 5 (05h) Hang up the phone

ATZ <CR> 4 (04h) Restore modem configuration to internally saved
values

13-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Sample Autodial Command Block

This COMM_REQ command block dials the number 234-5678 using a Hayes-

compatible modem.

Word Definition Values

1 0009h CUSTOM data block length (includes command
string)

2 0000h NOWAIT mode

3 0008h Status word memory type (%R)

4 0000h Status word address minus 1 (Register 1)

5 0000h not used

6 0000h not used

7 04400
(1130h)

Autodial command number

8 00030
(001Eh)

Modem response timeout (30 seconds)

9 0012 (000Ch) Number of bytes in command string

10 5441h A (41h), T (54h)

11 5444h D (44h), T (54h)

12 3332h Phone number: 2 (32h), 3 (33h)

13 3534h 4 (34h), 5 (35h)

14 3736h 6 (36h), 7 (37h)

15 0D38h 8 (38h) <CR> (0Dh)

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-19

13

Write Bytes Function (4401)

This operation can be used to transmit one or more characters to the remote device

through the specified serial port. The character(s) to be transmitted must be in a word

reference memory . They should not be changed until the operation is complete.

Up to 250 characters can be transmitted with a single invocation of this operation. The

status of the operation is not complete until all of the characters have been

transmitted or until a timeout occurs (for example, if hardware flow control is being

used and the remote device never enables the transmission).

Example Command Block for the Write Bytes Function

 Value
(decimal)

Value
(hexadecimal)

Meaning

address 0006 0006 Data block length (includes characters to send)

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4401 1131 Write bytes command

address +7 0030 001E Transmit time-out (30 seconds). See note below.

address +8 0005 0005 Number of bytes to write

address +9 25960 6568 ‘h’ (68h), ‘e’ (65h)

address +10 27756 6C6C ‘l’ (6Ch), ‘l’ (6Ch)

address +11 0111 006F ‘o’ (6Fh)

Although printable ASCII characters are used in this example, there is no restriction

on the values of the characters that can be transmitted.

Operating Notes

Specifying zero as the Transmit time-out sets the time-out value to the amount of time

actually needed to transmit the data, plus 4 seconds.

Caution

If an Initialize Port (4300) COMMEQ is sent or a Cancel Operation
(4399) COMM_REQ is sent in either Cancel All or Cancel Write
mode while this COMM_REQ is transmitting a string from a serial
port, transmission is halted. The position within the string where
the transmission is halted is indeterminate. In addition, the final
character received by the device the CPU is sending to is also
indeterminate.

13-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Read Bytes Function (4402)

This function causes one or more characters to be read from the specified port. The

characters are read from the internal input buffer and placed in the specified input

data area. The function returns both the number of characters retrieved and the

number of unprocessed characters still in the input buffer. If zero characters of input

are requested, only the number of unprocessed characters in the input buffer is

returned.

If insufficient characters are available to satisfy the request and a non-zero value is

specified for the number of characters to read, the status of the operation is not

complete until either sufficient characters have been received or the time-out interval

expires. In either of those conditions, the port status indicates the reason for

completion of the read operation. The status word is not updated until the read

operation is complete (either due to timeout or when all the data has been received).

If the time-out interval is set to zero, the COMM_REQ remains pending until it has

received the requested amount of data, or until it is cancelled.

If this COMM_REQ fails for any reason, no data is returned to the input data area.

Any data that has not been read from the internal input buffer remains and it can be

retrieved with a subsequent read request.

Example Command Block for the Read Bytes Function

 Value
(decimal)

Value
(hexadecimal)

Meaning

address 0005 0005 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4402 1132 Read bytes command

address +7 0030 001E Read time-out (30 seconds)

address +8 0005 0005 Number of bytes to read

address +9 0008 0008 Input data memory type (%R).

address +10 0100 0064 Input data memory address (%R0100)

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-21

13

Return Data Format for the Read Bytes Function

The return data consists of the number of characters actually read, the number of

characters still available in the input buffer after the read is complete (if any), and the

actual input characters.

Address Number of characters actually read

Address + 1 Number of characters still available in the input buffer, if any

Address + 2 first two characters (first character is in the low byte)

Address + 3 third and fourth characters (third character is in the low byte)

Address + n subsequent characters

Operating Notes for Read Bytes

If the input data memory type parameter is specified to be a word memory type, and if

an odd number of bytes are actually received, then the high byte of the last word to be

written with the received data is left unchanged.

As data is received from the serial port it is placed in the internal input buffer. If the

buffer becomes full, then any additional data received from the serial port is discarded

and the Overflow Error bit in the Port Status word (See Read Port Status Function) is

set.

13-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Read String Function (4403)

This function causes characters to be read from the specified port until a specified

terminating character is received. The characters are read from the internal input

buffer and placed in the specified input data area.

The function returns both the number of characters retrieved and the number of

unprocessed characters still in the input buffer. If zero characters of input are

requested, only the number of unprocessed characters in the input buffer are

returned.

If the terminating character is not in the input buffer, the status of the operation is not

complete until either the terminating character has been received or the time-out

interval expires. In either of those conditions, the port status indicates the reason for

completion of the read operation.

If the time-out interval is set to zero, the COMM_REQ remains pending until it has

received the requested string, terminated by the specified end character.

If this COMM_REQ fails for any reason, no data is returned to the input data area.

Any data that has not been read from the internal input buffer remains, and it can be

retrieved with a subsequent read request.

Example Command Block for the Read String Function

 Value
(deci
mal)

Value
(hexadecimal)

Meaning

address 0005 0005 Data block length

address +1 0000 0000 NOWAIT mode

address +2 0008 0008 Status word memory type (%R)

address +3 0000 0000 Status word address minus 1 (%R0001)

address +4 0000 0000 Not used

address +5 0000 0000 Not used

address +6 4403 1133 Read string command

address +7 0030 001E Read time-out (30 seconds)

address +8 0013 000D Terminating character (carriage return): must be
between 0 and 255 (0xFF), inclusive

address +9 0008 0008 Input data memory type (%R)

address +10 0100 0064 Input data memory address (%R0100)

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-23

13

Return Data Format for the Read String Function

The return data consists of the number of characters actually read, the number of

characters still available in the input buffer after the read is complete (if any), and the

actual input characters:

Address Number of characters actually read

Address + 1 Number of characters still available in the input buffer, if any

Address + 2 first two characters (first character is in the low byte)

Address + 3 third and fourth characters (third character is in the low byte)

Address + n subsequent characters

Operating Notes for Read String

If the input data memory type parameter is specified to be a word memory type, and if

an odd number of bytes are actually received, then the high byte of the last word to be

written with the received data is left unchanged.

As data is received from the serial port it is placed in the internal input buffer. If the

buffer becomes full, then any additional data received from the serial port is discarded

and the Overflow Error bit in the Port Status word (See Read Port Status Function) is

set.

13-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

RTU Slave Protocol
RTU protocol is a query-response protocol used for communication between the RTU

device and a host computer, which is capable of communicating using RTU protocol.

The host computer is the master device and it transmits a query to a RTU slave,

which responds to the master. The RTU slave device cannot query; it can only

respond to the master. A PACSystems CPU can only function as an RTU slave.

The RTU data transferred consists of 8-bit binary characters with an optional parity bit.

No control characters are added to the data block; however, an error check (Cyclic

Redundancy Check) is included as the final field of each query and response to

ensure accurate transmission of data.

Note: You should avoid using station address 1 for any other Modbus slave in a

PACSystems control system because the default station address for the

PACSystems CPU is 1. The CPU uses the default address in two situations:

1. If you power up without a configuration, the default station address of 1 is

used.

2. When the Port Mode parameter is set to Message Mode, and Modbus

becomes the protocol in stop mode, the station address defaults to 1,

unless you specify a stop mode for the port in the CPU configuration, and

then change the station address to be used for stop mode.

In either of these situations, if you have a slave configured with a station

address of 1, confusion may result when the PACSystems CPU responds to

requests intended for that slave.

Message Format

The general formats for RTU message transfers are shown below:

RTU Message Transfers

Query Message Master

Slave

Master

Slave

Broadcast Message

Response

(No Response)

Slave Turn-around Time

Query Transaction

Broadcast Transaction

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-25

13

The master device begins a data transfer by sending a query or broadcast request

message. A slave completes that data transfer by sending a response message if the

master sent a query message addressed to it. No response message is sent when the

master sends a broadcast request.

RTU Slave Turnaround Time

The time between the end of a query and the beginning of the response to that query

is called the slave turnaround time. The turnaround time of a PACSystems slave

depends on the Controller Communications Window time and the sweep time of the

PACSystems. RTU requests are processed only in the Controller Communications

Window. In Normal sweep mode, the Controller Communications Window occurs

once per sweep. Because the sweep time on PACSystems can be up to 2.5 seconds,

the time to process an RTU request could be up to 2.5 seconds. Another factor is the

Controller Communications Window time allowed in Hardware Configuration. If you

configure a very small Controller Communications Window, the RTU request may not

be completed in one sweep, causing RTU processing to require multiple sweeps. For

details on CPU window modes, refer to chapter 4.

Receive-to-transmit Delay

Part of the RTU Slave Turnaround time is the receive-to-transmit delay. The RTU

driver inserts this delay after a request from the master has been received, and before

the response to the master is sent. Starting with Release 6.70 for the RX3i, the

receive-to-transmit delay can be configured with the Serial Port Setup COMM_REQ

function 65520. The timeout is specified in units of 10 milliseconds, with a range of

0–255 units (maximum delay is 2.55 seconds). If the specified time is less than 3.5

character times, then the delay is set to 3.5 character times.

Message Types

The RTU protocol has four message types: query, normal response, error response,

and broadcast.

Query

The master sends a message addressed to a single slave.

Normal Response

After the slave performs the function requested by the query, it sends back a normal

response for that function. This indicates that the request was successful.

Error Response

The slave receives the query, but cannot perform the requested function. The slave

sends back an error response that indicates the reason the request could not be

processed. (No error message will be sent for certain types of errors. For more

information see “Communication Errors.”)

Broadcast

The master sends a message addressed to all of the slaves by using address 0. All

slaves that receive the broadcast message perform the requested function. This

transaction is ended by a time-out within the master.

13-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message Fields

The message fields for a typical message are shown in the figure below, and are

explained in the following sections.

FRAME

Station Address Function Code Information Error Check

Station Address

The Station Address is the address of the slave station selected for this data transfer.

It is one byte in length and has a value from 0 to 247 inclusive. An address of 0

selects all slave stations, and indicates that this is a broadcast message. An address

from 1 to 247 selects a slave station with that station address.

Function Code

The Function Code identifies the command being issued to the station. It is one byte

in length and is defined for the values 0 to 255 as follows:

Function Code Description

0 Illegal Function

1 Read Output Table

2 Read Input Table

3 Read Registers

4 Read Analog Input

5 Force Single Output

6 Preset Single Register

7 Read Exception Status

8 Loopback Maintenance

9-14 Unsupported Function

15 Force Multiple Outputs

16 Preset Multiple Registers

17 Report Device Type

18–21 Unsupported Function

22 Mask Write 4x Register

23 Read/Write 4x Registers

24–66 Unsupported Function

67 Read Scratch Pad Memory

68-127 Unsupported Function

128-255 Reserved for Exception Responses

Information Fields

All message fields, other than the Station Address field, Function Code field, and Error

Check field are called, generically, “information” fields. Information fields contain

additional information required to specify or respond to a requested function. Different

types of messages have different types or numbers of information fields. (Details on

information fields for each message type and function code are found in “Message

Descriptions,” page 13-33) Some messages (Message 07 Query and Message 17

Query) do not have information fields.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-27

13

Examples

As shown in the following figure, the information fields for message READ OUTPUT

TABLE (01) Query consist of the Starting Point No. field and Number of Points field.

The information fields for message READ OUTPUT TABLE (01) Response consist of

the Byte Count field and Data field.

Address Starting
Point No.

Number of
Points

Error
Check

Func
01

Information Fields

Query

Hi Hi Lo Lo

Message (01)

Read Output Table

Address Data Error
Check

Func
01

Information Fields

Normal Response

Byte
Count

Some information fields include entries for the range of data to be accessed in the

RTU slave.

Note: Data addresses are 0-based. This means you will need to subtract 1 from the

actual address when specifying it in the RTU message. For message (01)

READ OUTPUT TABLE Query, used in the example above, you would

specify a starting data address in the Starting Point No. field. To specify

%Q0001 as the starting address, you would place the address %Q0000 in

this field. Also, the value placed in the Number of Points field determines how

many %Q bits are read, starting with address %Q0001. For example:

■ Starting Point No. field = %Q0007, so the starting address is %Q0008.

■ Number of Points field = 16 (0010h), so addresses %Q0008 through

%Q0023 will be read.

Error Check Field

The Error Check field is two bytes in length and contains a cyclic redundancy check

(CRC-16) code. Its value is a function of the contents of the station Address, Function

code, and Information field. The details of generating the CRC-16 code are described

in “Cyclic Redundancy Check (CRC) on page 13-29” Note that the Information field is

variable in length. To properly generate the CRC-16 code, the length of frame must be

determined. To calculate the length of a frame for each of the defined function codes,

see “Calculating the Length of Frame” on page 13-32.

13-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message Length

Message length varies with the type of message and amount of data to be sent.

Information for determining message length for individual messages is found in

“Message Descriptions.”

Character Format

A message is sent as a series of characters. Each byte in a message is transmitted as

a character. The illustration below shows the character format. A character consists of

a start bit (0), eight data bits, an optional parity bit, and one stop bit (1). Between

characters the line is held in the 1 state.

 MSB Data Bits LSB

10 9 8 7 6 5 4 3 2 1 0

Stop
Parity

(optional)
 Start

Message Termination

Each station monitors the time between characters. When a period of three character

times elapses without the reception of a character, the end of a message is assumed.

The reception of the next character is assumed to be the beginning of a new

message. The end of a frame occurs when the first of the following two events occurs:

■ The number of characters received for the frame is equal to the calculated length

of the frame.

■ A length of 4 character times elapses without the reception of a character.

Timeout Usage

Timeouts are used on the serial link for error detection, error recovery, and to prevent

the missing of the end of messages and message sequences. Note that although the

module allows up to three character transmission times between each character in a

message that it receives, there is no more than half a character time between each

character in a message that the module transmits. After sending a query message,

the master should wait an appropriate amount of time for slave turnaround before

assuming that the slave did not respond to the request. Slave turnaround time is

affected by the Controller Communications Window time and the CPU sweep time, as

described in “RTU Slave Turnaround Time” on page 13-25.

End-of-frame Timeout

The End-of-frame timeout is a feature that compensates for message gaps that can

occur due to the use of radio modems. The timeout is added to the amount of time

allowed for receiving a message from the master. The timeout should be sized

according to the maximum gap time that could be introduced by the master’s

transmitting equipment. Starting with Release 6.70 for the RX3i, the end-of-frame

timeout can be configured with the Serial Port Setup COMM_REQ function 65520.

The timeout is specified in units of 100 microseconds. If the specified time is less

than 3.5 character times, then the RTU driver sets the timeout to 3.5 character times.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-29

13

Cyclic Redundancy Check (CRC)

The CRC is one of the most effective systems for checking errors. The CRC consists

of two check characters generated at the transmitter and added at the end of the

transmitted data characters. Using the same method, the receiver generates its own

CRC for the incoming data and compares it to the CRC sent by the transmitter to

ensure proper transmission. A complete mathematic derivation for the CRC is not

given in this section. This information can be found in a number of texts on data

communications. The essential steps that should be understood in calculating the

CRC are as follows:

■ The number of bits in the CRC multiplies the data bits that make up the message.

■ The resulting product is then divided by the generating polynomial (using modulo

2 with no carries). The CRC is the remainder of this division.

■ Disregard the quotient and add the remainder (CRC) to the data bits and transmit

the message with CRC.

■ The receiver then divides the message plus CRC by the generating polynomial

and if the remainder is 0, the transmission was transmitted without error.

A generating polynomial is expressed algebraically as a string of terms in powers of X

such as X 3 + X 2 + X 0 (or 1) which can in turn be expressed as the binary number

1101. A generating polynomial could be any length and contain any pattern of 1s and

0s as long as both the transmitter and receiver use the same value. For optimum error

detection, however, certain standard generating polynomials have been developed.

RTU protocol uses the polynomial X 16 + X 15 + X 2 + 1 which in binary is 1 1000 0000

0000 0101. The CRC this polynomial generates is known as CRC-16.

The discussion above can be implemented in hardware or software. One hardware

implementation involves constructing a multi-section shift register based on the

generating polynomial.

Cyclic Redundancy Check Register

13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 + + +

+
Data
Input

CRC Register

= Exclusive Or

X
2
 X

15
 X

16

To generate the CRC, the message data bits are fed to the shift register one at a time.

The CRC register contains a preset value. As each data bit is presented to the shift

register, the bits are shifted to the right. The LSB is XORed with the data bit and the

result is: XORed with the old contents of bit 1 (the result placed in bit 0), XORed with

the old contents of bit 14 (and the result placed in bit 13), and finally, it is shifted into

bit 15. This process is repeated until all data bits in a message have been processed.

Software implementation of the CRC-16 is explained in the next section.

13-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Calculating the CRC-16

The pseudo code for calculation of the CRC-16 is given below.

Preset byte count for data to be sent.

Initialize the 16-bit remainder (CRC) register to all ones.

XOR the first 8-bit data byte with the high order byte of the 16-bit CRC

register. The result is the current CRC.

INIT SHIFT: Initialize the shift counter to 0.

SHIFT Shift the current CRC register 1 bit to the right.

Increment shift count.

Is the bit shifted out to the right (flag) a 1 or a 0?

If it is a 1, XOR the generating polynomial with the current CRC.

If it is a 0, continue.

Is shift counter equal to 8?

If NO, return to SHIFT.

If YES, increment byte count.

Is byte count greater than the data length?

If NO, XOR the next 8-bit data byte with the current CRC and go to

INIT SHIFT.

If YES, add current CRC to end of data message for transmission

and exit.

When the message is transmitted, the receiver performs the same CRC operation on

all the data bits and the transmitted CRC. If the information is received correctly the

resulting remainder (receiver CRC) is 0.

Sample CRC-16 Calculation

The RTU device transmits the rightmost byte (of registers or discrete data) first. The

first bit of the CRC-16 transmitted is the MSB. Therefore, in the example the MSB of

the CRC polynomial is to the extreme right. The X16
 term is dropped because it affects

only the quotient (which is discarded) and not the remainder (the CRC characters).

The generating polynomial is therefore 1010 0000 0000 0001. The remainder is

initialized to all 1s.

In this example, the CRC-16 is calculated for RTU message, Read Exception

Status 07. The message format is as follows:

Address Function CRC-16

01 07

In this example, device number 1 (address 01) is queried. You need to know the

amount of data to be transmitted and this information can be found for every message

type in “Calculating the Length of Frame.” For this message the data length is 2 bytes.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-31

13

Transmitter CRC-16 Algorithm Receiver
1
 CRC-16 Algorithm

 MSB
2
 LSB

2
 Flag MSB

2
 LSB

2
 Flag

Initial Remainder 1111 1111 1111 1111 Rcvr CRC after data 1110 0010 0100 0001

XOR 1st data byte 0000 0000 0000 0001 XOR 1st byte Trns
CRC

0000 0000 0100 0001

Current CRC 1111 1111 1111 1111 Current CRC 1110 0010 0000 0000

Shift 1 0111 1111 1111 1111 0 Shift 1 0111 0001 0000 0000 0

Shift 2 0011 1111 1111 1111 1 Shift 2 0011 1000 1000 0000 0

XOR Gen. Polynomial 1010 0000 0000 0001 Shift 3 0001 1100 0100 0000 0

Current CRC 1001 1111 1111 1110 Shift 4 0000 1110 0010 0000 0

Shift 3 0100 1111 1111 1111 0 Shift 5 0000 0111 0001 0000 0

Shift 4 0010 0111 1111 1111 1 Shift 6 0000 0011 1000 1000 0

XOR Gen. Polynomial 1010 0000 0000 0001 Shift 7 0000 0001 1100 0100 0

Current CRC 1000 0111 1111 1110 Shift 8 0000 0000 1110 0010 0

Shift 5 0100 0011 1111 1111 0 XOR 2nd byte trns
CRC

0000 0000 1110 0010

Shift 6 0010 0001 1111 1111 1 Current CRC 0000 0000 0000 0000

XOR Gen. Polynomial 1010 0000 0000 0001 Shift 1-8 yields 0000 0000 0000 0000

Current CRC 1000 0001 1111 1110 All errors for receiver final CRC-16 indicates transmission correct.

Shift 7 0100 0000 1111 1111 0

Shift 8 0010 0000 0111 1111 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1000 0000 0111 1110

XOR 2nd data byte 0000 0000 0000 0111

Current CRC 1000 0000 0111 1001

Shift 1 0100 0000 0011 1100 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1110 0000 0011 1101

Shift 2 0111 0000 0001 1110 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1101 0000 0001 1111

Shift 3 0110 1000 0000 1111 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1100 1000 0000 1110

Shift 4 0110 0100 0000 0111 0

Shift 5 0011 0010 0000 0011 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1001 0010 0000 0010

Shift 6 0100 1001 0000 0001 0

Shift 7 0010 0100 1000 0000 1

XOR Gen. Polynomial 1010 0000 0000 0001

Current CRC 1000 0100 1000 0001

Shift 8 0100 0010 0100 0000 1

XOR Gen. Polynomial 1010 0000 0000 0001

Transmitted CRC 1110 0010 0100 0001

 E 2 4 1

1. The receiver processes incoming data through the same CRC algorithm as the transmitter. The
example for the receiver starts at the point after all the data bits but not the transmitted CRC have
been received correctly. Therefore, the receiver CRC should be equal to the transmitted CRC at this
point. When this occurs, the output of the CRC algorithm will be zero indicating that the transmission is
correct.

The transmitted message with CRC would then be:

Address Function CRC–16

01 07 41 E2

2. The MSB and LSB references are to the data bytes only, not the CRC bytes. The CRC MSB and LSB
order are the reverse of the data byte order.

13-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Calculating the Length of Frame

To generate the CRC-16 for any message, the message length must be known. The

length for all types of messages can be determined from the table below.

RTU Message Length

Function
Code

Name Query or Broadcast
Message Length Less

CRC Code

Response Message
Length Less CRC Code

0 Not Defined Not Defined

1 Read Output Table 6 3 + 3rd byte
3

2 Read Input Table 6 3 + 3rd byte
3

3 Read Registers 6 3 + 3rd byte
3

4 Read Analog Input 6 3 + 3rd byte
3

5 Force Single Output 6 6

6 Preset Single Register 6 6

7 Read Exception Status 2 3

8 Loopback/Maintenance 6 6

9-14 Not Defined Not Defined

15 Force Multiple Outputs 7 + 7th byte
3
 6

16 Preset Multiple Registers 7 + 7th byte
3
 6

17 Report Device Type 2 8

18-21 Not Defined Not Defined

22 Mask Write 4x Registers 8 8

23 Read/Write 4x Registers 13+byte 11
3
 5+byte 3

3

24–66 Not Defined Not Defined

67 Read Scratch Pad 6 3 + 3rd byte
3

68-127 Not Defined Not Defined

128-255 Not Defined 3

3
 The value of this byte is the number of bytes contained in the data being transmitted.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-33

13

RTU Message Descriptions

This section presents the format and fields for each RTU message.

Message (01): Read Output Table

Format:

Address Starting
Point No.

Number of
Points

Error
Check

Func
01

Query

Hi Hi Lo Lo

Address Data Error
Check

Func
01

Normal Response

Byte
Count

Query:

 An address of 0 is not allowed because this cannot be a broadcast request.

 The function code is 01.

 The starting point number is two bytes in length and may be any value less than

the highest output point number available in the attached CPU. The starting point

number is equal to one less than the number of the first output point returned in

the normal response to this request.

 The number of points value is two bytes in length. It specifies the number of

output points returned in the normal response. The sum of the starting point value

and the number of points value must be less than or equal to the highest output

point number available in the attached CPU. The high order byte of the Starting

Point Number and Number of Points fields is sent as the first byte. The low order

byte is the second byte in each of these fields.

Response:

 The byte count is a binary number from 1 to 256 (0 = 256). It is the number of

bytes in the normal response following the byte count and preceding the error

check.

 The Data field of the normal response is packed output status data. Each byte

contains eight output point values. The least significant bit (LSB) of the first byte

contains the value of the output point whose number is equal to the starting point

number plus one. The values of the output points are ordered by number starting

with the LSB of the first byte of the Data field and ending with the most significant

bit (MSB) of the last byte of the Data field. If the number of points is not a multiple

of 8, the last data byte contains zeros in one to seven of its highest order bits.

13-34 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (02): Read Input Table

Format:

Address Starting
Point No.

Number of
Points

Error
Check

Func
02

Query

Hi Hi Lo Lo

Address Data Error
Check

Func
02

Normal Response

Byte
Count

Query:

 An address of 0 is not allowed as this cannot be a broadcast request.

 The function code is 02.

 The starting point number is two bytes in length and may be any value less than

the highest input point number available in the attached CPU. The starting point

number is equal to one less than the number of the first input point returned in the

normal response to this request.

 The number of points value is two bytes in length. It specifies the number of input

points returned in the normal response. The sum of the starting point value and

the number of points value must be less than or equal to the highest input point

number available in the attached CPU. The high order byte of the Starting Point

Number and Number Of Bytes fields is sent as the first byte. The low order byte is

the second byte in each of these fields.

Response:

 The byte count is a binary number from 1 to 256 (0 = 256). It is the number of

bytes in the normal response following the byte count and preceding the error

check.

 The Data field of the normal response is packed input status data. Each byte

contains eight input point values. The least significant bit (LSB) of the first byte

contains the value of the input point whose number is equal to the starting point

number plus one. The values of the input points are ordered by number starting

with the LSB of the first byte of the Data field and ending with the most significant

bit (MSB) of the last byte of the Data field. If the number of points is not a multiple

of 8, then the last data byte contains zeros in one to seven of its highest order

bits.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-35

13

Message (03): Read Registers

Format:

Address Starting
Register No.

Number of
Registers
s

Error
 Check

Func

03

Query

Hi Hi Lo Lo

Address Data Error
Check

Func

03

Normal Response

Byte
Count First Register

Hi Hi Lo Lo

Query:

 An address of 0 is not allowed as this request cannot be a broadcast request.

 The function code is equal to 3.

 The starting register number is two bytes in length. The starting register number

may be any value less than the highest register number available in the attached

CPU. It is equal to one less than the number of the first register returned in the

normal response to this request.

 The number of registers value is two bytes in length. It must contain a value from

1 to 125 inclusive. The sum of the starting register value and the number of

registers value must be less than or equal to the highest register number available

in the attached CPU. The high order byte of the Starting Register Number and

Number of Registers fields is sent as the first byte in each of these fields. The low

order byte is the second byte in each of these fields.

Response:

 The byte count is a binary number from 2 to 250 inclusive. It is the number of

bytes in the normal response following the byte count and preceding the error

check. Note that the byte count is equal to two times the number of registers

returned in the response. A maximum of 250 bytes (125) registers is set so that

the entire response can fit into one 256 byte data block.

 The registers are returned in the Data field in order of number with the lowest

number register in the first two bytes and the highest number register in the last

two bytes of the Data field. The number of the first register in the Data field is

equal to the Starting Register Number plus one. The high order byte is sent before

the low order byte of each register.

13-36 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (04): Read Analog Inputs

Format:

Address Starting
Analog Input
No.

Number of
Analog
Inputs

Error
Check

Func

04

Query

Hi Hi Lo Lo

Address Data Error
Check

Func
04

Normal Response

Byte
Count

First
Analog
Input

No.

Hi Hi Lo Lo

Query:

 An Address of 0 is not allowed as this request cannot be a broadcast request.

 The function code is equal to 4.

 The Starting Analog Input Number is two bytes in length. The Starting Analog

Input Number may be any value less than the highest analog input number

available in the attached CPU. It is equal to one less than the number of the first

analog input returned in the normal response to this request.

 The Number Of Analog Inputs value is two bytes in length. It must contain a value

from 1 to 125 inclusive. The sum of the Starting Analog Input value and the

Number Of Analog Inputs value must be less than or equal to the highest analog

input number available in the at-attached CPU. The high order byte of the Starting

Analog Input Number and Number of Analog Inputs fields is sent as the first byte

in each of these fields. The low order byte is the second byte in each of these

fields.

Response:

 The Byte Count is a binary number from 2 to 250 inclusive. It is the number of

bytes in the normal response following the byte count and preceding the error

check. Note that the Byte Count is equal to two times the number of analog inputs

returned in the response. A maximum of 250 bytes (125) analog inputs is set so

that the entire response can fit into one 256 byte data block.

 The analog inputs are returned in the Data field in order of number with the lowest

number analog input in the first two bytes and the highest number analog input in

the last two bytes of the Data field. The number of the First Analog Input in the

Data field is equal to the Starting analog input number plus one. The high order

byte is sent before the low order byte of each analog input.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-37

13

Message (05): Force Single Output

Format:

Address Point

Number
Data Error Check Func

05

Query

Hi Hi Lo Lo

Normal Response

00H

Address Point

Number

Data Error Check Func

05

00H

Hi Hi Lo Lo

Query:

 An Address of 0 indicates a broadcast request. All slave stations process a

broadcast re-quest and no response is sent.

 The function code is equal to 05.

 The Point Number field is two bytes in length. It may be any value less than the

highest output point number available in the attached CPU. It is equal to one less

than the number of the output point to be forced on or off.

 The first byte of the Data field is equal to either 0 or 255 (FFH). The output point

specified in the Point Number field is to be forced off if the first Data field byte is

equal to 0. It is to be forced on if the first Data field byte is equal to 255 (FFH).

The second byte of the Data field is always equal to zero.

Response:

 The normal response to a force single output query is identical to the query.

Note: The force single output request is not an output override command. The

output specified in this request is ensured to be forced to the value specified

only at the beginning of one sweep of the user logic.

13-38 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (06): Preset Single Register

Format:

Address Register

Number
Data Error Check Func

06

Query

Hi Hi Lo Lo

Normal Response

Address Register

Number

Data Error Check Func

06

Hi Hi Lo Lo

Query:

 An Address 0 indicates a broadcast request. All slave stations process a

broadcast request and no response is sent.

 The function code is equal to 06.

 The Register Number field is two bytes in length. It may be any value less than

the highest register available in the attached CPU. It is equal to one less than the

number of the register to be preset.

 The Data field is two bytes in length and contains the value that the register

specified by the Register Number Field is to be preset to. The first byte in the Data

field contains the high order byte of the preset value. The second byte in the Data

field contains the low order byte.

Response:

 The normal response to a preset single register query is identical to the query.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-39

13

Message (07): Read Exception Status

Format:

Address Error Check Func

07

Query

Normal Response

Address Data Error Check Func

07

Query:

This query is a short form of request for the purpose of reading the first eight output

points.

 An Address of zero is not allowed as this cannot be a broadcast request.

 The function code is equal to 07.

Response:

 The Data field of the normal response is one byte in length and contains the

states of output points one through eight. The output states are packed in order of

number with output point one’s state in the least significant bit and output point

eight’s state in the most significant bit.

13-40 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (08): Loopback/Maintenance (General)

Format:

Address Diagnostic
c Code

Data Error Check Func

08

Query

0, 1, or 4
DATA 1 DATA 1

Address Diagnostic
c Code

Data Error Check Func

08

Normal Response

0, 1, or 4
DATA 1 DATA 1

Query:

 The Function code is equal to 8.

 The Diagnostic Code is two bytes in length. The high order byte of the Diagnostic

Code is the first byte sent in the Diagnostic Code field. The low order byte is the

second byte sent. The loopback/maintenance command is defined only for

Diagnostic Codes equal to 0, 1, or 4. All other Diagnostic Codes are reserved.

 The Data field is two bytes in length. The contents of the two Data bytes are

defined by the value of the Diagnostic Code.

Response:

 See descriptions for individual Diagnostic Codes.

Diagnostic Return Query Data Request (Loopback/Maintenance Code 00):

 An aDdress of 0 is not allowed for the return query data request.

 The values of the two Data field bytes in the query are arbitrary.

 The normal response is identical to the query.

 The values of the Data bytes in the response are equal to the values sent in the

query.

Diagnostic Initiate Communication Restart Request (Loopback/Maintenance
Code 01):

 An Address of 0 indicates a broadcast request. All slave stations process a

broadcast request and no response is sent.

 This request disables the listen-only mode (enables responses to be sent when

queries are received so that communications can be restarted).

 The value of the first byte of the Data field (DATA1) must be 0 or FF. Any other

value will cause an error response to be sent. The value of the second byte of the

Data field (DATA2) is always equal to 0.

 The normal response to an Initiate Communication Restart query is identical to

the query.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-41

13

Diagnostic Force Listen-Only Mode Request (Loopback/Maintenance code 04):

 An Address of 0 indicates a broadcast request. All slave stations process a

broadcast re-quest.

 After receiving a Force Listen-Only mode request, the RTU device will go into the

listen-only mode, will not perform a requested function, and will not send either

normal or error responses to any queries. The listen-only mode is disabled when

the RTU device receives an Initiate Communication Restart request or when the

RTU device is powered up.

 Both bytes in the Data field of a Force Listen-Only Mode request are equal to 0.

The RTU device never sends a response to a Force Listen-Only Mode request.

Note: Upon power up, the RTU device disables the listen-only mode and is enabled

to continue sending responses to queries.

13-42 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (15): Force Multiple Outputs

Format:

Address Number

of Points

Error Check Func

15

Query

Normal Response

Address Error Check Func

15

Byte
Count

Data

Starting
Point Point No.

Number

of Points

Starting
Point Point No.

Query:

 An Address of 0 indicates a broadcast request. All slave stations process a

broadcast request and no response is sent.

 The value of the Function code is 15.

 The Starting Point Number is two bytes in length and may be any value less than

the highest output point number available in the attached CPU. The Starting Point

Number is equal to one less than the number of the first output point forced by this

request.

 The Number of Points value is two bytes in length. The sum of the Starting Point

Number and the Number of Points value must be less than or equal to the highest

output point number available in the attached CPU. The high order byte of the

Starting Point Number and Number of Bytes fields is sent as the first byte in each

of these fields. The low order byte is the second byte in each of these fields.

 The Byte Count is a binary number from 1 to 256 (0 = 256). It is the number of

bytes in the Data field of the force multiple outputs request.

 The Data field is packed data containing the values that the outputs specified by

the Starting Point Number and the Number of Points fields are to be forced to.

Each byte in the Data field contains the values that eight output points are to be

forced to. The least significant bit (LSB) of the first byte contains the value that the

output point whose number is equal to the starting point number plus one is to be

forced to. The values for the output points are ordered by number starting with the

LSB of the first byte of the Data field and ending with the most significant bit

(MSB) of the last byte of the Data field. If the number of points is not a multiple of

8, then the last data byte contains zeros in one to seven of its highest order bits.

Response:

 The description of the fields in the response are covered in the query description.

Note: The force multiple outputs request is not an output override command. The

 outputs specified in this request are ensured to be forced to the values

 specified only at the beginning of one sweep of the user logic.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-43

13

Message (16): Preset Multiple Registers

Format:

Address Number of

Registers

Error Check Func

16

Query

Normal Response

Address Error Check Func

16

Byte
Count

Data

Starting
Register No.

Number of

Registers

Starting
Point

Query:

 An Address of 0 indicates a broadcast request. All slave stations process a

broadcast re-quest and no response is sent.

 The value of the Function code is 16.

 The Starting Register Number is two bytes in length. The Starting Register

Number may be any value less than the highest register number available in the

attached CPU. It is equal to one less than the number of the first register preset

by this request.

 The Number of Registers value is two bytes in length. It must contain a value from

1 to 125 inclusive. The sum of the Starting Register Number and the Number of

Registers value must be less than or equal to the highest register number

available in the attached CPU. The high order byte of the Starting Register

Number and Number of Registers fields is sent as the first byte in each of these

fields. The low order byte is the second byte in each of these fields.

 The Byte Count field is one byte in length. It is a binary number from 2 to 250

inclusive. It is equal to the number of bytes in the data field of the preset multiple

registers request. Note that the Byte Count is equal to twice the value of the

Number of Registers.

 The registers are returned in the Data field in order of number with the lowest

number register in the first two bytes and the highest number register in the last

two bytes of the Data field. The number of the first register in the Data field is

equal to the starting register number plus one. The high order byte is sent before

the low order byte of each register.

Response:

 The description of the fields in the response are covered in the query description.

13-44 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (17): Report Device Type

Format:

Address Error Check Func 17

Query

Normal Response

Address Device

Type 43

Error Check Func 17 Slave Run

Light

Data Byte
Count

Query:

The Report Device Type query is sent by the master to a slave in order to learn what

type of programmable control or other computer it is.

 An Address of zero is not allowed as this cannot be a broadcast request.

 The Function code is 17.

Response:

 The Byte Count field is one byte in length and is equal to 5.

 The Device Type field is one byte in length and is equal to 43 (hexadecimal) for

PACSystems

 The Slave Run Light field is one byte in length. The Slave Run Light byte is equal

to OFFH if the CPU is in RUN mode. It is equal to 0 if the CPU is not in RUN

mode.

 The Data field contains three bytes. For PACSystems CPUs, the first byte is the

Minor Type, and the remaining bytes are zeroes. The following table lists minor

types.

Response Data
(Minor Type)

CPU Model

02 hex IC698CPE010

04 hex IC698CPE020

05 hex IC698CRE020

06 hex IC698CPE030

08 hex IC698CPE040

0A hex
IC695CPE305
IC695CPU310

0C hex IC695NIU001

10 hex IC695CPU320

11 hex IC695CRU320

12 hex IC695CPE305

18 hex IC695CPU315

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-45

13

Message (22): Mask Write 4x Memory

Modifies the contents of a specified 4x register using a combination of an AND mask,

an OR mask, and the register's current contents. The function can be used to set or

clear individual bits in the register. Broadcast is not supported.

Query

The query specifies the 4x reference to be written, the data to be used as the AND

mask, and the data to be used as the OR mask.

The function's algorithm is:

Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)

For example,

 Hex Binary

Current Contents 12 0001 0010

And_Mask F2 1111 0010

Or_Mask 25 0010 0101

And_Mask 0D 0000 1101

Result 17 0001 0111

Note: If the Or_Mask value is zero, the result is simply the logical ANDing of the

current contents and And_Mask. If the And_Mask value is zero, the result is

equal to the Or_Mask value.

Note: The contents of the register can be read with the Read Holding Registers

function (function code 03). They could, however, be changed subsequently

as the controller scans its user logic program.

Example of a Mask Write to register 5 in slave device 17, using the above mask

values:

Field Name Example (Hex)

Slave Address 11

Function 16

Reference Address Hi 00

Reference Address Lo 04

And_Mask Hi 00

And_Mask Lo F2

Or_Mask Hi 00

Or_Mask Lo 25

Error Check (LRC or CRC) --

Response

The normal response is an echo of the query. The response is returned after the

register has been written.

13-46 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (23): Read Write 4x Memory

Performs a combination of one read and one write operation in a single Modbus

transaction. The function can write new contents to a group of 4x registers, and then

return the contents of another group of 4x registers. Broadcast is not supported.

Query

The query specifies the starting address and quantity of registers of the group to be

read. It also specifies the starting address, quantity of registers, and data for the group

to be written. The Byte Count field specifies the quantity of bytes to follow in the Write

Data field.

Here is an example of a query to read six registers starting at register 5, and to write

three registers starting at register 16, in slave device 17:

Field Name Example (Hex)

Slave address 11

Function 17

Read Reference Address Hi 00

Read Reference Address Lo 04

Quantity to Read Hi 00

Quantity to Read Lo 06

Write Reference Address Hi 00

Write Reference Address Lo 0F

Quantity to Write Hi 00

Quantity to Write Lo 03

Byte Count 06

Write Data 1 Hi 00

Write Data 1 Lo FF

Write Data 2 Hi 00

Write Data 2 Lo FF

Write Data 3 Hi 00

Write Data 3 Lo FF

Error Check (LRC or CRC) --

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-47

13

Response

The normal response contains the data from the group of registers that were read.

The Byte Count field specifies the quantity of bytes to follow in the Read Data field.

Here is an example of a response to the query:

Field Name Example (Hex)

Slave Address 11

Function 17

Byte Count 0C

Read Data 1 Hi 00

Read Data 1 Lo FE

Read Data 2 Hi 0A

Read Data 2 Lo CD

Read Data 3 Hi 00

Read Data 3 Lo 01

Read Data 4 Hi 00

Read Data 4 Lo 03

Read Data 5 Hi 00

Read Data 5 Lo 0D

Read Data 6 Hi 00

Read Data 6 Lo FF

Error Check (LRC or CRC) --

13-48 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Message (67): Read Scratch Pad Memory

Format:

Address Starting
Byte No.

Number of
Bytes

Error
Check

Func

67

Query

Address Data Error
Check

Func
67

Normal Response

Byte
Count

Query:

 An Address of 0 is not allowed as this cannot be a broadcast request.

 The Function Code is equal to 67.

 The Starting Byte Number is two bytes in length and may be any value less than

or equal to the highest scratch pad memory address available in the attached

CPU as indicated in the table below. The Starting Byte Number is equal to the

address of the first scratch pad memory byte returned in the normal response to

this request.

 The Number of Bytes value is two bytes in length. It specifies the number of

scratch pad memory locations (bytes) returned in the normal response. The sum

of the Starting Byte Number and the Number of Bytes values must be less than

two plus the highest scratch pad memory address available in the attached CPU.

The high order byte of the Starting Byte Number and Number of Bytes fields is

sent as the first byte in each of these fields. The low order byte is the second byte

in each of the fields.

Response:

 The Byte Count is a binary number from 1 to 256 (0 = 256). It is the number of

bytes in the Data field of the normal response.

 The Data field contains the contents of the scratch pad memory requested by the

query. The scratch pad memory bytes are sent in order of address. The contents

of the scratch pad memory byte whose address is equal to the Starting Byte

Number is sent in the first byte of the Data field. The contents of the scratch pad

memory byte whose address is equal to one less than the sum of the starting byte

number and number of bytes values is sent in the last byte of the Data field.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-49

13

RTU Scratch Pad

The entire scratch pad is updated every time an external READ request is received by

the PACSystems RTU slave. All scratch pad locations are read only. The scratch pad

is a byte-oriented memory type.

RTU Scratch Pad Memory Allocation

SP
Address

Field Identifier Bits

7 6 5 4 3 2 1 0

00 CPU Run Status 0 0 0 0 See note 1.

01 CPU Command Status Bit pattern same as SP(00)

02
03

CPU Type Major
2a

 (in hexadecimal)
Minor

2b
 (in hexadecimal)

04 – 0B CPU SNP ID 7 ASCII characters + termination character
(00h)

0C
0D

CPU Firmware Revision No. Major (in BCD)
Minor (in BCD)

0E
0F

Communications Management Module (CMM)
Firmware Revision No.

Major
Minor

10—11 Reserved 00h

12 Node Type Identifier PACSystems 43 (hexadecimal)

13—15 Reserved 00h

16 RTU Station Address 1—247 (decimal)

17 Reserved 00h

18—33 Sizes of Memory Types
3

 18—1B Register Memory %R size (words)

 1C—1F Analog Input Table %AI size (words)

 20—23 Analog Output Table %AO size (words)

 24—27 Input Table %I size (bits)

 28—2B Output Table %O size (bits)

 2C—2F Internal Discrete Memory %M size (bits)

 30—33 User Program Code The amount of program memory occupied by the
logic program.

34—FF Reserved 00h

Scratch Pad Memory Allocation Notes

1
 0000 = Run_Enabled 0100 = Halted

 0001 = Run_Disabled 0101 = Suspended

 0010 = Stopped 0110 = Stopped_IO_Enabled

2a
CPU Major Type Codes:

 PACSystems 0x43

2b
 PACSystems Minor Types for CPU:

see Message (17) Report Device Type

3
 Scratch Pad Bytes 18h-33h:

Four bytes hold the hexadecimal length of each memory type with the most significant word reserved for future

expansion. For example, the default register memory size of 1024 words (0400h) would be returned in the following

format:

Word Least Significant Most Significant

SP Byte 18 19 1A 1B

Contains 00 04 00 00

13-50 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Communication Errors

Serial link communication errors are divided into three groups:

 Invalid Query Message

 Serial Link Time Outs

 Invalid Transaction

Invalid Query Message

When the communications module receives a query addressed to itself, but cannot

process the query, it sends one of the following error responses:

 Subcode

Invalid Function Code 1

Invalid Address Field 2

Invalid Data Field 3

Query Processing Failure 4

The format for an error response to a query is as follows:

Address Exception
Func

Error
Subcode

Error
Check

The address reflects the address provided on the original request. The exception

function code is equal to the sum of the function code of the query plus 128. The error

subcode is equal to 1, 2, 3, or 4. The value of the subcode indicates the reason the

query could not be processed.

Invalid Function Code Error Response (1)

An error response with a subcode of 1 is called an invalid function code error

response. This response is sent by a slave if it receives a query whose function code

is not equal to 1 through 8, 15, 16, 17, or 67.

Note: Starting with Release 6.70 for the RX3i, the invalid function code error

response is not used. Instead, undefined and unsupported function codes are

ignored, and no response is generated.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-51

13

Invalid Address Error Response (2)

An error response with a subcode of 2 is called an invalid address error response.

This error response is sent in the following cases:

1. The Starting Point Number and Number of Points fields specify output points or

input points that are not available in the attached CPU (returned for function

codes 1, 2, 15).

2. The Starting Register Number and Number of Registers fields specify registers

that are not available in the attached CPU (returned for function codes 4, 16).

3. The Starting Analog Input Number and Analog Input Number fields specify analog

inputs that are not available in the attached CPU (returned for function code 3).

4. The Point Number field specifies an output point not available in the attached

CPU (returned for function code 5).

5. The Register Number field specifies a register not available in the attached CPU

(returned for function code 6).

6. The Analog Input Number field specifies an analog input number not available in

the at-attached CPU (returned for function code 3).

7. The Diagnostic Code is not equal to 0, 1, or 4 (returned for function code 8).

8. The starting Byte Number and Number of Bytes fields specify a scratch pad

memory address that is not available in the attached CPU (returned for function

code 67).

Invalid Data Value Error Response (3)

An error response with a subcode of 3 is called an invalid data value error response.

This response is sent in the following cases:

The first byte of the Data field is not equal to 0 or 255 (FFh) or the second byte of the

Data field is not equal to 0 for the Force Single Output Request (Function Code 5) or

the initiate communication restart request (function code 8, diagnostic code 1). The

two bytes of the Data field are not both equal to 0 for the Force Listen-Only request

(Function Code 8, Diagnostic Code 4). This response is also sent when the data

length specified by the Memory Address field is longer than the data received.

Query Processing Failure Error Response (4)

An error response with a subcode of 4 is called a query processing failure response.

This error response is sent by a RTU device if it properly receives a query but

communication between the associated CPU and the CMM fails.

13-52 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

Serial Link Timeout

The only cause for a RTU device to timeout is if an interruption to a data stream of 4

character times occurs while a message is being received. If this occurs the message

is considered to have terminated and no response will be sent to the master. There

are certain timing considerations due to the characteristics of the slave that should be

taken into account by the master. After sending a query message, the master should

wait an appropriate amount of time for slave turnaround before assuming that the

slave did not respond to the request. Slave turnaround time is affected by the

Controller Communications Window time and the CPU sweep time, as described in

“RTU Slave Turnaround Time” on page 13-25.

Invalid Transactions

If an error occurs during transmission that does not fall into the category of an invalid

query message or a serial link time-out, it is known as an invalid transaction. Types of

errors causing an invalid transaction include:

 Bad CRC.

 The data length specified by the Memory Address field is longer than the data

received.

 Framing or overrun errors.

 Parity errors.

If an error in this category occurs when a message is received by the slave serial port,

the slave does not return an error message; rather the slave ignores the incoming

message, treating the message as though it was not intended for it.

GFK-2222S Chapter 13 Serial I/O, SNP and RTU Protocols 13-53

13

RTU Slave/SNP Slave Operation With Programmer Attached

A port that has been configured for RTU Slave protocol can switch to SNP protocol if

an SNP master such as a programmer begins communicating to the port. The

programmer must use the same serial communications parameters (baud rate, parity,

stop bits, etc.) as the currently active RTU Slave protocol for it to be recognized. When

the CPU recognizes the SNP master, the CPU removes the RTU Slave protocol from

the port and installs SNP Slave as the active protocol.

The SNP protocol that is installed in this case has the following fixed characteristics:

■ The SNP ID is set to blank. Therefore the SNP master must use a blank ID in the

SNP attach message. This also means that this capability is only useful for point-

to-point connections.

■ The turnaround time is set to 0 ms.

■ The idle timeout is set to 10 seconds.

After the programmer is removed, there is a slight delay (equal to the idle timeout)

before the CPU recognizes its absence. During this time, no messages are processed

on the port. The CPU detects removal of the programmer as an SNP Slave protocol

timeout. Therefore, it is important to be careful when disabling timeouts used by the

SNP Slave protocol.

When the CPU recognizes the programmer disconnect, it reinstalls RTU Slave

protocol unless a new protocol has been configured in the meantime. In that case, the

CPU installs the new protocol instead.

Example

1. Port 1 is running RTU Slave protocol at 9600 baud.

2. A programmer is attached to port 1. The programmer is using 9600 baud.

3. The CPU installs SNP Slave on port 1 and the programmer communicates

normally.

4. The programmer stores a new configuration to port 1. The new configuration sets

the port for SNP Slave at 4800 baud (it will not take effect until the port loses

communications with the programmer).

5. When the CPU loses communications with the programmer, the new configuration

takes effect.

13-54 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

13

SNP Slave Protocol
PACSystems CPUs can communicate with Machine Edition software through either

Port 1 or Port 2 using SNP slave protocol.

CPU port 1 is wired as an RS-232 Data Communications Equipment (DCE) port, and

can be connected directly using straight-through cable to one of the serial ports of a

PC running Machine Edition or other SNP master software.

CPU port 2 is wired for RS-485. If the SNP master does not have an RS-485 port, an

RS-485/RS-232 converter is required. The RX3i can use converter IC690ACC901,

which uses +5VDC from the serial port. The RX7i CPU port 2 does not support

IC690ACC901 and requires an externally powered converter.

PACSystems provides the break free version of SNP, so that the SNP master does

not need to issue a break signal as part of the SNP attach sequence. However, the

CPU responds appropriately if a break signal is detected, by resetting the protocol to

wait for another attach sequence from the master.

PACSystems supports both point-to-point connections (single master/single slave)

and multi-drop connections (single master/multiple slaves).

For details on SNP protocol, refer to the Serial Communications User’s Manual,

GFK-0582.

Permanent Datagrams

Permanent datagrams survive after the SNP session that created them has been

terminated. This allows an SNP master device to periodically retrieve datagram data

from a number of different controllers on a multi-drop link, without the master having

to establish and write the datagram each time it reconnects to the controller.

The maximum number of permanent datagrams that can be established is 32. When

this limit is reached, additional requests to establish datagrams are denied. One or

more of the permanent datagrams will need to be cancelled before others can be

established. Since the permanent datagrams are not automatically deleted when the

SNP session is terminated, this limit prevents an inordinate amount of these

datagrams from being established.

Permanent datagrams do not survive a power-cycle.

Communication Requests (COMM_REQs) for SNP

The PACSystems serial ports 1 and 2 currently do not provide SNP Master service,

nor do they support COMM_REQ functions for SNP commands. However, those

COMM_REQ functions can be used with PCM/CMM modules that are configured to

provide SNP service. For more information, refer to the Serial Communications User’s

Manual, GFK-0582.

GFK-2222S 14-1

Diagnostics

This chapter explains the PACSystems fault handling system, provides definitions of
fault extra data, and suggests corrective actions for faults.

Faults occur in the control system when certain failures or conditions happen that
affect the operation and performance of the system. Some conditions, such as the
loss of an I/O module or rack, may impair the ability of the PACSystems controller to
control a machine or process. Other conditions, such as when a new module comes
online and becomes available for use, may be displayed to inform or alert the user.

Any detected fault is recorded in the controller fault table or the I/O fault table, as
applicable.

Information in this chapter is organized as follows:

■ Fault Handling Overview 14-2

■ Using the Fault Tables 14-4

■ System Handling of Faults 14-8

■ Controller Fault Descriptions and Corrective Actions 14-14

■ I/O Fault Descriptions and Corrective Actions 14-40

■ Diagnostic Logic Blocks 14-59

14
Chapter

14-2 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Fault Handling Overview
The PACSystems CPU detects three classes of faults:

Fault Class Examples

Internal Failures (Hardware) Non-responding modules
Failed battery
Failed Energy Pack (CPE305/CPE310 models)
Memory checksum errors

External I/O Failures (Hardware) Loss of rack or module
Addition of rack or module
Loss of Genius I/O block

Operational Failures Communication failures
Configuration failures
Password access failures

System Response to Faults

Hardware failures require that either the system be shut down or the failure be
tolerated. I/O failures may be tolerated by the control system, but they may be
intolerable by the application or the process being controlled. Operational failures are
normally tolerated.

Faults have three attributes:

Fault Table Affected I/O fault table
controller fault table

Fault Action Fatal
Diagnostic
Informational

Configurability Configurable
Nonconfigurable

Fault Tables

The PACSystems CPU maintains two fault tables, the controller fault table for internal
CPU faults and the I/O fault table for faults generated by I/O devices (including I/O
controllers). For more information, see “Using the Fault Tables” on page 14-4.

GFK-2222S Chapter 14 Diagnostics 14-3

14

Fault Actions and Fault Action Configuration

Fatal faults cause the fault to be recorded in the appropriate table, diagnostic
variables to be set, and the system to be stopped. Only fatal faults cause the system
to stop.

Diagnostic faults are recorded in the appropriate table, and any diagnostic variables
are set. Informational faults are only recorded in the appropriate table.

Fault Action Response by CPU

Fatal Log fault in fault table.
Set fault references.
Go to Stop/Fault mode.

Diagnostic Log fault in fault table.
Set fault references.

Informational Log fault in fault table.

The hardware configuration can be used to specify the fault action of some fault
groups. For these groups, the fault action can be configured as either fatal or
diagnostic. When a fatal or diagnostic fault within a configurable group occurs, the
CPU executes the configured fault action instead of the action specified within the
fault.

Note: The fault action displayed in the expanded fault details indicates the fault
action specified by the fault that was logged, but not necessarily the executed fault
action. To determine what action was executed for a particular fault in a configurable
fault group, you must refer to the hardware configuration settings.

Faults that are part of configurable fault groups:

Fault Action Displayed in
Fault Table

Informational Diagnostic Fatal

Fault Action Executed Informational Diagnostic or Fatal.

Determined by action selected
in Hardware Configuration.

Diagnostic or Fatal.

Determined by action selected
in Hardware Configuration.

Faults that are part of nonconfigurable fault groups:

Fault Action Displayed in
Fault Table

Informational Diagnostic Fatal

Fault Action Executed Informational Diagnostic Fatal

14-4 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Using the Fault Tables
To display the fault tables in Logic Developer software,

1. Go online with the PACSystems.

2. Select the Project tab in the Navigator, right click the Target node and choose
Diagnostics. The Fault Table Viewer appears.

The controller fault table and the I/O fault table display the following information:

Controller
Time/Date

The current date and time of the CPU.

Last Cleared The date and time faults were last cleared from the fault table. This
information is maintained by the PACSystems controller.

Status Displays “Updating” while the programmer is reading the fault table.
Status is “Online” when update is complete.

Total Faults The total number of faults since the table was last cleared.

Entries Overflowed The number of entries lost because the fault table has overflowed since it
was cleared. Each fault table can contain up to 64 faults.

Controller Fault Table

The controller fault table displays CPU faults such as password violations,
configuration mismatches, parity errors, and communications errors.

The controller fault table provides the following information for each fault:

Location Identifies the location of the fault by rack.slot.

Description Corresponds to a fault group, which is identified in the fault Details.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. See “Viewing Controller
Fault Details” for more information.

GFK-2222S Chapter 14 Diagnostics 14-5

14

Viewing Controller Fault Details

Note: The fault action displayed in the expanded fault details indicates the fault
action specified by the fault that was logged, but not necessarily the executed fault
action. To determine what action was executed for a particular fault in a configurable
fault group, you must refer to the hardware configuration settings.

To see controller fault details, click the fault entry. The detailed information box for the
fault appears. (To close this box, click the fault.)

The detailed information for controller faults includes the following:

Error Code Further identifies the fault. Each fault group has its own set of error codes.

Group Group is the highest classification of a fault and identifies the general category
of the fault. The fault description text displayed by your programming software
is based on the fault group and the error codes.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to
page 14-3.

Task Number Not used for most faults. When used, provides additional information for
Technical Support representatives.

Fault Extra Data Provides additional information for diagnostics by Technical Support engineers.
Explanations of this information are provided as appropriate for specific faults
in “Controller Fault Descriptions and Corrective Actions” on page 14-14.

User-Defined Faults

User-defined faults can be logged in the controller fault table. When a user-defined
fault occurs, it is displayed in the appropriate fault table as “Application Msg
(error_code):” and may be followed by a descriptive message up to 24 characters.
The user can define all characters in the descriptive message. Although the message
must end with the null character, e.g., zero (0), the null character does not count as
one of the 24 characters. If the message contains more than 24 characters, only the
first 24 characters are displayed.

Certain user-defined faults can be used to set a system status reference (%SA0081–
%SA0112).

User-defined faults are created using Service Request 21, which is described in
chapter 9.

Note: When a user-defined fault is displayed in the Controller Fault table, a value of
-32768 (8000 hex) is added to the error code. For example, the error code 5 will be
displayed as -32763.

14-6 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

I/O Fault Table

The I/O fault table displays I/O faults such as circuit faults, address conflicts, forced
circuits, I/O module addition/loss faults and I/O bus faults.

The fault table displays a maximum of 64 faults. When the fault table is full, it displays
the earliest 32 faults (33—64) and the last 32 faults (1—32). When another fault is
received, fault 32 is shoved out of the table. In this way, the first 32 faults are
preserved for the user to view.

The I/O fault table provides the following information for each fault:

Location Identifies the location of the fault by rack.slot location, and sometimes bus and
buss address.

CIRC No. When applicable, identifies the specific I/O point on the module.

Variable
Name

If the fault is on a point that is mapped to an I/O variable, and the variable is
set to publish (either internal or external), the I/O fault table displays the
variable name. Unpublished I/O variables will not be displayed in this field.

Ref. Address If the fault is on a point that is mapped to a reference address, this field
identifies the I/O memory type and location (offset) that corresponds to the
point experiencing the fault. When a Genius device fault or local analog
module fault occurs, the reference address refers to the first point on the block
where the fault occurred.

Note: The Reference Address field displays 16-bits and %W memory has a

32-bit range. Addresses in %W are displayed correctly for offsets in

the 16-bit range (65,535). For %W offsets greater than 16-bits, the
I/O Fault Table displays a blank reference address.

Fault
Category

Specifies a general classification of the fault.

Fault Type Consists of subcategories under certain fault categories. Set to zero when not
applicable to the category.

Date/Time The date and time the fault occurred based on the CPU clock.

Details To view detailed information, click the fault entry. See “Viewing I/O Fault
Details” for more information.

GFK-2222S Chapter 14 Diagnostics 14-7

14

Viewing I/O Fault Details

To see I/O fault details, click the fault entry. The detailed information box for the fault
appears. (To close this box, click the fault.)

The detailed information for I/O faults includes:

I/O Bus When the module in the slot is a Genius Bus Controller (GBC), this number is
always one.

Bus Address The serial bus address of the Genius device that reported or has the fault.

Point Address Identifies the point on the I/O device that has the fault when the fault is a
point-type fault.

Group Fault group is the highest classification of a fault. It identifies the
general category of the fault.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to
page 14-3.

Category Identifies the category of the fault.

Fault Type Identifies the fault type by number. Set to zero when not applicable to the
category.

Fault Extra Data Provides additional information for diagnostics by Technical Support
engineers. Explanations of this information are provided as appropriate for
specific faults in “I/O Fault Descriptions and Corrective Actions” on
page 14-37.

Fault Description Provides a specific fault code when the I/O fault category is a circuit fault
(discrete circuit fault, analog circuit fault, low-level analog fault) or module
fault. It is set to zero for other fault categories.

14-8 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

System Handling of Faults
The system fault references listed below can be used to identify the specific type of
fault that has occurred. (A complete list of system status references is provided in
chapter 6.)

System Fault
Reference

Address Description

#ANY_FLT %SC0009 Any new fault in either table since the last power-up or clearing
of the fault tables

#SY_FLT %SC0010 Any new system fault in the controller fault table since the last
power-up or clearing of the fault tables

#IO_FLT %SC0011 Any new fault in the I/O fault table since the last power-up or
clearing of the fault tables

#SY_PRES %SC0012 Indicates that there is at least one entry in the controller fault
table

#IO_PRES %SC0013 Indicates that there is at least one entry in the I/O fault table

#HRD_FLT %SC0014 Any hardware fault

#SFT_FLT %SC0015 Any software fault

On power-up, the system fault references are cleared. If a fault occurs, the positive
contact transition of any affected reference is turned on the sweep after the fault
occurs. The system fault references remain on until both fault tables are cleared or All
Memory in the CPU is cleared.

System Fault References

When a system fault reference is set, additional fault references are also set. These
other types of faults are listed in “Fault References for Configurable Faults” below and
“Fault References for Non-Configurable Faults” on page 14-10.

GFK-2222S Chapter 14 Diagnostics 14-9

14

Fault References for Configurable Faults

Fault
(Default
Action)

Address
Description

May Also Be Set

#SBUS_ER
(diagnostic)

%SA0032 System bus error. All system bus error faults are logged
as informational.

#HRD_FLT, #SY_PRES,
#SY_FLT

#SFT_IOC
1

(diagnostic)
%SA0029 Non-recoverable software error in an I/O Controller

(IOC).
#IO_FLT, #IO_PRES,
#SFT_FLT

#LOS_RCK
2

(diagnostic)
%SA0012 Loss of rack (BRM failure, loss of power) or missing a

configured rack.
#SY_FLT, #SY_PRES,
#IO_FLT, #IO_PRES

#LOS_IOC
3

(diagnostic)
%SA0013 Loss of I/O Controller or missing a configured Bus

Controller.
#IO_FLT, #IO_PRES

#LOS_IOM
(diagnostic)

%SA0014 Loss of I/O module (does not respond), or missing a
configured I/O module.

#IO_FLT, #IO_PRES

#LOS_SIO
(diagnostic)

%SA0015 Loss of intelligent module (does not respond), or missing
a configured module.

#SY_FLT, #SY_PRES

#IOC_FLT
(diagnostic)

%SA0022 Non-fatal bus or I/O Controller error, more than 10 bus
errors in 10 seconds. (Error rate is configurable.)

#IO_FLT, #IO_PRES

#CFG_MM
(fatal)

%SA0009 Configuration mismatch. Wrong module type detected.
The CPU does not check the configuration parameter
settings for individual modules such as Genius I/O
blocks.

#SY_FLT, #SY_PRES

#OVR_TMP
(diagnostic)

%SA0008 CPU temperature has exceeded its normal operating
temperature.

#SY_FLT, #SY_PRES

1. The #SFT_IOC software fault will have the same action as what you set for #LOS_IOC.

2. When a Loss of Rack or Addition of Rack fault is logged, individual loss or add faults for each module in
that rack are usually not generated.

3. Even if the #LOS_IOC fault is configured as Fatal, the CPU will not go to STOP/FAULT unless both
GBCs of an internal redundant pair fail.

Note: If the fault action for a fault logged to the fault table is informational, the
configured action is not used. For example, if the logged fault action for an
SBUS_ERR is informational, but you configure it as fatal, the action is still
informational.

14-10 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Fault References for Non-Configurable Faults

Fault Address Description Result

#PS_FLT %SA0005 Power supply fault Sets #SY_FLT, #SY_PRES

#HRD_CPU
(fatal)

%SA0010 CPU hardware fault (such as failed memory
device or failed serial port).

Sets #SY_FLT, #SY_PRES, #HRD_FLT

#HRD_SIO
(diagnostic)

%SA0027 Non-fatal hardware fault on any module in the
system, such as failure of a serial port on a
LAN interface module.

Sets #SY_FLT, #SY_PRES, #HRD_FLT

#PNIO_
ALARM

%SA0030 A diagnostic PROFINET alarm has been
received and an I/O fault has been logged in
group 28.

Sets #ANY_FLT, #IO_FLT, #IO_PRES

#SFT_SIO
(diagnostic)

%SA0031 Non-recoverable software error in a LAN
interface module.

Sets #SY_FLT, #SY_PRES, #SFT_FLT

#PB_SUM
(fatal)

%SA0001 Program or block checksum failure during
power-up or in Run mode.

Sets #SY_FLT, #SY_PRES

#LOW_BAT
(diagnostic)

%SA0011 The low battery indication is not supported for
all CPU versions. For details, see “Battery
Status (Group 18)” on page 14-28.

Sets #SY_FLT, #SY_PRES

#OV_SWP
(diagnostic)

%SA0002 Constant sweep time exceeded. Sets #SY_FLT, #SY_PRES

#SY_FULL
#IO_FULL
(diagnostic)

%SA0022 Controller fault table full (64 entries).
I/O fault table full (64 entries).

Sets #SY_FLT, #SY_PRES, #IO_FLT,
#IO_PRES

#APL_FLT
(diagnostic)

%SA0003 Application fault. Sets #SY_FLT, #SY_PRES

#ADD_RCK
1

(diagnostic)
%SA0017 New rack added, extra rack, or previously

faulted rack has returned.
Sets #SY_FLT, #SY_PRES

#ADD_IOC
(diagnostic)

%SA0018 Extra IOC, previously faulted I/O Controller is
no longer faulted.

Sets #IO_FLT, #IO_PRES

#ADD_IOM
(diagnostic)

%SA0019 Extra IO module, or previously faulted I/O
module is no longer faulted.

Sets #IO_FLT, #IO_PRES

#ADD_SIO
(diagnostic)

%SA0020 New intelligent module is added, or previously
faulted module no longer faulted.

Sets #SY_FLT, #SY_PRES

#IOM_FLT
(diagnostic)

%SA0023 Point or channel on an I/O module; a partial
failure of the module.

Sets #IO_FLT, I#O_PRES

#NO_PROG
(information)

%SB0009 No application program is present at power-up.
Should only occur the first time the
PACSystems controller is powered up or if the
user memory containing the program fails.

CPU will not go to Run mode; it
continues executing Stop mode sweep
until a valid program is loaded. This can
be a “null” program that does nothing.
Sets #SY_FLT and #SY_PRES.

#BAD_RAM
(fatal)

%SB0010 Corrupted program memory at power-up.
Program could not be read and/or did not pass
checksum tests.

Sets #SY_FLT and #SY_PRES.

#WIND_ER
(information)

%SB0001 Window completion error. Servicing of
Controller Communications or Logic Window
was skipped. Occurs in Constant Sweep
mode.

Sets #SY_FLT and #SY_PRES.

#BAD_PWD
(information)

%SB0011 Change of privilege level request to a
protection level was denied; bad password.

Sets #SY_FLT and #SY_PRES.

1
 When a Loss of Rack or Addition of Rack fault is logged, individual loss or add faults for each

module in that rack are usually not generated.

GFK-2222S Chapter 14 Diagnostics 14-11

14

Fault Address Description Result

#NUL_CFG
(fatal)

%SB0012 No configuration present upon transition to
Run mode. Running without a configuration is
equivalent to suspending the I/O scans.

Sets #SY_FLT and #SY_PRES.

#SFT_CPU
(fatal)

%SB0013 CPU software fault. A non-recoverable error
has been detected in the CPU. May be caused
by Watchdog Timer expiring.

CPU immediately transitions to Stop/Halt
mode. The only activity permitted is
communication with the programmer. To
be cleared, controller power must be
cycled. Sets SY_FLT, SY_PRES, and
SFT_FLT.

#STOR_ER
(fatal)

%SB0014 Download of data to CPU from the
programmer failed; some data in CPU may be
corrupted.

CPU will not transition to Run mode. This
fault is not cleared at power-up,
intervention is required to correct it. Sets
SY_FLT and SY_PRES.

Using Fault Contacts

Fault (-[F]-) and no-fault (-[NF]-) contacts can be used to detect the presence of I/O
faults in the system. These contacts cannot be overridden. The following table shows
the state of fault and no-fault contacts.

Condition [F] [NF]

Fault Present
Fault Absent

ON
OFF

OFF
ON

An NF contact will be ON (F contact will be OFF) when the referenced I/O point is not
faulted, or the referenced I/O point does not exist in the hardware configuration.

Fault Locating References (Rack, Slot, Bus, Module)

The PACSystems CPU supports reserved fault names for each rack, slot, bus, and
module. By programming these names on the FAULT and NOFLT contact
instructions, logic can be executed in response to faults associated with configured
racks and modules.

Fault Locating Reference Name Format

These fault names can only be programmed on the FAULT and NOFLT contacts. The
reserved fault names are always available. It is not necessary to enable a special
option, such as point faults.

Fault Reference
Type

Reserved
Name

Comment

Rack #RACK_000r Where r is rack number 0 to 7.

Slot #SLOT_0rss Where r is rack number 0 to 7 and ss is slot number 0 to 31.

Bus #BUS_0rssb
(Genius only)

Where r is rack number 0 to 7, ss is slot number 0 to 31, and b is the bus
number (0 or 1).

Module #M_rssbmmm
(Genius only)

Where r is rack number 0 to 7, ss is slot number 0 to 31, b is the bus
number, and mmm is the Bus Address number 000 to 255.

These fault names do not correspond to %SA, %SB, %SC, or to any other reference
type. They are mapped to a memory area that is not user-accessible. Only the name
is displayed.

14-12 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Fault Reference Name Examples:

#RACK_0001 represents rack 1.

#SLOT_0105 represents rack 1, slot 5.

#BUS_02041 represents rack 2, slot 4, bus 1.

#M_2061028 represents rack 2, slot 6, bus 1, Genius module 28.

Note: When a slot level failure fault is reported to the fault tables, all bus and
module fault locating references associated with that slot are set (the FAULT contact
passes power flow, and the NOFLT contact does not pass power flow), regardless of
what type of module it is. Conversely, when a slot level reset fault is reported to the
fault tables, all bus and module fault locating references are cleared (the FAULT
contact does not pass power flow, and the NOFLT contact passes power flow).

Behavior of Fault Locating References

At power-up, all fault locating references are cleared in the CPU. When a fault is
logged, the CPU transitions the state of the affected reference(s). The state of the
fault reference remains in the fault state until one of the following actions occurs:

 Both the controller and the I/O fault tables are cleared through your programming
software either by clearing each table individually or clearing the entire CPU
memory.

 The associated device (rack, I/O module, or Genius device) is added back into the
system. Whenever an “Addition of. . . ” fault is logged, the CPU initializes all fault
references associated with the device to the NoFlt state. These references remain
in the NoFlt state until another fault associated with the device is reported. (This
could take several seconds for distributed I/O faults, especially if the bus controller
has been reset.)

Note: These fault references are set for informational purposes only. They should
not be used to qualify I/O data. The Alarm Contacts (described on page 14-13) may
be used to qualify I/O data. The CPU does not halt execution as a result of setting a
fault locating reference to the Fault state.

The fault references have a cascading effect. If there is a problem in the module
located at rack 5, slot 6, bus 1, module 29, the following fault references are set:
RACK_05, SLOT_0506, BUS_05061, and M_5061029. There will only be one entry in
the fault table to describe the problem with the module. The fault table does not show
separate entries pertaining to the rack, slot, and bus in this case.

If an analog base module (IC697ALG230) is lost, the fault locating reference for that
module is set. The fault locating references for its expander modules (IC697ALG440
and ALG441) are not set as a result of the loss. Therefore, any fault locating
references to an expander module should also reference the base module to verify
that the module or its base have not been lost.

GFK-2222S Chapter 14 Diagnostics 14-13

14

Using Point Faults

Point faults pertain to external I/O faults, although they are also set due to the failure
of associated higher-level internal hardware (for example, IOC failure or loss of a
rack). To use point faults, they must be enabled in Hardware Configuration on the
Memory parameters tab of the CPU.

When enabled, a bit for each discrete I/O point and a byte for each analog I/O channel
are allocated in CPU memory. The CPU memory used for point faults is included in
the total reference table memory size. The FAULT and NOFLT contacts described in
“Using Fault Contacts” on page 14-11 provide access to the point faults.

The full support of point fault contacts depends on the capability of the I/O module.
Some Series 90-30 modules do not support point fault contacts. The point fault
contacts for these modules remain all off, unless a Loss of I/O Module occurs, in
which case the RX3i CPU turns on all point fault contacts associated with the lost
module.

Using Alarm Contacts

High (-[HA]-) and low (-[LA]-) alarm contacts are used to represent the state of the

analog input module comparator function. To use alarm contacts, point faults must
first be enabled in Hardware Configuration on the Memory parameters tab of the CPU.

The following example logic uses both high and low alarm contacts.

Note: HA and LA contacts do not create an entry in a fault table.

14-14 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Controller Fault Descriptions and Corrective Actions
Each fault explanation contains a fault description and instructions to correct the fault.
Many fault descriptions have multiple causes. In these cases, the error code and
additional fault information are used to distinguish among fault conditions sharing the
same fault description.

Controller Fault Groups

Group Name Default Fault
Action

2

Configurable

1 Loss of or Missing Rack Diagnostic Yes

4 Loss of or Missing Option Module Diagnostic Yes

5 Addition of, or Extra Rack N/A No

8 Reset of, Addition of, or Extra Option
Module

N/A No

11 System Configuration Mismatch Fatal
3
 Yes

12 System Bus Error Fatal Yes

13 CPU Hardware Failure N/A No

14 Module Hardware Failure N/A No

16 Option Module Software Failure N/A No

17 Program or Block Checksum Failure Group N/A No

18 Battery Status Group N/A No

19 Constant Sweep Time Exceeded N/A No

20 System Fault Table Full N/A No

21 I/O Fault Table Full N/A No

22 User Application Fault N/A No

24 CPU Over Temperature Diagnostic Yes

128 System Bus Failure N/A No

129 No User Program on Power-up N/A No

130 Corrupted User Program on Power-up N/A No

131 Window Completion Failure N/A No

132 Password Access Failure N/A No

134 Null System Configuration for Run Mode N/A No

135 CPU System Software Failure N/A No

137 Communications Failure During Store N/A No

140 Non-critical CPU Software Event N/A No

2
 The fault action indicated is not applicable if the fault is displayed as informational. Faults

displayed as informational, always behave as informational.
3
 If a system configuration mismatch occurs when the CPU is in Run mode, the fault action will

be Diagnostic regardless of the fault configuration. For additional information, see “Fault
Parameters” in chapter 3.

GFK-2222S Chapter 14 Diagnostics 14-15

14

Loss of or Missing Rack (Group 1)

The fault group Loss of or Missing Rack occurs when the system cannot communicate
with an expansion rack because the BTM (Bus Transmitter Module) in the main rack
failed, the BRM (Bus Receiver Module) in the expansion rack failed, power failed in
the expansion rack, or the expansion rack was configured in the configuration file but
did not respond during power-up.

Default action: Diagnostic. Configurable.

1, Rack Lost

The CPU generates this error when the main rack can no longer communicate with
an expansion rack. The error is generated for each expansion rack that exists in the system.

Correction

(1) Power off the system. Verify that both the BTM and the BRM are seated
properly in their respective racks and that all cables are properly connected and
seated.

(2) Replace the cables.

(3) Replace the BRM.

(4) Replace the BTM.

2, Rack Not Responding

The CPU generates this error when the configuration file stored from the programmer indicates
that a particular expansion rack should be in the system but none responds for that rack
number.

Correction

(1) Check rack number jumper behind power supply—first on missing rack and
then on all other racks—for duplicated rack numbers.

(2) Update the configuration file if a rack should not be present.

(3) Add the rack to the hardware configuration if a rack should be present and
one is not.

(4) Power off the system. Verify that both the BTM and the BRM are seated
properly in their respective racks and that all cables are properly connected and
seated.

(5) Replace the cables.

(6) Replace the BRM.

(7) Replace the BTM.

(8) Check for Termination Plug on last BRM.

14-16 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Loss of or Missing Option Module (Group 4)

The fault group Loss of or Missing Option Module occurs when a LAN interface
module, BTM, or BRM fails to respond. The failure may occur at power-up or store of
configuration if the module is missing or during operation if the module fails to
respond. This may also occur due to hot removal of an option module.

Default action: Diagnostic. Configurable

3C hex/60 decimal, Module in Firmware Update Mode

The CPU generates this error when it finds a module in Firmware Update mode.
Modules in this mode will not communicate with the CPU.

Correction

(1) Run the firmware update utility for the module.

(2) Reset the module with the push-button.

(3 Power-cycle the entire system.

(4 Power-cycle the rack containing the module.

63 hex/99 decimal, Module Hot Removed

The CPU logs this fault when it detects hot removal of an option module such as the
LAN interface module. No correction necessary

All Others, Module Failure During Configuration

The CPU generates this error when a module fails during power-up or configuration store.

Correction

(1) Power off the system. Replace the module located in that rack and slot.

(2) If the board is located in an expansion rack, verify BTM/BRM cable
connections are tight and the modules are seated properly; verify the addressing of
the expansion rack.

(3) Replace the BTM.

(4) Replace the BRM.

(5) Replace the rack.

Addition of, or Extra Rack (Group 5)

This fault group occurs when a configured expansion rack with which the CPU could
not communicate comes online or is powered on, or an unconfigured rack is found.

Action: Nonconfigurable.

1, Extra Rack

Correction

(1) Check rack jumper behind power supply for correct setting.

(2) Update the configuration file to include the expansion rack.

Note: No correction necessary if rack was just powered on.

GFK-2222S Chapter 14 Diagnostics 14-17

14

Reset of, Addition of, or Extra Option Module (Group 8)

The fault group Reset of, Addition of, or Extra Option Module occurs when an option
module (LAN interface module, BTM, etc.) comes online, is reset, is hot inserted or a
module is found in the rack but is not configured.

Action: Nonconfigurable.

3, LAN Interface Restart Complete, Running Utility

The LAN Interface module has restarted and is running a utility program.

Correction

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533).

7, Extra Option Module

Note: This fault is logged for an RX3i CPE310 that is configured as a CPU310
because the RX3i system detects the embedded Ethernet module as an
unconfigured module.

Correction

(1) Update the configuration file to include the module.

(2) Remove the module from the system.

E Hex/14 Decimal, Option Module Hot inserted

The CPU logs this fault when it detects hot insertion of an option module such as the
LAN interface module. No correction necessary

Note: When configuration is cleared or stored, a reset fault is generated for every
intelligent option module physically present in the system.

14-18 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

System Configuration Mismatch (Group 11)

The fault group Configuration Mismatch occurs when the module occupying a slot is
different from that specified in the configuration file. When the GBC generates the
mismatch because of a Genius block, the second byte in the Fault Extra Data field
contains the bus address of the mismatched block.

Default action: Fatal. Configurable.

Note: If a system configuration mismatch occurs when the CPU is in Run mode, the
fault action will be Diagnostic regardless of the fault configuration. For additional
information, see “Fault Parameters” in chapter 3.

2, Genius I/O Block Model Number Mismatch

The CPU generates this fault when the configured and physical Genius I/O blocks
have different model numbers.

Correction

(1) Replace the Genius I/O block with one corresponding to the configured
module.

(2) Update the configuration file.

Fault Extra Data for Genius I/O Block Model Number Mismatch

Byte Value

[0] FF (flag byte)

[1] Serial Bus address

[2] Installed module type (See “Installed/Configured Module Types” on page 14-18.)

[3] Configured module type (See “Installed/Configured Module Types” on page 14-18.)

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)

Number
Description

Decimal Hexadecimal

 4 4 Genius Network Interface (GENI)

 5 5 Phase B Hand Held Monitor

 6 6 Phase B Series Six GBC with Diagnostics

 7 7 Phase B Series Six GBC without Diagnostics

 8 8 PLCM/Series Six

 9 9 PLCM/Series 90-70

 10 A Series 90-70 Single Channel Bus Controller

 11 B Series 90-70 Dual Channel Bus Controller

 12 C Series 90-10 Genius Communications Module

 13 D Series 90-30 Genius Communications Module

 32 20 High Speed Counter

 69 45 Phase B 115Vac 8-point (2 amp) Grouped Block

 70 46 Phase B 115Vac/125Vdc 8-point Isolated Block

 70 46 Phase B 115Vac/125Vdc 8-point Isolated Block without Failed Switch

 71 47 Phase B 220Vac 8-point Grouped Block

 72 48 Phase B 24-48Vdc 16-point Proximity Sink Block

GFK-2222S Chapter 14 Diagnostics 14-19

14

Number
Description

Decimal Hexadecimal

 72 48 Phase B 24Vdc 16-point Proximity Sink Block

 73 49 Phase B 24-48Vdc 16-point Source Block

 73 49 Phase B 24Vdc 16-point Proximity Source Block

 74 4A Phase B 12-24Vdc 32-point Sink Block

 75 4B Phase B 12-24Vdc 32-point Source Block

 76 4C Phase B 12-24Vdc 32-point 5V Logic Block

 77 4D Phase B 115Vac 16-point Quad State Input Block

 78 4E Phase B 12-24Vdc 16-point Quad State Input Block

 79 4F Phase B 115/230Vac 16-point Normally Open Relay Block

 80 50 Phase B 115/230Vac 16-point Normally Closed Relay Block

 81 51 Phase B 115Vac 16-point AC Input Block

 82 52 Phase B 115Vac 8-point Low-Leakage Grouped Block

127 7F Genius Network Adapter (GENA). See “GENA Application ID
Numbers” below.

131 83 Phase B 115Vac 4-input, 2-output Analog Block

132 84 Phase B 24Vdc 4-input, 2-output Analog Block

133 85 Phase B 220Vac 4-input, 2-output Analog Block

134 86 Phase B 115Vac Thermocouple Input Block

135 87 Phase B 24Vdc Thermocouple Input Block

136 88 Phase B 115Vac RTD Input Block

137 89 Phase B 24/48Vdc RTD Input Block

138 8A Phase B 115Vac Strain Gauge/mV Analog Input Block

139 8B Phase B 24Vdc Strain Gauge/mV Analog Input Block

140 8C Phase B 115Vac 4-input, 2-output Current Source Analog Block

141 8D Phase B 24Vdc 4-input, 2-output Current Source Analog Block

GENA Application ID Numbers

If the model number is 7F hex (Genius Network Adapter), the block may be one of the
following. (The GENA Application ID is shown for reference.)

Number

Decimal Hexadecimal Description

131 83 115Vac/230Vac/125Vdc Power Monitor Module

132 84 24/48Vdc Power Monitor Module

160 A0 Genius Remote 90-70 Rack Controller

14-20 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

4, I/O Type Mismatch

The CPU generates this fault when the physical and configured I/O types of Genius grouped
blocks are different.

Correction

(1) Remove the indicated Genius module and install the module indicated in the
configuration file.

(2) Update the Genius module descriptions in the configuration file to agree with
what is physically installed.

Fault Extra Data for I/O Type Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Installed module’s I/O type

[3] Configured module’s I/O type

Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)

Value Description

01 Input only

02 Output only

03 Combination

Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

Value
Description

Decimal Hexadecimal

 0 0 Discrete input

 1 1 Discrete output

 2 2 Analog input

 3 3 Analog output

 4 4 Discrete grouped

 5 5 Analog grouped

20 14 Analog in, discrete in

21 15 Analog in, discrete out

24 18 Analog in, discrete grouped

30 1E Analog out, discrete in

31 1F Analog out, discrete out

34 22 Analog out, discrete grouped

50 32 Analog grouped, discrete in

51 33 Analog grouped, discrete out

54 36 Analog grouped, discrete grouped

GFK-2222S Chapter 14 Diagnostics 14-21

14

8, Analog Expander Mismatch

The CPU generates this error when the configured and physical Analog Expander
modules have different model numbers.

Correction

(1) Replace the Analog Expander module with one corresponding to configured
module.

(2) Update the configuration file.

9, Genius I/O Block Size Mismatch

The CPU generates this error when block configuration size does not match the
configured size.

Correction

Reconfigure the block.

Fault Extra Data for Genius I/O Block Size Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Module’s broadcast data length

[3] Configured module’s broadcast data length

A hex/10 decimal, Unsupported Feature

Configured feature not supported by this revision of the module.

Correction

(1) Update the module to a revision that supports the feature.

(2) Change the module configuration.

Fault Extra Data for Unsupported Feature

Byte Value

[8] Contains a reason code indicating what feature is not supported.

 0x5 – GBC revision too old

 0x6 – Only supported in main rack

E hex/14 decimal, LAN Duplicate MAC Address

This LAN Interface module has the same MAC address as another device on the
LAN. The module is off the network.

Correction

(1) Change the module’s MAC address.

(2) Change the other device’s MAC address.

F hex/15 decimal, LAN Duplicate MAC Address Resolved

Previous duplicate MAC address has been resolved. The module is back on the
network. This is an informational message. No correction required.

14-22 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

10 hex/16 decimal, LAN MAC Address Mismatch

MAC address programmed by softswitch utility does not match configuration stored
from software.

Correction

Change MAC address on softswitch utility or in software.

11 hex/17 decimal, LAN Softswitch/Modem mismatch

Configuration of LAN module does not match modem type or configuration
programmed by softswitch utility.

Correction

(1) Correct configuration of modem type.

(2) Consult LAN Interface manual for configuration setup.

13 hex/19 decimal, DCD Length Mismatch

Directed control data lengths do not match.

Correction

See Fault Extra Data.

Fault Extra Data for DCD Length Mismatch

Byte Value

[0] FF

[1] Bus address

[2] Module’s directed data length

[3] Configured module’s directed data length

25 hex/37 decimal, Controller Reference Out of Range

A reference on either the trigger, disable, or I/O specification is out of the configured
limits.

Correction

Modify the incorrect reference to be within range, or increase the configured size of
the reference data.

26 hex/38 decimal, Bad Program Specification

The I/O specification of a program is corrupted.

Correction

Contact Technical Support.

GFK-2222S Chapter 14 Diagnostics 14-23

14

27 hex/39 decimal, Unresolved or Disabled Interrupt Reference

The CPU generates this error when an interrupt trigger reference is either out of range
or disabled in the I/O module’s configuration.

Correction

(1) Remove or correct the interrupt trigger reference.

(2) Update the configuration file to enable this particular interrupt.

43 hex/67 decimal, Module Configuration Failure

Module configuration was not successfully accepted by the module.

Correction

Check fault table for other module-specific faults for possible reasons why the module
did not accept the configuration. Check that the configuration for the module is correct
and valid.

4B hex/75 decimal, ECC jumper is disabled, but should be enabled

If the CPU redundancy feature is supported and required, the ECC jumper must be in
the enabled position.

Correction

Set the ECC jumper to the enabled position. (See the instructions provided with the
Redundancy CPU firmware upgrade kit).

4C hex/76 decimal, ECC jumper is enabled, but should be disabled

If the CPU firmware does not support redundancy, the ECC jumper must be in the
disabled position.

Correction

Set the ECC jumper to the disabled position (jumper on one pin or removed entirely).

All Others, Module and Configuration do not Match

The CPU generates this fault when the module occupying a slot is not of the same
type that the configuration file indicates.

Correction

(1) Replace the module in the slot with the type indicated in the configuration file.

(2) Update the configuration file.

14-24 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

System Bus Error (Group 12)

The fault group System Bus Error occurs when the CPU encounters a bus error.

Default action: Diagnostic. Configurable.

4, Unrecognized VME Interrupt Source

The CPU generates this error when a module generates an interrupt not expected by
the CPU (unconfigured or unrecognized).

Correction

Ensure that all modules configured for interrupts have corresponding interrupt
declarations in the program logic.

CPU Hardware Failure (Group 13)

The fault group CPU Hardware occurs when the CPU detects a hardware failure, such
as a RAM failure or a communications port failure.

When a CPU Hardware failure occurs, the OK LED will flash on and off to indicate that
the failure was not serious enough to prevent Controller Communications to retrieve
the fault information.

Action: Nonconfigurable.

6E hex/110 decimal, Time-of-Day Clock not Battery-Backed

The battery-backed value of the time-of-day clock has been lost.

Correction

(1) Replace the battery. Do not remove power from the main rack until
replacement is complete. Reset the time-of-day clock using your programming
software.

(2) Replace the module.

0A8 hex/168 decimal, Critical Overtemperature Failure

CPU’s critical operating temperature exceeded.

All Others

Correction

Replace the module.

Fault Extra Data for CPU Hardware Failure

For a RAM failure in the CPU (one of the faults reported as a CPU hardware failure),
the address of the failure is stored in the first four bytes of the field.

GFK-2222S Chapter 14 Diagnostics 14-25

14

Module Hardware Failure (Group 14)

The fault group Module Hardware Failure occurs when the CPU detects a non-fatal
hardware failure on any module in the system, for example, a serial port failure on a
LAN interface module. The fault action for this group is Diagnostic.

Action: Nonconfigurable.

1A0 hex/416 decimal, Missing 12 Volt Power Supply

A power supply that supplies 12 volts is required to operate the LAN Interface module.

Correction

(1) Install/replace a 100 watt power supply.

(2) Connect an external VME power supply that supplies 12 volts.

1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533),
for a description of these errors.

All Others, Module Hardware Failure

A module hardware failure has been detected.

Correction

Replace the affected module.

14-26 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Option Module Software Failure (Group 16)

The fault group Option Module Software Failure occurs when:

■ A non-recoverable software failure occurs on an intelligent option module.

■ The module type is not a supported type.

■ The Ethernet Interface logs an event in its Ethernet exception log.

Action: Nonconfigurable.

1, Unsupported Board Type

The board is not one of the supported types.

Correction

(1) Upload the configuration file and verify that the software recognizes the board
type in the file. If there is an error, correct it, download the corrected configuration
file, and retry.

(2) Display the controller fault table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

2, 3, COMMREQ Frequency Too High

COMMREQs are being sent to a module faster than it can process them.

Correction

Change the application program to send COMMREQs to the module at a slower rate
or check the completion status of each COMMREQ before sending the next.

4, More Than One BTM in a Rack

There is more than one BTM present in the rack.

Correction

Remove one of the BTMs from the rack; there can only be one in a CPU rack.

>4, Option Module Software Failure

Software failure detected on an option module.

Correction

(1) Reload software into the indicated module.

(2) Replace the module.

>400, LAN System Software Fault

The Ethernet interface software has detected an unusual condition and recorded an
event in its exception log. The Fault Extra Data contains the corresponding event in
the Ethernet exception log, which can be viewed by the Ethernet Interface’s Station
Manager function. The first two digits of Fault Extra Data contain the Event type; the
remaining data correspond to the four-digit values for Entry 2 through Entry 6. Some
exceptions may also contain optional multi-byte SCode and other data.

Correction

For information on interpreting the fault extra data, refer to the PACSystems TCP/IP
Communications Station Manager Manual, GFK-2225, Appendix B.

GFK-2222S Chapter 14 Diagnostics 14-27

14

Program or Block Checksum Failure (Group 17)

The fault group Program or Block Checksum Failure occurs when the CPU detects
error conditions in program or blocks. It also occurs during Run mode background
checking. In all cases, the Fault Extra Data field of the controller fault table record
contains the name of the program or block in which the error occurred.

Action: Nonconfigurable.

All Error Codes, Program or Block Checksum Failure

The CPU generates this error when a program or block is corrupted.

Correction

(1) Clear CPU memory and retry the store.

(2) Examine C application for errors.

(3) Display the controller fault table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

Fault Extra Data for Program or Block Checksum Failure

The name of the offending program block is contained in the first eight bytes of the
Fault Extra Data field.

14-28 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Battery Status (Group 18)

Faults in this group occur when the CPU detects a failed battery (or Energy Pack).

Action: Nonconfigurable.

0, Failed Battery

CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315,
CPU/CRU320 and NIU001

The battery in the CPU module has failed or is disconnected.

If the battery is disconnected, this fault is logged for all CPU types and all supported
battery types.

If a Smart Battery fails during operation, this fault is logged for all CPU types. When
used with a legacy (non-smart) battery, this indication is not reliable.

CPE305 and CPE310

The Energy Pack has failed or is disconnected.

Correction

Replace the battery or Energy Pack. For instructions on replacing the battery, refer to
the PACSystems Battery and Energy Pack Manual, GFK-2741.

1, Low Battery – CPUs with Battery-Backed RAM

This fault is supported only by the CPU versions listed in the PACSystems Battery
and Energy Pack Manual, GFK-2741.

The CPU detects the low battery condition only while the CPU is powered up.

If a low battery condition occurs while the CPU is powered down, the CPU logs a Low
Battery fault upon powerup as soon as it detects the signal from the smart battery.

While the CPU is powered up, it is unlikely that a Low Battery fault will be detected
because the current drain on the battery is negligible. The exception is when a good
battery is replaced with a low battery while the CPU has power. In this case, a Low
Battery fault would indicate that a good battery has been accidentally replaced with a
depleted battery.

The Controller fault table indicates the battery status. For details of LED operation of
specific CPUs, refer to chapter 2.

When a Failed Battery fault is logged, this fault is also logged.

Correction

Replace the battery. For instructions on replacing the battery, refer to the
PACSystems Battery and Energy Pack Manual, GFK-2741.

GFK-2222S Chapter 14 Diagnostics 14-29

14

1, Low Battery – CPE3xx CPUs with Energy Pack

The Status LED and the Controller fault table indicate the Energy Pack status.

PLC_BAT
(%S0014)

LOW_BAT
(%SA0011)

Energy Pack Status

0 0 Energy Pack connected and operational
(may be charging)

1 1 Energy Pack not connected or has failed

0 1 Energy Pack is nearing its end-of-life and
should be replaced.

14-30 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Constant Sweep Time Exceeded (Group 19)

The fault group Constant Sweep Exceeded occurs when the CPU operates in
Constant Sweep mode and detects that the sweep has exceeded the constant sweep
timer. In the fault extra data, the DWORD at byte offset 8 contains the amount of time
that the sweep went beyond the constant sweep time (in microsecond units). Stored in
Big Endian format.

Action: Nonconfigurable.

0, Constant Sweep

Correction

If Constant Sweep (0):

(1) Increase constant sweep time.

(2) Remove logic from application program.

Note: Error code 1 is not used.

System Fault Table Full (Group 20)

The fault group System Fault Table Full occurs when the Controller Fault Table
reaches its limit (see page 14-4).

Action: Nonconfigurable.

0, System Fault Table Full

Correction

Clear the controller fault table.

I/O Fault Table Full (Group 21)

The fault group I/O Fault Table Full occurs when the I/O Fault Table reaches its
maximum configured limit (see page 14-6). To avoid loss of additional faults, clear the
earliest entry from the table.

Action: Nonconfigurable.

0, I/O Fault Table Full

Correction

Clear the I/O fault table.

GFK-2222S Chapter 14 Diagnostics 14-31

14

User Application Fault (Group 22)

The fault group Application Fault occurs when the CPU detects a fault in the user
program.

Action: Nonconfigurable.

2, Software Watchdog Timer Expired

The CPU generates this error when the watchdog timer expires. The CPU stops
executing the user program and enters Stop/Halt mode. To recover, cycle power to
the CPU with battery disconnected. Causes of timer expiration include: Looping, via
jump, very long program, etc.

Correction

(1) Determine what caused the expiration (logic execution, external event, etc.)
and correct.

(2) Use the system service function block to restart the watchdog timer.

7, Application Stack Overflow

Block call depth has exceeded the CPU capability.

Correction

Increase the program’s stack size or adjust application program to reduce nesting.

11 hex/17 decimal, Program Run Time Error

A run-time error occurred during execution of a program.

Correction

Correct the specific problem in the application.

22 hex/34 decimal, Unsupported Protocol

Hardware does not support configured protocol.

33 hex/51 decimal, Flash Read Failed

Possible causes:

(1) Files not in flash. (May be caused by power cycle during flash write.)

(2) Could not read from flash because OEM protection is enabled.

34 hex/52 decimal, Memory Reference Out of Range

A user logic memory reference, computed during logic execution, is out of range.
Includes indirect references, array element references, and potentially other types of
references.

Correction

Correct logic or adjust memory size in hardware configuration.

14-32 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

35 hex/53 decimal, Divide by zero attempted in user logic.

User logic contained a divide by zero operation. (Applies to ST and FBD logic.)

Correction

Correct logic.

36 hex/54 decimal, Operand is not byte aligned.

A variable in user logic is not properly byte-aligned for the requested operation.

Correction

Correct logic or adjust memory size in hardware configuration.

39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted

The controller has not received a heartbeat signal from the programmer within the
time specified by the DLB Heartbeat setting in the Target properties.

Correction

Increase the DLB Heartbeat setting. For additional information, see “Executing DLBs”
on page 14-62.

3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large
enough to accommodate this reference.

Parameterized blocks do not have their own %L data, but instead inherit the %L data
of their calling blocks. If %L references are used within a parameterized block and the
block is called by _MAIN, %L references are inherited from the %P references
wherever encountered in the parameterized block (for example, %L0005 = %P0005).
For a discussion of the use of local data with parameterized blocks, refer to
“Parameterized Blocks and Local Data” in chapter 5.

Correction

Determine which block called the parameterized subroutine block and increase the
size of %L or %P memory allocated to the calling block. (To do this, change the Extra
Local Words setting in the block’s Properties.)

The maximum size of %L or %P is 8192 words per block. If your application needs
more space, consider changing some %P or %L references to %R, %W, %AI, or
%AQ. These changes require a recompilation of the program block and a Stop Mode
store to the CPU.

It is possible, by using Online Editing in the programming software to cause a
parameterized block to use %L higher than allowed because of the way it inherits
data. To correct this condition, delete the %L variables from the logic and then remove
the unused variables from the variable list. These changes require a recompilation of
the program block and a Stop Mode store to the CPU.

GFK-2222S Chapter 14 Diagnostics 14-33

14

CPU Over Temperature (Group 24)

Default action: Diagnostic. Configurable.

1, Overtemperature failure.

CPU’s normal operating temperature exceeded.

Correction

Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature.

Power Supply Fault (Group 25)

Action: Nonconfigurable.

1, Power supply failure.

Unknown power supply failure.

Correction

Replace power supply module.

2, Power supply overloaded

The load on the power supply has reached its rated maximum

Correction

Replace power supply with a higher capacity model or reconfigure system to reduce
load on power supply.

3, Power supply switched off

The switch on the power supply was moved to the OFF position.

4, Power-supply has exceeded normal operating temperature

The temperature of the power supply is a just a few degrees from causing it to turn off.

Correction

Turn off system to allow heat to disperse. Install a fan kit to regulate temperature.

No User Program on Power-Up (Group 129)

The fault group No User Program on Power-Up occurs when the CPU powers up with
its memory preserved but no user program exists in the CPU. The CPU detects the
absence of a user program on power-up; the controller stays in Stop mode.

Action: Nonconfigurable.

Correction

Download an application program before attempting to go to Run mode.

14-34 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Corrupted User Program on Power-Up (Group 130)

The fault group Corrupted User Program on Power-Up occurs when the CPU detects
corrupted user RAM. The CPU will remain in Stop mode.

Action: Nonconfigurable.

1, Corrupted user RAM on power-up

The CPU generates this error when it detects corrupted user RAM on power-up.

Recommended Corrections, Listed in Order

(1) Cycle power without battery or Energy Pack.

(2) Examine any C applications for errors.

(3) Replace the volatile memory backup battery on the CPU.

 (4) Replace the CPU.

7, User memory not preserved over power cycle

The CPU generates this error when it detects a battery failure that occurred while the
controller was powered down.

If this fault occurs on a power cycle when the battery was not detached or replaced,
the battery has failed and should be replaced.

Correction

Replace the battery on the CPU. For instructions on replacing the battery, refer to the
PACSystems Battery and Energy Pack Manual, GFK-2741.

Window Completion Failure (Group 131)

The fault group Window Completion Failure is generated by the pre-logic and
end-of-sweep processing software in the CPU. The fault extra data contains the name
of the task that was executing when the error occurred.

Action: Nonconfigurable.

0, Window Completion Failure

The CPU generates this error when it is operating in Constant Sweep mode and the
constant sweep time was exceeded before the programmer window had a chance to
begin executing.

Correction

Increase the constant sweep timer value.

1, Logic Window Skipped

The logic window was skipped due to lack of time to execute.

Correction

(1) Increase base cycle time.

(2) Reduce Communications Window time.

GFK-2222S Chapter 14 Diagnostics 14-35

14

Password Access Failure (Group 132)

The fault group Password Access Failure occurs when the CPU receives a request to
change to a new privilege level and the password included with the request is not
valid for that level.

Action: Nonconfigurable.

0, Password Access Failure

Correction

Retry the request with the correct password.

Null System Configuration for Run Mode (Group 134)

The fault group Null System Configuration for Run Mode occurs when the CPU
transitions from Stop to one of the Run modes and a configuration file is not present.
The transition to Run is permitted, but no I/O scans occur.

Action: Informational. Nonconfigurable.

0, Null System Configuration for Run Mode

Correction

Download a configuration file.

CPU System Software Failure (Group 135)

Faults in this group are generated by the operating software of the CPU. They occur
at many different points of system operation. When a fatal fault occurs, the CPU
immediately transitions to Stop/Halt. The only activity permitted when the CPU is in
this mode is communications with the programmer. The only method of clearing this
condition is to cycle power on the controller with the battery disconnected.

Action: Nonconfigurable.

5A hex/90 decimal, User Shut Down Requested

The CPU generates this informational alarm when SVC_REQ #13 (User Shut Down)
executes in the application program.

Correction

None required. Information-only alarm.

94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended

This fault is logged each time the redundancy state changes and the redundant CPUs
contain incompatible firmware.

Correction

Ensure that redundant CPUs have compatible firmware.

14-36 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

D8 hex/216 decimal, Processor Exception Trap

The processor has detected an error condition while executing an instruction. The
CPU was placed into Stop/Halt mode.

Correction

Disconnect the battery from the CPU and cycle power to clear the Stop/Halt condition.

DA hex/218 decimal, Critical Overtemperature Failure

CPU’s critical operating temperature exceeded.

Correction

Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature.

All Others, CPU Internal System Error

An internal system error has occurred that should not occur in a production system.

Correction

Display the controller fault table on the programmer. Contact Technical Support and
give them all the information contained in the fault entry.

Error Fault Extra Data Value
(First Byte)

Description

DEVICE_NOT_AVAILABLE CF Specific device is not available in the
system.

BAD_DEVICE_DATA CC Data stored on device has been
corrupted and is no longer reliable. Or,
Flash Memory has not been initialized.

DEVICE_RW_ERROR CB Error occurred during a read/write of
the Flash Memory device.

FLASH_INCOMPAT_ERROR 8E Data in Flash Memory is incompatible
with the CPU firmware release due to
the CPU firmware revision numbers,
the instruction groups supported, or the
CPU model number.

ITEM_NOT_FOUND_ERROR 8D One or more specified items were not
found in Flash Memory.

GFK-2222S Chapter 14 Diagnostics 14-37

14

Communications Failure During Store (Group 137)

This fault group occurs during the store of programs or blocks and other data to the
CPU. The stream of commands and data for storing programs or blocks and data
starts with a special start-of-sequence command and terminates with an end-of-
sequence command. This fault is logged if communications with the programming
device performing the store is interrupted or any other failure that terminates the store
occurs. As long as this fault is present in the system, the controller will not transition to
Run mode. This fault is not automatically cleared on power-up; you must specifically
clear the condition.

Action: Nonconfigurable.

0, Communications Failure During Store

Correction

Clear the fault and retry the download of the program or configuration file.

1, Communications Lost During Run Mode Store

Communications or power was lost during a Run Mode Store. The new program or
block was not activated and was deleted.

Correction

Perform the Run Mode Store again. This fault is diagnostic.

2, Communications Lost During Cleanup for Run Mode Store

Communications was lost, or power was lost during the cleanup of old programs or
blocks during a Run Mode Store. The new program or block is installed, and the
remaining programs and blocks were cleaned up.

Correction

None required. This fault is informational.

3, Power Lost During a Run Mode Store

Power was lost in the middle of a Run Mode Store.

Correction

Delete and restore the program. This error is fatal.

14-38 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Noncritical CPU Software Event (Group 140)

This group is used for recording conditions in the system that may provide valuable
information to Technical Support.

Default action: Nonconfigurable.

Error Code Description Correction

1-30 Events during power-up No corrective action is required unless
this fault occurs with other specific faults.
The fault may contain useful information
for Technical Support if other problems
are encountered.

31-50 Events on the serial port or in a
serial protocol

51, 52 Miscellaneous internal system
events

53 Access control fault See details below.

54 and
greater

Miscellaneous internal system
events

No corrective action is required unless
this fault occurs with other specific faults.
The fault may contain useful information
for Technical Support if other problems
are encountered.

Error code 53, Access Control Fault

If data access is prevented because of the Enhanced Security settings, the Controller
logs a fault into the fault table. This fault can be used to help diagnose access
problems. To prevent overflowing the fault table, only one fault is logged until the fault
table is cleared.

Fault example

Location: 0.8 Date/Time: 07-07-2013 17:06:55.087

Group: 140 INFO_CPU_SOFTWR - CPU software event

Error Code: 53 Action:1 Task Num:3

Extra Data: 00 fa 02 a5 00 00 00 00 01 1e 06 00 00 00 00 00 00 00 01 00 00 00 00 00

Meaning of this example fault

A 1-bit READ request beginning at %S7 was rejected due to an access violation.

Interpreting the Fault Extra Data

Bytes 1 through 8: Ignored when decoding a security-related fault.

Byte 9: The operation during which the fault occurred.

 01 (as in the example): Read

 02: Write

GFK-2222S Chapter 14 Diagnostics 14-39

14

Byte 10: The hexadecimal value (HV) that specfies a CPU memory area.

HV Memory area

08 %R (Register memory)

0A %AI (Analog input memory)

0C %AQ (Analog output memory)

10 %I (Discrete input memory)

12 %Q (Discrete output memory)

14 %T (Discrete temporary status memory)

16 %M (Discrete momentary internal memory)

18 %SA (Discrete system memory A)

1A %SB (Discrete system memory B)

1C %SC (Discrete system memory C)

1E %S (Discrete system memory)

38 %G (Genius global memory)

C4 %W (Bulk Memory)

Bytes 11–18: 0-based bit offset of the memory area being accessed. The 8-byte value
is encoded in little endian format, meaning that the byte values are reversed. In the
example, the value is 0x0000000000000006, which is equal to 1-based bit offset 7.

Bytes 19–22: The length in bits of data requested. In the example, 1 bit was
requested.

Bytes 23–24: Ignored when decoding a security-related fault.

14-40 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

I/O Fault Descriptions and Corrective Actions
The I/O fault table reports the following data about faults:

■ Fault Group

■ Fault Action

■ Fault category

■ Fault type

■ Fault description

All faults have a fault category, but a fault type and fault group may not be listed for
every fault. To view the detailed information pertaining to a fault, click the fault entry in
the I/O Fault Table.

Note: The model number mismatch and I/O type mismatch faults are reported in the
controller fault table under the System Configuration Mismatch group. They are not
reported in the I/O fault table.

Fault Extra Data

An I/O fault table entry contains up to 21 bytes of I/O fault extra data that contains
additional information related to the fault. Not all entries contain I/O fault extra data.

I/O Fault Groups

Group Number Group Name Default Fault Action
4
 Configurable

2 Loss of or Missing IOC Diagnostic Yes

3 Loss of or Missing I/O module or
network Device

Diagnostic Yes

6 Addition or Reset of, or Extra IOC N/A No

7 Addition of or Extra I/O module or
network Device

N/A No

9 IOC or I/O Bus Fault Diagnostic Yes

10 I/O Module Fault N/A No

15 IOC Software Failure Same As Group 2
5
 Yes

16 Module Software Failure N/A No

28 PROFINET Alarms Diagnostic No

133 Genius Block Address Mismatch N/A No

4
 The fault action indicated is not applicable if the fault is displayed as informational. Faults

displayed as informational, always behave as informational.
5
 The fault action for the IOC Software Failure group 15 always matches the action used by the

Loss of or Missing IOC group 2. If the Loss of or Missing IOC group is configured, the IOC
Software Failure group is also configured to take the same fault action.

GFK-2222S Chapter 14 Diagnostics 14-41

14

I/O Fault Categories

Category

Fault Type

Fault
Description

Fault Extra Data

Circuit Fault (1) Discrete Fault (1) Loss of User Side Power (01 hex) Circuit Configuration

 Short Circuit in User Wiring (02 hex) Circuit Configuration

 Sustained Overcurrent (04 hex) Circuit Configuration

 Low or No Current Flow (08 hex) Circuit Configuration

 Switch Temperature Too High (10 hex) Circuit Configuration

 Switch Failure (20 hex) Circuit Configuration

 Point Fault (83 hex) Circuit Configuration

 Output Fuse Blown (84 hex) Circuit Configuration

 Analog Fault (2) Input Channel Low Alarm (01 hex) Circuit Configuration

 Input Channel High Alarm (02 hex) Circuit Configuration

 Input Channel Under Range (04 hex) Circuit Configuration

 Input Channel Over Range (08 hex) Circuit Configuration

 Input Channel Open Wire (10 hex) Circuit Configuration

 Over Range or Open Wire (18 hex) Circuit Configuration

 Output Channel Under Range (20 hex) Circuit Configuration

 Output Channel Over Range (40 hex) Circuit Configuration

 Expansion Channel Not Responding
(80 hex)

Circuit Configuration

 Invalid Data (81 hex) Circuit Configuration

 Low-Level Input Channel Low Alarm (01 hex) Circuit Configuration

 Analog Fault (4) Input Channel High Alarm (02 hex) Circuit Configuration

 Input Channel Under Range (04 hex) Circuit Configuration

 Input Channel Over Range (08 hex) Circuit Configuration

 Input Channel Open Wire (10 hex) Circuit Configuration

 Wiring Error (20 hex) Circuit Configuration

 Internal Fault (40 hex) Circuit Configuration

 Input Channel Shorted (80 hex) Circuit Configuration

 Invalid Data (81 hex) Circuit Configuration

 GENA (Genius Network
Adapter) Fault (3)

GENA Circuit Fault (80 hex) Byte 2:GENA Fault

Loss of Block (2) Not Specified (0)
A/D Communications
Lost (1)

NA Block Configuration
Number of Input Circuits
Number of Output
Circuits

Addition of Block (3) NA NA Block Configuration
Number of Input Circuits
Number of Output
Circuits

I/O Bus Fault (6) Bus Fault (1)
Bus Outputs Disabled (2)
SBA Conflict (3)

NA NA

Genius Module Fault (8) Headend Fault (0)
A to D Comm. Fault (1)
User Scaling Error (5)
Store Fail (6)

Configuration Memory Failure (08 hex)
Calibration Memory Failure (20 hex)
Shared RAM Failure (40 hex)
Internal Circuit Fault (80 hex)
Watchdog Timeout (81 hex)
Output Fuse Blown (84 hex)

NA

14-42 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Category

Fault Type

Fault
Description

Fault Extra Data

Addition of IOC (9) NA Extra Module (01 hex)
Reset Request (02 hex)

NA

Loss of IOC (10) NA NA Timeout
Unexpected State
Unexpected Mail Status
VME Bus Error

IOC Software Fault (11) NA NA NA

Forced Circuit (12) NA NA Block Configuration
Discrete/Analog
Indication*

Unforced Circuit (13) NA NA Block Configuration
Discrete/Analog
Indication*

Loss of I/O Module (14) NA NA NA

Addition of I/O Module (15) NA VME Module Reset Requested (30 hex) NA

Extra I/O Module (16) NA NA NA

Extra Block (17) NA NA NA

IOC Hardware Failure (18) NA NA NA

GBC stopped reporting faults
because too many faults have
occurred (19)

GBC detected high error
count on Genius Bus and
dropped off the bus for at
least 1.5 seconds. (1)

NA NA

GBC Software Exception (21) Datagram queue full (1)
R/W request queue full (2)
Low priority mail rejected (3)
Background message
received before CPU
completed initialization (4)
Genius software version too
old (5)
Excessive use of internal
GBC memory (6)

NA

Block Switch (22) – redundant
Genius block switched bus

NA NA Block Configuration
Number of Input Circuits
Number of Output
Circuits
Rack/Slot address of
GBC from which block
was removed.

Block not active on redundant bus
(23)

NA NA NA

Reset of IOC (27) NA NA NA

PROFINET network faults (33 and
higher)

NA Refer to PROFINET controller
documentation.

NA

GFK-2222S Chapter 14 Diagnostics 14-43

14

Circuit Faults (Category 1)

Circuit faults apply to Genius I/O modules and the IC697VRD008 RTD/Strain Bridge
modules. Fault extra data is available for all faults in this category. More than one
condition may be present in a particular reporting of the fault.

Action: Diagnostic.

Fault Extra Data for Circuit Faults

Genius Bus Controller

Circuit fault entries use one or two bytes of the fault extra data area. If the GBC
reports the fault, the first byte is generated by the GBC and the second byte contains
the circuit configuration and is encoded as shown in the following table.

Value
(Byte 2)

Description

1 Circuit is an input.

2 Circuit is an input.

3 Circuit is an output.

If the fault type is a GENA fault, the second byte contains the data that was reported
from the GENA module in fault byte 2 of its “Report Fault” message.

VRD001 RTD/Strain Bridge

Circuit fault entries 13 bytes of the fault extra data area. The fault extra data is
encoded as shown in the following table.

Bytes Description

1--10 Used by technical support.

11 Line number

12 Module number

13 Used by technical support.

14-44 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Fault Descriptions for Discrete Faults

1, Loss of User Side Power

The GBC generates this error when there is a power loss on the field wiring side of a
Genius I/O block.

Correction

(1) (Only valid for Isolated I/O blocks.) Initiate “Pulse Test” COMREQ #1. Pulse
test may be enabled or disabled at I/O block.

(2) Correct the power failure.

2, Short Circuit in User Wiring

The GBC generates this error when it detects a short circuit in the user wiring of a
Genius block. A short circuit is defined as a current level greater than 20 amps.

Correction

Fix the cause of the short circuit.

4, Sustained Overcurrent

The GBC generates this error when it detects a sustained current level greater than 2
amps in the user wiring.

Correction

Fix the cause of the over current.

8, Low or No Current Flow

The GBC generates this error when there is very low or no current flow in the user
circuit.

Correction

Fix the cause of the condition.

10 hex, Switch Temperature Too High

The GBC generates this error when the Genius block reports a high temperature in
the Genius Smart Switch.

Correction

(1) Ensure that the block is installed to provide adequate circulation.

(2) Decrease the ambient temperature surrounding the block.

(3) Install RC Snubbers on inductive loads.

GFK-2222S Chapter 14 Diagnostics 14-45

14

20 hex, Switch Failure

The GBC generates this error when the Genius block reports a failure in the Genius
Smart Switch.

Correction

(1) Check for shunts across Genius output (pushbuttons).

(2) Replace the Genius I/O block.

83 hex, Point Fault

The CPU generates this error when it detects a failure of a single I/O point on a
Genius I/O module.

Correction

Replace the Genius I/O block.

84 hex, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on a Genius I/O output
block.

Correction

(1) Determine and repair the cause of the fuse blowing; replace the fuse.

(2) Replace the block.

Fault Descriptions for Analog Faults

1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on
an input channel.

Correction

Correct the condition causing the low alarm.

2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm
on an input channel.

Correction

Correct the condition causing the high alarm.

4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-
range condition on an input channel.

Correction

Correct the problem causing the condition.

14-46 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an input channel.

Correction

Correct the problem causing the condition.

10 hex/16 decimal, Input Channel Open Wire

The GBC generates this error when a Genius Analog module detects an open wire
condition on an input channel.

Correction

Correct the problem causing the condition.

18 hex/24 decimal, Over Range or Open Wire

Inputs open or inputs off-scale.

Correction

Correct the problem causing the condition.

20 hex/32 decimal, Output Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-
range condition on an output channel.

Correction

Correct the problem causing the condition.

40 hex/64 decimal, Output Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an output channel.

Correction

Correct the problem causing the condition.

80 hex/128 decimal, Expansion Channel Not Responding

The CPU generates this error when data from an expansion channel on a multiplexed
analog input board is not responding.

Correction

(1) Check wiring to the module.

(2) Replace the module.

81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input
block.

Correction

Correct the problem causing the condition.

GFK-2222S Chapter 14 Diagnostics 14-47

14

Low-Level Analog Faults

1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on
an input channel.

Correction

Correct the condition causing the low alarm.

2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm
on an input channel.

Correction

Correct the condition causing the high alarm.

4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-
range condition on an input channel.

Correction

Correct the problem causing the condition.

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range
condition on an input channel.

Correction

Correct the problem causing the condition.

10 hex, Input Channel Open Wire

The GBC generates this error when the Genius Analog module detects an open wire
condition on an input channel.

Correction

Correct the problem causing the condition.

20 hex/32 decimal, Wiring Error

The GBC generates this error when the Genius Analog module detects an improper
RTD connection or thermocouple reverse junction fault.

Correction

Correct the problem causing the condition.

14-48 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

40 hex/64 decimal, Internal Fault

The GBC generates this error when the Genius Analog module reports a cold junction
sensor fault on a thermocouple block or an internal error in an RTD block.

Correction

Correct the problem causing the condition.

80 hex/128 decimal, Input Channel Shorted

The GBC generates this error when it detects an input channel shorted on a Genius
RTD or Strain Gauge Block.

Correction

Correct the problem causing the condition.

81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input
block.

Correction

Correct the problem causing the condition.

GENA Fault

The GENA Fault has no fault descriptions associated with it. GENA Fault Byte 2 is the
first byte of the fault extra data.

80 hex/128 decimal

The Genius I/O operating software generates this error when it detects a failure in a
GENA block attached to the Genius I/O bus.

Correction

Replace the GENA block.

GFK-2222S Chapter 14 Diagnostics 14-49

14

Loss of Block (Category 2)

The fault category Loss of Block applies to Genius devices.

Action: Diagnostic.

Loss of Block

The GBC generates this error when it is unable to communicate to the Genius device.

Correction

(1) Verify power and wiring to the block.

(2) Replace the block.

Loss of Block - A/D Communications Fault

The GBC generates this error when it detects a failure of A/D communications on a
Genius device.

Correction

(1) Verify power and serial bus wiring to the block.

(2) Replace the block.

Fault Extra Data for Loss of Block

The Loss of Block fault provides four bytes of fault extra data. The second byte
contains the block configuration and is encoded as shown in the following table. The
third byte specifies the number of input circuits possibly used, and the fourth byte
specifies the number of output circuits possibly used.

Block Configuration (Byte 2)

Value Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

14-50 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Addition of Block (Category 3)

The fault category Addition of Block applies only to Genius devices. There are no fault
types or fault descriptions associated with this category.

The Genius operating software generates this error when it detects that a Genius
block that stopped communicating with the controller starts communicating again.

Action: Diagnostic.

Correction

Informational only. None required.

Fault Extra Data for Addition of Block

The Addition of Block fault provides four bytes of fault extra data. The second byte
contains the block configuration and is encoded as shown in the following table. The
third byte specifies the number of input circuits possibly used, and the fourth byte
specifies the number of output circuits possibly used.

Block Configuration (Byte 2)

Value Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

GFK-2222S Chapter 14 Diagnostics 14-51

14

I/O Bus Fault (Category 6)

The fault category I/O Bus Faults has three fault types associated with it.

Default action: Diagnostic. Configurable.

Bus Fault

The GBC operating software generates this error when it detects a failure with a
Genius I/O bus. (Generated when Error Rate in the GBC configuration is exceeded—
the default Error Rate is 10 errors in a 10 second period).

Correction

(1) Determine the reason for the bus failure and correct it.

(2) Replace the GBC.

The Error Rate can be set higher than the default value if needed, but the bus should
be examined electrically—use an oscilloscope for waveform check.

Bus Outputs Disabled

The GBC operating software generates this error when it times out waiting for the
CPU to perform an output scan.

Correction

(1) Reduce time between GBC output scans by assigning them to scan set 1.

(2) Increase CPU software watchdog timer setting

(3) Replace the CPU.

(4) Display the controller fault table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

SBA Conflict

The GBC detected a conflict between its serial bus address and that of another device
on the bus.

Correction

Adjust one of the conflicting serial bus addresses.

14-52 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Module Fault (Category 8)

The fault category Module Fault has one fault type, headend fault, and eight fault
descriptions. This fault category does not provide fault extra data. The default fault
action for this category is Diagnostic.

08 hex, Configuration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s EEPROM
or NVRAM.

Correction

Replace the Genius block’s electronics module.

20 hex/32 decimal, Calibration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s calibration
memory.

Correction

Replace the Genius block’s electronics module.

40 hex/64 decimal, Shared RAM Fault

The GBC generates this error when it detects an error in a Genius block’s shared
RAM.

Correction

Replace the Genius block’s electronics module.

80 hex/128 decimal, Module Fault

An internal failure has been detected in a module.

Correction

Replace the affected module.

81 hex/129 decimal, Watchdog Timeout

The CPU generates this error when it detects that an input module watchdog timer
has expired.

Correction

Replace the input module.

84 hex/132 decimal, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on an output module.

Correction

(1) Determine and repair the cause of the fuse blowing, and replace the fuse.

(2) Replace the module.

GFK-2222S Chapter 14 Diagnostics 14-53

14

Addition of IOC (Category 9)

The fault category Addition of I/O Controller has no fault types or fault descriptions
associated with it. The default fault action for this category is Diagnostic.

Addition of IOC

The CPU generates this error when an IOC that has been faulted returns to operation
or when an IOC is found in the system and the configuration file indicates that no IOC
is to be in that slot or when an IOC is hot inserted.

Correction

(1) No action is necessary if the faulted module is in a remote rack and is
returning due to a remote rack power cycle.

(2) Update the configuration file or remove the module.

01 hex, Extra Module

Module present, but not configured.

Correction

Update the configuration file or remove the module.

02 hex, Reset Request

Module added back after reset request. No corrective action is necessary.

Loss of or Missing IO Controller (Category 10)

The fault category Loss of IOC has no fault types or fault descriptions associated
with it.

Default action: Diagnostic. Configurable.

Note: This fault is always displayed as Fatal in the I/O Fault Table, regardless of its
configured action.

The CPU generates this error when it cannot communicate with an I/O Controller and
an entry for the IOC exists in the configuration file.

This fault is also logged when an IOC is hot removed (No corrective action necessary
in this case).

Correction

(1) Verify that the module in the slot/bus address is the correct module.

(2) Review the configuration file and verify that it is correct.

(3) Replace the module.

(4) If fault is not resolved, display the controller fault table on the programmer.
Contact Technical Support, giving them all the information contained in the fault entry.

Fault Extra Data for Loss of or Missing IOC

Fault extra data for Loss of or Missing IOC provides additional information for
diagnostics by Technical Support.

14-54 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

IOC (I/O Controller) Software Fault (Category 11)

The fault category IOC Software Fault applies to any type of I/O Controller.

Action: Fatal.

Datagram Queue Full, Read/Write Queue Full

Too many datagrams or read/write requests have been sent to the GBC.

Correction

Adjust the system to reduce the request rate to the GBC.

Response Lost

The GBC is unable to respond to a received datagram or read/write request.

Correction

Adjust the system to reduce the request rate to the GBC.

Forced and Unforced Circuit (Categories 12 and 13)

The fault categories Forced Circuit and Unforced Circuit report point conditions and
therefore are not technically faults. They have no fault types or fault descriptions.
These reports occur when a Genius I/O point was forced or unforced with the Hand-
Held Monitor.

Action: Informational.

Fault Extra Data for Forced/Unforced Circuit

Three bytes of fault extra data are present when a circuit force is added or removed

Byte
Number

Description

Value Description

1 Circuit Configuration 1 Circuit is an input.

2 Circuit is an input..

3 Circuit is an output.

2 Analog/Discrete Information 1 Block is a discrete block.

2 Block is an analog block.

3 Block has both discrete and analog.

GFK-2222S Chapter 14 Diagnostics 14-55

14

Loss of or Missing I/O Module (Category 14)

The fault category Loss of I/O Module applies to discrete and analog I/O modules.
There are no fault types or fault descriptions associated with this category.

Default action: Diagnostic. Configurable.

The CPU generates this error when it detects that an I/O module is no longer
responding to commands from the CPU, or when the configuration file indicates an I/O
module is to occupy a slot and no module exists in the slot. This fault is also logged
when an I/O module is hot removed (No corrective action necessary in this case).

Correction

(1) Replace the module.

(2) Correct the configuration file.

(3) Display the I/O fault table on the programmer. Contact Technical Support,
giving them all the information contained in the fault entry.

Addition of I/O Module (Category 15)

The fault category Addition of I/O Module applies to discrete and analog I/O modules.
There are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

Addition of I/O Module

The CPU generates this error when an I/O module that had been faulted returns to
operation or is hot inserted.

Correction

(1) No action necessary if module was removed or replaced or if the remote rack
was power cycled.

(2) Update the configuration file or remove the module.

30 hex/48 decimal, VME Reset on Request

Reset of VME module was requested. No corrective action necessary.

Extra I/O Module (Category 16)

The fault category Extra I/O Module applies to discrete and analog I/O modules.
There are no fault types or fault descriptions associated with this category.

Action: Diagnostic.

The CPU generates this error when it detects an I/O module in a slot that the
configuration file indicates should be empty.

Correction

(1) Remove the module. (It may be in the wrong slot.)

(2) Update and restore the configuration file to include the extra module.

14-56 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Extra Block (Category 17)

The fault category Extra Block applies only to Genius I/O devices. There are no fault
types or fault descriptions associated with this category.

Action: Diagnostic.

The GBC generates this error when it detects a Genius device on the bus at a serial
bus address where the configuration file does not have a block.

Correction

(1) Remove or reconfigure the block. (It may be at the wrong serial bus address.)

(2) Update and restore the configuration file to include the extra block.

IOC Hardware Failure (Category 18)

The fault category IOC Hardware Failure has no fault types or fault descriptions.

Action: Diagnostic.

The Genius operating software generates this error when it detects a hardware failure
in the bus communication hardware or a baud rate mismatch.

Correction

(1) Verify that the baud rate set in the configuration file for the GBC agrees with
the baud rate programmed in every block on the bus.

(2) Change the configuration file and restore it, if necessary.

(3) Replace the GBC.

(4) Selectively remove each block from the bus until the offending block is
isolated then replace it.

GBC Stopped Reporting Faults (Category 19)

GBC detected a high error count on the Genius I/O bus and dropped off the bus for at
least 1.5 seconds.

Correction

Check for incorrect wiring, interference from other equipment, a loose connection, or a
failed device on the Genius bus.

GFK-2222S Chapter 14 Diagnostics 14-57

14

GBC Software Exception (Category 21)

1, Incoming datagram queue full

Too many datagrams or read/write requests have been sent to the GBC.

Correction

Adjust the system to reduce the request rate to the GBC.

2, Read/write request queue full

The queue for Read/Write requests in the GBC is full. The requests may be from the
Genius Bus or from COMMREQs.

Correction

Adjust the system to reduce the request rate to the GBC.

3, Low priority mail queue from GBC to CPU full

The response to the CPU was lost.

4, Genius background message requiring CPU action received before CPU
completed initialization

Message was ignored.

5, GBC software version too old

Correction

Update GBC firmware.

6, Excessive use of internal GBC memory

Correction

Verify COMMREQ usage.

14-58 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Block Switch (Category 22)

The Block Switch fault category has no fault types or fault descriptions.

Action: Diagnostic.

The GBC generates this error when a Genius block on redundant Genius buses
switches from one bus to another.

Correction

(1) No action is required to keep the block operating.

(2) The bus that the block switched from may need to be repaired.

 (a) Verify the bus wiring.

 (b) Replace the I/O controller.

 (c) Replace the Bus Switching Module (BSM).

Fault Extra Data for Block Switch

Byte
Number

Description

Value Description

1 Circuit configuration 1 Circuit is an input.

2 Circuit is an input.

3 Circuit is an output.

2 Block configuration 1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs
(grouped block).

3 Number of input circuits used

4 Number of output circuits used

Reset of IOC (Category 27)

The fault category Reset of I/O Controller has no fault types or fault descriptions
associated with it. The default fault action for this category is Diagnostic.

The CPU generates this message when an I/O Controller is reset. No corrective
action necessary.

GFK-2222S Chapter 14 Diagnostics 14-59

14

Diagnostic Logic Blocks
A Diagnostic Logic Block (DLB) is a block of Ladder Diagram logic that can be
downloaded to the controller for independent execution. These blocks are useful tools
for interacting with an application that is running in the PACSystems controller. DLBs
may be used to:

 Collect information from a running application to analyze and diagnose problems

 Test modifications and corrections to a running application before actually
incorporating them into the application.

 Test the devices that will be controlled by the application.

DLBs are intended to accomplish a specific task that is temporary in nature, such as
diagnosing the source of a problem or testing tuning parameters. When you have
finished using a DLB, it should be removed from the host controller. At this point the
application logic and its variable allocation return to what it was before the DLB was
downloaded.

You can also remove the DLBs from the Logic Developer target, at which point the
target’s logic and variable allocation will be identical to what they were before the
DLBs were introduced.

Note that, although the DLB is removed from the controller, any changes the DLB
made to the system are not removed. For example, if the DLB logic changes a
hardware parameter, the parameter does not return to its previous value when the
DLB is removed.

DLB logic can be executed with the controller in Stop IO Enabled mode, which allows
debugging the application without the main application program running.

Caution

Do not use a DLB as a permanent part of a production
application, because a DLB is stopped and deleted from memory
when Logic Developer loses its Programmer-mode connection
with the host controller This could happen if the programmer’s
communications cable is disconnected or if a second
programmer connects serially to the same RX3i and establishes
a Programmer-mode session.

Note: Redundancy CPUs do not support DLBs.

14-60 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

DLB Operation

DLBs are created as components of a specific Target
and are separate from the application logic block
components associated with a target.

They are written in LD programming language and
support many of the same features, such as View
Lock, Edit Lock, etc. as other block types.

A target can have a maximum of 128 DLBs in a given
PME target. Each DLB can have associated
published variable table (PVT) and cam profile (used
with Motion applications) files. Each DLB can use up
to 128K bytes of memory.

A DLB can be copied and pasted like other blocks. Regardless of where a DLB is
pasted, normal conflict handling is applied.

An active DLB can be dragged to the Toolchest, to folders under the Active Blocks
node, or to folders under the Program Blocks node. Note that only active blocks can
be dragged. Downloading, executing, or modifying a DLB does not affect the equality
of the main logic program.

Suspend I/O Function and DLBs

The Suspend I/O (SUS_IO) function operates the same in a DLB as it does in
application logic. Both application logic and DLB logic execute in the CPU Sweep
Logic window. Therefore, when a SUSPEND_IO is executed by either the application
or the DLB, outputs are held current during the output scan that occurs immediately
after the Logic window finishes its execution, and input references will not be updated
from inputs during the input scan that occurs immediately before the Logic window is
executed in the next CPU sweep.

Note that a SUSPEND_IO only affects normal I/O scans. It does not affect I/O
scanning that is done as the result of DO_IO or SCAN_SET_IO functions that execute
in application or DLB logic. SUS_IO has the same effect whether it is executed once
in a sweep or multiple times in a sweep.

GFK-2222S Chapter 14 Diagnostics 14-61

14

Restrictions on DLB Operation

Because DLBs are intended only for temporary use, there are more restrictions on
their operation compared to application logic blocks. All built-in functions and function
blocks other than those listed below can be used in DLB logic.

 DLB logic may not call any logic block or be called by any logic block.

 You cannot define parameters or scheduling for a DLB.

 A DLB has no parameters other than the standard ENO output parameter. Since
DLBs cannot be called from other blocks, you can access its ENO parameter only
by reading or writing it in the DLB’s logic.

 You cannot use variables that have %L or %P addresses. As a consequence, the
following features that require %L or %P memory can not be used in a DLB:

a. #FST_EXE system variable

b. The built-in timer function blocks, ONDTR, OFDT, and TMR

c. %L or %P variables.

 Locally scoped variables must be symbolic. For additional information, see “DLB
Variables.”

 DLBs or their associated files cannot be loaded from the RX3i.

 DLBs and their associated files cannot be downloaded to flash memory.

 You cannot give an LD DLB the name _MAIN.

 You cannot modify an active LD DLB while it is executing on the Controller.

 You cannot perform a Test Edit (Online Edit Mode and Online Test Mode).

 You cannot perform word-for-word changes on an active DLB.

DLB Variables

A DLB can have its own variables, which are local to the DLB and not accessible by
any other block. All DLB local variables are symbolic, retentive, and published.

Local variables should be used within DLBs whenever possible. If the system is
already running and you create new global variables in the DLB, the programming
software will not download the DLB because the programmer’s memory map will no
longer match the RX3i controller’s memory map.

DLB logic can read and write the global variables of the application that resides in the
same target as it does. These variables may be mapped or symbolic.

To use functions that require the use of located variables, a DLB must use the global
located variables of the application that resides in the same target as the DLB. These
functions include:

a. COMM_REQ (location of the Status variable)

b. DO_IO

c. Some SVC_REQ functions

A DLB can create aliases to global located application variables or arrays of variables
that were specifically created and documented to serve as “scratchpad” memory for
DLBs that need to use located variables.

14-62 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Executing DLBs

DLB Properties

The properties for an active DLB include Execution Mode, which has the following
possible values:

 Sweep (Default) - The DLB executes at a fixed point in the normal Controller
sweep, until explicitly stopped.

 Update Rate – Uses the Update Rate defined for the Target. The actual rate
varies from a minimum value equal to the Update Rate to a maximum value of
Update Rate + 1 sweep. If the sweep takes more time than the update rate,
the DLB is executed as soon as the user logic program execution completes
in the current sweep.

 Scan Once - The DLB executes exactly one time when the user requests for
DLB execution to start. It then stops executing until it is manually instructed to
run again.

Target Properties

The Target properties include DLB Heartbeat, which specifies, in milliseconds, the
maximum time the controller waits for a heartbeat signal from the programmer. If a
heartbeat timeout occurs, the DLB will be stopped and removed from the controller.
This insures that DLB execution is stopped in the event of a communications failure
between the programmer and the controller.

With larger applications or a slower PC, some operations such as opening the
Controller File Explorer may cause the DLB Heartbeat to time out. If this happens, you
may need to increase the DLB Heartbeat interval.

The DLB Heartbeat must always be greater than the Update Rate setting for the
Target.

GFK-2222S Chapter 14 Diagnostics 14-63

14

Right-click Online Operations for an Active DLB

Menu Enable rules Description

Download Disabled if block is already running on
controller, target not in programmer mode,
Config+Logic is not equal, or Access Level
prevents write.

Downloads block to controller,
removing any other DLB that was
already there.

Start Disabled if block is already running, target
not in programmer mode, another block is
executing on controller, HWC+Logic is not
equal, or Access Level prevents write

Downloads block to controller,
removing any other DLB that was
already there, and then starts
executing block.

Stop Disabled if block is not executing Stops execution of block.

Remove Disabled if block is not on controller, block
is executing, or not in programmer mode

Stops block, then removes it from
controller.

DLB Online Operations

Only a single DLB can be downloaded and executed on the controller at a time. To
download an Active DLB to the controller, you must have:

 Program logic and HWC equal to the controller (Logic EQ)

 Target in programmer mode

 Sufficient privilege to write to the controller

Operation Minimum PACSystems RX3i Privilege Level Required

Storing DLBs in Stop mode 3

Storing DLBs in Run mode 4

When a DLB is downloaded, you are given the option of storing initial values or
clearing memory for local variables. If another DLB is already downloaded on the
controller it will be removed before the selected DLB is downloaded.

When a DLB is downloaded to the controller, all variables locally scoped to the DLB
are published from the controller so that HMIs or other devices can view the data.

While a DLB is running, the active target is read-only; no changes are allowed to DLB
or the application logic. If the DLB has been downloaded to the controller but is not
executing, changes are allowed but the first change will remove the DLB from the
controller. You will be prompted to confirm the change before the DLB is removed.
Uploading of the DLB is not supported.

Once a DLB is downloaded to the controller, it can be started if the main program is
running on the controller in Stop with I/O Enabled or Run with I/O Enabled mode.

14-64 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Removing a DLB from the Controller

The following actions will cause the DLB to be removed from the controller. If the DLB
is executing, it will be stopped before being removed.

 Removing the DLB from the controller through the Online Operations menu.

 Programmer connection to controller is lost by going offline or a communication
failure that causes a DLB Heartbeat timeout

 Switching from programmer mode to monitor mode

 Downloading to controller (Config, Logic, Stored Values, etc.)

 Clearing the controller, other than fault tables and controller supplemental files

 Performing any Flash operation, other than Verify

 Uploading from controller (Config, Logic, Stored Values, etc.)

 Changing the DLB that is on the controller

If there is an executing DLB, and you transition from run mode to stop mode, the
executing DLB will be stopped as well. The DLB will not be removed from the
controller in this case.

If you initiate an upload, and there is a DLB on the controller, you will be prompted for
confirmation and notified that the DLB will be removed and that all active DLBs will be
made inactive. If there are no DLBs on the controller but there is at least one active
DLB, you will be prompted for confirmation and notified that all active DLBs will be
made inactive. If you choose to abort the upload, no changes are made. If you
proceed, all DLBs are deactivated. If DLBs are de-activated, you will have to
reactivate them manually.

When a DLB is removed from the controller, any PMM data logger (DLOG) and event
queue (ELOG) files that were created by the DLB are also removed.

Basic Steps for Using a DLB in the Controller

1. Create an LD Block under the Active Blocks DLB Node in the Navigator.

You can accomplish this in several ways, such as by creating a new block under
the Active Blocks node, dragging a block from the Toolchest, or copying and
pasting a block from another project.

2. Select DLB block properties, for example, Execution Mode, as desired.

3. If necessary, change the Target property, DLB Heartbeat. For larger projects, you
may need to increase DLB Heartbeat from its default value of 1000ms to avoid
timing out while performing some operations, such as opening the Controller
File Explorer.

4. Go online to the Controller and go into Programmer Mode, Logic Equal.

5. Right click the DLB and select the Online Operations menu to download the DLB
to the controller and start its execution. (To download and start the DLB in one
operation, select Online Operations > Start.)

6. Monitor DLB execution.

GFK-2222S Chapter 14 Diagnostics 14-65

14

Monitoring DLB Execution

There are several tools to monitor the execution of the DLB in the controller:

 DLB Local Symbolic variables monitored in Data Watch, LD Editor, or
Data Monitor.

 DLB Icon shows the DLB state in the Navigator: Downloaded to controller or

Executing .

 A Proficy View application can monitor the execution of the DLB by using its Local
Symbolic Variables in Panels and Scripts.

The DLB block icon in the Navigator indicates its current state, as shown below:

Inactive DLB - (block displayed in gray)

Active DLB Downloaded to Controller - (block displayed in blue)

Executing DLB - (block displayed in green)

DLB Example

In this example, a block of LD logic is downloaded to the controller and executed.

The basic steps for using a sample DLB in the controller are as follows:

1. Create an LD block named MonitorScan and place it in the Toolchest. For
information on working with the Toolchest, refer to the online help.

The logic in the DLB block measures Controller scan time. It calculates the
Minimum (minTime), Maximum (maxTime), and Average (avgTime) time between
DLB block executions. When the DLB is set to Sweep Mode, these values should
be close to the Controller Sweep time.

14-66 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

Logic for the MonitorScan Block

Continued on next page.

GFK-2222S Chapter 14 Diagnostics 14-67

14

Logic for the MonitorScan Block, continued

2. Drag and drop the DLB Block from the Toolchest to the Active Blocks node in the
Navigator.

3. In the DLB block properties, set the Execution Mode to Sweep.

14-68 PACSystems* RX3i and RX7i CPU Reference Manual – July 2013 GFK-2222S

14

4. Go online to the Controller, and select Programmer Mode. Put the Controller in
Run mode or Stop Enabled mode.

5. Select the DLB Online Operations > Start menu to download the DLB to the
controller and start its execution.

6. In the Initialize Symbolic Variables dialog box, select how new local symbolic
variables will be initialized and click OK.

7. Notice the change in the DLB Icon and the DLB status in the Status bar.

DLB Block Icon/Status Bar After Started.

DLB Running

GFK-2222S Chapter 14 Diagnostics 14-69

14

8. Open the DLB block and place the DLB variables in the Data Watch window to
observe their operation.

GFK-2222S A-1

1

f

Performance Data

This appendix contains instruction and overhead timing collected for each PACSystems CPU

module. This timing information can be used to predict CPU sweep times. The information in

this appendix is organized as follows:

Boolean Execution Times A-2

Instruction Timing A-3

 Overview A-3

 CPU Version Information A-4

 RX3i A-5

 RX7i A-18

Overhead Sweep Impact Times A-29

A
Appendix

A-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

2

Boolean Execution Times
Boolean execution times for contacts and coils depend on several factors, including the CPU

model, the type of reference address associated with the contact/coil, and whether the

address is used directly or passed as a parameter. To help compare Boolean performance

across PACSystems CPUs, average time measurements are presented below for each CPU

model.

The measurements are for these three categories:

Simple address: Boolean with a simple reference address that is known at

compile/validation time. For example, a symbolic variable, or a mapped variable, such as

%I00001, or a Boolean from an array that is indexed by a constant, such as BoolArray[3].

Complex address: Boolean with a complex address that requires run-time computation

to resolve. For example, a Boolean from an array that is indexed by a variable, such

asBoolArray[j].

Passed as parameter: Boolean within a parameterized block or UDFB, where the

reference address of the Boolean is passed as a parameter to the block. The

measurement covers the Boolean execution time within the block, but does not include

the time to compute the reference address before passing it to the block.

Boolean Execution Measurements (milliseconds per 1000 Boolean executions)1

CPU Model

Boolean Category

Simple Address Complex Address
Passed as
Parameter

CPU310 0.253 1.371 0.467

CPE310 0.103 0.512 0.203

CPE305 0.102 0.513 0.203

CPU320 / CPU315 0.053 0.272 0.113

CRU320 0.055 0.272 0.111

CPE010 0.244 1.329 0.469

CPE020 0.095 0.543 0.198

CRE020 0.096 0.556 0.194

CPE030 0.087 0.450 0.183

CRE030 0.090 0.451 0.184

CPE040 0.029 0.150 0.061

CRE040 0.029 0.149 0.061

1
 Measured with CPU firmware version 7.18.

GFK-2222S Appendix A Performance Data A-3

A

3

Instruction Timing

Overview
The tables in this section list the execution and incremental times in microseconds for each

function supported by the PACSystems CPUs. Two execution times are shown for each

instruction.

Execution Time Description

Enabled Time in microseconds required to execute the function or function block when
power flows into the function with valid inputs.

Disabled Time in microseconds required to execute the function when it is not enabled.

Notes:

 All times represent typical execution time. Times may vary with input and error

conditions.

 Enabled time is for single length units of word-oriented memory.

 COMMREQ time was measured between CPU and Ethernet module with

NOWAIT option.

 DOIO time was measured using a discrete output module.

 Timers are updated each time they are encountered in the logic by the amount of time

consumed by the last sweep.

 Performance times for the BUS_ functions were measured on the RX7i using a

Series 90-70 Genius Bus Controller, and on the RX3i using an RMX128 Redundancy

Memory Xchange Module.

 Performance times for all redundancy (CRE and CRU) CPUs were measured with

ECC enabled.

 Due to a change in caching, measured times for some instructions changed for release

6.0 as compared to releases 5.0/5.1. It was found that increases in some instructions

were offset by decreases in other instructions, so that no effective net change was

observed.

A-4 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

4

CPU Version Information
The instruction execution and incremental times were obtained by testing the following CPU

versions:

 Model Firmware Version

All instructions
except as listed below

IC695CPE305/CPE310 7.10

IC695CPU310/CPU315 6.0

IC695CPU320/IC695CRU320
2
 7.18

IC698CPE010/CPE020 6.0

IC698CRE020 6.0 (with ECC enabled)

IC698CPE030/CPE040 6.0

IC698CRE030/CRE040 6.0 (with ECC enabled)

MOVE_UINT CPE010/020 3.5

CRE020
2
 2.04 (with ECC enabled)

SVC_REQs for Redundancy IC695CRU320
2
 6.0 (with ECC enabled)

TON, TOF, TP Instructions CPU310/CPU315//320, CRU320 5.7

CPE010/030/040 3.6

CRE030/040
2
 3.6 (with ECC enabled)

Instructions for PACMotion CPU315/CPU320 5.6

CPU310 6.0

2
 Due to Error Checking and Correction (ECC) times are approximately 5% slower, on average.

GFK-2222S Appendix A Performance Data A-5

A

5

RX3i Instruction Times

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

Bit Operation

AND_WORD 1.47 0.51 3.40 1.45 0.84 0.46 0.911 0.382

AND_DWORD 1.433 0.44 3.50 1.46 0.84 0.46 0.968 0.378

OR_WORD 1.332 0.44 3.40 1.50 0.84 0.47 0.891 0.437

OR_DWORD 1.387 0.45 3.63 1.51 0.89 0.47 0.919 0.375

XOR_WORD 1.347 0.46 3.37 1.44 0.86 0.46 0.908 0.375

XOR_DWORD 1.391 0.47 3.46 1.45 0.83 0.46 0.866 0.388

NOT_WORD 1.089 0.40 2.97 1.29 0.64 0.42 0.659 0.274

NOT_DWORD 1.03 0.37 2.93 1.32 0.67 0.40 0.662 0.282

MCMP_WORD 2.477 0.80 5.58 2.29 1.51 0.61 1.668 0.605

MCMP_DWORD 2.385 0.74 5.61 2.20 1.50 0.63 1.682 0.636

SHL_WORD 1.921 0.84 4.52 2.39 1.15 0.56 1.275 0.633

SHL_DWORD 1.903 0.77 4.54 2.44 1.12 0.56 1.321 0.665

SHR_WORD 1.875 0.76 5.15 2.43 1.18 0.57 1.26 0.614

SHR_DWORD 1.864 0.78 4.69 2.45 1.14 0.57 1.24 0.616

ROL_WORD 1.176 0.48 2.99 1.50 0.68 0.46 0.735 0.431

ROL_DWORD 1.125 0.42 3.22 1.53 0.64 0.46 0.773 0.402

ROR_WORD 1.105 0.41 2.91 1.43 0.66 0.46 0.704 0.431

ROR_DWORD 1.116 0.43 2.87 1.44 0.71 0.46 0.711 0.384

BTST_WORD 1.333 0.45 3.22 1.27 0.71 0.35 0.693 0.314

BTST_DWORD 1.265 0.39 3.09 1.26 0.71 0.34 0.73 0.321

BSET_WORD 0.897 0.35 2.38 1.17 0.59 0.30 0.635 0.293

BSET_DWORD 0.88 0.37 2.36 1.14 0.58 0.30 0.635 0.293

BCLR_WORD 0.849 0.35 2.39 1.14 0.59 0.30 0.659 0.316

BCLR_DWORD 0.86 0.33 2.45 1.19 0.59 0.30 0.623 0.291

BPOS_WORD 1.719 0.47 4.03 1.33 0.80 0.23 1.024 0.309

BPOS_DWORD 1.941 0.40 4.83 1.31 0.96 0.22 1.302 0.324

Relational

CMP_INT 1.623 0.41 3.52 1.16 0.89 0.33 1.11 0.363

CMP_DINT 1.552 0.38 3.54 1.19 0.91 0.34 1.143 0.393

CMP_REAL 1.619 0.39 3.63 1.20 0.94 0.35 1.146 0.362

CMP_LREAL 1.835 0.44 3.92 1.13 1.08 0.34 1.227 0.361

CMP_UINT 1.485 0.39 3.50 1.17 0.93 0.33 1.097 0.361

EQ_DATA - - 10.63 7.98 2.37 1.29

EQ_DATA_INPUTREF 2.247 0.12 -- -- -- -- 1.55 0.448

EQ_DATA_AXISREF 2.377 0.32 -- -- -- -- 1.616 0.491

EQ_DINT 1.074 0.29 2.32 0.96 0.65 0.24 0.737 0.277

3
 Due to Error Checking and Correction (ECC) times are approximately 5% slower on average.

A-6 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

6

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

EQ_INT 1.123 0.36 2.45 0.96 0.66 0.24 0.69 0.276

EQ_LREAL 1.174 0.37 2.88 1.07 0.78 0.26 0.832 0.282

EQ_REAL 1.05 0.30 2.38 0.96 0.66 0.26 0.677 0.328

EQ_UINT 1.01 0.31 2.37 0.96 0.65 0.25 0.659 0.269

NE_INT 1.03 0.32 2.29 0.98 0.64 0.24 0.715 0.292

NE_DINT 1.074 0.33 2.37 1.00 0.66 0.24 0.718 0.269

NE_UINT 1.14 0.34 2.39 0.96 0.66 0.24 1.029 0.583

NE_REAL 1.076 0.32 2.35 0.95 0.67 0.25 0.863 0.408

NE_LREAL 1.142 0.35 2.87 1.04 0.79 0.26 0.926 0.279

GT_INT 1.035 0.31 2.49 0.98 0.66 0.25 0.703 0.269

GT_DINT 1.018 0.31 2.34 1.01 0.65 0.24 0.714 0.268

GT_REAL 1.057 0.31 2.36 0.94 0.65 0.24 0.714 0.269

GT_LREAL 1.146 0.36 2.82 1.02 0.77 0.27 0.893 0.324

GT_UINT 1.048 0.31 2.37 0.95 0.66 0.24 0.714 0.27

GE_INT 1.017 0.31 2.44 0.93 0.68 0.24 0.682 0.269

GE_DINT 1.082 0.32 2.43 1.01 0.66 0.24 0.675 0.284

GE_REAL 1.075 0.32 2.35 0.94 0.66 0.26 0.678 0.266

GE_LREAL 1.154 0.34 2.85 1.04 0.77 0.26 0.817 0.282

GE_UINT 1.03 0.32 2.44 1.03 0.67 0.24. 0.677 0.272

LT_INT 1.049 0.32 2.53 1.02 0.64 0.24 0.712 0.281

LT_DINT 1.08 0.33 2.37 1.05 0.65 0.25 0.72 0.269

LT_REAL 1.044 0.32 2.37 0.97 0.64 0.25 0.873 0.409

LT_LREAL 1.139 0.35 2.81 1.01 0.77 0.26 0.882 0.299

LT_UINT 1.087 0.31 2.41 0.95 0.65 0.24 0.71 0.271

LE_INT 1.123 0.32 2.46 0.99 0.69 0.25 0.678 0.269

LE_DINT 1.014 0.31 2.33 1.03 0.65 0.25 0.665 0.27

LE_UINT 1.045 0.32 2.44 1.02 0.64 0.24 0.683 0.283

LE_REAL 1.03 0.31 2.34 1.00 0.65 0.25 0.676 0.27

LE_LREAL 1.136 0.35 2.78 0.98 0.77 0.26 0.818 0.291

Conversion

BCD-4 to INT 0.933 0.30 2.17 1.00 0.55 0.23 0.544 0.25

DINT to INT 0.694 0.30 1.90 0.98 0.55 0.21 0.507 0.247

UINT to INT 0.736 0.30 2.04 0.94 0.49 0.20 0.583 0.234

BCD-8 to DINT 0.889 0.28 2.58 0.97 0.62 0.21 0.612 0.235

INT to DINT 0.672 0.29 1.88 0.2 0.51 0.21 0.567 0.232

UINT to DINT 0.771 0.32 1.90 0.96 0.63 0.21 0.591 0.227

INT to UINT 0.724 0.30 1.93 0.93 0.62 0.21 0.551 0.251

DINT to UINT 0.674 0.30 1.92 1.06 0.50 0.21 0.517 0.248

BCD-4 to UINT 0.792 0.35 2.18 1.04 0.55 0.22 0.603 0.247

INT to BCD-4 0.922 0.30 2.19 0.93 0.61 0.22 0.596 0.239

UINT to BCD-4 0.853 0.30 2.17 0.94 0.67 0.22 0.644 0.229

GFK-2222S Appendix A Performance Data A-7

A

7

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

DINT to BCD-8 0.849 0.30 2.35 1.03 0.62 0.21 0.63 0.235

REAL_TO_INT 0.922 0.31 2.43 1.00 0.66 0.21 0.665 0.23

REAL_TO_UINT 0.882 0.30 2.37 0.99 0.63 0.21 0.637 0.239

REAL_TO_LREAL 0.697 0.31 2.10 0.95 0.52 0.21 0.555 0.224

REAL_TO_DINT 0.877 0.30 2.42 0.99 0.64 0.21 0.638 0.24

INT_TO_REAL 0.707 0.31 2.00 0.98 0.49 0.22 0.521 0.255

UINT_TO_REAL 0.724 0.31 1.87 0.95 0.55 0.23 0.595 0.239

DINT_TO_REAL 0.773 0.30 1.95 1.02 0.56 0.21 0.516 0.231

DINT_TO_LREAL 0.741 0.36 2.06 1.02 0.50 0.20 0.584 0.248

REAL_TRUN_INT 0.757 0.34 1.77 0.73 0.45 0.19 0.515 0.16

REAL_TRUN_DINT 0.776 0.35 1.84 0.83 0.52 0.19 0.516 0.167

DEG_TO_RAD_REAL 0.749 0.28 1.90 1.01 0.55 0.21 0.515 0.24

DEG_TO_RAD_LREAL 0.901 0.34 2.33 0.94 0.64 0.23 0.63 0.249

RAD_TO_DEG_REAL 0.703 0.28 1.91 0.97 0.59 0.21 0.515 0.25

RAD_TO_DEG_LREAL 0.789 0.32 2.33 0.94 0.64 0.23 0.636 0.256

BCD-4 to REAL 0.852 0.30 2.30 1.03 0.56 0.20 0.692 0.301

BCD-8 to REAL 0.996 0.30 2.62 0.94 0.66 0.20 0.661 0.25

LREAL_TO_DINT 0.869 0.33 2.67 1.03 0.63 0.20 0.673 0.23

LREAL_TO_REAL 0.666 0.30 2.25 1.01 0.54 0.21 0.549 0.224

Data Move

BLKCLR 0.796 0.29 1.96 0.96 0.45 0.19 0.528 0.223

BITSEQ 0.175 0.15 1.14 4.14 0.90 0.89

MOVE_BIT 1.162 0.41 3.00 1.37 0.67 0.25 0.861 0.245

MOVE_DINT 0.864 0.37 2.21 1.32 0.47 0.43 0.533 0.292

MOVE_INT 0.857 0.38 2.21 1.33 0.48 0.44

MOVE_UINT - - - - - - 0.523 0.305

MOVE_WORD 0.919 0.44 2.15 1.25 0.48 0.41 0.551 0.298

MOVE_DWORD 0.884 0.36 2.15 1.24 0.48 0.42 0.548 0.293

MOVE_REAL 0.844 0.35 2.15 1.24 0.47 0.41 0.594 0.354

MOVE_LREAL 1.136 0.41 2.63 1.27 0.57 0.41 0.604 0.297

MOVE_DATA - - 8.36 2.36 2.16 1.20 - -

MOVE_DATA_INPUTREF 2.094 0.34 10.63 2.60 - - 2.077 0.384

MOVE_DATA_AXISREF 2.437 0.39 10.63 2.60 - - 2.172 0.376

MOVE_DATA_EX 2.094 0.34 9.28 1.98 2.60 1.66 2.23 0.544

MOVE_DATA_EX_INPUTREF 2.437 0.39 9.28 1.98 - - 2.509 0.587

MOVE_TO_FLAT 2.094 0.34 9.28 1.98 2.60 1.66 2.23 0.544

MOVE_FROM_FLAT 2.094 0.34 9.28 1.98 2.60 1.66 2.23 0.544

BLKMOV_WORD 1.009 0.72 2.89 2.17 0.68 0.60 0.788 0.511

BLKMOV_DWORD 1.019 0.65 3.03 2.17 0.71 0.54 0.862 0.517

BLKMOV_DINT 1.133 0.68 3.04 2.22 0.71 0.55 0.842 0.541

BLKMOV_INT 0.938 0.69 2.78 2.13 0.69 0.60 0.8 0.511

A-8 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

8

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

BLKMOV_REAL 1.004 0.66 2.98 2.14 0.70 0.53 0.853 0.528

BLKMOV_UINT 0.91 0.65 2.79 2.09 0.67 0.60 0.785 0.531

DATA_INIT_ASCII 0.432 0.45 0.89 1.25 0.20 0.35 0.176 0.236

DATA_INIT_COMM 0.37 0.36 1.03 1.20 0.22 0.34 0.196 0.221

DATA_INIT_DLAN 0.433 0.39 1.33 1.32 0.33 0.35 0.254 0.238

DATA_INIT_DINT 0.313 0.37 0.89 1.21 0.21 0.33 0.169 0.24

DATA_INIT_DWORD 0.313 0.36 0.97 1.26 0.21 0.34 0.172 0.221

DATA_INIT_INT 0.343 0.38 0.94 1.27 0.20 0.33 0.178 0.231

DATA_INIT_REAL 0.344 0.38 0.91 1.22 0.21 0.35 0.172 0.248

DATA_INIT_LREAL 0.468 0.41 0.96 1.18 0.18 0.34 0.183 0.248

DATA_INIT_WORD 0.342 0.36 0.97 1.27 0.20 0.34 0.179 0.219

DATA_INIT_UINT 0.419 0.37 0.93 0.9 0.21 0.35 0.16 0.254

SWAP_WORD 0.976 0.36 2.67 1.24 0.58 0.41 0.616 0.291

SWAP_DWORD 1.008 0.38 2.75 1.29 0.59 0.41 0.62 0.308

SHFR_BIT 2.461 1.11 6.52 2.88 1.45 0.64 1.621 0.705

SHFR_WORD 2.441 1.49 7.13 4.94 1.94 1.40 2.072 1.51

SHFR_DWORD 2.403 1.48 7.16 4.91 2.00 1.42 2.127 1.493

Data Table

SORT_INT 15.58 0.40 36.56 1.25 9.89 0.42 9.743 0.295

SORT_UINT 15.436 0.35 36.49 1.24 9.86 0.42 9.628 0.296

SORT_WORD 15.516 0.36 36.46 1.26 9.87 0.42 9.613 0.332

TBLRD_INT 1.299 0.47 3.49 1.23 0.88 0.33 0.968 0.402

TBLRD_DINT 1.21 0.44 3.58 1.27 0.90 0.33 0.887 0.345

TBLWRT_INT 1.71 0.53 4.02 1.53 1.03 0.41 1.06 0.388

TBLWRT_DINT 1.599 0.48 3.94 1.52 1.03 0.42 1.113 0.391

FIFORD_INT 1.67 0.54 4.04 1.68 0.92 0.41 0.931 0.405

FIFORD_DINT 1.627 0.55 4.00 1.69 0.92 0.41 0.927 0.408

FIFOWRT_INT 1.189 0.32 3.06 1.21 0.83 0.30 0.838 0.358

FIFOWRT_DINT 1.197 0.31 3.05 1.19 0.84 0.30 0.836 0.278

LIFORD_INT 1.563 0.54 3.83 1.69 0.87 0.41 0.887 0.403

LIFORD_DINT 1.508 0.54 3.81 1.64 0.87 0.41 0.886 0.403

LIFOWRT_INT 1.211 0.33 3.06 1.18 0.83 0.30 0.836 0.278

LIFOWRT_DINT 1.194 0.35 3.05 1.19 0.83 0.32 0.837 0.284

LIFOWRT_DWORD 1.2 0.34 3.06 1.18 0.83 0.30 0.838 0.293

Array

ARRAY_MOVE_BIT 1.787 0.69 4.62 2.03 0.91 0.51 0.984 0.504

ARRAY_MOVE_BYTE 1.385 0.57 3.62 1.84 0.78 0.57 0.927 0.49

ARRAY_MOVE_WORD 1.335 0.59 3.67 1.92 0.80 0.57 0.858 0.556

ARRAY_MOVE_DWORD 1.346 0.59 3.61 1.85 0.80 0.58 0.86 0.49

ARRAY_MOVE_DINT 1.368 0.59 3.62 1.94 0.80 0.57 0.856 0.491

ARRAY_MOVE_INT 1.357 0.61 3.72 1.99 0.80 0.57 0.868 0.496

GFK-2222S Appendix A Performance Data A-9

A

9

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

ARRAY_MOVE_UINT 1.408 0.61 3.61 1.87 0.79 0.58 0.88 0.491

SRCH_BYTE 1.8 0.63 4.35 1.86 1.04 0.46 1.254 0.487

SRCH_WORD 1.666 0.57 4.05 1.81 1.02 0.46 1.306 0.508

SRCH_DWORD 1.721 0.57 4.17 1.82 1.12 0.46 1.245 0.531

ARRAY_RANGE_WORD 1.715 0.59 4.16 1.77 1.00 0.42 1.159 0.419

ARRAY_RANGE_DWORD 1.714 0.53 4.43 1.78 1.21 0.42 1.209 0.417

ARRAY_RANGE_DINT 1.724 0.54 4.47 1.83 1.16 0.43 1.171 0.419

ARRAY_RANGE_INT 1.647 0.53 4.69 1.85 1.16 0.41 1.185 0.404

ARRAY_RANGE_UINT 1.706 0.55 4.17 1.84 1.11 0.41 1.162 0.406

Math

ADD_INT 0.932 0.41 2.08 1.19 0.70 0.30 0.796 0.28

ADD_DINT 0.841 0.35 2.22 1.17 0.63 0.31 0.825 0.272

ADD_REAL 0.819 0.34 2.12 1.13 0.61 0.32 0.751 0.327

ADD_LREAL 0.962 0.38 3.09 1.20 0.75 0.31 0.94 0.299

ADD_UINT 0.801 0.34 2.08 1.14 0.64 0.30 0.717 0.259

SUB_INT 0.805 0.34 2.08 1.15 0.66 0.30 0.729 0.258

SUB_DINT 0.846 0.33 2.17 1.13 0.64 0.30 0.75 0.258

SUB_REAL 0.826 0.34 2.17 1.18 0.62 0.31 0.743 0.26

SUB_LREAL 0.998 0.40 2.81 1.27 0.81 0.31 0.958 0.3

MUL_INT 0.822 0.34 2.21 1.13 0.64 0.30 0.727 0.258

MUL_DINT 0.883 0.35 2.20 1.20 0.63 0.31 0.765 0.255

MUL_REAL 0.86 0.35 2.13 1.14 0.57 0.31 0.752 0.265

MUL_LREAL 0.97 0.39 3.03 1.44 0.75 0.33 0.94 0.29

MUL_MIXED 0.913 0.37 2.06 1.19 0.64 0.31 0.823 0.275

MUL_UINT 0.8 0.34 2.42 1.18 0.65 0.30 0.728 0.259

DIV_INT 0.913 0.35 2.35 1.19 0.64 0.30 0.74 0.268

DIV_DINT 0.904 0.36 2.45 1.21 0.64 0.31 0.77 0.281

DIV_REAL 0.894 0.34 2.39 1.13 0.69 0.30 0.761 0.258

DIV_LREAL 1.012 0.39 2.93 1.20 0.79 0.31 0.962 0.279

DIV_MIXED 1.00 0.34 2.45 1.15 0.67 0.30 0.788 0.259

MOD_INT 0.903 0.35 2.36 1.23 0.69 0.31 0.762 0.278

MOD_DINT 0.904 0.35 2.30 1.18 0.64 0.31 0.742 0.277

MOD_UINT 0.82 0.35 2.23 1.19 0.71 0.31 0.83 0.261

ABS_INT 0.728 0.29 1.96 0.91 0.51 0.23 0.555 0.241

ABS_DINT 0.717 0.29 1.99 0.91 0.56 0.23 0.528 0.241

ABS_REAL 0.751 0.28 2.12 0.96 0.56 0.21 0.521 0.239

ABS_LREAL 0.875 0.38 2.54 1.01 0.62 0.22 0.678 0.24

SCALE_INT 1.12 0.58 3.07 1.54 0.85 0.44 0.931 0.437

SCALE_DINT 1.263 0.56 2.65 1.51 0.71 0.51 0.991 0.429

SCALE_UINT 1.067 0.55 2.70 1.50 0.71 0.49 0.9 0.404

SQRT_INT 0.905 0.26 2.36 0.93 0.63 0.21 0.618 0.24

A-10 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

10

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

SQRT_DINT 0.906 0.33 2.86 0.93 0.69 0.21 0.742 0.24

SQRT_REAL 0.812 0.28 2.15 0.92 0.55 0.23 0.592 0.293

SQRT_LREAL 0.897 0.30 2.60 1.02 0.65 0.22 0.644 0.244

Trigonometric

SIN_REAL 1.031 0.28 2.48 0.92 0.61 0.22 0.628 0.239

SIN_LREAL 1.063 0.35 2.97 1.02 0.74 0.22 0.74 0.294

COS_REAL 0.988 0.28 2.41 0.93 0.67 0.21 0.616 0.239

COS_LREAL 1.04 0.28 2.93 1.02 0.75 0.21 0.736 0.235

TAN_REAL 1.156 0.28 2.53 0.92 0.63 0.21 0.635 0.24

TAN_LREAL 1.086 0.32 3.03 1.02 0.83 0.22 0.776 0.236

ASIN_REAL 1.096 0.28 2.80 0.98 0.73 0.21 0.743 0.24

ASIN_LREAL 1.127 0.49 3.23 1.00 0.88 0.21 0.835 0.223

ACOS_REAL 1.096 0.28 2.80 0.98 0.73 0.21 0.743 0.24

ACOS_LREAL 1.221 0.33 3.27 0.99 0.88 0.21 0.845 0.239

ATAN_REAL 1.013 0.29 2.56 1.03 0.67 0.23 0.63 0.256

ATAN_LREAL 0.992 0.31 2.88 1.00 0.76 0.21 0.719 0.24

Logarithmic

LOG_REAL 0.977 0.29 2.46 0.99 0.65 0.21 0.641 0.241

LOG_LREAL 1.052 0.30 3.25 0.95 0.73 0.21 0.733 0.223

LN_REAL 1 0.30 2.46 0.97 0.65 0.22 0.66 0.287

LN_LREAL 1.05 0.33 3.14 1.01 0.75 0.22 0.744 0.239

EXPT_REAL 1.568 0.36 3.75 1.29 0.88 0.31 0.988 0.246

EXPT_LREAL 1.114 0.39 3.35 1.31 0.72 0.30 0.727 0.277

EXP_REAL 0.91 0.29 2.26 0.97 0.61 0.23 0.612 0.254

EXP_LREAL 0.966 0.34 2.85 1.1 0.76 0.23 0.698 0.232

PID

PIDISA 2.862 2.54 6.80 6.14 1.52 1.43 1.74 1.468

PIDIND 2.701 2.46 6.83 6.16 1.51 1.39 1.784 1.495

Range

RANGE_INT 1.424 0.62 3.57 2.09 0.85 0.47 1.055 0.615

RANGE_DINT 1.341 0.57 3.28 1.85 0.85 0.47 0.952 0.463

RANGE_DWORD 1.363 0.59 3.39 1.84 0.85 0.47 0.911 0.482

Timers

ONDTR 1.918 1.52 4.91 3.81 1.11 0.83 1.104 0.807

OFDT 1.756 1.56 4.70 4.22 1.03 0.87 1.027 0.838

TMR 1.797 1.58 4.69 4.21 1.04 0.88 1.031 0.838

TOF 2.986 1.951 7.8 4.7 1.8 1.2 1.803 1.107

TON 2.262 1.912 7.4 4.5 1.8 1.1 1.357 1.108

TP 2.312 1.909 7.5 4.5 1.8 1.2 1.422 1.11

GFK-2222S Appendix A Performance Data A-11

A

11

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

Counters

UPCTR 1.851 1.69 4.24 4.28 0.96 0.92 0.899 0.907

DNCTR 1.668 1.68 4.20 4.23 0.94 0.93 0.903 0.896

Control

JUMPN 0.021 0.06 0.29 0.13 0.02 0.01 0.134 0.01

FOR/NEXT 0.482 0.22 1.40 0.70 0.23 0.18 0.256 0.167

MCRN/ENDMCRN
Combined

0.212 0.21 0.64 0.65 0.06 007 0.1 0.146

SWITCH_POS 0.787 0.28 1.96 0.91 0.57 0.21 0.549 0.185

DOIO 78.972 0.41 58.32 1.32 38.72 0.30 16.97 0.29

DOIO with ALT 79.187 0.41 58.17 1.28 38.67 0.33 16.947 0.305

DRUM_SEQ 2.68 2.20 6.74 5.42 1.63 1.30 1.71 1.266

SCAN_SET_IO 138.471 0.797 155.02 1.87 111.81 0.50 39.488 0.394

SUSIO 0.797 0.14 1.93 0.38 0.49 0.11 0.514 0.094

COMM_REQ 221.447 0.39 219.48 1.51 133.87 0.36 136.466 0.362

CALL/RETURN
(C Block)

2.907 0.17 7.23 0.44 1.83 0.09 1.853 0.088

CALL/RETURN (LD) 2.859 0.13 7.50 0.42 1.73 0.10 1.853 0.106

CALL/RETURN
(Parameterized Block)

1.85 0.12 4.92 0.41 1.22 0.11
1.288 0.087

Bus
4

BUS_RD_BYTE 16.228 0.75 20.16 2.35 7.41 0.68 1.02 0.589

BUS_RD_WORD 16.189 0.73 20.67 2.46 7.48 0.71 1.07 0.64

BUS_RD_DWORD 16.383 0.72 20.80 2.43 7.55 0.70 1.032 0.613

BUS_WRT_BYTE 12.34 0.70 20.94 2.59 6.19 0.70 1.944 0.589

BUS_WRT_WORD 12.478 0.71 20.76 2.49 6.17 0.69 1.956 0.593

BUS_WRT_DWORD 12.489 0.73 21.09 2.49 6.24 0.69 1.957 0.601

BUS_RMW_BYTE 17.5 0.83 21.72 2.67 7.96 0.78 1.385 0.682

BUS_RMW_WORD 17.647 0.83 21.01 2.69 7.95 0.79 1.358 0.659

BUS_RMW_DWORD 17.484 0.79 21.20 2.71 7.96 0.78 1.429 0.665

BUS_TS_BYTE 17.284 0.61 19.07 2.05 7.80 0.50 1.309 0.511

BUS_TS_WORD 17.378 0.59 20.16 2.09 7.66 0.51 1.254 0.512

SVC_REQ

#1 2.179 0.26 6.57 1.02 1.34 0.18 1.54 0.217

#2 2.523 0.27 6.35 1.01 1.57 0.21 1.809 0.176

#3 1.746 0.25 4.80 0.92 0.98 0.18 1.15 0.142

#4 1.735 0.24 4.83 0.98 0.99 0.19 1.14 0.158

#5 1.697 0.24 4.90 0.92 0.97 0.17 1.158 0.153

#6 1.688 0.25 4.58 0.97 0.99 0.19 1.099 0.18

4
 Results will vary with how quickly the module responds to bus cycles. Because of this, incremental times do not appear in the

“Incremental Times” tables.

A-12 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

12

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

#7 3.661 0.32 8.64 1.12 1.95 0.20 2.022 0.182

#8 10.343 0.28 6.82 1.01 3.14 0.20 3.306 0.192

#9 1.76 0.28 4.53 1.03 1.06 0.20 1.192 0.195

#10 2.487 0.28 7.09 1.04 1.72 0.20 1.586 0.205

#11 1.751 0.28 4.25 1.03 1.07 0.20 1.166 0.195

#12 0.931 0.28 2.37 1.03 0.60 0.20 0.708 0.187

#13 1.438 0.25 4.56 1.09 0.89 0.18 0.903 0.177

#14 178.204 0.23 436.25 1.11 124.34 0.19 117.072 0.161

#15 1.13 0.36 2.72 1.10 0.60 0.34 0.712 0.308

#16 1.739 0.33 4.39 1.01 1.04 0.21 1.058 0.202

#17 1.235 0.32 2.95 0.90 0.85 0.19 0.732 0.196

#18 31.168 0.33 112.51 1.05 41.61 0.21 25.369 0.181

#19 1.618 0.32 4.30 1.05 0.88 0.20 0.929 0.173

#20 4.997 0.33 17.78 1.05 4.59 0.21 4.614 0.173

#21 16.058 0.34 35.02 1.00 9.48 0.21 9.344 0.173

#22 1.07 0.29 2.82 1.00 0.65 0.20 0.735 0.175

#23 36.224 0.29 118.94 1.03 32.49 0.21 24.019 0.188

#24 2.003 0.30 4.66 0.98 1.05 0.20 0.665 0.173

#25 1.181 0.29 3.00 0.98 0.74 0.20 0.746 0.167

#26 NA NA NA NA NA NA
NA
1.73

NA
1.28

#27 NA NA NA NA NA NA
NA
1.75

NA
1.29

#28 NA NA NA NA NA NA
NA
1.96

NA
1.30

#32 9.788 0.30 12.88 1.31 5.03 0.20 4.824 0.178

#43 NA NA NA NA NA NA
NA
1.77

NA
1.27

#50 1.655 0.29 4.48 1.05 1.00 0.21 1.116 0.157

#51 1.67 0.29 4.54 0.99 1.05 0.20 1.154 0.157

#56
563.143

5

17.413
6

0.39
84.16

5

84.16
6

0.97 22.73 0.21 1396.47 0.159

#57
9167.403

5

8.79
6

0.39
17558.33

5

17558.33
6

0.97 13970.00 0.21 6131.71 0.159

5
 Initial execution.

6
 Subsequent executions.

GFK-2222S Appendix A Performance Data A-13

A

13

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

PACMotion

MC_AbortTrigger 167.406 5.322 150.954 12.762 50.35 3.01 50.35 3.01

MC_CamFileRead 22.997 14.603 63.861 44.001 13.84 7.05 13.84 7.05

MC_CamFileWrite 25.499 15.152 52.938 27.52 12.02 4.7 12.02 4.7

MC_CamIn 185.117 10.867 169.563 30.988 102.8 4.86 102.8 4.86

MC_CamOut 134.517 4.580 99.325 10.812 47.49 2.8 47.49 2.8

MC_CamTableDeselect 104.051 8.023 116.468 18.343 60.09 3.56 60.09 3.56

MC_CamTableSelect 126.359 7.399 138.508 21.01 75.97 3.77 75.97 3.77

MC_DelayedStart 122.332 7.167 141.552 20.164 76.77 3.22 76.77 3.22

MC_DigitalCamSwitch 229.067 39.904 227.174 70.804 152.59 4.32 152.59 4.32

MC_DL_Activate 102.622 19.693 101.982 26.656 50.63 3.39 50.63 3.39

MC_DL_Configure 182.666 8.776 200.857 23.556 130 3.72 130 3.72

MC_DL_Delete 92.780 10.230 116.745 21.212 49.57 3.14 49.57 3.14

MC_DL_Get 102.580 9.065 109.414 35.919 61.29 3.16 61.29 3.16

MC_GearIn 170.551 7.611 165.344 23.176 91.03 4.34 91.03 4.34

MC_GearInPos 115.852 7.790 134.393 21.776 70.31 4.43 70.31 4.43

MC_GearOut 89.184 4.646 100.441 10.64 46.91 3.2 46.91 3.2

MC_Halt 152.450 7.622 155.891 19.243 82.5 4.11 82.5 4.11

MC_Home 117.432 7.715 134.787 19.626 71.45 3.77 71.45 3.77

MC_JogAxis 114.385 11.529 128.661 32.746 65.18 3.38 65.18 3.38

MC_LibraryStatus 91.545 8.275 105.757 16.573 48.78 3.33 48.78 3.33

MC_ModuleReset 95.198 6.322 103.803 17.462 83.73 3.15 83.73 3.15

MC_MoveAbsolute 175.661 7.095 174.49 18.321 99.53 3.95 99.53 3.95

MC_MoveAdditive 159.697 7.495 168.611 19.947 89.47 4.14 89.47 4.14

MC_MoveRelative 159.920 7.440 158.805 19.89 90.54 3.83 90.54 3.83

MC_MoveVelocity 162.556 7.650 159.625 22.839 65.66 3.98 65.66 3.98

MC_Phasing 170.154 7.646 167.904 21.544 95.11 4.6 95.11 4.6

MC_Power 37.423 37.284 130.954 130.871 24.49 20.06 24.49 20.06

MC_ReadActualPosition 39.528 1.656 36.643 4.216 18.61 0.73 18.61 0.73

MC_ReadActualVelocity 39.183 1.644 36.072 4.262 18.36 0.74 18.36 0.74

MC_ReadAnalogInput 45.623 1.988 51.211 4.74 22.38 1.17 22.38 1.17

MC_ReadAnalogOutput 59.744 3.318 47.314 7.89 22.16 1.67 22.16 1.67

MC_ReadAxisError 36.524 2.813 38.94 6.712 17.17 1.32 17.17 1.32

MC_ReadBoolParameter 32.953 2.761 37.485 6.408 14.85 1.57 14.85 1.57

MC_ReadBoolParameters 31.974 3.435 37.936 7.479 15 1.64 15 1.64

MC_ReadDigitalInput 38.895 3.226 36.186 7.043 14.63 1.67 14.63 1.67

MC_ReadDigitalOutput 44.757 2.485 47.597 6.216 17.07 1.58 17.07 1.58

MC_ReadDwordParameters 31.176 3.467 36.61 7.079 14.54 1.58 14.54 1.58

MC_ReadEventQueue 108.594 9.296 123.594 22.352 60.86 4.33 60.86 4.33

MC_ReadParameter 45.460 3.075 58.045 9.839 22.87 1.58 22.87 1.58

MC_ReadParameters 43.504 4.021 47.405 8.012 20.72 1.61 20.72 1.61

A-14 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

14

CPE305
CPE310

CPU310 CPU315/
CPU320
CRU320

3

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

MC_ReadStatus 32.917 3.436 41.05 7.167 16.01 4.12 16.01 4.12

MC_ReadTorqueCommand 39.639 1.720 36.657 4.36 18.51 0.73 18.51 0.73

MC_Reset 93.936 5.851 103.623 16.885 48.37 2.99 48.37 2.99

MC_SetOverride 107.928 11.412 116.23 36.465 62.21 3.81 62.21 3.81

MC_SetPosition 98.519 7.638 116.732 23.002 54 3.97 54 3.97

MC_Stop 99.332 6.130 112.185 16.24 56.38 3.6 56.38 3.6

MC_Superimposed 105.975 5.892 122.646 16.499 63.24 3.75 63.24 3.75

MC_SyncStart 103.035 6.320 122.121 17.198 60.23 3.1 60.23 3.1

MC_TouchProbe 173.373 7.268 160.243 18.934 56.11 3.32 56.11 3.32

MC_WriteAnalogOutput 134.439 8.041 112.994 21.111 53.53 3.36 53.53 3.36

MC_WriteBoolParameter 104.890 7.287 95.696 20.303 48.29 3.21 48.29 3.21

MC_WriteBoolParameters 131.228 8.106 106.974 22.215 57.41 3.23 57.41 3.23

MC_WriteDigitalOutput 96.338 8.259 116.644 23.822 52.99 4.27 52.99 4.27

MC_WriteDwordParameters 160.433 7.661 125.168 19.661 73.23 3.25 73.23 3.25

MC_WriteParameter 98.558 8.231 122.482 27.394 55.3 4.03 55.3 4.03

MC_WriteParameters 192.054 6.859 161.002 18.911 94.77 4.84 94.77 4.84

GFK-2222S Appendix A Performance Data A-15

A

15

RX3i Incremental Times
An Increment time is shown for functions that can have variable length inputs.

Incremental time is added to the base function time for each addition to the length of an input

parameter. This time applies only to functions that can have varying input lengths (Search,

Array Moves, etc.)

Units:

 For table functions, increment is in units of length specified.

 For bit operation functions, increment is microseconds per bit.

 For data move functions, increment is in microseconds per unit.

Instruction
CPE305
CPE310

CPU310 CPU315
CPU320/
CRU320

7

Bit Operation

AND_WORD 0.04 0.12 0.02826 0.02463

AND_DWORD 0.06 0.16 0.3088 0.03789

OR_WORD 0.04 0.12 0.03 0.02472

OR_DWORD 0.06 0.16 0.03444 0.03798

XOR_WORD 0.04 0.12 0.02818 0.02478

XOR_DWORD 0.06 0.16 0.03424 0.03762

NOT_WORD 0.02 0.08 0.02011 0.01888

NOT_DWORD 0.04 0.12 0.02839 0.02799

MCMP_WORD 0.08 0.26 0.05934 0.055

MCMP_DWORD 0.09 0.29 0.06407 0.05919

SHL_WORD 0.07 0.17 0.0468 0.05032

SHL_DWORD 0.07 0.18 0.04381 0.04681

SHR_WORD 0.07 0.18 0.04883 0.03557

SHR_DWORD 0.09 0.19 0.0455 0.04718

BTST_WORD 0.00 0 0.00011 0.04332

BTST_DWORD 0.00 0 0.00046 0.03983

ROL_WORD 0.06 0.19 0.05071 0.03634

ROL_DWORD 0.07 0.17 0.03929 0.04152

ROR_WORD 0.06 0.16 0.0428 0.00012

ROR_DWORD 0.07 0.17 0.03992 0.00033

BPOS_WORD 0.32 0.76 0.17369 0.19574

BPOS_DWORD 0.72 1.69 0.38279 0.43922

7
 Due to Error Checking and Correction (ECC), CRU320 times are approximately 5% slower, on average, than those

for the CPU320.

A-16 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

16

Instruction
CPE305
CPE310

CPU310 CPU315
CPU320/
CRU320

7

Relational

EQ_DATA 0.0001 0.00019 0

Conversion

REAL_TO_UINT 0 0.00421 0

REAL_TO_DINT 0 0.00936 0

LReal_To_Real - - - 0

Data Move

MOVE_BIT 0.01 0.02 0.00412 0.00488

MOVE_DINT 0.02 0.04 0 0.0089

MOVE_INT 0.01 0.02 0 0

MOVE_UINT - - - 0.00439

MOVE_WORD 0.01 0.02 0.00968 0.0041

MOVE_DWORD 0.02 0.04 0.04613 0.00913

MOVE_REAL 0.02 0.04 0.0372 0.00951

MOVE_LREAL 0.03 0.09 0.01952 0.01928

MOVE_DATA 0.0002 0.00022 0

MOVE_DATA_EX 0.0002 0.00028 0

DATA_INIT_ASCII 0.00 0.01 0.00217 0.00304

DATA_INIT_COMM 0.01 0.02 0.00408 0.00398

DATA_INIT_DLAN - 0 0 0

DATA_INIT_DINT 0.01 0.04 0.00811 0.00812

DATA_INIT_DWORD 0.01 0.04 0.00817 0.00807

DATA_INIT_INT 0.01 0.02 0.00447 0.00432

DATA_INIT_REAL 0.01 0.04 0.00796 0.00822

DATA_INIT_LREAL 0.03 0.08 0.01584 0.01639

DATA_INIT_WORD 0.01 0.02 0.00439 0.00469

DATA_INIT_UINT 0.01 0.02 0.00391 0.00422

SWAP_WORD 0.04 0.19 0.00498 0.02921

SWAP_DWORD 0.06 0.16 0.00942 0.03614

BLKCLR_WORD 0.01 0.02 0.00568 0.00627

SHFR_BIT 0.02 0.04 0.01174 0.01241

SHFR_WORD 0.06 0.18 0.04529 0.03804

SHFR_DWORD 0.07 0.20 0.04751 0.04277

GFK-2222S Appendix A Performance Data A-17

A

17

Instruction
CPE305
CPE310

CPU310 CPU315
CPU320/
CRU320

7

Data Table

SORT_INT 0.33 0.74 0.22253 0.2179

SORT_UINT 0.33 0.74 0.22237 0.21686

SORT_WORD 0.32 0.74 0.22243 0.21704

TBLRD_INT 0.00 0 -1E-05 0.00016

TBLRD_DINT 0.00 0 0.00012 0.00014

TBLWRT_INT 0.00 0 -0.0002 0.00003

TBLWRT_DINT 0.00 0 -0.0002 0.0002

FIFORD_INT 0.01 0.02 0.00432 0.00417

FIFORD_DINT 0.02 0.04 0.00927 0.0093

FIFOWRT_INT 0.00 -0.1333333 0.00011 0.00009

FIFOWRT_DINT 0.00 -1.1777778 -0.001 0.00001

LIFORD_INT 0.00 0.01111111 0.00021 0.00001

LIFORD_DINT 0.00 0.64444444 0.00021 0.00011

LIFOWRT_INT 0.00 -0.8666667 0.0001 0.00004

LIFOWRT_DINT 0.00 -0.8777778 4.4E-05 0.00001

LIFOWRT_DWORD 0.00 0.11111111 -0.0002 0.00001

Array

ARRAY_MOVE_BIT 0.01 0.02 0.00558 0.00538

ARRAY_MOVE_BYTE 0.00 0.01 0.0024 0.00207

ARRAY_MOVE_INT 0.01 0.02 0.00424 0.00407

ARRAY_MOVE_DINT 0.02 0.05 0.00961 0.00986

ARRAY_MOVE_WORD 0.01 0.02 0.0041 0.00442

ARRAY_MOVE_DWORD 0.02 0.04 0.00974 0.009

ARRAY_MOVE_UINT 0.01 0.02 0.00413 0.0038

SRCH_BYTE 0.02 0.07 0.01796 0.0173

SRCH_WORD 0.03 0.07 0.01828 0.01946

SRCH_DWORD 0.02 0.07 0.01507 0.01407

ARRAY_RANGE_DINT 0.19 0.54 0.13903 0.13582

ARRAY_RANGE_INT 0.18 0.52 0.13471 0.13199

ARRAY_RANGE_UINT 0.18 0.52 0.13647 0.13241

ARRAY_RANGE_WORD 0.18 0.52 0.13578 0.13282

ARRAY_RANGE_DWORD 0.19 0.56 0.14221 0.13928

PACMotion

MC_ReadBoolParameters 16.000 14.000 7.62 –

MC_ReadDwordParameters 30.000 28.000 12.34 –

MC_ReadParameters 40.000 38.000 19.42 –

MC_WriteBoolParameters 22.000 10.000 0.48 –

MC_WriteDwordParameters 40.000 34.000 1.4 –

MC_WriteParameters 45.000 42.000 1.34 –

A-18 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

18

RX7i Instruction Times

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

Bit Operation

AND_WORD 3.42 1.58 1.49 0.69 1.71 0.81 1.29 0.58 0.43 0.20

AND_DWORD 3.64 1.58 1.58 0.70 1.67 0.81 1.31 0.58 0.44 0.20

OR_WORD 3.58 1.71 1.56 0.76 1.72 0.90 1.28 0.59 0.43 0.20

OR_DWORD 3.55 1.66 1.54 0.73 1.71 0.83 1.44 0.60 0.48 0.20

XOR_WORD 3.42 1.57 1.48 0.69 1.73 0.80 1.29 0.61 0.48 0.25

XOR_DWORD 3.55 1.58 1.54 0.70 1.66 0.81 1.32 0.58 0.44 0.25

NOT_WORD 2.73 1.38 1.17 0.59 1.39 0.72 1.02 0.40 0.34 0.13

NOT_DWORD 2.81 1.44 1.21 0.62 1.44 0.75 1.07 0.41 0.35 0.14

MCMP_WORD 5.69 2.43 2.44 1.04 2.64 1.14 2.51 1.08 0.85 0.36

MCMP_DWORD 5.69 2.32 2.50 1.00 2.63 1.11 2.48 1.03 0.82 0.34

SHL_WORD 4.46 2.62 1.89 1.11 2.31 1.25 1.92 1.00 0.64 0.34

SHL_DWORD 4.53 2.73 1.92 1.56 2.31 1.28 1.90 0.98 0.63 0.32

SHR_WORD 4.64 2.59 1.96 1.09 2.45 1.24 1.98 0.98 0.66 0.32

SHR_DWORD 4.51 2.65 1.91 1.12 2.11 1.29 1.90 1.01 0.63 0.34

ROL_WORD 2.95 1.61 1.27 0.69 1.43 0.82 1.17 0.61 0.39 0.20

ROL_DWORD 3.27 1.61 1.39 0.70 1.46 0.84 1.07 0.59 0.36 0.20

ROR_WORD 2.93 1.52 1.25 0.66 1.45 0.82 1.11 0.57 0.39 0.19

ROR_DWORD 2.92 1.58 0.68 0.68 1.41 0.81 1.20 0.57 0.40 0.19

BTST_WORD 3.23 1.45 0.58 0.5 1.49 0.75 1.16 0.63 0.39 0.21

BTST_DWORD 3.29 1.37 1.41 0.5 1.48 0.72 1.19 0.63 0.40 0.19

BSET_WORD 2.62 1.43 1.12 0.61 1.17 0.72 0.97 0.48 0.31 0.16

BSET_DWORD 2.59 1.40 1.13 0.60 1.16 0.71 0.97 0.48 0.32 0.16

BCLR_WORD 2.51 1.36 1.08 0.59 1.20 0.72 0.97 0.48 0.31 0.16

BCLR_DWORD 2.49 1.33 1.07 0.57 1.16 0.70 0.97 0.47 0.32 0.16

BPOS_WORD 3.63 1.24 1.66 0.64 1.84 0.76 1.51 0.56 0.50 0.19

BPOS_DWORD 3.29 1.18 1.97 0.62 2.18 0.75 1.78 0.48 0.59 0.18

Relational

CMP_INT 3.51 1.25 1.50 0.54 1.45 0.60 1.58 0.52 0.53 0.17

CMP_DINT 3.86 1.32 1.66 0.57 1.51 0.66 1.61 0.52 0.53 0.17

CMP_REAL 3.65 1.30 1.57 0.56 1.52 0.62 0.53 0.53 0.54 0.1

CMP_LREAL 4.08 1.25 1.75 0.53 1.64 0.59 1.84 0.52 0.61 0.18

CMP_UINT 4.15 1.35 1.78 0.58 1.48 0.63 1.62 0.53 0.54 0.17

EQ_DATA 10.13 2.02 2.91 1.05 2.81 0.94 2.82 1.08 1.27 0.66

EQ_DINT 2.45 1.15 1.06 0.50 1.08 0.60 1.05 0.41 0.35 0.13

EQ_INT 2.49 1.14 1.07 0.50 1.04 0.58 1.04 0.47 0.35 0.16

EQ_LREAL 3.00 1.27 1.28 0.54 1.25 0.64 1.27 0.47 0.43 0.17

8
 Due to Error Checking and Correction (ECC) times are approximately 5% slower on average.

GFK-2222S Appendix A Performance Data A-19

A

19

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

EQ_REAL 2.61 1.12 1.12 0.49 1.03 0.60 1.15 0.43 0.37 0.14

EQ_UINT 2.33 1.11 1.00 0.48 1.01 0.59 1.04 0.40 0.35 0.13

NE_INT 2.34 1.13 1.01 0.49 0.97 0.60 1.03 0.42 0.34 0.14

NE_DINT 2.56 1.34 1.10 0.55 1.10 0.66 1.08 0.43 0.36 0.14

NE_UINT 2.43 1.18 1.04 0.51 1.00 0.62 1.08 043 0.36 0.14

NE_REAL 2.65 1.18 1.14 0.51 1.05 0.61 1.13 0.40 0.38 0.13

NE_LREAL 2.93 1.17 1.26 0.51 1.24 0.60 1.29 0.42 0.44 0.15

GT_INT 2.50 1.14 1.08 0.49 1.05 0.60 1.05 0.40 0.35 0.13

GT_DINT 2.42 1.15 1.04 0.50 1.04 0.59 1.05 0.40 0.35 0.13

GT_REAL 2.60 1.11 1.11 0.48 1.02 0.58 1.13 0.40 0.38 0.13

GT_LREAL 2.90 1.15 1.27 0.50 1.21 0.60 1.28 0.43 0.43 0.15

GT_UINT 2.39 1.10 1.02 0.48 0.99 0.59 1.06 0.40 0.35 0.13

GE_INT 2.48 1.13 1.07 0.50 1.04 0.59 1.08 0.40 0.36 0.13

GE_DINT 2.57 1.19 1.08 0.51 1.08 0.62 1.07 0.41 0.36 0.14

GE_REAL 2.59 1.10 1.11 0.48 1.02 0.58 1.13 0.43 0.38 0.14

GE_LREAL 2.92 1.17 0.51 0.6 1.25 0.62 1.24 0.41 0.43 0.14

GE_UINT 2.42 1.19 1.04 0.51 1.01 0.63 1.06 0.41 0.35 0.13

LT_INT 2.54 1.22 1.09 0.50 1.06 0.61 1.05 0.42 0.35 0.14

LT_DINT 2.58 1.27 1.11 0.54 1.09 0.66 1.08 0.43 0.36 0.14

LT_REAL 2.66 1.18 1.14 0.51 1.04 0.72 1.13 0.39 0.38 0.13

LT_LREAL 2.90 1.15 1.24 0.50 1.22 0.59 1.29 0.43 0.43 0.14

LT_UINT 2.48 1.15 1.03 0.49 1.02 0.60 1.04 0.0 0.35 0.13

LE_INT 2.48 1.14 1.07 0.49 1.03 0.60 1.08 0.40 0.36 0.13

LE_DINT 2.46 1.15 1.05 0.50 1.04 0.59 1.05 0.40 0.35 0.13

LE_UINT 2.41 1.17 1.03 0.50 1.04 0.61 1.02 0.41 0.34 0.13

LE_REAL 2.68 1.14 1.16 0.49 1.02 0.60 1.10 0.40 0.37 0.13

LE_LREAL 2.89 1.15 1.24 0.49 12.1 0.58 1.26 0.39 0.43 0.14

Conversion

BCD-4 to INT 2.11 1.11 0.90 0.48 0.95 0.62 0.83 0.34 0.27 0.14

DINT to INT 2.18 1.15 0.94 0.48 0.81 0.56 0.85 0.33 0.28 0.14

UINT to INT 1.95 1.14 0.84 0.49 0.81 0.55 0.77 0.31 0.25 0.14

BCD-8 to DINT 3.00 1.10 1.29 0.47 1.02 0.58 0.94 0.32 0.30 0.14

INT to DINT 2.19 1.13 0.94 0.49 0.78 0.55 0.75 0.33 0.23 0.15

UINT to DINT 2.17 1.18 0.94 0.51 0.92 0.57 0.79 0.32 0.27 0.13

INT to UINT 1.88 1.12 0.81 0.48 0.76 0.56 0.80 0.35 0.27 0.14

DINT to UINT 2.15 1.11 0.93 0.48 0.83 0.58 0.72 0.33 0.24 0.14

BCD-4 to UINT 2.13 1.08 0.93 0.48 0.94 0.65 0.81 0.35 0.27 0.14

INT to BCD-4 2.24 1.12 0.94 0.48 0.92 0.56 0.95 0.35 0.27 0.15

UINT to BCD-4 2.26 1.17 0.97 0.50 0.93 0.56 1.07 0.36 0.33 0.15

DINT to BCD-8 3.15 1.08 1.35 0.47 1.00 0.60 0.91 0.34 0.31 0.14

REAL_TO_INT 2.75 1.20 1.18 0.52 1.02 0.58 0.99 0.34 0.33 0.14

A-20 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

20

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

REAL_TO_UINT 2.67 1.18 1.15 0.51 1.01 0.57 0.95 0.34 0.31 0.14

REAL_TO_LREAL 2.26 1.01 0.97 0.43 0.88 0.55 0.88 0.37 0.29 0.12

REAL_TO_DINT 3.06 1.14 1.32 0.49 1.05 0.57 0.98 0.34 0.31 0.14

INT_TO_REAL 2.17 1.12 0.93 0.48 0.77 0.56 0.73 0.36 0.24 0.15

UINT_TO_REAL 2.19 1.17 0.94 0.50 0.77 0.57 0.83 0.37 0.28 0.15

DINT_TO_REAL 2.43 1.14 1.04 0.49 0.84 0.60 0.75 0.34 0.27 0.14

DINT_TO_LREAL 2.24 1.01 0.96 0.44 0.85 0.73 0.85 0.42 0.28 0.13

REAL_TRUN_INT 2.22 1.37 0.87 0.49 0.83 0.59 0.56 0.13 0.26 0.11

REAL_TRUN_DINT 2.42 1.13 1.09 0.55 0.89 0.64 0.70 0.13 0.30 0.11

DEG_TO_RAD_REAL 2.39 1.11 1.03 0.48 0.83 0.57 0.87 0.35 0.29 0.12

DEG_TO_RAD_LREAL 2.34 1.05 1.01 0.44 0.92 0.52 0.98 0.34 033 0.11

RAD_TO_DEG_REAL 2.34 1.16 1.03 0.48 0.94 0.57 0.86 0.35 0.29 0.12

RAD_TO_DEG_LREAL 2.33 1.06 1.00 0.44 0.93 0.52 0.98 0.34 0.33 0.11

BCD-4 to REAL 2.42 1.09 1.04 0.48 0.99 0.64 0.89 0.34 0.28 0.14

BCD-8 to REAL 3.07 1.14 1.32 0.49 1.11 0.55 0.98 0.31 0.31 0.14

LREAL_TO_DINT 2.85 1.00 1.21 0.43 1.07 0.73 1.10 0.42 0.36 0.13

LREAL_TO_REAL 2.35 1.09 1.01 0.47 0.87 0.58 0.83 0.35 0.2 0.12

Data Move

BLKCLR 2.13 1.16 0.91 0.50 1.09 0.62 0.73 0.34 0.24 0.11

BITSEQ 3.90 3.93 1.63 1.64 1.76 1.74 1.50 1.59 0.50 0.53

MOVE_BIT 2.93 1.53 1.22 0.63 1.47 0.81 1.06 0.41 0.35 0.14

MOVE_DINT 2.23 1.44 0.92 0.58 1.07 0.75 0.78 0.26 0.3 0.13

MOVE_INT 2.27 1.47 0.94 0.60 1.06 0.75 0.79 0.42 0.26 0.14

MOVE_DWORD 2.31 1.51 0.96 0.62 1.10 0.77 0.81 0.41 0.26 0.14

MOVE_LREAL 2.74 1.43 1.15 0.61 1.56 0.77 0.95 0.42 0.31 0.14

MOVE_REAL 2.18 1.39 0.91 0.57 1.07 0.74 0.78 0.40 0.26 0.14

MOVE_UINT 2.3 1.2 1.0 0.5 - - - - - -

MOVE_WORD 2.25 1.45 0.93 0.59 1.04 0.76 0.80 0.43 0.27 0.14

MOVE_DATA 9.81 3.22 2.72 1.02 2.73 0.95 2.54 1.12 1.11 0.69

MOVE_DATA_EX 12.25 4.22 3.53 1.15 3.35 1.27 2.85 1.44 1.27 0.80

MOVE_TO_FLAT 12.25 4.22 3.53 1.15 3.35 1.27 2.85 1.44 1.27 0.80

MOVE_FROM_FLAT 12.25 4.22 3.53 1.15 3.35 1.27 2.85 1.44 1.27 0.80

BLKMOV_WORD 2.73 2.26 1.17 0.97 1.23 1.14 1.13 0.91 0.38 0.30

BLKMOV_DINT 3.02 2.36 1.30 1.01 1.35 1.10 1.19 0.90 0.40 0.30

BLKMOV_INT 2.71 2.26 1.16 0.97 1.21 1.13 1.11 0.88 0.37 0.30

BLKMOV_DWORD 2.97 2.31 1.28 0.99 1.33 1.08 1.19 0.87 0.40 0.29

BLKMOV_REAL 3.01 2.34 1.29 1.00 1.35 1.10 1.18 0.89 0.39 0.29

BLKMOV_UINT 2.71 2.21 1.17 0.96 1.23 1.15 1.12 0.87 0.37 0.29

DATA_INIT_ASCII 0.91 1.39 0.40 0.60 0.76 0.77 0.30 0.44 0.10 0.15

DATA_INIT_COMM 1.05 1.36 0.46 0.60 0.84 0.78 0.37 0.43 0.11 0.15

DATA_INIT_DLAN 1.33 1.49 0.58 0.64 0.94 0.83 0.39 0.45 0.14 0.15

GFK-2222S Appendix A Performance Data A-21

A

21

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

DATA_INIT_DINT 0.92 1.37 0.40 0.59 0.78 0.79 0.30 0.45 0.10 0.15

DATA_INIT_DWORD 0.98 1.39 0.41 0.60 0.79 0.81 0.32 0.45 0.11 0.15

DATA_INIT_INT 0.95 1.41 0.42 0.61 0.81 0.81 0.31 0.46 0.10 0.15

DATA_INIT_REAL 0.90 1.36 0.40 0.59 0.77 0.78 0.30 0.44 0.18 0.22

DATA_INIT_LREAL 0.98 1.33 0.42 0.57 0.79 0.78 0.36 0.48 0.11 0.16

DATA_INIT_WORD 0.90 1.41 0.40 0.61 0.78 0.79 0.30 0.44 0.10 0.15

DATA_INIT_UINT 0.90 1.37 0.39 0.59 0.78 0.79 0.31 0.46 0.10 0.15

SWAP_WORD 2.83 1.41 1.18 0.57 1.34 0.74 0.96 0.42 0.32 0.13

SWAP_DWORD 2.59 1.43 1.08 0.58 1.29 0.73 0.93 0.42 0.31 0.14

SHFR_BIT 6.35 2.94 2.74 1.27 2.92 1.22 2.37 1.08 0.79 0.36

SHFR_WORD 7.08 4.90 3.04 2.11 3.25 2.16 3.27 2.46 1.09 0.82

SHFR_DWORD 7.62 5.03 3.27 2.1 3.39 2.24 3.29 2.43 1.10 0.81

Data Table

SORT_INT 36.57 1.40 15.66 0.60 15.94 0.75 16.50 0.44 5.50 0.15

SORT_UINT 36.48 1.40 15.66 0.60 15.90 0.75 16.50 0.44 5.49 0.15

SORT_WORD 36.51 1.39 15.61 0.60 15.90 0.76 16.46 0.44 5.49 0.15

TBLRD_INT 4.14 1.75 1.79 0.77 2.03 0.97 1.52 0.73 0.49 0.25

TBLRD_DINT 4.19 1.77 1.79 0.76 2.02 0.97 1.47 0.69 0.48 0.22

TBLWRT_INT 4.06 1.74 1.73 0.74 1.72 0.84 1.59 0.74 0.53 0.25

TBLWRT_DINT 4.00 1.70 1.72 0.72 1.70 0.84 1.60 0.72 0.53 0.23

FIFORD_INT 3.92 1.69 1.68 0.71 1.67 0.72 1.58 0.66 0.53 0.22

FIFORD_DINT 3.89 1.71 1.65 0.73 1.65 0.68 1.56 0.66 0.52 0.22

FIFOWRT_INT 3.17 1.46 1.35 0.64 1.41 0.75 1.23 0.49 0.42 0.18

FIFOWRT_DINT 3.10 1.43 1.33 0.62 1.39 0.72 1.25 0.51 0.42 0.17

LIFORD_INT 3.77 1.73 1.60 0.72 1.62 0.72 1.49 0.66 0.50 0.22

LIFORD_DINT 3.77 1.74 1.60 0.72 1.63 0.72 1.48 0.66 0.49 0.22

LIFOWRT_INT 3.18 1.49 1.35 0.63 1.43 0.72 1.25 0.51 0.42 0.17

LIFOWRT_DINT 3.08 1.42 1.33 0.61 1.41 0.72 1.33 0.68 0.42 0.18

LIFOWRT_DWORD 3.15 1.47 1.35 0.63 1.43 0.72 1.25 0.53 0.41 0.18

Array

ARRAY_MOVE_BIT 4.10 2.16 1.76 0.92 1.94 1.06 1.57 0.75 0.52 0.25

ARRAY_MOVE_BYTE 3.12 1.97 1.34 0.84 1.45 0.95 1.25 0.82 0.42 0.27

ARRAY_MOVE_WORD 3.19 2.10 1.37 0.91 1.45 1.05 1.26 0.81 0.42 0.27

ARRAY_MOVE_DINT 3.10 2.04 1.33 0.85 1.41 0.97 1.24 0.81 0.41 0.2

ARRAY_MOVE_DWORD 3.07 1.97 1.32 0.84 1.42 0.95 1.24 0.81 0.42 0.27

ARRAY_MOVE_INT 3.23 2.12 1.39 0.92 1.47 1.03 1.26 0.79 0.42 0.26

ARRAY_MOVE_UINT 3.10 1.96 1.33 0.84 1.53 1.07 1.37 1.14 0.42 0.28

SRCH_BYTE 4.07 1.86 1.74 0.79 2.11 0.91 1.74 0.87 0.58 0.29

SRCH_WORD 3.90 1.86 1.70 0.82 1.83 0.91 1.90 0.83 0.63 0.27

SRCH_DWORD 4.57 1.91 1.96 0.82 1.92 0.96 1.78 0.78 0.59 0.25

ARRAY_RANGE_WORD 4.14 1.89 1.80 0.81 1.90 0.96 1.70 0.69 0.57 0.23

A-22 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

22

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

ARRAY_RANGE_DWORD 4.61 1.88 1.99 0.80 2.06 0.97 1.70 0.65 0.57 0.22

ARRAY_RANGE_DINT 4.39 1.89 1.88 0.81 1.97 0.99 1.81 0.69 0.61 0.23

ARRAY_RANGE_INT 4.22 1.84 1.81 0.79 1.92 0.96 1.84 0.68 0.61 0.23

ARRAY_RANGE_UINT 4.44 1.82 1.76 0.78 1.91 0.96 1.68 0.66 0.56 0.22

Math

ADD_INT 2.11 1.31 0.91 0.58 0.87 0.66 1.00 0.49 0.33 0.16

ADD_DINT 2.56 1.34 1.12 0.58 0.97 0.67 0.90 0.46 0.30 0.15

ADD_REAL 2.75 1.32 1.19 0.56 0.96 0.66 0.92 0.50 0.30 0.17

ADD_LREAL 2.82 1.30 1.21 0.54 1.09 0.62 1.28 0.53 0.43 0.18

ADD_UINT 2.23 1.42 0.93 0.57 0.96 0.68 0.90 0.51 0.29 0.16

SUB_INT 2.13 1.35 0.91 0.55 0.87 0.65 0.87 0.49 0.29 0.16

SUB_DINT 2.50 1.35 1.09 0.56 0.94 0.65 0.90 0.49 0.30 0.16

SUB_REAL 2.46 1.29 1.13 0.63 1.08 0.85 1.08 0.69 0.30 0.17

SUB_LREAL 1.26 1.26 1.26 0.54 1.10 0.63 1.37 0.53 0.47 0.17

MUL_INT 2.25 1.42 0.93 0.57 0.90 0.65 0.89 0.49 0.30 0.16

MUL_DINT 2.53 1.34 1.10 0.59 0.95 0.69 1.05 0.49 0.35 0.17

MUL_MIXED 2.36 1.31 1.00 0.58 0.89 0.66 0.90 0.51 0.30 0.16

MUL_REAL 2.57 1.39 1.08 0.56 0.93 0.65 0.88 0.48 0.29 0.17

MUL_LREAL 2.87 1.21 1.24 0.52 1.19 0.61 1.28 0.54 044 0.18

MUL_UINT 2.14 1.35 0.92 0.55 0.90 0.65 0.87 0.49 0.29 0.16

DIV_INT 2.25 1.29 0.99 0.58 0.98 0.68 0.90 0.48 0.30 0.16

DIV_DINT 2.71 1.35 1.16 0.60 0.99 0.73 0.93 0.48 0.30 0.16

DIV_REAL 2.70 1.43 1.11 0.56 0.96 0.68 1.07 0.49 0.36 0.16

DIV_LREAL 2.86 1.20 1.23 0.52 1.14 0.61 1.33 0.53 0.45 0.18

DIV_MIXED 2.70 1.35 1.15 0.56 1.11 0.65 0.97 0.49 0.33 0.16

MOD_INT 2.23 1.38 0.95 0.57 0.93 0.66 0.91 0.48 0.30 0.16

MOD_DINT 2.65 1.35 1.12 0.56 1.09 0.79 1.09 0.69 0.30 0.17

MOD_UINT 2.19 1.29 1.01 0.63 0.99 0.74 0.99 0.50 0.33 0.17

ABS_INT 2.01 1.21 0.99 0.63 0.93 0.60 0.84 0.38 0.29 0.13

ABS_DINT 2.44 1.17 1.05 0.50 0.96 0.60 0.84 0.37 0.28 0.12

ABS_REAL 2.45 1.14 1.05 0.49 0.87 0.59 0.90 0.35 0.30 0.12

ABS_LREAL 2.58 1.07 1.11 0.46 0.97 0.53 0.98 0.35 0.33 0.11

SCALE_INT 3.54 1.84 1.57 0.83 1.82 0.91 1.23 0.54 0.48 0.24

SCALE_DINT 2.98 1.79 1.37 0.89 1.61 1.03 1.00 0.51 0.41 0.24

SCALE_UINT 2.89 1.78 1.27 0.81 1.39 0.98 0.98 0.5 0.40 0.25

SQRT_INT 2.39 1.13 1.05 0.50 1.08 0.57 0.99 0.35 0.32 0.12

SQRT_DINT 3.37 1.18 1.44 0.51 1.28 0.58 1.08 0.35 0.36 0.12

SQRT_REAL 2.54 1.23 1.09 0.54 0.91 0.61 0.85 0.37 0.29 0.13

SQRT_LREAL 2.36 1.09 1.00 0.46 0.92 0.53 0.99 0.32 0.34 0.12

GFK-2222S Appendix A Performance Data A-23

A

23

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

Trigonometric

SIN_REAL 3.02 1.11 1.26 0.48 0.97 0.57 0.95 0.35 0.32 0.12

SIN_LREAL 3.05 1.10 1.31 0.48 1.13 0.55 1.16 0.35 0.39 0.11

COS_REAL 2.96 1.11 1.22 0.48 0.97 0.57 1.06 0.35 0.36 0.12

COS_LREAL 2.88 1.09 1.18 0.47 1.10 0.56 1.17 0.35 0.39 0.11

TAN_REAL 3.02 1.11 1.26 0.48 1.02 0.57 0.96 0.35 0.32 0.12

TAN_LREAL 2.89 1.09 1.23 0.476 1.14 0.56 1.32 0.36 0.44 0.11

ASIN_REAL 3.29 1.20 1.41 0.52 1.26 0.63 1.13 0.35 0.38 0.12

ASIN_LREAL 3.14 10.5 1.32 0.45 1.33 0.54 1.37 0.35 0.46 0.12

ACOS_REAL 3.29 1.20 1.41 0.52 1.26 0.63 1.13 0.35 0.38 0.12

ACOS_LREAL 3.10 1.04 1.32 0.45 1.28 0.53 1.36 0.54 0.47 0.12

ATAN_REAL 3.26 1.25 1.37 0.54 1.02 0.65 1.05 0.37 0.35 0.12

ATAN_LREAL 2.87 1.04 1.20 0.46 1.08 0.53 1.18 0.35 0.40 0.12

Logarithmic

LOG_REAL 2.90 1.16 1.25 0.50 1.03 0.59 1.04 0.35 0.35 0.12

LOG_LREAL 2.88 1.03 1.21 0.43 1.11 0.52 1.19 0.38 0.39 0.12

LN_REAL 2.84 1.13 1.22 0.50 1.01 0.58 1.06 0.37 0.35 0.12

LN_LREAL 2.83 1.07 1.22 0.46 1.16 0.53 1.19 0.34 0.40 0.11

EXPT_REAL 4.13 1.41 1.77 0.63 1.52 0.72 1.39 0.40 0.46 0.13

EXPT_LREAL 3.03 1.33 1.30 0.57 1.35 0.71 1.24 0.42 0.42 0.14

EXP_REAL 2.70 1.16 1.16 0.50 0.97 0.59 1.00 0.37 0.33 0.12

EXP_LREAL 2.71 1.04 1.16 0.45 1.08 0.54 1.25 0.34 0.42 0.12

PID

PIDISA 6.92 6.18 2.98 2.66 3.17 2.79 2.66 2.44 0.89 0.81

PIDIND 6.86 6.13 2.97 2.66 3.17 2.79 2.65 2.43 0.88 0.81

Range

RANGE_INT 3.27 1.89 1.40 0.81 1.35 0.91 1.40 0.87 0.53 0.35

RANGE_DINT 3.26 1.94 1.40 0.83 1.36 0.92 1.41 0.81 0.47 0.27

RANGE_DWORD 3.40 2.02 0.87 0.87 1.46 1.01 1.42 0.82 0.47 0.27

Timers

ONDTR 4.79 3.70 2.01 1.54 2.11 1.57 1.82 1.38 0.61 0.46

OFDT 4.57 4.08 1.92 1.71 1.97 1.76 1.71 1.45 0.57 0.49

TMR 4.52 4.04 1.92 1.71 2.05 1.79 1.71 1.45 0.58 0.49

TOF 9.6 4.9 4.1 2.1 NA NA 3.9 2.0 1.3 0.6

TON 9.5 4.8 4.0 2.0 NA NA 3.9 2.0 1.3 0.6

TP 9.8 4.8 4.2 2.1 NA NA 3.9 2.0 1.3 0.6

Counters

UPCTR 4.13 4.17 1.74 1.76 1.85 1.86 1.59 1.53 0.53 0.51

DNCTR 4.16 4.18 1.73 1.75 1.84 1.86 1.54 1.53 0.52 0.51

A-24 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

24

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

Control

JUMPN 0.21 0.26 0.06 0.06 0.12 0.09 0.12 0.08 0.04 0.03

FOR/NEXT 1.51 0.72 0.64 0.31 0.90 0.47 0.56 0.26 0.19 0.09

MCRN/ENDMCRN
Combined

0.68 0.68 0.28 0.29 0.28 0.28 0.10 0.10 0.03 0.03

SWITCH_POS 1.91 1.02 0.82 0.44 0.87 0.59 0.60 0.13 0.26 0.12

DOIO 32.78 1.45 17.60 0.63 6.50 0.76 14.94 0.23 9.374 0.15

DOIO with ALT 32.56 1.48 17.47 0.63 6.47 0.75 14.91 0.32 9.36 0.18

DRUM_SEQ 6.98 5.70 2.99 2.45 3.21 2.67 2.63 2.21 0.88 0.74

SCAN_SET_IO 55.21 1.92 32.65 0.83 33.69 0.86 30.40 0.76 22.84 0.25

SUSIO 2.14 0.45 0.92 0.20 1.12 0.35 0.68 0.06 0.30 0.05

COMMREQ 117.27 1.60 73.25 0.73 73.30 0.90 73.42 0.59 65.23 0.22

CALL/RETURN (LD) 7.27 0.51 3.11 0.23 3.58 0.42 2.79 0.06 0.99 0.05

CALL/RETURN
(Parameterized Block)

7.84 0.56 2.07 0.23 2.33 0.42 1.94 0.05 0.72 0.06

CALL/RETURN (C Block) 7.24 0.55 3.05 0.25 3.29 0.45 2.91 0.06 1.04 0.04

Bus
9

BUS_RD_BYTE 21.30 2.42 10.87 1.04 1.94 1.18 8.56 1.00 5.24 0.33

BUS_RD_DWORD 21.96 2.51 11.16 1.09 2.13 1.25 8.14 1.00 5.17 0.33

BUS_RD_WORD 21.44 2.54 10.98 1.10 2.11 1.29 8.14 1.01 5.17 0.33

BUS_WRT_BYTE 23.76 2.72 11.62 1.17 3.10 1.26 9.46 0.96 5.76 0.32

BUS_WRT_DWORD 23.52 2.56 11.53 1.10 3.11 1.30 9.48 0.95 5.77 0.32

BUS_WRT_WORD 23.51 2.55 11.54 1.10 3.09 1.28 9.46 0.95 5.76 0.32

BUS_RMW_BYTE 24.44 2.78 12.97 1.19 2.41 1.37 10.28 1.12 6.58 0.37

BUS_RMW_DWORD 24.73 2.82 12.80 1.21 2.23 1.35 10.06 1.13 6.48 0.38

BUS_RMW_WORD 24.00 2.77 12.54 1.19 2.41 1.38 10.25 1.12 6.54 0.38

BUS_TS_BYTE 23.23 2.36 12.23 1.01 2.19 1.28 9.93 0.87 6.45 0.29

BUS_TS_WORD 22.98 2.31 12.14 0.99 2.06 1.15 9.96 0.91 6.5 0.28

9
 Results will vary with how quickly the module responds to bus cycles. Because of this, incremental times do not appear in the

“Incremental Times” tables.

GFK-2222S Appendix A Performance Data A-25

A

25

 CPE010 CPE020 CRE020
8

CPE030

CRE030
8

CPE040

CRE040
8

Instruction

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

E
n

a
b

le
d

(μ
s
)

D
is

a
b

le
d

(μ
s
)

SVC_REQ

 #1 6.40 1.20 2.75 0.52 2.78 0.79 2.10 0.1 0.77 0.10

 #2 6.45 1.04 2.76 0.45 2.74 0.67 2.67 0.35 0.89 0.12

 #3 4.94 1.15 2.10 0.49 2.45 0.74 1.39 0.09 0.53 0.10

 #4 4.93 1.12 2.09 0.47 2.49 0.74 1.42 0.08 0.54 0.10

 #5 4.99 1.19 2.12 0.50 2.49 0.77 1.44 0.10 0.55 0.10

 #6 4.62 1.12 1.96 0.47 1.97 0.74 1.46 0.13 0.55 0.11

 #7 8.81 1.17 3.67 0.51 3.72 0.78 3.30 0.34 1.05 0.10

 #8 7.08 1.07 3.82 0.46 4.00 0.66 3.92 0.34 2.53 0.12

 #9 4.12 1.06 1.76 0.46 1.95 0.66 1.83 0.32 0.60 0.11

 #10 6.81 1.10 3.02 0.45 3.04 0.67 2.71 0.35 0.91 0.12

 #11 4.26 1.12 1.84 0.48 1.90 0.68 1.82 0.34 0.61 0.11

 #12 2.25 1.01 0.97 0.44 1.12 0.66 1.02 0.33 0.34 0.11

 #13 4.55 1.24 1.96 0.51 2.78 0.75 1.32 0.08 0.51 0.09

 #14 424.95 1.16 188.07 0.48 203.10 0.76 197.46 0.09 71.70 0.10

 #15 3.18 1.14 1.38 0.49 1.25 0.51 0.94 0.49 0.31 0.16

 #16 4.57 1.20 1.94 0.52 2.06 0.70 1.71 0.35 0.57 0.12

 #17 2.94 1.13 1.24 0.49 NA NA 1.27 0.32 035 0.04

 #18 112.36 1.18 48.09 0.51 48.20 0.69 69.36 0.33 23.12 0.11

 #19 4.61 1.19 1.97 0.51 2.71 0.66 1.51 0.33 0.50 0.11

 #20 18.92 1.19 8.09 0.51 7.58 0.65 7.69 0.33 2.56 0.11

 #21 36.19 1.23 18.15 0.52 17.77 0.66 13.29 0.32 7.15 0.18

 #22 2.86 1.23 1.23 0.53 1.28 0.63 1.19 0.36 0.39 0.12

 #23 119.63 1.19 51.22 0.52 54.68 0.65 54.33 0.33 18.01 0.11

#24 150.79 1.17 77.38 0.51 1.26 0.65 58.55 0.32 34.67 0.11

 #25 3.03 1.21 1.30 0.52 1.25 0.66 1.30 0.35 0.43 0.121

#26 NA NA NA NA 3.20 2.85 NA
2.65

NA
2.13

NA
0.88

NA
0.71

#27 NA NA NA NA 3.42 2.85 NA
2.90

NA
2.16

NA
0.97

NA
0.72

#28 NA NA NA NA 3.19 2.86 NA
3.30

NA
2.17

NA
1.18

NA
0.73

#32 54.47 1.21 48.97 0.50 NA NA 47.36
NA

0.30
NA

45.12
NA

0.12
NA

#43 NA NA NA NA 3.53 2.91 NA
2.93

NA
2.11

NA
0.98

NA
0.70

 #50 4.48 1.18 1.90 0.51 1.92 0.63 1.76 0.33 0.59 0.11

 #51 4.60 1.13 1.98 0.49 1.9 0.64 2.27 0.80 0.59 0.10

#56 82.65 1.23 42.66 0.52 44.03 0.78 29.75 0.32 10.26 0.11

#57 19331.60 1.21 19017.30 0.52 18848.20 0.78 13585 0.32 13540 0.11

A-26 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

26

RX7i Incremental Times
An Increment time is shown for functions that can have variable length inputs.

Incremental time is added to the base function time for each addition to the length of an input
parameter. This time applies only to functions that can have varying input lengths (Search, Array
Moves, etc.)

Units:

 For table functions, increment is in units of length specified.

 For bit operation functions, increment is microseconds per bit.

 For data move functions, microseconds per unit.

Instruction CPE010 CPE020 CRE020
CPE030/
CRE030

CPE040/
CRE040

Bit Operation

AND_WORD 0.11572 0.04957 0.05006 0.04553 0.01517

AND_DWORD 0.15567 0.5996 0.6002 0.5095 0.1766

OR_WORD 0.11857 0.05078 0.05039 0.04842 0.01543

OR_DWORD 0.15729 0.06743 0.067 0.05626 0.01859

XOR_WORD 0.1156 0.04983 0.05022 0.04613 0.01532

XOR_DWORD 0.15568 0.06691 0.06669 0.05623 0.0187

NOT_WORD 0.07498 0.03249 0.03248 0.03343 0.01117

NOT_DWORD 0.11946 0.0513 0.05011 0.04666 0.01556

MCMP_WORD 0.26347 0.11279 0.11288 0.0969 0.03228

MCMP_DWORD 0.28671 0.12257 0.1226 0.10587 0.03523

SHL_WORD 0.17382 0.07444 0.0745 0.07786 0.02594

SHL_DWORD 0.18306 0.07839 0.07842 0.07287 0.02428

SHR_WORD 0.18397 0.07872 0.0785 0.08088 0.02686

SHR_DWORD 0.18868 0.08229 0.08062 0.07612 0.02537

BTST_WORD 0.00014 -6E-05 -3E-05 0.00026 0.0001

BTST_DWORD 0.00098 3.3E-05 0.00042 0.00071 0.00024

ROL_WORD 0.1944 0.08303 0.08316 0.08447 0.02821

ROL_DWORD 0.16617 0.07114 0.0714 0.06493 0.02161

ROR_WORD 0.15893 0.06819 0.06809 0.0715 0.02382

ROR_DWORD 0.16617 0.0737 0.07399 0.06634 0.0221

BPOS_WORD 0.76048 0.32549 0.32584 0.28894 0.09634

BPOS_DWORD 1.68499 0.72159 0.7231 0.6378 0.21258

Relational

EQ_DATA 0.00029 0.00004 0.00021 0.00051 2.6E-05

Conversion

REAL_TO_UINT 0 0 0 0 0

REAL_TO_DINT 0 0 0 0 0

Data Move

MOVE_BIT 0.01958 0.00821 0.00813 0.00919 0.00307

MOVE_DINT 0.04398 0.01884 0.01943 0.0157 0.00533

MOVE_INT 0.02002 0.00833 0.00863 0.00694 0.00231

MOVE_DWORD 0.04447 0.01904 0.0193 0.01584 0.00528

MOVE_LREAL 0.08989 0.03854 0.03878 0.03242 0.01083

MOVE_UINT 0.02 0.01 0.02 0.03 0.01

GFK-2222S Appendix A Performance Data A-27

A

27

Instruction CPE010 CPE020 CRE020
CPE030/
CRE030

CPE040/
CRE040

MOVE_WORD 0.02046 0.00876 0.00839 0.00704 0.00234

MOVE_REAL 0.04464 0.01914 0.01946 0.01572 0.00523

MOVE_DATA 0.00021 0.00015 0.00015 -0.0002 7.2E-05

MOVE_DATA_EX 0.0011 6.9E-05 6.9E-05 3.2E-05 2.1E-05

DATA_INIT_ASCII 0.01057 0.00459 0.00844 0.00686 0.00101

DATA_INIT_COMM 0.01982 0.00851 0.01724 0.01381 0.00229

DATA_INIT_DLAN 0 0 0 0 0

DATA_INIT_DINT 0.04034 0.01713 0.00878 0.00754 0.00464

DATA_INIT_DWORD 0.04032 0.01728 0.0084 0.00649 0.00461

DATA_INIT_INT 0.01952 0.00837 0.01714 0.01392 0.00253

DATA_INIT_REAL 0.03997 0.01711 0 0 0.00453

DATA_INIT_LREAL 0.08051 0.03457 0.03434 0.02621 0.00902

DATA_INIT_WORD 0.02071 0.00888 0.01718 0.01343 0.0025

DATA_INIT_UINT 0.01971 0.00844 0.00849 0.00732 0.00226

SWAP_WORD 0.18858 0.08076 0.08082 0.07672 0.02551

SWAP_DWORD 0.15904 0.06834 0.06833 0.0613 0.0204

BLKCLR 0.02528 0.01094 0.01097 0.0101 0.00334

SHFR_BIT 0.04324 0.01827 0.01867 0.02013 0.00666

SHFR_WORD 0.16054 0.06598 0.06848 0.07023 0.0251

SHFR_DWORD 0.19577 0.08384 0.08263 0.08009 0.02663

Data Table

SORT_INT 0.74431 0.31843 0.31607 0.37118 0.12369

SORT_UINT 0.74589 0.31942 0.317 0.3717 0.12383

SORT_WORD 0.74476 0.31838 0.31632 0.37082 0.12369

TBLRD_INT 0.00096 -0.0001 -9E-05 -0.0005 -0.0002

TBLRD_DINT -0.0002 -0.0001 0.00016 -0.0001 -9E-05

TBLWRT_INT 0.00048 0.00018 0.00023 1.1E-05 -4E-05

TBLWRT_DINT -0.0009 -0.0004 -0.0003 -0.0002 -6E-05

FIFORD_INT 0.1939 0.00816 0.00866 0.00698 0.00234

FIFORD_DINT 0.04449 0.01866 0.0188 0.01529 0.00511

FIFOWRT_INT 0.00058 0.00047 0.00046 -3E-05 -1E-05

FIFOWRT_DINT -0.0007 -0.0003 -0.0004 0 -1E-05

LIFORD_INT 0.00022 0.00031 0.00042 -7E-05 1.1E-05

LIFORD_DINT 0.00087 0.00037 0.00044 0.00027 8.9E-05

LIFOWRT_INT 0.00037 0.00041 0.00042 0.00011 6.7E-05

LIFOWRT_DINT -0.0006 -0.0003 -0.0003 0.00019 0

LIFOWRT_DWORD 0.00101 0.00029 0.00028 -0.0002 -7E-05

Array

ARRAY_MOVE_BIT 0.01967 0.00841 0.00863 0.00914 0.00304

ARRAY_MOVE_BYTE 0.00957 0.00387 0.00379 0.00358 0.00119

ARRAY_MOVE_INT 0.02002 0.00857 0.00857 0.0067 0.00223

ARRAY_MOVE_DINT 0.04762 0.02019 0.02021 0.0164 0.00547

ARRAY_MOVE_WORD 0.02063 0.00883 0.00878 0.00643 0.00211

ARRAY_MOVE_DWORD 0.04489 0.01922 0.01913 0.01529 0.00511

ARRAY_MOVE_UINT 0.02014 0.00863 0.00922 0.00687 0.00231

A-28 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

28

Instruction CPE010 CPE020 CRE020
CPE030/
CRE030

CPE040/
CRE040

SRCH_BYTE 0.07277 0.03143 0.03112 0.03001 0.0101

SRCH_WORD 0.07492 0.03186 0.03177 0.02826 0.0094

SRCH_DWORD 0.06664 0.02854 0.02841 0.02641 0.00882

ARRAY_RANGE_DINT 0.5422 0.232 0.23221 0.23434 0.07808

ARRAY_RANGE_INT 0.51968 0.22242 0.22204 0.22419 0.07467

ARRAY_RANGE_UINT 0.51902 0.22204 0.22200 0.22429 0.07492

ARRAY_RANGE_WORD 0.52001 0.22294 0.22249 0.2255 0.07511

ARRAY_RANGE_DWORD 0.55802 0.23898 0.23903 0.23764 0.07917

GFK-2222S Appendix A Performance Data A-29

A

29

Overhead Sweep Impact Times
This section contains overhead timing information for the PACSystems CPUs. This

information can be used in conjunction with the estimated logic execution time to predict

sweep times for the CPUs. The information in this section is made up of a base sweep time

plus sweep impact times for each of the CPU models. The predicted sweep time is computed

by adding the sweep impact time(s), the base sweep, and the estimated logic execution time.

A sample calculation for estimating sweep times is provided on page A-47.

The following components make up the total sweep time:

■ Programmer communications sweep impact

■ I/O Scan and fault sweep impact

■ Ethernet Global Data sweep impact

■ Intelligent Option Module (LAN modules) sweep impact

■ I/O interrupt performance and sweep impact

■ Timed interrupt performance and sweep impact

Base Sweep Times
Base sweep time is the time for an empty _MAIN program block to execute, with no

configuration stored and none of the windows active. The following table gives the base

sweep times in microseconds for each CPU model.

Base Sweep Times

CPU Mode

RX3i
10

 RX7i
11

CPU310
CPU315
CPU320

CRU320 CPE010
CPE020/
CRE020

CPE030
/CRE030

CPE040/
CRE040

Run I/O
enabled

1086 µs 180 µs 198 µs 457 µs 182 µs 169 µs 77.4 µs

Run outputs
disabled

1076 µs 176 µs 194 µs 449 µs 180 µs 165 µs 74.8 µs

The following diagram shows the differences between the full sweep phases and the base

sweep phases.

10

 Base sweep time calculated with RUN/STOP switch, single ETM.
11

 Base sweep time with I/O enabled includes time to scan the status bits for the Ethernet daughterboard.

A-30 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

30

Base Sweep vs. Full Sweep Phases

Base Sweep Full Sweep

<START OF SWEEP>

Sweep Housekeeping

NULL Input Scan
12

Program Logic Execution

NULL Output Scan
12

<END OF SWEEP>

<START OF SWEEP>

Sweep Housekeeping

Input Scan
12

EGD Consumption Scan
‡

Program Logic Execution

Output Scan
12

EGD Production Scans
13

Poll for Missing I/O Modules
14

Controller Communications Window

Backplane Communications Window

<END OF SWEEP>

For the base sweep, if there is no configuration, the input and output scan phases of the

sweep are NULL (i.e., check for configuration and then end). The presence of a configuration

with no I/O modules or intelligent I/O modules (GBC) has the same effect. The logic

execution time is not zero in the base sweep. The time to execute the empty _MAIN program

is included so that you only need to add the estimated execution times of the functions

actually programmed. The base sweep also assumes no missing I/O modules. The lack of

programmer attachment means that the Controller Communications Window is never

opened. The lack of intelligent option modules means that the Backplane Communications

Window is never opened.

12

 If I/O is suspended, the input and output scans are skipped.
13

 If no Ethernet Global Data (EGD) exchanges are configured, the consumption and production scans are skipped.
14

 Polling for missing I/O modules only occurs if a “Loss of ...” fault has been logged for an I/O module.

GFK-2222S Appendix A Performance Data A-31

A

31

What the Sweep Impact Tables Contain
In some tables, functions are shown as asynchronously impacting the sweep. This means

that there is not a set phase of the sweep in which the function takes place. For instance, the

scanning of all I/O modules takes place during either the input or output scan phase of the

CPU’s sweep. However, I/O interrupts are totally asynchronous to the sweep and will

interrupt any function currently in progress.

The communication functions (with the exception of the high priority programmer requests)

are all processed within one of the two windows in the sweep (the Controller Communications

Window and the Backplane Communications Window). Sweep impact times for the various

service requests are all minimum sweep impact times for the defined functions, where the

window times have been adjusted so that no time slicing (limiting) of the window occurs in a

given sweep. This means that, as much as possible, each function is completed in one

occurrence of the window (between consecutive logic scans). The sweep impact of these

functions can be spread out over multiple sweeps (limited) by adjusting the window times to a

value lower than the documented sweep impact time. For the programmer, the default time is

10 milliseconds; therefore, some of the functions listed in that section will naturally time slice

over successive sweeps.

Programmer Sweep Impact Times

The following table shows nominal programmer sweep impact times in microseconds.

Programmer Sweep Impact Times

Sweep
Impact Item

Description RX3i RX7i

CPU310
(µs)

CPU315
CPU320/
CRU320

(µs)

CPE010
(µs)

CPE020
CRE020

(µs)

CPE030
CRE030

(µs)

CPE040
CRE0400

(µs)

Programmer

window

The time required to open the Programmer
Window but not process any requests. The
programmer is attached through an Ethernet
connection; no reference values are being
monitored.

2.9 0.2 1.95 0.21 0.2 0.2

Reference

table monitor

The sweep impact to refresh the reference
table screen. (The %R table was used as
the example.) Mixed table display impacts
are slightly larger. The sweep impact may
not be continuous, depending on the sweep
time of the CPU and the speed of the host
of the programming software.

4.9 0.29 1.2 0.33 0.26 0.29

Editor

monitor

The sweep impact to refresh the editor
screen when monitoring ladder logic. The
times given in the table are for a logic
screen containing one contact, two coils,
and eleven registers. As with the reference
table sweep impact, the impact may not be
continuous.

4.1 0.31 1.41 0.35 0.31 0.31

A-32 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

32

I/O Scan and I/O Fault Sweep Impact

The I/O scan sweep impact has two parts, Local I/O and Genius I/O. The equation for

computing I/O scan sweep impact is:

 = + Genius I/O Scan
Impact

I/O Scan Sweep Impact Local Scan Impact

Sweep Impact of Local I/O Modules

The I/O scan of I/O modules is impacted as much by location and reference address of a

module as it is by the number of modules. The I/O scan has several basic parts.

I/O Scan Description

Rack Setup Time Each expansion rack is selected separately because of the addressing of
expansion racks on the VME bus. This results in a fixed overhead per
expansion rack, regardless of the number of modules in that rack.

Per Module Setup
Time

Each Local I/O module has a fixed setup scan time.

Byte Transfer
Time

The actual transfer of bytes is much faster for modules located in the main rack
than for those in expansion racks. The byte transfer time differences will be
accounted for by using different times for I/O modules in the main rack versus
expansion racks.

In addition, analog input expander modules (the same as Genius blocks) have the ability to

be grouped into a single transfer as long as consecutive reference addresses are used for

modules that have consecutive slot addresses. Each sequence of consecutively addressed

modules is called a scan segment. There is a time penalty for each additional scan segment.

RX7i I/O Module Types

Type Part Numbers

Discrete Input Type I
(16 point, 14 point)

IC697MDL240, IC697MDL241, IC697MDL251, IC697MDL640, IC697MDL671

Discrete Input Type II
(32 point)

IC697MDL250, IC697MDL252, IC697MDL253, IC697MDL254,
IC697MDL651, IC697MDL652, IC697MDL653, IC697MDL650, IC697MDL654

Discrete Output Type I
(16 point, 12 point)

IC697MDL340, IC697MDL341, IC697MDL740, IC697MDL940

Discrete Output Type II
(32 point)

IC697MDL350, IC697MDL750, IC697MDL752, IC697MDL753

Analog Input Type I
(8 Channel)

IC697ALG230

Analog Input Type II
(16 Channel with 8 channel AI
module)

IC697ALG440, IC697ALG441

Analog Output
(4 channel)

IC697ALG320

GFK-2222S Appendix A Performance Data A-33

A

33

RX7i Module Sweep Impact Times (microseconds)

The following table provides sweep impact times for modules in the Main rack and in an

expansion (Exp) rack. The base case provides the overhead a single module in the rack. The

increment (Inc) refers to the overhead for each similar module that is added to the same rack.

Model
CPE010 CPE020/CRE020 CPE030/CRE030 CPE040/CRE040

Rack
Main Exp Main Exp Main

Exp Main Exp

Impact
Base Inc Base Inc Base Inc Base Inc Base

Inc Base Inc Base Inc Base Inc

Discrete In.

Type - I 35.8 9.3 29.6 30.2 9.5 6.3 10.2 13.8 10.2 10.6 14.4 16.5 5.1 4.1 6.0 9.8

Discrete In.

Type - II 35.1 13.4 34.3 31.9 12.1 6.6 14.5 10.9 10.5 6.4 14.4 16.5 5.7 4.6 9.9 13.7

Discrete Out.

Type - I 38.9 14.8 33.1 33.0 12.9 6.2 11.7 14.4 11.5 6.4 10.8 12.9 6.0 4.5 6.3 10.0

Discrete Out.

Type - II 40.2 15.8 36.9 37.2 13.6 7.3 16.2 18.1 11.7 6.9 14.5 17.2 7.0 5.7 10.4 13.9

Per fault

message 106.254 — 111.01 — 44.608 — 45.716 — — — — — — — — —

Analog In.

Type 1 49.5 26.3 71.6 54.7 19.2 11.7 40.3 35.3 16.3 11.9 38 34 9.9 8.7 31.3 30.6

Analog Exp –

Type 2 80.1 15.2 133.9 58.6 33.5 12.6 96.8 56.4 30.1 13.7 94.9 57 22.4 12.6 87.0 55.4

Analog Out.
49.9 25.1 63.2 39.6 16.6 11.2 29.3 24.7 15.2 10.2 27 22.3 8.4 7.1 20.1 19.2

Per fault

message 86.207 — 86.7 — 40.135 60.762 — — — — — — — — —

Analog In.

VAL132 74.0 54.3 N/A N/A 44.9 38.2 N/A N/A 42.8 38.1 N/A N/A 35.8 32.2 N/A N/A

Analog In.

VME-3125A 64.7 47.9 N/A N/A 34.1 32.6 N/A N/A 35.1 32.4 N/A N/A 28.8 28.7 N/A N/A

Analog In.

VAL264 91.4 74.8 N/A N/A 61.7 59.6 N/A N/A 60.9 57.8 N/A N/A 53.6 48.2 N/A N/A

Analog In.

VME-3122A
88.1 72.1 N/A N/A 62.7 59.1 N/A N/A 62.4 59.5 N/A N/A 55.0 54.1 N/A N/A

Analog In.

VRD008 86.5 38.0 N/A N/A 33.4 33.4 N/A N/A 38.8 28.4 N/A N/A 41.2 37.0 N/A N/A

Analog Out.

VAL301 96.5 67.0 N/A N/A 52.3 47.5 N/A N/A 45.1 42.3 N/A N/A 43.0 38.7 N/A N/A

Discrete In.

VDD100 54.1 33.1 N/A N/A 24.4 18.3 N/A N/A 31.3 28.4 N/A N/A 26.1 23.4 N/A N/A

Discrete In.

VME-1182A 50.5 29.2 NA NA 24.5 18.1 N/A N/A 22.5 18.7 N/A N/A 14.7 14.7 N/A N/A

Discrete Out.

VDQ120 71.6 45.6 N/A N/A 32.1 25.2 N/A N/A 30.2 27.9 N/A N/A 20.6 18.5 N/A N/A

Discrete Out.

VDR151 87.2 70.6 N/A N/A 36.1 34.0 N/A N/A 32.2 29.2 N/A N/A 28.7 23.5 N/A N/A

A-34 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

34

RX3i I/O Module Types

Type Part Numbers

Discrete Input, 16 point IC694MDL240, IC694MDL241, IC694MDL645, IC694MDL646

Discrete Input - Smart Digital Input,
16 point

IC695MDL664

Discrete Input, 32 point IC694MDL654, IC694MDL655, IC694MDL654

Discrete Output, 8 point IC694MDL330, IC694MDL732, IC694MDL930, IC694MDL940

Discrete Output, 16 point and 12 point IC694MDL340, IC694MDL341, IC694MDL740, IC694MDL741

Discrete Output – Smart Digital Output.
16 point

IC695MDL765

Discrete Output, 32 point IC694MDL350, IC694MDL340, IC694MDL742, IC694MDL752,
IC694MDL753, IC694MDL940

Discrete Output, 32 point IC694MDL758

Discrete In/Out, 8 point IC693MDR390, IC693MAR590

Analog Input, 4 Channel IC695ALG220, IC694ALG221

Analog Input, 6 Channel IC695ALG106

Analog Input, 12 channel IC695ALG112

Analog Input, 16 Channel IC694ALG222, IC694ALG223

Analog Output, 2 channel IC694ALG390, IC694ALG391

Analog Mixed Input/Output IC694LG442

Analog Input with Diagnostics IC694ALG232, IC694ALG233

Analog Mixed Input/Output with
Diagnostics

IC694ALG542

GFK-2222S Appendix A Performance Data A-35

A

35

RX3i I/O Module Sweep Impact Times (microseconds)

The following table provides sweep impact times for modules in the Main rack and in an

expansion (Exp) rack. The base case provides the overhead for a single module in the rack.

The increment (Inc) refers to the overhead for each similar module that is added to the

same rack. To estimate sweep impact for modules in a remote rack, multiplying the time in

the main rack by 6:

main rack base time × 6 = approximate sweep impact in remote rack

 CPU310 CPU315/CPU320 CPE305/CPE310

Main Rack Exp Main Rack Exp Main Rack Exp

Base Inc Base Inc Base Inc Base Inc Base Inc Base Inc

Discrete Input 16 point 57.1 41.4 87.6 74.4 37.4 34.6 68.2 66.3 – – – –

Discrete Input 16 point
(Smart Digital Input –
IC695MDL664)

24.6 21.6 NA NA – – NA NA – – – –

Discrete Input 32 point 78.4 59.7 105.9 96.1 56.2 55.3 86.1 85.7 – – – –

Discrete Output 8 point 61.0 40.3 84.3 74.9 35.6 34.7 64.5 65.5 – – – –

Discrete Output 16 point 61.5 38.9 87 74.4 35.4 34.5 65.2 64.9 – – – –

Discrete Output 16 point
(Smart Digital Output –
IC695MDL765)

24.8 21.4 NA NA – – NA NA – – – –

Discrete Output 32 point 79.7 57 101.8 90.6 54.4 50.1 81.8 81.9 – – – –

Discrete Output 32 point
(IC694MDL758)

– – – – 128.57 123.69 220.88 216.02 193.06 – 288.53 –

Discrete Mixed
8 point in/ 8 point out

104.5 85.7 167 151.7 72.2 68.9 132.3 131.2 – – – –

Analog In/Out 4 channel 114.9 99 142.7 132 93.7 92.5 124.8 123.3 – – – –

Analog Input 16 channel 427.7 407.1 538.8 538 385.3 378.8 499.9 499.3 – – – –

Analog Output 2 channel 98.3 80.8 154.4 143.4 69.7 66.8 129.1 128.3 – – – –

Analog Input 6 channel,
IC695ALG106

92.9 73.4 N/A N/A 51.6 51.0 N/A N/A – – – –

Analog Input 12 channel,
IC695ALG112

111.7 94.8 N/A N/A 66.8 58.7 N/A N/A – – – –

Universal Analog
IC695ALG600

90.3 77.2 N/A N/A 50.9 45.7 N/A N/A – – – –

Analog Input 8 channel
IC695ALG608

84.4 68.3 N/A N/A 43.3 39.8 N/A N/A – – – –

Analog Input 16 channel
IC695ALG616

99.5 82.6 N/A N/A 56.3 55.6 N/A N/A – – – –

Analog Output 4 channel
IC695ALG704

122 101.8 N/A N/A 54.6 48.3 N/A N/A – – – –

Analog Output 8 channel
IC695ALG708

121.6 103.3 N/A N/A 54.7 49.6 N/A N/A – – – –

A-36 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

36

Worksheet A: I/O Module Sweep Time

The following form can be used for computing I/O module sweep impact. The calculation

contains times for analog input expanders that are either grouped into the same scan

segment as the preceding module or are grouped in a separate new scan segment. The

sweep impact times can be found on page A-33.

Number of expansion racks

Sweep impact per expansion rack

x ______

= ______

Number of discrete I/O modules—main rack

Sweep impact per discrete I/O module—main rack

x ______

= ______

Number of discrete I/O modules—expansion rack

Sweep impact per discrete I/O module—expansion rack

x ______

= ______

Number of analog input base and output modules—main rack

Sweep impact per analog input base and output module—main rack

x ______

= ______

Number of analog input expander modules (same segment)—main rack

Sweep impact per analog input expander module (same segment)—main rack

x ______

= ______

Number of analog input expander modules (new segment)—main rack

Sweep impact per analog input expander module (new segment)—main rack

x ______

= ______

Number of analog input base and output modules—expansion rack

Sweep impact per analog input base and output module—expansion rack

x ______

= ______

Number of analog input base and output modules (same segment)—exp. rack

Sweep impact per analog input base and output module (same seg.)—exp. rack

x ______

= ______

Number of analog input base and output modules (new segment)—exp. rack

Sweep impact per analog input base and output module (new seg.)—exp. rack

x ______

= ______

Predicted I/O Module Sweep Impact

Note: If point faults are enabled, substitute the corresponding times for point faults enabled,

as shown in the following table.

GFK-2222S Appendix A Performance Data A-37

A

37

Sweep Impact of Genius I/O and GBCs

For the sweep impact of Genius I/O and Genius Bus Controllers (GBC), there is a sweep

impact for each GBC, a sweep impact for each scan segment, and a transfer time (per word)

sweep impact for all I/O data.

The GBC sweep impact has three parts:

1. Sweep impact to open the System Communications Window. This is added only once

when the first intelligent option module (of which the GBC is one) is placed in the system.

2. Sweep impact to poll each GBC for background messages (datagrams). This part is an

impact for every GBC in the system.

Note: Both the first and second parts of the GBC’s sweep impact may be eliminated by

closing the Backplane Communications Window (setting its time to 0). This should

only be done to reduce scan time during critical phases of a process to ensure

minimal scan time. Incoming messages will timeout and COMM_REQs will stop

working while the window is closed.

3. Sweep impact to scan the GBC. This results from the CPU notifying the GBC that its new

output data has been transferred, commanding the GBC to ready its input data, and

informing the GBC that the CPU has finished another sweep and is still in RUN mode.

A scan segment for a Genius I/O block consists of consecutive memory locations starting

from a particular reference address. A new scan segment is created for each starting input or

output reference address. The time to process a single scan segment is higher for an input

scan segment than it is for an output scan segment. The scan segment processing is the

same for analog, discrete, and global data scan segments. Discrete data is transferred a byte

at a time and takes longer to complete the transfer than analog data, which is transferred a

word at a time. Global data should be counted as either discrete or analog, based on the

memory references used in the source or destination.

Sweep Impact Time of Genius I/O and GBCs

Note: Functions in bold type impact the sweep continuously. All other functions impact the

sweep only when invoked. Not all the timing information listed in the following table

was available at print time for this manual (the blank spaces).

 CPU310 CPE010
(µs)

CPE020
(µs)

CPE030
(µs)

CPE040
(µs)

Genius Bus Controller

open backplane communications window 30 24 4 4 1

per Genius Bus Controller polling for background messages 403 19 11 9 6

per Genius Bus Controller I/O Scan

Genius Bus Controller in the main rack 469 1 1 1 1

Genius Bus Controller in the expansion rack 683 11 7 6.9 1

Genius I/O Blocks

per I/O block scan segment 3 217 217 193.7 208

per I/O block scan segment w/point faults enabled 3 217 217 194.8 213

per byte discrete I/O data in the main rack 13 3 3 2.1 3

per byte discrete I/O data in expansion racks 16 8 5 4.2 4

per word analog I/O data in the main rack 24 5 4 4 5

per word analog I/O data in expansion racks 34 11 8 8 11

A-38 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

38

Worksheet B: Genius I/O Sweep Time

Use the following worksheet for predicting the sweep impact due to Genius I/O. The sweep

impact times can be found in “Sweep Impact Time of Genius I/O and GBCs,” above.

Open backplane communications window ______ = ______

GBC poll for background messages

Number of GBCs

x ______

= ______

GBC I/O scan for the main rack

Number of GBCs in the main rack

X ______

= ________

GBC I/O scan for the expansion rack

Number of GBCs in the expansion rack

X ______

= ________

Input block scan segments—number of

I/O block scan segments—sweep impact

x ______

= ______

Output block scan segments—number of

I/O block scan segments—sweep impact

x ______

= ______

Bytes of discrete I/O data on GBCs—main rack

Sweep impact/bytes of discrete I/O data—main rack

x ______

= ______

Bytes of discrete I/O data on GBCs—expansion racks

Sweep impact/bytes of discrete I/O data—expansion racks

x ______

= ______

Words of analog I/O data on GBCs—main rack

Sweep impact/word analog I/O data—main rack

x ______

= ______

Words of analog I/O data on GBCs—expansion racks

Sweep impact/word analog I/O data—expansion racks

x ______

= ______

Predicted Genius I/O Scan Impact ______

GFK-2222S Appendix A Performance Data A-39

A

39

Ethernet Global Data Sweep Impact
Depending on the relationship between the CPU sweep time and an Ethernet Global Data
(EGD) exchange’s period, the exchange’s data may be transferred every sweep or

periodically after some number of sweeps. Therefore, the sweep impact varies based on the
number of exchanges that are scheduled to be transferred during the sweep. All of the

exchanges must be taken into account when computing the worst-case sweep impact.

The Ethernet Global Data (EGD) sweep impact has two parts, Consumption Scan and

Production Scan:

EGD Sweep Impact = Consumption Scan + Production Scan

This sweep impact should be taken into account when configuring the CPU constant sweep

mode and setting the CPU watchdog timeout.

Where the Consumption and Production Scans consist of two parts, exchange overhead and

byte transfer time:

Scan Time = Exchange Overhead + Byte Transfer Time

Exchange Overhead

Exchange overhead includes the setup time for each exchange that will be transferred during
the sweep. When computing the sweep impact, include overhead time for each exchange.

Note: The exchange overhead times in the table below were measured for a test-case

scenario of 1400 bytes over 100 variables.

EGD Exchange Overhead Time

Embedded

Ethernet Interface
Rack-based

Ethernet Module

CPE305/CPE310 Consume / READ NA —
15

 Produce / WRITE NA —

CPU310/NIU001 Consume / READ NA 233.6 µs

 Produce / WRITE NA 480.6 µs

CPU315/CPU320 Consume / READ NA 100.0 µs

Produce / WRITE NA 195.1 µs

CPE010 Consume / READ 184.3 µs 238.2 µs

 Produce / WRITE 342.0 µs 452.0 µs

CPE020 Consume / READ 87.7 µs 117.8 µs

 Produce / WRITE 187.9 µs 257.5 µs

CPE030 Consume / READ 85.1 µs 114.1 µs

 Produce / WRITE 191.8 µs 253.5 µs

CPE040 Consume / READ 35.08 µs 47.12 µs

 Produce / WRITE 75.16 µs 103.0 µs

15

 Not available for this release.

A-40 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

40

Data Transfer Time

Note: This is the time required to transfer the data between the CPU module and the

Ethernet module. EGD data transfer times do not increase linearly in relation to data

size. Please use the data values in the table below to estimate data transfer times.

CPU Data Size (Bytes) Direction
Embedded

Ethernet Interface
Rack-based Ethernet

Module

CPU310
NIU001

16

 1 Consume / READ NA 9.3 µs

100 Consume / READ NA 51.8 µs

 200 Consume / READ NA 97.9 µs

 256 Consume / READ NA 123.8 µs

 1 Produce / WRITE NA 6.5 µs

 100 Produce / WRITE NA 14.1µs

 200 Produce / WRITE NA 17.7µs

 256 Produce / WRITE NA 19.3µs

CPU315, 1 Consume / READ NA 6.2

CPU320 100 Consume / READ NA 49.5

 200 Consume / READ NA 96.4

 256 Consume / READ NA 122.8

 1 Produce / WRITE NA 3.4

 100 Produce / WRITE NA 9.9

 200 Produce / WRITE NA 14.9

 256 Produce / WRITE NA 16.5

CPE010 1 Consume / READ 4.1 µs 8.8 µs

 100 Consume / READ 25.7µs 23.5 µs

 200 Consume / READ 49.0µs 38.6 µs

 256 Consume / READ 61.4µs 46.8 µs

 1 Produce / WRITE 1.9µs 8.8 µs

 100 Produce / WRITE 4.0µs 16.5 µs

 200 Produce / WRITE 6.0µs 22.2 µs

 256 Produce / WRITE 7.1µs 25.1 µs

CPE020 1 Consume / READ 2.7µs 5.5 µs

 100 Consume / READ 23.6µs 19.5 µs

 200 Consume / READ 46.3µs 34.9 µs

 256 Consume / READ 58.9µs 42.7 µs

 1 Produce / WRITE 0.8µs 5.5 µs

 100 Produce / WRITE 2.7µs 13.9 µs

 200 Produce / WRITE 4.7µs 19.2 µs

 256 Produce / WRITE 5.9µs 22.1 µs

16

 EGD performance is different on the IC695NIU001+ (versions-AAAA and later) compared to the IC695NIU001. In
general consumed data exchanges with a size greater than 31 bytes will result in contributing less of a sweep time
impact and data exchanges with a size less than that will contribute slightly greater sweep impact. All produced
exchanges on the IC695NIU001+ will appear to have a slightly greater sweep impact when compared to the
IC695NIU001.

GFK-2222S Appendix A Performance Data A-41

A

41

CPU Data Size (Bytes) Direction
Embedded

Ethernet Interface
Rack-based Ethernet

Module

CPE030 1 Consume / READ 2.8 µs 5.3 µs

 100 Consume / READ 25.8 µs 18.7 µs

 200 Consume / READ 50.7 µs 33.4 µs

 256 Consume / READ 60.1 µs 40.4 µs

 1 Produce / WRITE 0.8 µs 5.5 µs

 100 Produce / WRITE 2.5 µs 13.1 µs

 200 Produce / WRITE 4.2 µs 18.2 µs

 256 Produce / WRITE 5.2 µs 21.5 µs

CPE040 1 Consume / READ 1.9µs 3.85µs

 100 Consume / READ 21.1µs 10.1µs

 200 Consume / READ 43.5µs 31.4µs

 256 Consume / READ 56.5µs 39.2µs

 1 Produce / WRITE 0.3µs 3.8µs

 100 Produce / WRITE 1.8µs 11.8µs

 200 Produce / WRITE 3.6µs 16.8µs

 256 Produce / WRITE 4.8µs 19.8sec

†

Worksheet C: Ethernet Global Data Sweep Time

Number of consumed exchanges __________________

Sweep impact per exchange x __________________ = __________________

Number of data bytes in all of the consumed

exchanges

Sweep impact per consumed data byte x __________________ = __________________

Number of produced exchanges __________________

Sweep impact per exchange x __________________ = __________________

Number of data bytes in all of the produced

exchanges

Sweep impact per produced data byte x __________________ = __________________

 Predicted EGD Sweep

Impact

A-42 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

42

Sweep Impact of Intelligent Option Modules
The tables in this section list the sweep impact times in microseconds for intelligent option

modules. The fixed sweep impact is the sum of the polling sweep impact and the I/O scan

impact. The opening of the Backplane Communications Window and the polling of each

module have relatively small impacts compared to the sweep impact of CPU memory read or

write requests.

Intelligent option modules include GBCs being used for Genius LAN capabilities. The sweep

impact for these intelligent option modules is highly variable.

Fixed Sweep Impact Times of Intelligent Option Modules, RX7i

Sweep Impact Item CPE010 CPE020 CPE030 CPE040

IC698ETM001 104 µs 51 µs 48 µs 36 µs

IC698HSC700 267 µs 157 µs 148 µs 116 µs

IC697BEM731 (GBC) See “Sweep Impact Time of Genius I/O and GBCs,” page A-37.

Fixed Sweep Impact Times of RX3i Intelligent Option Modules (µs)

Sweep Impact
Item

CPU310
CPU315/
CPU320

NIU001+

Main Exp Main Exp Main Exp

Base Inc Base Inc Base Inc Base Inc Base Inc Base Inc

IC694APU300B
and earlier

1085 — — — 1109 — — — — — — —

IC694APU300-CA
and later

Classic 2759
17

 — — — 2043
18

 — — — — — — —

Enhanced 4074
17

 — — — 3276
18

 — — — — — — —

IC694BEM331 See page A-37 — — — — — — — —

IC694DSM314 See page A-43 — — — — See page A-43

IC695ETM001 199 — NA NA 188 51 NA NA — — NA NA

IC695HSC304 208.7 173.9 NA NA 136.4 131.0 NA NA — — NA NA

IC695HSC308 282.4 256.5 NA NA 202.6 200.3 NA NA — — NA NA

IC695PBM300 — NA NA — NA NA — — NA NA

No I/O 132 60

100 bytes Input,
100 bytes Output

196 105

100 bytes Input,
200 bytes Output

206 140

200 bytes Input,
100 bytes Output

248 106

IC695PNC001 NA NA NA NA See
page
A-43

NA NA NA NA NA NA NA

17

 CPU firmware version 7.13
18

 CPU firmware version 7.14

GFK-2222S Appendix A Performance Data A-43

A

43

PROFINET Controller (PNC001) and PROFINET I/O Sweep Impact

The PLC CPU sweep impact for a PROFINET IO network is a function of the number of

PNCs, the number of PROFINET devices, and the number of each PROFINET device’s IO

modules. The table below shows the measured sweep impact of the RX3i PROFINET

Controller, supported VersaMax PROFINET devices, and I/O modules.

Sweep Impact (µs)

 CPU315/CPU320

RX3i PROFINET Controller (PNC) 50

RX3i Devices

 PROFINET Scanner (PNS) IC695PNS001 46

 ALG442 Mixed Analog 54

 ALG220 Analog Input 27

 ALG390 Analog Output 24

 MDL645 Discrete Input 23

 MDL740 Discrete Output 22

VersaMax Devices

 PROFINET Scanner (PNS), IC200PNS001 40

 Discrete Input Module (8/16/32 pt.) 23

 Discrete Output Module (8/16/32 pt.) 18

 Analog Input Module (15 channel) 59

 Analog Output Module (12 channel) 21

 CMM020 (64AI/64AQ) 204

To calculate the total expected PLC sweep impact for a PROFINET I/O network, add the

individual sweep impact times for each PROFINET Controller, PROFINET Device, and

PROFINET Device I/O module, using the times provided above.

For example, for a PROFINET I/O network that consists of one PNC and one VersaMax

PROFINET Scanner, which has both an 8 point. input and an 8 point output module:

Expected PLC sweep Impact = 50 (PNC) + 40 (PNS) + 23 (8pt. Input) + 18 (8pt. Output)

 =131 µs.

DSM314 Sweep Impact (µs)

No. of Axes
Configured

Rx3i CPU310 Rack Rx3i NIU001+ Rack

Main Exp Main Exp

1 1535 2160 1830 2360

2 2018 2906 2304 3160

3 2500 6371 2840 3920

4 2990 4430 3350 4680

A-44 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

44

I/O Interrupt Performance and Sweep Impact

There are several important performance numbers for I/O interrupt blocks. The sweep impact

of an I/O interrupt invoking an empty block measures the overall time of fielding the interrupt,

starting up the block, exiting the block, and restarting the interrupted task. The time to

execute the logic contained in the interrupt block affects the limit by causing the CPU to

spend more time servicing I/O interrupts and thus reduce the maximum I/O interrupt rate.

The minimum, typical, and maximum interrupt response times reflect the time from when a

single I/O module sees the input pulse until the first line of ladder logic is executed in the I/O

interrupt block. Minimum response time reflects a 300 microsecond input card filter time +

time from interrupt occurrence to first line of ladder logic in I/O interrupt block. The minimum

response time can only be achieved when no intelligent option modules are present in the

system and the programmer is not attached. Typical response time is the minimum response

time plus a maximum interrupt latency of 2.0 milliseconds. This interrupt latency time is valid,

except when one of the following operations occurs:

 The programmer is attached.

 A store of logic, RUN mode store, or word-for-word change occurs.

 A fault condition (logging of a fault) occurs.

 Another I/O interrupt occurs.

 The CPU is transferring a large amount of input (or output) data from an I/O controller

(such as a GBC). Heavily loaded I/O controllers should be placed in the main rack

whenever possible.

 An event that has higher priority and requires a response occurs. An example of this

type of event is clearing the I/O fault table.

Any one of these events extends the interrupt latency (the time from when the interrupt card

signals the interrupt to the CPU to when the CPU services the interrupt) beyond the typical

value. However, the latency of an interrupt occurring during the processing of a preceding I/O

interrupt is unbounded. I/O interrupts are processed sequentially so that the interrupt latency

of a single I/O interrupt is affected by the duration of the execution time of all preceding

interrupt blocks. (The worst case is that every I/O interrupt in the system occurs at the same

time so that one of them has to wait for all others to complete before it starts.)

The maximum response times shown below do not include the two unbounded events.

I/O Interrupt Block Performance and Sweep Impact Times

Sweep Impact Item

CPE305
CPE310

CPU310
(µs)

CPU315/
CPU320

(µs)

CPE010
(µs)

CPE020
(µs)

CPE030
(µs)

CPE040
(µs)

I/O interrupt sweep impact —
19

 127.8 - 309.7 335 125.6 24

Minimum response time

Typical response time

Maximum response time

— 151.7

175.0

302.7

326.1

327.3

346.2

392.4

396.1

434.9

334

336

359

330.6

331.5

375.1

315.2

315.5

325.7

Note that the min, typical, and max response times include a 300 µs Input card filter time.

19

 Not available for this release.

GFK-2222S Appendix A Performance Data A-45

A

45

Dropped Interrupts

When multiple interrupts are triggered during the interrupt latency period, it is possible that

interrupt blocks will only be executed one time even though the interrupt trigger has occurred

more than once. The likelihood of this occurring will increase if the system interrupt latency

has increased due to the specific configuration and use of the system.

This will not cause the CPU to miss a given interrupt; just consolidate the number of times an

interrupt block is executed even though the interrupt stimulus had occurred more than one

time.

Worksheet D: Programmer, IOM, I/O Interrupt Sweep Time

The following worksheet can be used to calculate the sweep impact times of programmer

sweep impact, intelligent option modules, and I/O Interrupts. For time data, refer to the

following tables:

Programmer Sweep Impact Times, page A-31

RX7i Module Sweep Impact Times, page A-33 or

RX3i I/O Module Sweep Impact Times (microseconds), page 35

Sweep Impact Time of Genius I/O and GBCs, page A-37

Programmer sweep impact = ______

IOM—first module (open comm. window)

IOM—per module (polling)

LAN module I/O scan

+ ______

+ ______

Total IOM Sweep Impact

= ______

CPU memory access from IOMs

= ______

I/O interrupt sweep impact

I/O interrupt response time

+ ______

= ______

Predicted Sweep Time (Other)

Interrupt Trigger

Interrupt
Logic
Suspended

Interrupt Logic
Block

Higher-priority event

A-46 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

A

46

Timed Interrupt Performance
The sweep impact of a timed interrupt invoking an empty program block or timed program

measures the overall time of fielding the interrupt, starting up the program or block, exiting

the program or block, and restarting the interrupted task. The minimum, average, and

maximum interrupt period reflect the time period from when the first line of ladder logic is

executed in the timed interrupt block.

Timed Interrupt Performance and Sweep Impact Times
for a 0.001s Timed Interrupt Block

Sweep Impact Item CPU310
(µs)

CPU315
CPU320

(µs)

CPE010
(µs)

CPE020
(µs)

CPE030
(µs)

CPE040
(µs)

Timed interrupt sweep impact 87.3 26.2 88.6 28 31.2 23.3

Minimum interrupt period

Average interrupt period

Maximum interrupt period

908.3

1000

1081.2

969.8

1000.0

1030.8

951.4

1005.5

1056.6

946

999.7

1054

922.8

1000.0

1077.0

973

999.9

1026.9

GFK-2222S Appendix A Performance Data A-47

A

47

Example of Predicted Sweep Time Calculation

The sweep time estimate in this example does not include a time for logic execution. The

calculated sweep is for normal sweep time with point faults disabled, and the programmer is

not attached. The times used in the calculation are extracted from the following tables:

Base Sweep Times, page A-29

RX7i Module Sweep Impact Times, page A-33 or

RX3i I/O Module Sweep Impact Times (microseconds), page 35

Sweep Impact Time of Genius I/O and GBCs, page A-37

A sample calculation of predicted sweep times is provided after the example.

Sample RX7i System Configuration

PS CPE010 BTM 32PT
Input

32PT
Input

32PT
Output

32PT
Output

8CHN
Analog
Input

4CHN
Analog
Output

ETM

0 1 2 3 4 5 6 7 8 9

MAIN RACK

Sweep Calculations
Predicted Sweep = Base Sweep + I/O Scan Impact

Base Sweep Time = 465

I/O Scan Impact …

Number of discrete input type 2 modules—main rack

Sweep impact time per discrete I/O module

 2

x 37.9

= 75.8

 Number of discrete output type 2 modules—main rack

Sweep impact time per discrete I/O module

2

 x 80.4

= 80.4

Number of analog input modules—main rack

Sweep impact time per analog base and output module

 1

x 49.3

= 49.3

Number of analog output modules—main rack

Sweep impact time per analog base and output module

 1

x 49.7

= 49.7

Ethernet Module 1 x 55 = 55.0

Predicted Sweep Time = 775.2

Note: Times are in microseconds.

GFK-2222S B-1

User Memory Allocation

User Memory Size is the number of bytes of memory available to the user for PLC

applications.

Model User Memory Size Bytes

IC695CPE305 5MB 5,242,880

IC695CPU310, IC695CPE310,
IC698CPE010, IC698CPE020,
IC698CRE020

10MB 10,485,760

IC695CPU315 20MB 20,971,520

IC695CPU320, IC695CRU320 64MB 67,108,834

IC698CPE030, IC698CRE030
IC698CPE040, IC698CRE040

64MB 67,108,834

For a list of items that count against user memory, refer to page B-2.

B
Appendix

B-2 PACSystems* CPU Reference Manual – July 2013 GFK-2222S

B

Items that Count Against User Memory
The following items count against the CPU memory and can be used to estimate the

minimum amount of memory required for an application. Additional space may be

required for items such as Advanced User Parameters, zipped source files, user heap,

and published symbols.

Register Memory Size (%R) Bytes = %R references configured 2

Word Memory Size (%W) Bytes = %W references configured 2

Analog Inputs (%AI) If point faults enabled: Bytes = %AI references configured 3

If point faults disabled: Bytes = %AI references configured 2

Analog Outputs (%AQ) If point faults enabled: Bytes = %AQ references configured 3

If point faults disabled: Bytes = %AQ references configured 2

Discrete Point Faults If point faults enabled: Bytes = 3072

Managed Memory

(Symbolic Variable and I/O
Variable Storage)

The total number of bytes required for symbolic and I/O variables. Calculated as
follows:

[(number of symbolic discrete bits) × 3 / (8 bits/byte)]

+ [(number of I/O discrete bits) × Md / (8 bits/byte)]

+ [(number of symbolic words) × (2 bytes/word)]

+ [(number of I/O words) × (Mw bytes/word)]

Md = 3 or 4. The number of bits is multiplied by 3 to keep track of the force, transition,
and value of each bit. If point faults are enabled, the number of I/O discrete bits is
multiplied by 4.

Mw = 2 or 3. There are two 8-bit bytes per 16-bit word. If point faults are enabled, the
number of bytes is multiplied by 3 because each I/O word requires an extra byte.

EGD (included in HWC) Bytes = 0 if no Ethernet Global Data pages are configured

I/O Scan Set File

(included in HWC)
Based on number of scan sets used.

Note: 32 bytes of user memory are consumed if the application scans all I/O every

sweep (the default).

User Programs See “User Program Memory Usage” page B-3 for details on user programs.

GFK-2222S Appendix B User Memory Allocation B-3

B

User Program Memory Usage
Space required for user logic includes the following items.

%L and %P Program Memory

%L and %P are charged against your user space and sized depending on their use in

your applications. The maximum size of %L or %P is 8192 words per block.

The %L and %P tables are sized to allow extra space for Run Mode Stores according to

the following rules.

■ If %L memory is not used in the block, the %L memory size is 0 bytes. If %L

memory is used in the block, a buffer is added beyond the highest %L address

actually used in logic or in the variable table. The default buffer size is 256 bytes,

but can be changed by editing the Extra Local Words parameter in the block

Properties.

■ The same rules apply for the size of %P memory, but %P memory can be used

in any block in the program.

■ The buffer cannot make the %P or %L table exceed the maximum size of 8,192

words. In such a case, a smaller buffer is used.

■ You can add, change, or delete %L and/or %P variables in your application and

Run Mode Store the application if these variables fit in the size of the last-stored

%L/%P tables (where the "size" includes the previous buffer space), or if going

from a zero to non-zero size.

■ The size of the %L/%P tables is always recalculated for Stop Mode Stores.

Program Logic and Overhead
The data area for C (.gefelf) blocks is considered part of the user program and

counts against the user program size. Additional space is required for information

internal to the CPU that is used for execution of the C block.

The program block is based on overhead for the block itself plus the logic and

register data being used (that is, %L).

Note: The LD program’s stack is not counted against the CPU’s memory size.

Note: If your application needs more space for LD logic, consider changing some %P

or %L references to %R, %W, %AI, or %AQ. Such changes require a

recompilation of the program block and a Stop Mode store to the CPU.

Index

GFK-2222S Index-1

@
@

indirect references, 6-9

A
Access control, 3-16
Addition of I/O module, 14-55
Addition of IOC, 14-53
Addition of or extra rack, 14-16
Address operators, 11-2
Alarm contacts, 14-13
Analog expander modules

fault locating references, 14-12

Analog I/O diagnostic information, 4-29
Analog input register references (%AI), 6-9
Analog output register references (%AQ),

6-9
Application fault, 14-31
Arrays, 6-6

accessing elements with variable index, 6-6

Auto-Located symbolic variables, 6-2

B
Base sweep time, A-29
Battery

CPE305, CPE310, real time clock, 2-15
status faults, 14-28

Baud rates, serial port, 12-8
Bit in Word references, 6-10
Bit references, 6-11
Block switch, 14-58
Blocks

external, 5-11
parameterized, 5-4
program, 5-3
types of, 5-3
UDFBs, 5-7

Boolean execution times, A-2
Bulk memory, 6-9

C
Cables

for CPE305 RS-232 port, 12-5
maximum length, 12-8

Changing window modes
Background task window mode and timer,
9-10
Backplane communications window mode
and timer, 9-9
Controller communications window, 9-8

Checksum

change or read number of words, 9-11

Clear fault tables, 9-26
Clocks, 4-16

elapsed time clock, 2-4, 2-7, 2-25, 4-16
reading with SVCREQ #16 or #50, 4-16

time-of-day clock, 2-4, 2-7, 2-25, 2-28, 4-16
reading and setting, 4-16, 9-13
synchronizing to SNTP server, 4-17

CMM, 12-9
Communication requests (COMM_REQ),

7-93
serial I/O, 13-9
serial IO

calling from CPU sweep, 13-7
SNP, 13-54
using to configure serial ports, 13-2

Communications Coprocessor, 12-9
Communications failure during store, 14-

37
Compatibility

CPE310 with CPU310, 2-12

Configuration
CPE310 as CPU310, 2-12, 3-3, 3-20
invalid port combinations, 13-3
parameters, CPU, 3-2
storing (downloading), 3-19
system, 4-30

Constant sweep timer
change or read, 9-5
exceeded, 14-30

Convenience references. See System
status references

Corrupted user program on power-up, 14-
34

CPU hardware failure, 14-24
CPU memory validation, 4-30
CPU performance data

base sweep time, A-29
Boolean execution times, A-2
calculating predicted sweep times, A-47
I/O module sweep impact times

worksheet, A-36
instruction timing, A-3
interrupt latency, A-44
sweep impact, A-29

CPU redundancy, 3-11, 14-35
CPU sweep

Stop mode, 4-10

Cyclic redundancy check (CRC), 13-29

D
Data coherency in communications

windows, 4-9
Data Initialize

ASCII, 7-99
Communications Request, 7-100

Index

Index-2 PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Data mapping
default conditions, 4-26
Genius I/O data mapping, 4-27

Data retentiveness
power cycle, 4-32
Stop to Run mode transition, 6-14

Data scope, 6-15
Data types, 6-21
Datagrams

permanent, 13-54

Diagnostic information, analog I/O, 4-29
Diagnostic information, discrete I/O, 4-29
Diagnostic Logic Blocks (DLBs), 14-59

example, 14-65
execution mode, 14-62
heartbeat, 14-62
removing, 14-64
restrictions, 14-61
variables, 14-61

Diagnostics
controller faults, 14-14
Diagnostic Logic Blocks, 14-59
fault contacts, 14-11
fault handling, 14-2
fault tables, 14-4
I/O faults, 14-40
point faults, 14-13
system fault references, 14-8

Disable/enable EXE block and standalone
C program checksums, 9-46

Discrete references, 6-11
size and default, 6-12

DLAN Interface, 12-11
Do I/O

in an interrupt block, 5-22

Documentation, 1-10
Downloading configuration, 3-19
Drum, 7-49

in function blocks, 7-50

E
Elapsed time clock, 4-16

accuracy, 2-4, 2-7, 2-25
reading with SVCREQ #16 or #50, 4-16

Energy Pack, RX3i, 2-23
Enhanced security, 3-16, 4-23

compared to legacy mode, 4-24
with RDSD, 2-19

Error checking and correction (ECC)
CRE020, 2-26
CRE030, CRE040, 2-29
CRU320, 2-9

Errors
in floating point numbers, 6-24

Ethernet global data, 1-6
sweep impact times, A-39
timestamping, 4-17

Ethernet Interface
embedded

configuring, 3-20
embedded

RX7i, 2-30
embedded

RX3i, 12-2
embedded

RX7i, 12-2
rack-based, 12-3

Ethernet ports
CPE010, CPE020, CRE020, 2-24
CPE030/CRE030, CPE040/CRE040, 2-27
embedded

RX3i, 2-18, 12-3
RX7i, 2-30, 12-3

Examples
diagnostic logic blocks, 14-65

Expressions
Structured Text, 11-1

External blocks, 5-11
Extra block fault, 14-56
Extra I/O module, 14-55

F
Fault contacts, 14-11
Fault handling

actions, 14-3
CPU configuration, 3-9
overview, 14-2
system, 14-8
system response, 14-2

Fault references
alarm contacts, 14-13
fault locating, 14-11
point faults, 14-13

Faults
Controller, 14-14
CPU system software failure, 14-35
fault contacts, 14-11
I/O, 14-40
system, 14-8

non-configurable, 14-10
tables, 14-4
tables, Controller, 14-4
tables, IO, 14-6
user-defined, 6-18, 9-41, 14-5

Features
PACSystems CPUs, common, 1-5
RX3i, 1-7
RX7i, 1-8

Flash memory
operation, 4-13

configuration, 3-2

Floating point numbers, 6-23
errors in, 6-24

Forced and unforced circuit, 14-54

 Index

GFK-2222S Index Index-3

Formal parameters
in ST calls, 11-8
restrictions, 5-6

Function Block Diagram language, 5-17, 8-
1

G
GBC software exception, 14-57
GBC stopped reporting, 14-56
GBC Stopped Reporting fault, 14-56
GENA (Genius Network Adapter), 14-41
Genius global data, 4-28, 6-13
Genius I/O, 4-28

analog grouped block, 4-28
default conditions, 4-27
diagnostic data collection, 4-28
Genius I/O data mapping, 4-27
low-level analog blocks, 4-28

Global data references (%G), 6-11

H
Hardware variables, 6-3

I
I/O bus faults, 14-51
I/O circuit faults, 14-43
I/O data mapping

default conditions, 4-26
Genius I/O data mapping, 4-27

I/O fault sweep impact, A-32
I/O fault table full, 14-30
I/O interrupts, 5-21

performance and sweep impact, A-44

I/O module faults, 14-52
I/O module sweep impact times

worksheet, A-36

I/O scan sets, 4-26
configuration, of, 4-26

I/O scan sweep impact, A-32
I/O system

analog I/O diagnostic information, 4-29
discrete I/O diagnostic information, 4-29
initialization, 4-31

I/O variables, 6-3
Indirect references

word, 6-9

Initialize Port function, 13-11
Input Buffer, Flush, 13-11
Input Buffer, Set Up, 13-11
Input references (%I), 6-11
Instruction set

operands
LD, 6-28

Instruction timing, CPU, A-3
Intelligent option modules

self-test completion, 4-31
sweep impact times, A-42

DSM314, A-43

Internal references (%M), 6-11
Interrupt blocks, 5-19

I/O interrupts, 5-21
interrupt handling, 5-20
module interrupts, 5-21
scheduling, 5-22
timed interrupts, 5-21

Interrupt latency, A-44
IOC (I/O controller), 14-9
IOC hardware failure, 14-56
IOC software fault, 14-54

L
Ladder Diagram language, 5-16, 7-1
Last scans, 3-6, 4-10
LDPROG01, 5-1
LEDs

CPE010, CPE020, CRE020, 2-24
CPE030/CRE030, CPE040/CRE040, 2-27
CPE305 and CPE310, 2-17
CPU310, 2-3
CPU315, CPU320, CRU320, 2-6
RX7i Ethernet interface, 2-30

Logic Driven Read of Nonvolatile Storage
(SVC_REQ #56), 9-54

Logic Driven Write to Nonvolatile Storage.
See Service Request (SVC_REQ)
functions, (#57)

Logic Driven Write to Nonvolatile Storage
(#57)

maximum number of erase cycles, 9-60

Logic/configuration power-up source, 4-14
Loss of I/O module, 14-55
Loss of IO Controller, 14-53
Loss of or missing option module, 14-16
Loss of or missing rack, 14-15
LREAL numbers

internal format of, 6-23

M
Mapping, I/O data

default conditions, 4-26
Genius I/O data mapping, 4-27

Mask/unmask IO interrupt, 9-32
Mask/unmask timed interrupts, 9-43
Memory

configuration, 3-7
retention of data memory across power
cycle, 4-32

Index

Index-4 PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

type codes, 9-56, 14-39
usage, B-2

Modbus slaves
station address, 3-12, 13-24

Mode transition
stop-to-run, 4-11

Modem, Hayes-compatible, 13-17
Modes of operation, CPU, 4-10
Module hardware failure, 14-25
Module interrupts, 5-21
Multiple I/O scan sets, 4-26

N
NaN (Not a Number)

defined, 6-24

Nested calls, 5-2
New features, 1-2
No user program on power-up, 14-33
Noncritical CPU software event, 14-38
Normal block scheduling, 5-22
Normal sweep mode

application program task execution, 4-4
programmer communications window, 4-5
system communications window, 4-5

Null system configuration for RUN mode,
14-35

Numerical data, 6-21

O
OEM protection, 4-22
Off Delay Timer, 7-162
On Delay Stopwatch Timer, 7-164
On Delay Timer, 7-167
Online editing, 5-4, 14-32
Operands for instructions, 6-28
Operation, Protection, and Module Status,

1-6
Operators, Structured Text, 11-2
Option module

dual port interface tests, 4-31
self-test completion, 4-31

Option module software failure, 14-26
Output references (%Q), 6-11
Output scan, 4-4
Overflow

floating point numbers, 6-24
math functions, 7-131, 8-23
math functions, 8-23

Overhead sweep impact times, A-29
base sweep time, A-29
calculating predicted sweep times, A-47
DSM314, A-43
Genius I/O and GBCs, A-37

I/O interrupt performance and sweep
impact, A-44
I/O module sweep impact times

worksheet, A-36
I/O modules, A-32
I/O scan, A-32
intelligent option modules, A-42
PROFINET Controller and IO, A-43
programmer sweep impact time, A-31

Override bits, 6-13

P
Parameter passing mechanisms, 5-14
Parameterized block, 5-4

and local data, 5-4
reference out of range, 5-4
referencing formal parameters, 5-5

Part numbers
station manager cable, 2-28

Password access failure, 14-35
Passwords, 4-20

enabling after disabled, 4-21

PCM, 12-10
Performance

CPE305 differences, 2-13
CPE310 vs CPU310, 2-13
instruction timing, A-3
sweep impact, A-29

Permanent datagrams, 13-54
PID function

control block, 10-4
reference array, 10-4
time interval, 10-11

Pin assignments
embedded Ethernet ports, 12-3
serial ports, 12-5

PLC system fault table full, 14-30
Point faults, 14-13
Port Status, read, 13-12
Power-down sequence, 4-31
Power-up self-test, 4-30
Power-up sequence, 4-30

CPU memory validation, 4-30
I/O system initialization, 4-31
logic/configuration source, 4-14
option module dual port interface tests, 4-31
option module self-test completion, 4-31
power-up self-test, 4-30
system configuration, 4-30

Preemptive block scheduling, 5-22
Privilege levels, 4-21
Program block

how blocks are called, 5-2
program blocks and local data, 5-13

Program block checksum failure, 14-27
Program execution

controlling, 5-19

 Index

GFK-2222S Index Index-5

Program name, 5-1
Program register references (%P), 6-9
Program scan, 4-4
Program structure

how blocks are called, 5-2
program blocks and local data, 5-13

Programmable Coprocessor Module, 12-
10

Programmer sweep impact times, A-31
Protection level request, 4-21
Protocol errors, 13-7
Protocols supported, 12-4

Stop mode, 3-13

R
Read Bytes, 13-20
Read controller ID, 9-23
Read controller run state, 9-24
Read elapsed power down time, 9-47
Read elapsed time clock, 9-30, 9-51
Read fault tables, 9-36
Read from flash (SVC_REQ #56), 9-54
Read IO forced status, 9-34
Read last-logged fault table entry, 9-27
Read master checksum, 9-44
Read String, 13-22
Read sweep time, 9-21, 9-53
Read target name, 9-22
Read window modes and times, 9-7
REAL numbers

internal format of, 6-23

Real-time clock battery, 2-15
References, 6-9

associated transitions and overrides, 6-13
data scope, 6-15
discrete references, 6-11
fault locating, 6-14, 14-11
indirect, 6-9
register references, 6-9
size and default value, 6-12
system fault references, 14-8
system status (%S), 6-16

Related documents, 1-10
Removable Data Storage Devices

(RDSDs), 2-19
Enhanced Security with, 2-19

Reset module, 9-45
Reset of IOC, 14-58
Reset of, addition of, or extra option

module, 14-17
Reset watchdog timer, 9-20
Retentiveness

of logic and data across power cycle, 4-32

of logic and data across Stop to Run mode
transition, 6-14
variables associated with coils, 7-25

RTU messages, 13-33
RTU slave, 13-7

end-of-frame timeout, 13-28
protocol, 13-7, 13-24

message format, 13-24
receive-to-transmit delay, 13-25
turnaround time, 13-25

Run/stop operations, 4-10
run/outputs disabled, 4-10
run/outputs enabled, 4-10
serial protocol configuration, 3-13
stop mode protocol configuration, 12-5
stop/IO scan, 4-10
stop/No IO scan, 4-10
switch enable/disable, 3-3

S
Scan parameters, 3-5
Scan sets

operation, 4-26
parameters, 3-15

Scope
data, 6-15

Security, system, 4-20
privilege levels, 4-21

Self-test
I/O system initialization, 4-31
option module dual port interface tests, 4-31
option module self-test completion, 4-31
power-up self-test, 4-30

Serial I/O
Cancel Operation function, 13-16
Flush Input Buffer function, 13-11
Initialize Port function, 13-10
Input Buffer function, 13-11
Read Bytes function, 13-20
Read Port Status function, 13-12
Read String function, 13-22
Write Bytes function, 13-17, 13-19
Write Port Control function, 13-15

Serial ports
CPE010, CPE020, CRE020, 2-24
CPE030/CRE030, CPE040/CRE040, 2-27
CPE305 and CPE310, 2-18
CPU parameters, 3-11
CPU310, 2-2
CPU320/CRU320, 2-5

Series 90 applications, 1-9
Service requests, 9-1

example, 9-3

Set run enable/disable, 9-35
Setting loop gains for PID

Ideal tuning, 10-18
Ziegler and Nichols tuning, 10-17

Index

Index-6 PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Settings
CPU, 3-2

Shut down CPU, 9-25
Skip next I/O scan, 9-50
SNP master, 13-7
SNP slave protocol, 13-54
Specifications

CPE010, CPE020, CRE020, 2-25
CPE030/CRE030, CPE040/CRE040, 2-28
CPE305 and CPE310, 2-11
CPU310, 2-4
CPU310, 2-4
CPU315, CPU320, 2-7
CRU320, 2-8

Station address
Modbus slaves, 3-12, 13-24

STOP mode, 4-10
Storing configuration, 3-19
Structure of application programs, 5-1
Structure variables, 5-8
Structured Text

expressions, 11-1
language, 5-18, 11-1
operators, 11-2
statement types, 11-4
syntax, 11-3

Structured Text statement types
argument present, 11-17
assignment, 11-5
CASE, 11-11
EXIT, 11-18
FOR, 11-13
function call, 11-5
IF, 11-10
REPEAT, 11-16
RETURN, 11-9
WHILE, 11-15

Subroutines
Call function, 5-19

Suspend/resume IO interrupt, 9-48
Sweep impact, A-29

DSM314, A-43
Ethernet global data, A-39
GBC, A-37
Genius I/O, A-37
I/O scan, A-32
intelligent option, A-42
local I/O, A-32
PROFINET Controller and IO, A-43
programmer, A-31
timed interrupt, A-46

Sweep, CPU, 4-2
base sweep time, A-29
modes, 4-6
Stop mode, 4-10

Switches
CPU reset, 1-6
Run/Stop mode, 1-6
RX7i Ethernet restart, 2-33

Symbolic variables, 6-2
System bus error, 14-24
System configuration, 4-30
System configuration mismatch, 14-18
System fault references, 14-8
System operation

clocks and timers, 4-16
I/O system, 4-25
power-down sequence, 4-31
power-up sequence, 4-30
retention of data memory across power
cycle, 4-32
system security, 4-20

System register references (%R), 6-9
System status references (%S), 6-11, 6-16

T
Technical Support. See page iii
Temporary references (%T), 6-11
Time tick references, 6-16
Timed contacts, 6-16
Timed interrupts, 5-21

performance impact, A-46

Time-of-day clock, 4-16
accuracy, 2-4, 2-7, 2-25, 2-28
reading and setting, 4-16, 9-13
synchronizing to SNTP server, 4-17

Timers, 4-16
function block data, 7-76
in function blocks, 7-161
in parameterized blocks, 7-49, 7-159
watchdog timer, 4-18

Timing, instruction, A-3
Transfer List parameters, 3-11
Transition bits, 6-13
Transition Coils

comparison, 7-32
POSCOIL and NEGCOIL, 7-28
PTCOIL and NTCOIL, 7-30

Transition contacts
comparison, 7-41
POSCON and NEGCON (legacy), 7-37
PTCON and NTCON (IEC), 7-40

Turnaround time
RTU slave, 13-25

U
UDFBs

defining, 5-7
instance data, 5-8
instances, 5-8
internal variables, 5-10
logic restrictions, 5-10
parameters, 5-9
scope, 5-8

 Index

GFK-2222S Index Index-7

User defined types, 6-25
User references, 6-9

system fault references, 14-8

User-defined faults, 14-5
logging, 9-41

V
Variables, 6-2

C, initialization, 5-12
I/O, 6-3
mapped, 6-2
member, 5-7
symbolic, 6-2

W
Watchdog timer, 4-18

restarting, 4-18

Window completion failure, 14-34
Window modes, 4-9

Constant Window mode, 4-9
Limited mode, 4-9
Run-to-Completion, 4-9

Word references, 6-9
Word register references (%W), 6-9
Word-for-word changes

attempting to correct parameterized block
reference, 5-4
defined, 6-30
privilege level, 4-20
symbolic variables, 6-30

Write Bytes, 13-19
Write to flash. See Service Request

(SVC_REQ) functions, (#57)

Y
Y0 parameter, 5-4, 5-5

Z
Ziegler and Nichols tuning, 10-17

Index

Index-8 PACSystems*RX3i and RX7i CPU Reference Manual–July 2013 GFK-2222S

Functions and Function Blocks
Absolute Value, 7-132
Add, 7-133, 8-24
Advanced math functions, 7-2, 8-2, 11-6
Array Move, 7-115
Array Size, 7-82
Array Size Dimension 1/2, 7-83
Bit Operation functions, 7-7
Bit Operation Functions, 8-4
Bit Position, 7-9
Bit Sequencer, 7-10
Bit Set, Clear, 7-13
Bit Test, 7-14
Block Clear, 7-85
Block Move, 7-86
Built-in timers, 7-157
BUS_ functions, 7-87
Call, 7-143
Coils, 7-25

checking, 7-25
Comment, 7-146, 8-9
Communication functions, 11-6
Communication Request, 7-93
Compare function, 7-152
Comparison functions, 7-151, 8-10
Contacts, 7-33

continuation, 7-34
Control functions, 7-43, 8-13, 11-6

Service requests, 9-1
Conversion functions, 7-63, 8-33
Counters, 7-156, 8-15
Data conversion functions, 11-6
Data Initialize, 7-98

DLAN, 7-100
Data Move functions, 7-80, 8-16, 11-6
Data Table functions, 7-113
Divide, 7-135, 8-25
Do I/O, 7-44
Down Counter, 7-77
Drum, 7-49
Edge detectors, 7-47
Equal, 7-153, 8-12
Exponential/Logarithmic Functions, 7-3, 8-3
Fan Out, 8-19
Fault contacts, 7-34
For Loop, 7-53
Greater or Equal, 7-153, 8-12
Greater Than, 7-153, 8-12
High and Low Alarm Contacts, 7-35
Inverse Trig Functions, 7-6
Jump, 7-147
Less or Equal, 7-153, 8-12
Less Than, 7-153, 8-12
Logical AND, OR, and XOR, 7-15, 8-6
Logical NOT, 7-18, 8-8
Mask I/O Interrupt, 7-56
Masked Compare, 7-19
Master Control Relay/End Master Control
Relay, 7-148

Math functions, 7-131, 8-22, 11-6
advanced, 7-2, 8-2

Modulus, 7-136, 8-26
Move, 7-101
Move Data, 8-20
Move_Data, 7-103
Multiply, 7-137, 8-27
Negate, 8-28
No Fault Contact, 7-35
Normally closed and normally open
contacts, 7-36
Not Equal, 7-153, 8-12
PACMotion functions, 7-1, 11-6
Program Flow functions, 7-141, 8-30
Range function, 7-155
Read switch postion, 7-57
Relational functions, 7-151, 8-10
Rotate Bits, 7-22
Scale, 7-139
Scan set IO, 7-58
Set, Reset Coil, 7-26
Shift Bits, 7-23
Square Root, 7-4
Standard timers, 7-169
Subtract, 7-140, 8-29
Suspend I/O, 7-60
Suspend or resume I/O interrupt, 7-62
Swap function, 7-112
Switches

read switch position function, 7-57
Timed contacts, 7-156
Timers, 7-156, 7-157, 8-31, 11-7
Transition Coils, 7-28
Transition contacts, 7-37
Trig Functions, 7-5
Truncate, 7-75
Up Counter, 7-78
VME_ functions. See BUS_functions
Wires, 7-150

	PACSystems CPU Reference Manual, GFK-2222S
	Warnings, Cautions, and Notes
	Contact Information
	Contents

	1. Introduction
	Revisions in this Manual
	PACSystems Control System Overview
	Programming and Configuration
	Process Systems
	PACSystems CPU Models

	Common CPU Features
	Firmware Storage in Flash Memory
	Operation, Protection, and Module Status
	Ethernet Global Data
	RX3i Overview
	RX7i Overview

	Migrating Series 90 Applications to PACSystems
	PACSystems Documentation
	PACSystems Manuals
	RX3i Manuals
	RX7i Manuals
	Series 90 Manuals

	2. CPU Features and Specifications
	RX3i Features and Specifications
	CPU310
	CPU310 Indicators
	Specifications – CPU310

	CPU315 and CPU320/CRU320
	CPU315, CPU320 and CRU320 Indicators
	Specifications – CPU315 and CPU320
	CRU320 Specifications
	Error Checking and Correction, IC695CRU320

	CPE305 and CPE310
	Specifications
	CPE310 Backward Compatibility with CPU310
	Legacy CPU310 Projects
	RDSD Port
	Fault Behavior
	Replacing a CPU310 with a CPE310
	CPE310 versus CPU310 Performance Differences

	CPU305 Performance Differences vs. CPE310 and Legacy RX3i CPUs
	Real-Time Clock Battery
	Replacing the Real-Time Clock Battery
	Battery Removal Method 1
	Sample Tool for Battery Removal

	Battery Removal Method 2

	Installing a New RTC Battery
	Indicators
	CPU Indicators
	RDSD Indicators
	Ethernet Indicators

	Serial Ports
	Ethernet Port
	Removable Data Storage Devices (RDSDs)
	Uploading a Project from the CPU to the RDSD
	Downloading a Project from the RDSD to the CPU
	Using an Options.txt File to Modify Download Operation
	Options.txt File Format
	Sample options.txt File
	Security
	RDSD Error Reporting

	Operation with Energy Pack
	Energy Pack Replacement

	RX7i Features and Specifications
	CPE010, CPE020 and CRE020
	Specifications – CPE010, CPE020 and CRE020 Models
	Error Checking and Correction, IC698CRE020

	CPE030/CRE030 and CPE040/CRE040
	Specifications – CPE030/CRE030 and CPE040/CRE040 Models
	Error Checking and Correction, IC698CRE030 and IC698CRE040

	RX7i Embedded Ethernet Interface
	Ethernet Ports
	Ethernet Interface Indicators
	Ethernet LED Operation
	EOK LED Operation
	EOK LED Blink Codes for Ethernet Hardware Failures
	LAN LED Operation
	STAT LED Operation
	Ethernet Port LEDs Operation (100Mb and Link/Activity)

	Ethernet Restart Pushbutton
	Normal Restart
	Restart Without Ethernet plug-in Applications
	Restart into Firmware Update Operation

	3. CPU Configuration
	Configuring the CPU
	Configuration Parameters
	Settings Parameters
	Modbus TCP Address Map
	Scan Parameters
	Memory Parameters
	Calculation of Memory Required for Managed Memory
	Calculation of Total User Memory Configured
	Memory Allocation Configuration

	Fault Parameters
	Configuring the CPU to Stop Upon the Loss of a Critical Module

	Redundancy Parameters (Redundancy CPUs Only)
	Transfer List
	Port 1 and Port 2 Parameters
	Scan Sets Parameters
	Power Consumption Parameters
	Access Control

	Setting a Temporary IP Address
	Storing (Downloading) Hardware Configuration
	Configuring the Embedded Ethernet Interface

	4. CPU Operation
	CPU Sweep
	Parts of the CPU Sweep
	Parts of a Typical CPU Sweep
	Major Phases in a Typical CPU Sweep

	CPU Sweep Modes
	Normal Sweep Mode
	Typical Sweeps in Normal Sweep Mode

	Constant Sweep Mode
	Typical Sweeps in Constant Sweep Mode

	Constant Window Mode
	Typical Sweeps in Constant Window Mode

	Program Scheduling Modes
	Window Modes
	Data Coherency in Communications Windows
	Run/Stop Operations
	CPU Stop Modes
	CPU Sweep in Stop- I/O Disabled and Stop- I/O Enabled Modes

	Stop-to-Run Mode Transition
	Run/Stop Mode Switch Operation

	Flash Memory Operation
	Logic/Configuration Source and CPU Operating Mode at Power-up
	CPU Mode when Memory Not Preserved/Power-up Source is Flash
	CPU Mode when Memory Preserved

	Clocks and Timers
	Elapsed Time Clock
	Time-of-Day Clock
	High-Resolution Time of Day Software Clock
	Synchronizing the High-resolution Time of Day Clock to an SNTP Network Time Server

	Watchdog Timer
	Software Watchdog Timer
	Hardware Watchdog Timer
	RX3i CPE3xx CPUs Response to a Hardware Watchdog Timeout:
	All other RX3i and RX7i CPUs’ Response to a Hardware Watchdog Timeout:

	System Security
	Passwords and Privilege Levels - Legacy Mode
	Privilege Levels
	Protection Level Request from Programmer
	Maintaining Passwords Through a Power Cycle
	Disabling Passwords

	OEM Protection – Legacy Mode
	OEM Protection in Systems that Load from Flash Memory

	Enhanced Security for Passwords and OEM Protection
	Password and OEM Protection in Systems that Load from Flash Memory

	Legacy/Enhanced Security Comparison

	PACSystems I/O System
	I/O Configuration
	Module Identification
	Default Conditions for I/O Modules
	Interrupts
	Outputs
	Inputs

	Multiple I/O Scan Sets

	Genius I/O
	Genius I/O Configuration
	Genius I/O Data Mapping
	Analog Grouped Block
	Low-Level Analog Blocks

	Genius Global Data Communications
	I/O System Diagnostic Data Collection
	Discrete I/O Diagnostic Information
	Analog I/O Diagnostic Data
	PACSystems Handling of GBC Faults
	Defaulting of input data associated with failed/lost GBCs
	Application of default input and diagnostic data for lost redundant blocks

	Power-Up and Power-Down Sequences
	Power-Up Sequence
	Power-Up Self-Test
	CPU Memory Validation
	System Configuration
	Intelligent Option Module Self-Test Completion
	Intelligent Option Module Dual Port Interface Tests
	I/O System Initialization

	Power-Down Sequence
	Retention of Data Memory Across Power Failure

	5. Program Organization
	Structure of a PACSystems Application Program
	Blocks
	Functions and Function Blocks
	How Blocks Are Called
	Nested Calls
	Types of Blocks
	Program Blocks
	Program Blocks and Local Data
	Using Parameters with a Program Block

	Parameterized Blocks
	Parameterized Blocks and Local Data
	Using Parameters with a Parameterized Block

	User Defined Function Blocks
	Defining a UDFB
	Creating UDFB Instances
	Instance Data Structures
	UDFBs and Scope
	Using Parameters with UDFBs
	Using Internal Member Variables with UDFBs
	UDFB Logic
	UDFB Operation with Other Blocks

	External Blocks
	External Blocks and Local Data
	Initialization of C Variables
	Using Parameters With an External Block

	Local Data
	Parameter Passing Mechanisms
	Languages
	Ladder Diagram (LD)
	Function Block Diagram
	Structured Text

	Controlling Program Execution
	Interrupt-Driven Blocks
	Interrupt Handling
	Timed Interrupts
	I/O Interrupts
	Module Interrupts
	Interrupt Block Scheduling
	Normal Block Scheduling
	Preemptive Block Scheduling

	6. Program Data
	Variables
	Mapped Variables
	Symbolic Variables
	Restrictions on the Use of Symbolic Variables

	I/O Variables
	Restrictions on the Use of I/O Variables
	I/O Variable Format
	Supported I/O Variable Types
	I/O Variable Examples

	Arrays
	Variable Indexes and Arrays
	Requirements and Support
	The following do not support array elements with variable indexes:

	Ensuring that a Variable Index Does not Exceed the Upper Boundary of an Array
	One-Dimensional Array
	Two-Dimensional Array

	Reference Memory
	Word (Register) References
	Indirect References
	Bit in Word References
	Examples:

	Bit (Discrete) References

	User Reference Size and Default
	%G User References and CPU Memory Locations

	Genius Global Data
	Transitions and Overrides
	Retentiveness of Logic and Data
	Data Scope
	System Status References
	%S References
	%SA, %SB, and %SC References
	Fault References
	System Fault References
	Configurable Fault References
	Non-Configurable Faults

	How Program Functions Handle Numerical Data
	Data Types
	Floating Point Numbers
	Types of Floating Point Variables
	Internal Format of REAL Numbers
	Internal Format of LREAL Numbers
	Errors in Floating Point Numbers and Operations
	IEEE 754 Infinity Representations
	IEEE 754 Representations of NaN values:

	User Defined Types
	Working with UDTs
	UDT Properties
	UDT Limits
	Run Mode Store of UDTs
	UDT Operational Notes
	Example

	Operands for Instructions
	Word-for-Word Changes
	Symbolic Variables

	7. Ladder Diagram Programming
	Advanced Math Functions
	Exponential/Logarithmic Functions
	Operands of the Exponential/Logarithmic Functions

	Square Root
	Example
	Operands for the Square Root Function

	Trig Functions
	Operands
	Example

	Inverse Trig – ASIN, ACOS, and ATAN
	Operands of Inverse Trig Functions

	Bit Operation Functions
	Data Lengths for the Bit Operation Functions
	Bit Position
	Operands
	Examples

	Bit Sequencer
	Memory Required for Bit Sequencer
	Operands for Bit Sequencer
	Example

	Bit Set, Clear
	Operands
	Examples
	Example 1
	Example 2

	Bit Test
	Operands
	Example 1
	Example 2

	Logical AND, Logical OR, and Logical XOR
	Logical AND
	Logical OR
	Logical XOR
	Operands for Logical AND, OR, and XOR
	Examples
	Logical AND
	Logical XOR

	Logical NOT
	Operands
	Example

	Masked Compare
	Operands for Masked Compare Function
	Examples for Masked Compare
	Example 1
	Example 2

	Rotate Bits
	Operands
	Example

	Shift Bits
	Shift Left
	Shift Right
	Shift Left and Shift Right
	Operands
	Example

	Coils
	Coil Checking
	Graphical Representation of Coils
	Coil (Normally Open)
	Continuation Coil
	Negated Coil

	Set, Reset Coil
	Example of Set, Reset Coils

	Transition Coils
	POSCOIL and NEGCOIL
	Operands for POSCOIL and NEGCOIL
	Example for POSCOIL and NEGCOIL

	PTCOIL and NTCOIL
	Notes:
	Operands for PTCOIL and NTCOIL

	Examples Comparing PTCOIL and POSCOIL
	PTCOIL
	POSCOIL

	Contacts
	Continuation Contact
	Fault Contact
	Operands

	High and Low Alarm Contacts
	Operands

	No Fault Contact
	Operands

	Normally Closed and Normally Open Contacts
	Operands

	Transition Contacts
	POSCON and NEGCON
	Overrides
	Transition to Run Mode
	Operands for POSCON and NEGCON
	Examples for POSCON and NEGCON
	Example 1
	Example 2

	PTCON and NTCON
	Notes:
	Operands for PTCON and NTCON

	Examples Comparing PTCON and POSCON
	PTCON
	POSCON
	Logic Example Using PTCON

	Control Functions
	Do I/O
	Do I/O for Inputs
	Do I/O for Outputs
	Operands
	Example - Do I/O for Inputs
	Example - Do I/O For Outputs

	Edge Detectors
	Operands
	Instance Data Structure

	F_TRIG Operation
	R_TRIG Operation
	Example

	Drum
	Using Drum in Parameterized Blocks
	Finding the Source Block
	Programming Drum in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks

	Recursion

	Using Drum in UDFBs
	Example

	Operands
	Control Block for the Drum Sequencer Function

	For Loop
	Operands
	For Loop Examples
	Example 1
	Example 2

	Mask I/O Interrupt
	Operands
	Example

	Read Switch Position
	Operands

	Scan Set IO
	Operands for SCAN_SET_IO
	Example

	Suspend I/O
	Example for Suspend I/O
	Suspend I/O Sample Logic

	Suspend or Resume I/O Interrupt
	Operands
	Example

	Conversion Functions
	Convert Angles
	Operands
	Example

	Convert UINT or INT to BCD4
	Operands
	Example - UINT to BDC4
	Example - INT to BCD4

	Convert DINT to BCD8
	Operands
	Example

	Convert BCD4, UINT, DINT, or REAL to INT
	BDC4, UINT, and DINT
	REAL
	Operands
	Examples
	BCD4 to INT
	UINT to INT
	DINT to INT

	Convert BCD4, INT, DINT, or REAL to UINT
	Operands
	Examples
	BCD4 to UINT
	INT to UINT
	DINT to UINT
	REAL to UINT

	Convert BCD8, UINT, INT, REAL or LREAL to DINT
	BCD8, UINT, and INT
	REAL and LREAL
	Operands
	Examples
	UINT to DINT
	BCD8 to DINT
	INT to DINT
	REAL to DINT

	Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
	Operands
	Examples
	UINT to REAL
	INT to REAL
	LREAL to REAL

	Convert REAL to LREAL
	Operands
	Example

	Convert DINT to LREAL
	Truncate
	Operands
	Example

	Counters
	Data Required for Counter Function Blocks
	Warning
	Word 3: Control Word Structure

	Down Counter
	Operands
	Example – Down Counter

	Up Counter
	Operands
	Example – Up Counter
	Example – Up Counter and Down Counter

	Data Move Functions
	Array Size
	Operands
	Example

	Array Size Dimension Function Blocks
	Array Size Dimension 1
	Operands

	Array Size Dimension 2
	Operands

	Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

	Block Clear
	Operands
	Example

	Block Move
	Operands
	Example

	BUS_ Functions
	Rack, Slot, Subslot, Region, and Offset Parameters
	BUS Read
	Operands for BUS READ
	BUS_RD Status in the ST Output

	BUS Read Modify Write
	Operands for BUS_RMW
	BUS_RMW Status in the ST Output

	BUS Test and Set
	Operands for BUS Test and Set

	BUS Write
	Operands for Bus Write

	Communication Request
	Command Block
	Command Block Structure
	Status Pointer Memory Type
	Operands for COMM_REQ
	COMM_REQ Status Word
	Examples for COMM_REQ
	Example 1
	Example 2

	Data Initialization
	Operands
	Example

	Data Initialize ASCII
	Operands
	Example

	Data Initialize Communications Request
	Operands
	Example

	Data Initialize DLAN
	Operands

	Move
	MOVE Operands
	MOVE_BOOL Example
	MOVE_WORD Example

	Move Data
	MOVE_DATA Operands

	Move Data Explicit
	MOVE_DATA_EX Operands
	Example

	Move From Flat
	Operation
	Copying arrays and array elements
	Copying to specified array elements
	MOVE_FROM_FLAT Operands
	Example

	Move to Flat
	Copying Arrays and Array Elements
	MOVE_TO_FLAT Operands
	Example

	Shift Register
	Operands for Shift Register
	Example

	Size Of
	Operands
	Example

	Swap
	Operands for Swap
	Example for Swap

	Data Table Functions
	Array Move
	Operands for Array Move
	Examples for Array Move
	Example 1
	Example 2
	Example 3

	Array Range
	Operands for Array Range
	Examples for Array Range
	Example 1
	Example 2

	FIFO Read
	Operands for FIFO Read
	Example for FIFO Read

	FIFO Write
	Operands for FIFO Write
	Example for FIFO Write

	LIFO Read
	Operands for LIFO Read
	Example for LIFO Read

	LIFO Write
	Operands for LIFO Write
	Example for LIFO Write

	Search
	Search Relationships:
	Operands for the Search Function
	Example for the Search Function

	Sort
	Operands
	Example

	Table Read
	Operands
	Example

	Table Write
	Operands
	Table Write Example

	Math Functions
	Overflow
	Absolute Value
	Operands
	Example

	Add
	Operands of the ADD Function
	Examples for ADD

	Divide
	Operands for the DIV Function
	DIV_MIXED Operands
	DIV_MIXED Example

	Modulus
	Operands for Modulus Function

	Multiply
	Operands for Multiply
	Example – Scaling Analog Input Values

	Scale
	Operands
	Example

	Subtract
	Operands for Subtract

	Program Flow Functions
	Argument Present
	Operands for ARG_PRES
	Example for ARG_PRES

	Call
	Operands for Call
	Examples for Call
	Example 1
	Example 2
	Logic for AVG_4 Parameterized Block

	Comment
	Jump
	Operands

	Master Control Relay/End Master Control Relay
	MCRN
	EndMCRN
	Operands for MCRN/ENDMCRN
	Example of MCRN/ENDMCRN

	Wires

	Relational Functions
	Compare
	Operands
	Example

	Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	EQ_DATA
	Operands

	Range
	Operands
	Example

	Timers
	Timed Contacts
	Timer Function Blocks
	Built-In Timer Function Blocks
	Data Required for Built-in Timer Function Blocks
	Warning
	Word 1: Current value (CV)
	Word 2: Preset value (PV)
	Word 3: Control word

	Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
	Timers that are Skipped by the Jump Instruction
	Using OFDT, ONDTR and TMR in Parameterized Blocks
	Finding the Source Block
	Programming OFDT, ONDTR and TMR in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks

	Recursion

	Using OFDT, ONDTR and TMR in UDFBs
	Example

	Off Delay Timer
	Timing diagram
	Operands for OFDT
	Example for OFDT

	On Delay Stopwatch Timer
	Timing diagram
	Operands for On Delay Stopwatch Timer
	Example for On Delay Stopwatch Timer

	On Delay Timer
	Timing Diagram
	Operands for On Delay Timer
	Example for On Delay Timer

	Standard Timer Function Blocks
	Data Required for Standard Timer Function Blocks
	Resetting the Timer
	Operands
	Timer Off Delay
	Timing Diagram
	Example

	Timer On Delay
	Timing Diagram
	Example

	Timer Pulse
	Timing Diagram
	Example

	8. Function Block Diagram
	Advanced Math Functions
	EXPT Function
	Operands of the EXPT Function

	Bit Operation Functions
	Logical AND, Logical OR, and Logical XOR
	Operands for AND, OR, and XOR
	Properties for AND, OR, and XOR

	Logical NOT
	Operands

	Comments
	Text Block

	Comparison Functions
	Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	Control Functions
	Counters
	Data Move Functions
	Fan Out
	Move Data
	MOV Operands

	Math Functions
	Overflow
	Add
	Operands of the ADD Function
	Properties for ADD

	Divide
	Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

	Modulus
	Operands for Modulus Function

	Multiply
	Operands for Multiply
	Properties for Multiply

	Negate
	Operands

	Subtract
	Operands for Subtract
	Properties for Subtract

	Program Flow Functions
	Timers
	Built-in Timer Function Blocks
	Standard Timer Function Blocks

	Type Conversion Functions
	Convert WORD to INT
	Operands

	Convert WORD to UINT
	Operands

	Convert DWORD to DINT
	Operands

	Convert INT or UINT to WORD
	Operands

	Convert DINT to DWORD
	Operands

	9. Service Request Function
	Operation of SVC_REQ Function
	Ladder Diagram
	Operands
	Example

	Function Block Diagram
	Operands

	SVC_REQ 1: Change/Read Constant Sweep Timer
	To disable Constant Sweep mode:
	To enable Constant Sweep mode and use the old timer value:
	To enable Constant Sweep mode and use a new timer value:
	To change the timer value without changing the selection for sweep mode state:
	To read the current timer state and value without changing either:
	Output
	Example

	SVC_REQ 2: Read Window Modes and Time Values
	Output
	Mode Values
	Example

	SVC_REQ 3: Change Controller Communications Window Mode
	To disable the controller communications window:
	To re-enable or change the controller communications window mode:
	Example

	SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
	To disable the Backplane Communications window:
	To enable the Backplane Communications window mode:
	Example

	SVC_REQ 5: Change Background Task Window Mode and Timer Value
	To disable the Background Task window:
	To enable the Background Task window mode:
	Example

	SVC_REQ 6: Change/Read Number of Words to Checksum
	To read the word count:
	To set a new word count:
	Example

	SVC_REQ 7: Read or Change the Time-of-Day Clock
	Parameter Block Formats
	BCD, 2-Digit Year
	BCD, 4-Digit Year
	POSIX
	Unpacked BCD (2-Digit Year)
	Unpacked BCD (4-Digit Year)
	Numeric, 2-Digit Year
	Numeric, 4-Digit Year
	Packed ASCII, 2-Digit Year
	Packed ASCII, 4-Digit Year
	SVC_REQ 7

	SVC_REQ 8: Reset Watchdog Timer
	Example

	SVC_REQ 9: Read Sweep Time from Beginning of Sweep
	Output
	Example

	SVC_REQ 10: Read Target Name
	Output
	Example

	SVC_REQ 11: Read Controller ID
	Output
	Example

	SVC_REQ 12: Read Controller Run State
	Output
	Example

	SVC_REQ 13: Shut Down (Stop) CPU
	Example

	SVC_REQ 14: Clear Controller or I/O Fault Table
	Example

	SVC_REQ 15: Read Last-Logged Fault Table Entry
	Input Parameter Block
	Output Parameter Block
	Long/Short Value
	Example 1
	Example 2

	SVC_REQ 16: Read Elapsed Time Clock
	Output
	Example

	SVC_REQ 17: Mask/Unmask I/O Interrupt
	Masking/Unmasking Module Interrupts
	Example 1
	Example 2

	SVC_REQ 18: Read I/O Forced Status
	Output
	Example

	SVC_REQ 19: Set Run Enable/Disable
	Example

	SVC_REQ 20: Read Fault Tables
	Non-Extended Formats
	Input Parameter Block Format
	Non-Extended Output Parameter Block Format
	Format of Returned Data for Fault Table Entries

	Extended Formats
	Input Parameter Block Format
	Extended Format Output Parameter Block Format
	Format of Returned Data for Fault Table Entries

	SVC_REQ 20 Examples
	Example 1: Non-Extended Format
	Example 2: Extended Format

	SVC_REQ 21: User-Defined Fault Logging
	Example

	SVC_REQ 22: Mask/Unmask Timed Interrupts
	Example

	SVC_REQ 23: Read Master Checksum
	Output
	Example – SVC_REQ 23

	SVC_REQ 24: Reset Module
	Example

	SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
	Example

	SVC_REQ 29: Read Elapsed Power Down Time
	Example of SVC_REQ 29

	SVC_REQ 32: Suspend/Resume I/O Interrupt
	Example – SVC_REQ 32

	SVC_REQ 45: Skip Next I/O Scan
	Example

	SVC_REQ 50: Read Elapsed Time Clock
	Output
	Example – SVC_REQ 50

	SVC_REQ 51: Read Sweep Time from Beginning of Sweep
	Output
	Example

	SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
	Discrete Memory
	Storage Disabled Conditions
	Maximum of One Active Instruction
	ENO and Power Flow To The Right
	Parameter Block
	Memory Type Codes
	Response Status Codes for SVC_REQ 56

	SVC_REQ 56 Example
	Parameter Block for SVC_REQ 56 Example

	SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
	Length of Data Written
	Write Frequency
	Erase Cycles
	Discrete memory
	Retentiveness
	Maximum of one active instruction
	Storage disabled conditions
	Error checking
	Fragmentation
	When nonvolatile storage is full
	Equality
	Redundancy
	ENO and power flow to the right
	Parameter Block for SVC_REQ 57
	Response Status Codes for SVC_REQ 57

	SVC_REQ 57 Example
	Parameter Block for SVC_REQ 57 Example

	10. PID Built-in Function Block
	Operands of the PID Function
	Operands for LD Version of PID Function Block
	Operands for FBD Version of PID Function Block

	Reference Array for the PID Function
	Scaling Input and Outputs
	Reference Array Parameters

	Operation of the PID Function
	Automatic Operation
	Manual Operation
	Time Interval for the PID Function

	PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
	Derivative Term
	Error Term Mode
	Derivative Action on PV Bit
	Combined Operation of Error Term and Derivative Action Modes
	CV Bias Term
	CV Amplitude and Rate Limits
	Sample Period and PID Function Block Scheduling

	Determining the Process Characteristics
	Setting Tuning Loop Gains
	Basic Iterative Tuning Approach
	Setting Loop Gains Using the Ziegler and Nichols Tuning Approach
	Ideal Tuning Method

	Example
	Reference Array Initialization using %M00006

	11. Structured Text Programming
	Language Overview
	Statements
	Expressions
	Operators
	Operand Types

	Structured Text Syntax

	Statement Types
	Assignment Statement
	Format
	Examples

	Function Call
	Built-in Functions Supported for ST Calls
	Calls to Standard Function Blocks
	Format of Calls to Standard Timer Function Blocks
	Formal Convention
	Informal Convention

	Block Types Supported for ST Calls
	Formal Calls vs. Informal Calls
	Format of Formal Function Call
	Format of Informal Function Call
	Example

	RETURN Statement
	IF Statement
	Format
	Operation
	Example

	CASE Statement
	Format
	Operation
	Requirements for Conditional Statements
	Examples

	FOR … DO Statements
	Format
	Operation
	Examples

	WHILE Statement
	Format
	Operation
	Example

	REPEAT Statement
	Format
	Operation
	Example

	ARG_PRES Statement
	Format
	Example

	Exit Statement
	Format
	Example

	12. Communications
	Ethernet Communications
	Embedded Ethernet Interface
	RX3i
	RX7i
	Caution

	10Base-T/100Base-Tx Port Pin Assignments

	Ethernet Interface Modules

	Serial Communications
	Serial Port Communications Capabilities
	Features Supported

	Configurable Stop Mode Protocols
	Serial Port Pin Assignments
	Port 1 (RS-232, 9-pin Subminiature D Connector)
	Port 1 RS-232 Signals

	Port 1 (RS-232, RJ-25 Connector)
	CPE305 Port 1 RS-232 Signals

	Port 2 (RS-485, 15-pin, Female D-sub Connector) –RX7i CPU/CRU Models
	Port 2 RS-485 Signals

	Port 2 (RS-485, 15-pin, Female D-sub Connector) – All RX3i CPU and CRU Models and RX3i CPE310
	Port 3 (RX7i only)
	Station Manager RS-232 Signals

	Serial Cable Lengths and Shielding

	Serial Port Baud Rates

	Series 90-70 Communications and Intelligent Option Modules
	Communications Coprocessor Module (CMM)
	Programmable Coprocessor Module (PCM)
	DLAN/DLAN+ (Drives Local Area Network) Interface

	13. Serial I/O, SNP and RTU Protocols
	Configuring Serial Ports Using COMM_REQ Function 65520
	COMM_REQ Function Example
	Timing
	Sending Another COMM_REQ to the Same Port
	Invalid Port Configuration Combinations
	COMM_REQ Command Block Parameter Values
	Sample COMM_REQ Command Blocks for Serial Port Setup function
	Example COMM_REQ Command Block for Configuring SNP Protocol
	Example COMM_REQ Data Block for Configuring RTU Protocol
	Example COMM_REQ Data Block for Configuring Serial I/O Protocol

	Serial I/O Protocol
	Calling Serial I/O COMM_REQs from the CPU Sweep
	Compatibility
	Status Word for Serial I/O COMM_REQs
	Serial I/O COMM_REQ Commands
	Overlapping COMM_REQs
	COMM_REQS that Must Complete Execution
	COMM_REQs that can be Pending While Others Execute

	Initialize Port Function (4300)
	Example Command Block for the Initialize Port Function
	Operating Notes

	Set Up Input Buffer Function (4301)
	Retrieving Data from the Buffer
	Example Command Block for the Set Up Input Buffer Function

	Flush Input buffer Function (4302)
	Example Command Block for the Flush Input Buffer Function

	Read port status Function (4303)
	Example Command Block for the Read Port Status Function
	Port Status
	Operating Notes

	Write port control Function (4304)
	Example Command Block for the Write Port Control Function
	Port Control Word
	Operating Notes

	Cancel COMM_REQ Function (4399)
	Example Command Block for the Cancel Operation Function
	Operating Notes

	Autodial Function (4400)
	Example
	Autodial Command Block
	Sample Autodial Command Block

	Write bytes Function (4401)
	Example Command Block for the Write Bytes Function
	Operating Notes

	Read bytes Function (4402)
	Example Command Block for the Read Bytes Function
	Return Data Format for the Read Bytes Function
	Operating Notes for Read Bytes

	Read String Function (4403)
	Example Command Block for the Read String Function
	Return Data Format for the Read String Function
	Operating Notes for Read String

	RTU Slave Protocol
	Message Format
	RTU Message Transfers
	RTU Slave Turnaround Time
	Receive-to-transmit Delay
	Message Types
	Query
	Normal Response
	Error Response
	Broadcast

	Message Fields
	Station Address
	Function Code
	Information Fields
	Examples
	Error Check Field

	Message Length
	Character Format
	Message Termination
	Timeout Usage
	End-of-frame Timeout

	Cyclic Redundancy Check (CRC)
	Cyclic Redundancy Check Register

	Calculating the CRC-16
	Sample CRC-16 Calculation
	Calculating the Length of Frame
	RTU Message Length

	RTU Message Descriptions
	Message (01): Read Output Table
	Format:
	Query:
	Response:

	Message (02): Read Input Table
	Format:
	Query:
	Response:

	Message (03): Read Registers
	Format:
	Query:
	Response:

	Message (04): Read Analog Inputs
	Format:

	Query:
	Response:

	Message (05): Force Single Output
	Format:
	Query:
	Response:

	Message (06): Preset Single Register
	Format:
	Query:
	Response:

	Message (07): Read Exception Status
	Format:
	Query:
	Response:

	Message (08): Loopback/Maintenance (General)
	Format:
	Query:
	Response:
	Diagnostic Return Query Data Request (Loopback/Maintenance Code 00):
	Diagnostic Initiate Communication Restart Request (Loopback/Maintenance Code 01):
	Diagnostic Force Listen-Only Mode Request (Loopback/Maintenance code 04):

	Message (15): Force Multiple Outputs
	Format:
	Query:
	Response:

	Message (16): Preset Multiple Registers
	Format:
	Query:
	Response:

	Message (17): Report Device Type
	Format:
	Query:
	Response:

	Message (22): Mask Write 4x Memory
	Query
	Response

	Message (23): Read Write 4x Memory
	Query
	Response

	Message (67): Read Scratch Pad Memory
	Format:
	Query:
	Response:

	RTU Scratch Pad
	RTU Scratch Pad Memory Allocation

	Communication Errors
	Invalid Query Message
	Invalid Function Code Error Response (1)
	Invalid Address Error Response (2)
	Invalid Data Value Error Response (3)
	Query Processing Failure Error Response (4)

	Serial Link Timeout
	Invalid Transactions

	RTU Slave/SNP Slave Operation With Programmer Attached
	Example

	SNP Slave Protocol
	Permanent Datagrams
	Communication Requests (COMM_REQs) for SNP

	14. Diagnostics
	Fault Handling Overview
	System Response to Faults
	Fault Tables
	Fault Actions and Fault Action Configuration
	Faults that are part of configurable fault groups:
	Faults that are part of nonconfigurable fault groups:

	Using the Fault Tables
	Controller Fault Table
	Viewing Controller Fault Details
	User-Defined Faults

	I/O Fault Table
	Viewing I/O Fault Details

	System Handling of Faults
	System Fault References
	Fault References for Configurable Faults
	Fault References for Non-Configurable Faults

	Using Fault Contacts
	Fault Locating References (Rack, Slot, Bus, Module)
	Fault Locating Reference Name Format
	Fault Reference Name Examples:

	Behavior of Fault Locating References

	Using Point Faults
	Using Alarm Contacts

	Controller Fault Descriptions and Corrective Actions
	Controller Fault Groups
	Loss of or Missing Rack (Group 1)
	1, Rack Lost
	Correction

	2, Rack Not Responding
	Correction

	Loss of or Missing Option Module (Group 4)
	3C hex/60 decimal, Module in Firmware Update Mode
	Correction

	63 hex/99 decimal, Module Hot Removed
	All Others, Module Failure During Configuration
	Correction

	Addition of, or Extra Rack (Group 5)
	1, Extra Rack
	Correction

	Reset of, Addition of, or Extra Option Module (Group 8)
	3, LAN Interface Restart Complete, Running Utility
	Correction

	7, Extra Option Module
	Correction

	E Hex/14 Decimal, Option Module Hot inserted

	System Configuration Mismatch (Group 11)
	2, Genius I/O Block Model Number Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Model Number Mismatch
	Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
	GENA Application ID Numbers

	4, I/O Type Mismatch
	Correction
	Fault Extra Data for I/O Type Mismatch
	Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)
	Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

	8, Analog Expander Mismatch
	Correction

	9, Genius I/O Block Size Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Size Mismatch

	A hex/10 decimal, Unsupported Feature
	Correction
	Fault Extra Data for Unsupported Feature

	E hex/14 decimal, LAN Duplicate MAC Address
	Correction

	F hex/15 decimal, LAN Duplicate MAC Address Resolved
	10 hex/16 decimal, LAN MAC Address Mismatch
	Correction

	11 hex/17 decimal, LAN Softswitch/Modem mismatch
	Correction

	13 hex/19 decimal, DCD Length Mismatch
	Correction
	Fault Extra Data for DCD Length Mismatch

	25 hex/37 decimal, Controller Reference Out of Range
	Correction

	26 hex/38 decimal, Bad Program Specification
	Correction

	27 hex/39 decimal, Unresolved or Disabled Interrupt Reference
	Correction

	43 hex/67 decimal, Module Configuration Failure
	Correction

	4B hex/75 decimal, ECC jumper is disabled, but should be enabled
	Correction

	4C hex/76 decimal, ECC jumper is enabled, but should be disabled
	Correction

	All Others, Module and Configuration do not Match
	Correction

	System Bus Error (Group 12)
	4, Unrecognized VME Interrupt Source
	Correction

	CPU Hardware Failure (Group 13)
	6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
	Correction

	0A8 hex/168 decimal, Critical Overtemperature Failure
	All Others
	Correction
	Fault Extra Data for CPU Hardware Failure

	Module Hardware Failure (Group 14)
	1A0 hex/416 decimal, Missing 12 Volt Power Supply
	Correction

	1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure
	All Others, Module Hardware Failure
	Correction

	Option Module Software Failure (Group 16)
	1, Unsupported Board Type
	Correction

	2, 3, COMMREQ Frequency Too High
	Correction

	4, More Than One BTM in a Rack
	Correction

	>4, Option Module Software Failure
	Correction

	>400, LAN System Software Fault
	Correction

	Program or Block Checksum Failure (Group 17)
	All Error Codes, Program or Block Checksum Failure
	Correction
	Fault Extra Data for Program or Block Checksum Failure

	Battery Status (Group 18)
	0, Failed Battery
	CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320 and NIU001
	CPE305 and CPE310
	Correction

	1, Low Battery – CPUs with Battery-Backed RAM
	Correction

	1, Low Battery – CPE3xx CPUs with Energy Pack

	Constant Sweep Time Exceeded (Group 19)
	0, Constant Sweep
	Correction

	System Fault Table Full (Group 20)
	0, System Fault Table Full
	Correction

	I/O Fault Table Full (Group 21)
	0, I/O Fault Table Full
	Correction

	User Application Fault (Group 22)
	2, Software Watchdog Timer Expired
	Correction

	7, Application Stack Overflow
	Correction

	11 hex/17 decimal, Program Run Time Error
	Correction

	22 hex/34 decimal, Unsupported Protocol
	33 hex/51 decimal, Flash Read Failed
	34 hex/52 decimal, Memory Reference Out of Range
	Correction

	35 hex/53 decimal, Divide by zero attempted in user logic.
	Correction

	36 hex/54 decimal, Operand is not byte aligned.
	Correction

	39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted
	Correction

	3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough to accommodate this reference.
	Correction

	CPU Over Temperature (Group 24)
	1, Overtemperature failure.
	Correction

	Power Supply Fault (Group 25)
	1, Power supply failure.
	Correction

	2, Power supply overloaded
	Correction

	3, Power supply switched off
	4, Power-supply has exceeded normal operating temperature
	Correction

	No User Program on Power-Up (Group 129)
	Correction

	Corrupted User Program on Power-Up (Group 130)
	1, Corrupted user RAM on power-up
	Recommended Corrections, Listed in Order

	7, User memory not preserved over power cycle
	Correction

	Window Completion Failure (Group 131)
	0, Window Completion Failure
	Correction

	1, Logic Window Skipped
	Correction

	Password Access Failure (Group 132)
	0, Password Access Failure
	Correction

	Null System Configuration for Run Mode (Group 134)
	0, Null System Configuration for Run Mode
	Correction

	CPU System Software Failure (Group 135)
	5A hex/90 decimal, User Shut Down Requested
	Correction

	94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended
	Correction

	D8 hex/216 decimal, Processor Exception Trap
	Correction

	DA hex/218 decimal, Critical Overtemperature Failure
	Correction

	All Others, CPU Internal System Error
	Correction

	Communications Failure During Store (Group 137)
	0, Communications Failure During Store
	Correction

	1, Communications Lost During Run Mode Store
	Correction

	2, Communications Lost During Cleanup for Run Mode Store
	Correction

	3, Power Lost During a Run Mode Store
	Correction

	Noncritical CPU Software Event (Group 140)
	Error code 53, Access Control Fault
	Fault example
	Meaning of this example fault
	Interpreting the Fault Extra Data

	I/O Fault Descriptions and Corrective Actions
	Fault Extra Data
	I/O Fault Groups
	I/O Fault Categories
	Circuit Faults (Category 1)
	Fault Extra Data for Circuit Faults
	Genius Bus Controller
	VRD001 RTD/Strain Bridge

	Fault Descriptions for Discrete Faults
	1, Loss of User Side Power
	Correction

	2, Short Circuit in User Wiring
	Correction

	4, Sustained Overcurrent
	Correction

	8, Low or No Current Flow
	Correction

	10 hex, Switch Temperature Too High
	Correction

	20 hex, Switch Failure
	Correction

	83 hex, Point Fault
	Correction

	84 hex, Output Fuse Blown
	Correction

	Fault Descriptions for Analog Faults
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex/16 decimal, Input Channel Open Wire
	Correction

	18 hex/24 decimal, Over Range or Open Wire
	Correction

	20 hex/32 decimal, Output Channel Under Range
	Correction

	40 hex/64 decimal, Output Channel Over Range
	Correction

	80 hex/128 decimal, Expansion Channel Not Responding
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	Low-Level Analog Faults
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex, Input Channel Open Wire
	Correction

	20 hex/32 decimal, Wiring Error
	Correction

	40 hex/64 decimal, Internal Fault
	Correction

	80 hex/128 decimal, Input Channel Shorted
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	GENA Fault
	80 hex/128 decimal
	Correction

	Loss of Block (Category 2)
	Loss of Block
	Correction

	Loss of Block - A/D Communications Fault
	Correction
	Fault Extra Data for Loss of Block
	Block Configuration (Byte 2)

	Addition of Block (Category 3)
	Correction
	Fault Extra Data for Addition of Block
	Block Configuration (Byte 2)

	I/O Bus Fault (Category 6)
	Bus Fault
	Correction

	Bus Outputs Disabled
	Correction

	SBA Conflict
	Correction

	Module Fault (Category 8)
	08 hex, Configuration Memory Failure
	Correction

	20 hex/32 decimal, Calibration Memory Failure
	Correction

	40 hex/64 decimal, Shared RAM Fault
	Correction

	80 hex/128 decimal, Module Fault
	Correction

	81 hex/129 decimal, Watchdog Timeout
	Correction

	84 hex/132 decimal, Output Fuse Blown
	Correction

	Addition of IOC (Category 9)
	Addition of IOC
	Correction

	01 hex, Extra Module
	Correction

	02 hex, Reset Request

	Loss of or Missing IO Controller (Category 10)
	Correction
	Fault Extra Data for Loss of or Missing IOC

	IOC (I/O Controller) Software Fault (Category 11)
	Datagram Queue Full, Read/Write Queue Full
	Correction

	Response Lost
	Correction

	Forced and Unforced Circuit (Categories 12 and 13)
	Fault Extra Data for Forced/Unforced Circuit

	Loss of or Missing I/O Module (Category 14)
	Correction

	Addition of I/O Module (Category 15)
	Addition of I/O Module
	Correction

	30 hex/48 decimal, VME Reset on Request

	Extra I/O Module (Category 16)
	Correction

	Extra Block (Category 17)
	Correction

	IOC Hardware Failure (Category 18)
	Correction

	GBC Stopped Reporting Faults (Category 19)
	Correction

	GBC Software Exception (Category 21)
	1, Incoming datagram queue full
	Correction

	2, Read/write request queue full
	Correction

	3, Low priority mail queue from GBC to CPU full
	4, Genius background message requiring CPU action received before CPU completed initialization
	5, GBC software version too old
	Correction

	6, Excessive use of internal GBC memory
	Correction

	Block Switch (Category 22)
	Correction
	Fault Extra Data for Block Switch

	Reset of IOC (Category 27)

	Diagnostic Logic Blocks
	DLB Operation
	Suspend I/O Function and DLBs
	Restrictions on DLB Operation
	DLB Variables

	Executing DLBs
	DLB Properties
	Target Properties
	Right-click Online Operations for an Active DLB
	DLB Online Operations
	Removing a DLB from the Controller
	Basic Steps for Using a DLB in the Controller
	Monitoring DLB Execution

	DLB Example
	Logic for the MonitorScan Block
	Logic for the MonitorScan Block, continued
	DLB Block Icon/Status Bar After Started.

	A. Performance Data
	Boolean Execution Times
	Boolean Execution Measurements (milliseconds per 1000 Boolean executions)

	Instruction Timing
	Overview
	CPU Version Information
	RX3i Instruction Times
	RX3i Incremental Times

	RX7i Instruction Times
	RX7i Incremental Times

	Overhead Sweep Impact Times
	Base Sweep Times
	Base Sweep Times
	Base Sweep vs. Full Sweep Phases

	What the Sweep Impact Tables Contain
	Programmer Sweep Impact Times
	Programmer Sweep Impact Times

	I/O Scan and I/O Fault Sweep Impact
	Sweep Impact of Local I/O Modules
	RX7i I/O Module Types
	RX7i Module Sweep Impact Times (microseconds)
	RX3i I/O Module Types
	RX3i I/O Module Sweep Impact Times (microseconds)
	Worksheet A: I/O Module Sweep Time

	Sweep Impact of Genius I/O and GBCs
	Sweep Impact Time of Genius I/O and GBCs
	Worksheet B: Genius I/O Sweep Time

	Ethernet Global Data Sweep Impact
	Exchange Overhead
	Data Transfer Time
	Worksheet C: Ethernet Global Data Sweep Time

	Sweep Impact of Intelligent Option Modules
	Fixed Sweep Impact Times of Intelligent Option Modules, RX7i
	Fixed Sweep Impact Times of RX3i Intelligent Option Modules (µs)
	PROFINET Controller (PNC001) and PROFINET I/O Sweep Impact
	Sweep Impact (µs)
	DSM314 Sweep Impact (µs)

	I/O Interrupt Performance and Sweep Impact
	I/O Interrupt Block P erformance and Sweep Impact Times
	Dropped Interrupts
	Worksheet D: Programmer, IOM, I/O Interrupt Sweep Time

	Timed Interrupt Performance
	Timed Interrupt Performance and Sweep Impact Times for a 0.001s Timed Interrupt Block

	Example of Predicted Sweep Time Calculation
	Sample RX7i System Configuration
	Sweep Calculations

	B. User Memory Allocation
	Items that Count Against User Memory
	User Program Memory Usage
	%L and %P Program Memory
	Program Logic and Overhead

	Indexes
	General
	Functions and Function Blocks

