GE
Automation & Controls

Programmable Control Products

PACSystems™

RX71, RX31 and RSTI-EP
CPU Programmer's
Reference Manual

GFK-2950D
November 2018

For Public Disclosure

Legal Information

Warnings, Cautions, and Notes as Used in this Publication GFL-002

Warning
Warning notices are used in this publication to emphasize that hazardous
voltages, currents, temperatures, or other conditions that could cause
personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage
to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note: Notes merely call attention to information that is especially significant
to understanding and operating the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every
possible contingency to be met during installation, operation, and maintenance. The information is
supplied for informational purposes only, and GE makes no warranty as to the accuracy of the
information included herein. Changes, modifications, and/or improvements to equipment and
specifications are made periodically and these changes may or may not be reflected herein. It is
understood that GE may make changes, modifications, or improvements to the equipment referenced
herein or to the document itself at any time. This document is intended for trained personnel familiar
with the GE products referenced herein.

GE may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not provide any license whatsoever to any of these patents.

GE PROVIDES THE FOLLOWING DOCUMENT AND THE INFORMATION INCLUDED THEREIN AS-IS AND
WITHOUT WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED STATUTORY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.

* indicates a trademark of General Electric Company and/or its subsidiaries.
All other trademarks are the property of their respective owners.

©Copyright 2014-2018 General Electric Company.
All Rights Reserved

If you purchased this product through an Authorized Channel Partner, please contact the seller directly.

Contact Information

General Contact Information

Online technical support and GlobalCare

www.geautomation.com/support

Additional information

www.geautomation.com

Solution Provider

solutionprovider.ip@ge.com

Technical Support

If you have technical problems that cannot be resolved with the information in this manual, please contact us
by telephone or email, or on the web at www.geautomation.com/support

Americas

Phone

1-800-433-2682

International Americas Direct Dial

1-780-420-2010 (if toll free 800 option is unavailable)

Customer Care Email

digitalsupport@ge.com

Primary language of support

English

Europe, the Middle East, and Africa

Phone

+800-1-433-2682

EMEA Direct Dial

+420-296-183-331 (if toll free 800 option is unavailable or if
dialing from a mobile telephone)

Customer Care Email

digitalsupport.emea@ge.com

Primary languages of support

English, French, German, Italian, Czech, Spanish

Asia Pacific

Phone

+86-400-820-8208

+86-21-3877-7006 (India, Indonesia, and Pakistan)

Customer Care Email

digitalsupport.apac@ge.com

Primary languages of support

Chinese, Japanese, English

http://www.geautomation.com/support
http://support.ge-ip.com/
mailto:solutionprovider.ip@ge.com
http://support.ge-ip.com/
http://support.ge-ip.com/
mailto:digitalsupport@ge.com
mailto:digitalsupport.emea@ge.com
mailto:digitalsupport.apac@ge.com

Table of Contents

RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D iii
Table of Contents i
Table of Figures xii
Chapter1 Introduction 1
1.1 Revisions in this Manual 2
1.2 PACSystems Programming and Configuration 3
1.3 Migrating Series 90 Applications to PACSystems 3
1.4 PACSystems Documentation 4
Chapter 2 Program Organization 5
2.1 Structure of a PACSystems Application Program 6
2.1.1 Blocks 6
2.1.2 Functions and Function Blocks 6
2.13 How Blocks Are Called 7
2.1.4 Nested Calls 7
2.1.5 Types of Blocks 8
2.16 Local Data 18
2.1.7 Parameter Passing Mechanisms 19
2.1.8 Languages 21
2.2 Controlling Program Execution 24
2.3 Interrupt-Driven Blocks 25
23.1 Interrupt Handling 26
2.3.2 Timed Interrupts 27
2.3.3 1/OInterrupts 27
2.3.4 Module Interrupts 27
2.3.5 Interrupt Block Scheduling 28
Chapter 3 Program Data 29
3.1 Variables 30
3.1.1 Mapped Variables 30
3.1.2 Symbolic Variables 31
3.1.3 1/OVariables 32
3.1.4 Arrays 35
3.1.5 Variable Indexes and Arrays 35

GFK-2950D November 2018

Contents

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Chapter 4 Ladder Diagram (LD) Programming

4.1

4.2

Reference Memory

321 Word (Register) References

38
38

3.2.2 Bit (Discrete) References

40

User Reference Size and Default

33.1 %G User References and CPU Memory Locations

41
41

Genius Global Data

Transitions and Overrides

Retentiveness of Logic and Data

Data Scope

System Status References
3.8.1 %S References

42

43

44

45

46
47

3.8.2 %SA, %SB, and %SC References

48

383 Fault References

50

How Program Functions Handle Numerical Data
39.1 Data Types

52
52

3.9.2 Floating Point Numbers

54

User Defined Types (UDTs)

3.10.1 Working with UDTs

56
56

3.10.2 UDT Properties

56

3.10.3 UDT Limits

57

3.10.4 RUN Mode Store of UDTs

57

3.10.5 UDT Operational Notes

58

Operands for Instructions

Word-for-Word Changes

3.12.1 Exception: Symbolic Variables

59

61
61

Advanced Math Functions

411 Exponential/Logarithmic Functions

63

64
65

66

412 Square Root
4,13 Trig Functions

67

4.1.4 Inverse Trig - ASIN, ACOS, and ATAN

68

Bit Operation Functions
4.2.1 Data Lengths for the Bit Operation Functions

69
70

4.2.2 Bit Position

71

4.2.3 Bit Sequencer

72

4.2.4 Bit Set, Bit Clear

75

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Contents

4.2.5 Bit Test 76
426 Logical AND, Logical OR, and Logical XOR 77
42.7 Logical NOT 79
428 Masked Compare 80
429 Rotate Bits 83
4.2.10 Shift Bits 84
4.3 Coils 86
431 Coil Checking 86
4.3.2 Graphical Representation of Coils 87
433 Set Coil, Reset Coil 88
4.3.4 Transition Coils 89
4.4 Contacts 93
441 Continuation Contact 94
4.4.2 Fault Contact 95
4.43 Highand Low Alarm Contacts 96
4.4.4 No Fault Contact 97
4.4.5 Normally Closed and Normally Open Contacts 98
446 Transition Contacts 99
4.5 Control Functions 104
451 Dol/O 105
452 Edge Detectors 108
453 Drum 110
454 For Loop 114
455 Maskl/O Interrupt 116
456 Read Switch Position 117
457 Scan Set IO 118
458 Suspendl/O 119
459 Suspend or Resume I/O Interrupt 121
4.6 Conversion Functions 122
46.1 Convert Angles 123
4.6.2 Convert UINT or INT to BCD4 124
4.6.3 Convert DINT to BCD8 125
46.4 Convert BCD4, UINT, DINT, or REAL to INT 126
4.6.5 Convert BCD4, INT, DINT, or REAL to UINT 128
4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT 130
4.6.7 Convert BCD4, BCDS, UINT, INT, DINT, and LREAL to REAL 132
46.8 Convert REAL to LREAL 134
4.6.9 Convert DINT to LREAL 134
46.10 Truncate 135
4.7 Counters 136
4.7.1 Data Required for Counter Function Blocks 136
4.7.2 Down Counter 138

GFK-2950D

November 2018

Contents

4.8

4.9

4.10

4.11

4.7.3

48.1
4.8.2
4.8.3
48.4
4.8.5
4.8.6
4.8.7
4.8.8
4.8.9
4.8.10
48.11
4.8.12
4.8.13
48.14
4.8.15
4.8.16
4.8.17
4.8.18

49.1
49.2
493
49.4
4.9.5
49.6
49.7
49.8
49.9
49.10

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8

4111

Up Counter 139
Data Move Functions 141
Array Size 143
Array Size Dimension Function Blocks 144
Block Clear 146
Block Move 147
BUS_ Functions 148
Communication Request (COMMREQ) 154
Data Initialization 159
Data Initialize ASCII 160
Data Initialize Communications Request 161
Data Initialize DLAN 162
Move 163
Move Data 165
Move Data Explicit 166
Move From Flat 167
Move to Flat 169
Shift Register 171
Size Of 173
Swap 174
Data Table Functions 175
Array Move 177
Array Range 179
FIFO Read 181
FIFO Write 183
LIFO Read 185
LIFO Write 186
Search 187
Sort 189
Table Read 190
Table Write 191
Math Functions 192
Overflow 193
Absolute Value 194
Add 195
Divide 197
Modulus 199
Multiply 200
Scale 202
Subtract 203
Program Flow Functions 204
Argument Present 205
PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Contents

4.12

4.13

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

411.2 Call 206
4113 Comment 209
411.4 JumpN 210
4.11.5 Master Control Relay/End Master Control Relay 211
4116 Wires 213
Relational Functions 214
4.12.1 Compare 215
4,12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than 216
412.3 EQ_DATA 217
4.12.4 Range 218
Timers 219
4,13.1 Timed Contacts 219
4,13.2 Timer Function Blocks 220
4,13.3 Standard Timer Function Blocks 231
Chapter 5 Function Block Diagram (FBD) 237
Note on Reentrancy 238
Advanced Math Functions 239
5.2.1 EXPT Function 241
Bit Operation Functions 242
53.1 Logical AND, Logical OR, and Logical XOR 244
5.3.2 Logical NOT 246
Comments 247
5.4.1 Text Block 247
Comparison Functions 248
5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than 250
Control Functions 251
Counters 253
Data Move Functions 254
5.8.1 Fan Out 258
5.8.2 Move Data 259
Math Functions 261
5.9.1 Overflow 262
5.9.2 Add 263
59.3 Divide 264
5.9.4 Modulus 265
5.9.5 Multiply 266

GFK-2950D November 2018

Contents

5.9.6 Negate 267
5.9.7 Subtract 268
5.10 Program Flow Functions 270
5.11 Timers 271
5.11.1 Built-in Timer Function Blocks 271
5.11.2 Standard Timer Function Blocks 272
5.12 Type Conversion Functions 273
5.12.1 Convert WORD to INT 275
5.12.2 Convert WORD to UINT 276
5.12.3 Convert DWORD to DINT 277
5.12.4 Convert INT or UINT to WORD 278
5.12.5 Convert DINT to DWORD 279
Chapter 6 Service Request Function 281
6.1 Operation of SVC_REQ Function 283
6.1.1 Ladder Diagram 283
6.1.2 Function Block Diagram 284
6.2 SVC_REQ 1: Change/Read Constant Sweep Timer 285
6.2.1 Todisable Constant Sweep mode: 285
6.2.2 Toenable Constant Sweep mode and use the old timer value: 285
6.2.3 Toenable Constant Sweep mode and use a new timer value: 285
6.2.4 Tochange the timer value without changing the selection for sweep mode state:ccccouueeees 285
6.2.5 Toread the current timer state and value without changing either: 286
6.3 SVC_REQ 2: Read Window Modes and Time Values 287
6.4 SVC_REQ 3: Change Controller Communications Window Mode 288
6.4.1 Todisable the controller communications window: 288
6.4.2 Tore-enable or change the controller communications window mode: 288
6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value 289
6.5.1 Todisable the Backplane Communications window: 289
6.5.2 Toenable the Backplane Communications window mode: 289
6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Valueccccece00000.290
6.6.1 Todisable the Background Task window: 290
6.6.2 Toenable the Background Task window mode: 290
6.7 SVC_REQ 6: Change/Read Number of Words to Checksum 291
6.7.1 Toread the word count: 291
6.7.2 To set a new word count: 291
Vi PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Contents

6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock 293

6.8.1 Parameter Block Formats 293
6.9 SVC_REQ 8: Reset Watchdog Timer 301
6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep 302
6.11 SVC_REQ 10: Read Target Name 303
6.12 SVC_REQ 11: Read Controller ID 304
6.13 SVC_REQ 12: Read Controller Run State 305
6.14 SVC_REQ 13: Shut Down (STOP) CPU 306
6.15 SVC_REQ 14: Clear Controller or 1/O Fault Table 307
6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry 308
6.17 SVC_REQ 16: Read Elapsed Time Clock 311
6.18 SVC_REQ 17: Mask/Unmask 1/O Interrupt 313

6.18.1 Masking/Unmasking Module Interrupts 313
6.19 SVC_REQ 18: Read 1/O Forced Status 315
6.20 SVC_REQ 19: Set Run Enable/Disable 316
6.21 SVC_REQ 20: Read Fault Tables 317

6.21.1 Non-Extended Formats 318

6.21.2 Extended Formats 321

GFK-2950D November 2018 Vii

Contents

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

Chapter 7 PID Built-In Function Block

7.1

viii

SVC_REQ 21: User-Defined Fault Logging

SVC_REQ 22: Mask/Unmask Timed Interrupts

SVC_REQ 23: Read Master Checksum

SVC_REQ 24: Reset Module

SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums....

SVC_REQ 29: Read Elapsed Power Down Time

SVC_REQ 32: Suspend/Resume I/O Interrupt

SVC_REQ 45: Skip Next 1/0 Scan

SVC_REQ 50: Read Elapsed Time Clock

SVC_REQ 51: Read Sweep Time from Beginning of Sweep

SVC_REQ 56: Logic Driven Read of Nonvolatile Storage

6.32.1 Discrete Memory

326

328

329

330

331

332

333

334

335

337

338
338

338

6.32.2 Storage Disabled Conditions
6.32.3 Maximum of One Active Instruction

338

338

6.32.4 ENO and Power Flow To The Right
6.32.5 Parameter Block

339

SVC_REQ 57: Logic Driven Write to Nonvolatile Storage

6.33.1 Length of Data Written

342
342

6.33.2 Write Frequency

342

6.33.3 Erase Cycles

343

343

6.33.4 Discrete Memory
6.33.5 Retentiveness

343

6.33.6 Maximum of One Active Instruction

343

6.33.7 Storage Disabled Conditions

343

6.33.8 Error Checking

343

6.33.9 Fragmentation

344

6.33.10 When nonvolatile storage is full

344

345

6.33.11 Equality
6.33.12 Redundancy

345

6.33.13 ENO and Power Flow to the Right
6.33.14 Parameter Block for SVC_REQ 57

345
346

Operands of the PID Function
7.1.1 Operands for LD Version of PID Function Block

351

352
352

7.1.2 Operands for FBD Version of PID Function Block

353

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Contents

7.2 Reference Array for the PID Function 354
7.2.1 Scaling Input and Outputs 354
7.2.2 Reference Array Parameters 355
7.3 Operation of the PID Function 362
7.3.1 Automatic Operation 362
7.3.2 Manual Operation 362
7.3.3 Time Interval for the PID Function 363
7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculationsceceesccacsencans 364
7.4.1 Derivative Term 365
7.4.2 Error Term Mode 365
743 Derivative Action on PV Bit 365
7.44 Combined Operation of Error Term and Derivative Action Modes 365
7.4.5 CV Bias Term 366
7.46 CV Amplitude and Rate Limits 366
7.47 Sample Period and PID Function Block Scheduling 367
7.5 Determining the Process Characteristics 368
7.6 Setting Tuning Loop Gains 369
7.6.1 Basic Iterative Tuning Approach 369
7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach 370
7.6.3 Ideal Tuning Method 371
7.7 PID Example 372
7.7.1 Reference Array Initialization using %M00006 372
Chapter 8 Structured Text (ST) Programming 375
8.1 Language Overview 375
8.1.1 Statements 375
8.1.2 Expressions 375
8.13 Operators 376
8.1.4 Structured Text Syntax 377
8.2 Statement Types 378
8.2.1 Assignment Statement 379
8.2.2 Function Call 380
8.2.3 RETURN Statement 383
8.2.4 IF Statement 384
8.2.5 CASE Statement 385
8.2.6 FOR ... DO Statements 387
8.2.7 WHILE Statement 389
8.2.8 REPEAT Statement 390
8.2.9 ARG_PRES Statement 391
8.2.10 Exit Statement 392

GFK-2950D

November 2018

Contents

Chapter 9 Diagnostics 393
9.1 Fault Handling Overview 394
9.11 System Response to Faults 394
9.1.2 Fault Tables 394
9.1.3 Fault Actions and Fault Action Configuration 395
9.2 Using the Fault Tables 396
9.2.1 Controller Fault Table 396
9.2.2 I/OFaultTable 398
9.3 System Handling of Faults 400
9.3.1 System Fault References 401
9.3.2 Using Fault Contacts 404
9.3.3 Using Point Faults 406
9.3.4 Using Alarm Contacts 406
9.4 Controller Fault Descriptions and Corrective Actions 407
9.4.1 Controller Fault Groups 407
9.4.2 Loss of or Missing Rack (Group 1) 408
9.43 Loss of or Missing Option Module (Group 4) 409
9.4.4 Addition of, or Extra Rack (Group 5) 409
9.4.5 Reset of, Addition of, or Extra Option Module (Group 8) 410
9.4.6 System Configuration Mismatch (Group 11) 411
9.4.7 System Bus Error (Group 12) 417
9.4.8 CPU Hardware Failure (Group 13) 418
9.49 Module Hardware Failure (Group 14) 419
9.4.10 Option Module Software Failure (Group 16) 420
9.4.11 Program or Block Checksum Failure (Group 17) 421
9.4.12 Battery Status (Group 18) 42?2
9.4.13 Constant Sweep Time Exceeded (Group 19) 423
9.4.14 System Fault Table Full (Group 20) 423
9.4.15 1/O Fault Table Full (Group 21) 423
9.4.16 User Application Fault (Group 22) 424
9.4.17 CPU Over-Temperature (Group 24) 426
9.4.18 Power Supply Fault (Group 25) 426
9.4.19 No User Program on Power-Up (Group 129) 426
9.4.20 Corrupted User Program on Power-Up (Group 130) 427
9.4.21 Window Completion Failure (Group 131) 427
9.4.22 Password Access Failure (Group 132) 428
9.4.23 Null System Configuration for RUN Mode (Group 134) 428
9.4.24 CPU System Software Failure (Group 135) 429
9.4.25 Communications Failure During Store (Group 137) 431
9.4.26 Non-Critical CPU Software Event (Group 140) 432
X PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Contents

9.5 1/O Fault Descriptions and Corrective Actions 434
9.5.1 Fault Extra Data 434
9.5.2 1/OFault Groups 434
9.53 /O Fault Categories 435
9.5.4 Circuit Faults (Category 1) 439
9.5.5 Loss of Block (Category 2) 444
9.5.6 Addition of Block (Category 3) 445
9.5.7 1/O Bus Fault (Category 6) 446
9.5.8 Module Fault (Category 8) 447
9.59 Addition of I0C (Category 9) 448
9.5.10 Loss of or Missing 10 Controller (Category 10) 448
9.5.11 10C (I/O Controller) Software Fault (Category 11) 449
9.5.12 Forced and Unforced Circuit (Categories 12 and 13) 449
9.5.13 Loss of or Missing I/0 Module (Category 14) 450
9.5.14 Addition of I/O Module (Category 15) 450
9.5.15 Extra /O Module (Category 16) 450
9.5.16 Extra Block (Category 17) 451
9.5.17 10C Hardware Failure (Category 18) 451
9.5.18 GBC Stopped Reporting Faults (Category 19) 451
9.5.19 GBC Software Exception (Category 21) 452
9.5.20 Block Switch (Category 22) 453
9.5.21 Reset of IOC (Category 27) 453

9.6 Diagnostic Logic Blocks (DLBs) 454
9.6.1 DLB Operation 455
9.6.2 Executing DLBs 457
9.6.3 Diagnostic Logic Block (DLB) Example 461

GFK-2950D

November 2018

Xi

Contents

Table of Figures

Figure 1: Conditional Block Call

Figure 2: Block Call with Parameters

Figure 3: Defining Member Variables for a User-Defined Function Block
Figure 4: Creating a User-Defined Function Block

11

12

Figure 5: Use of User-Defined Function Block in Ladder Logic

12

Figure 6: Display of Instance Data Structures

12

Figure 7: Calling an External Block in Ladder Logic

15

Figure 8: Relationship of %L & %P to Program Blocks

18

Figure 9: Local Data (%L) Usage by Program Blocks

18

Figure 10: Parameter Passing Example

19

Figure 11: Explanation of Ladder Diagram Rung

21

22

Figure 12: lllustration of Function Block Diagram
Figure 13: Conflict Avoidance when using Interrupt-Driven Blocks

26

351

Figure 14: PID in Ladder Diagram
Figure 15: PID in Function Block Diagram

351

364

Figure 16: PID_IND Diagram
Figure 17: PID Example Logic

373

Figure 18: Controller Fault Table Display

396

Figure 19: Detail Information for Controller Fault Entry

397

Figure 20: I/O Fault Table Display

398

Figure 21: 1/O Fault Table Fault Entry Detail Display

399

Figure 22: Diagnostic Logic Blocks (DLBs) assigned to Target in MPE

455

Figure 23: Properties of Diagnostic Logic Block (DLB)

457

Figure 24: DLB Heartbeat Setting

457

Figure 25: Drag DLB from Toolchest and Drop in Active Blocks Node

463

Figure 26: Set DLB Execution Mode to Sweep (Properties Tab)

463

Figure 27: Start DLB Execution

463

Figure 28: Initialize Local Symbolic Variables

464

464

Figure 29: DLB Icon and Status Bar after Execution has Commenced
Figure 30: Data Watch for DLB Variables

464

Xii PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 1 Introduction

This manual contains general information about programming a PACSystems CPU. It also provides
detailed descriptions of specific programming requirements.

For a general introduction to the PACSystems family of products, including new features, product
overviews, and specifications, see PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual,
GFK-2222.

Programming Features are described in Chapter 2 through Chapter 8.

Elements of an Application Program: Chapter 2

Program Data: Chapter 3

Ladder Diagram (LD) instruction set reference: Chapter 4
Function Block Diagram (FBD) instruction set reference: Chapter 5
The Service Request Function: Chapter 6

The PID Function: Chapter 7

Structured Text (ST): Chapter 8

Diagnostics, including Fault Handling and Diagnostic Logic Blocks are described in Chapter 9.

GFK-2950D November 2018

Chapter 1. Introduction

1.1 Revisions in this Manual

Rev | Date Description
D Nov- CPE330/CPE400/CPL410 increased block count from 512 to 768 including _Main
2018
C Feb- Updated for CPE302 throughout.
2018 Updated SVC_REQ 20 for newly-implemented feature that makes it possible to uniquely

identify remote PROFINET IO faults recorded in the 10 Fault Table by Remote Rack, Remote
Slot, Remote Sub-Slot, and Device ID. Requires RX3i firmware version 9.40 or later.

B Oct- Added Redundancy and FA_OK System Bits (%S) Section 3.8.1.
2017

A May- Changed the document Title and the contact information.
2017 Updated the Titles of the GFK’'s wherever applicable.

- May- PACSystems RX7i and RX3i CPU Reference Manual GFK-2222U Chapters 5-11 & Chapter 14
2015 form the content of this new manual, the PACSystems RX7i and RX3i CPU Programmer’s

Reference Manual, GFK-2950.
GFK-2222V and later versions defer to GFK-2950 for CPU programming content.

2 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 1. Introduction

1.2 PACSystems Programming and Configuration

Proficy* Machine Edition (PME) programming software provides a universal engineering development
environment for all programming, configuration and diagnostics of PACSystems. A PACSystems CPU is
programmed and configured using the programming software to perform process and discrete
automation for various applications. The supported programming languages are documented in this
manual.

1.3 Migrating Series 90 Applications to PACSystems

The PACSystems control system provides cost-effective expansion of existing systems. Support for
existing Series 90 modules, expansion racks and remote racks protects your hardware investment. You
can upgrade on your timetable without disturbing panel wiring.

e The RX3i supports most Series 90-30 modules, expansion racks, and remote racks. For a list of
supported 1/0, Communications, Motion, and Intelligent modules, see the PACSystems RX3i
System Manual, GFK-2314.

o The RX7i supports most existing Series 90-70 modules, expansion racks and Genius networks.
For a list of supported /O, Communications, and Intelligent modules, see the PACSystems RX7i
Installation Manual, GFK-2223.

Conversion of Series 90-70 and Series 90-30 programs preserves existing development effort.
Conversion of VersaPro and Logicmaster applications to Machine Edition allows smooth
transition to PACSystems.

GFK-2950D November 2018 3

Chapter 1. Introduction

1.4 PACSystems Documentation

PACSystems Manuals
PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual GFK-2222
PACSystems RX7i, RX3i and RSTi-EP CPU Programmer’s Reference Manual GFK-2950
PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual GFK-2224
PACSystems TCP/IP Ethernet Communications Station Manager User Manual GFK-2225
C Programmer’s Toolkit for PACSystems GFK-2259
PACSystems Memory Xchange Modules User’s Manual GFK-2300
PACSystems Hot Standby CPU Redundancy User Manual GFK-2308
PACSystems Battery and Energy Pack Manual GFK-2741
Proficy Machine Edition Logic Developer Getting Started GFK-1918
Proficy Process Systems Getting Started Guide GFK-2487
PACSystems RXi, RX3i, RX7i and RSTi-EP Controller Secure Deployment Guide GFK-2830
PACSystems RX3i & RSTi-EP PROFINET I/O Controller Manual GFK-2571
RX3i Manuals
PACSystems RX3i System Manual GFK-2314
DSM324i Motion Controller for PACSystems RX3i and Series 90-30 User's Manual GFK-2347
PACSystems RX3i PROFIBUS Modules User’'s Manual GFK-2301
PACSystems RX3i Max-On Hot Standby Redundancy User’s Manual GFK-2409
PACSystems RX3i Ethernet Network Interface Unit User's Manual GFK-2439
PACMotion Multi-Axis Motion Controller User’s Manual GFK-2448
PACSystems RX3i PROFINET Scanner Manual GFK-2737
PACSystems RX3i CEP PROFINET Scanner User Manual GFK-2883
PACSystems RX3i Serial Communications Modules User’'s Manual GFK-2460
PACSystems RX3i Genius Communications Gateway User Manual GFK-2892
PACSystems RX3i DNP3 Outstation Module IC695EDS001 User’'s Manual GFK-2911
PACSystems RX3i IEC 104 Server Module IC695EIS001User’s Manual GFK-2949
RX7i Manuals
PACSystems RX7i Installation Manual GFK-2223
PACSystems RX7i User's Guide to Integration of VME Modules GFK-2235
Series 90-70 Genius Bus Controller User's Manual GFK-2017
Series 90 Manuals
Series 90-30 Genius Bus Controller User's Manual GFK-1034
Distributed 1/0 Systems Manuals
Genius I/O System User's Manual GEK-90486-1
Genius I/O Analog and Discrete Blocks User’s Manual GEK-90486-2

In addition to these manuals, datasheets and product update documents describe individual modules
and product revisions. The most recent PACSystems documentation is available on the GE Automation
& Control support website http://geautomation.com/support.

4 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

http://geautomation.com/support

Chapter 2 Program Organization

This chapter provides information about the operation of application programs in a PACSystems CPU.

= Structure of the Application Program
= Controlling Program Execution
= Interrupt-Driven Blocks

GFK-2950D November 2018

Chapter 2. Program Organization

2.1 Structure of a PACSystems Application Program

A PACSystems application consists of one block-structured application program. The application
program contains all the logic needed to control the operations of the CPU and the modules in the
system. Application programs are created using the programming software and transferred to the CPU.
Programs are stored in the CPU’s non-volatile memory.

During the CPU Sweep, the CPU reads input data from the modules in the system and stores the data
in its configured input memory locations. The CPU then executes the entire application program once,
using this fresh input data. Executing the application program creates new output data that is placed in
the configured output memory locations.

After the application program completes its execution, the CPU writes the output data to modules in
the system. This completes the CPU Sweep.

A block-structured program always includes a _MAIN block. Program execution begins with the _MAIN
block. Counting the _MAIN block, the CPE330, CPE400 and CPL410 support up to 768 blocks with
firmware release 9.70 or later. All other CPU models support up to 512 blocks. Note that PME 9.50 SIM
13 or later is also required for supporting a block count of up to 768.

2.1.1 Blocks

A block is a named section of executable logic that can be downloaded to and run on the target
controller. The logic in a block can include functions, function blocks and calls to other blocks.

2.1.2 Functions and Function Blocks

A function is a type of instruction that has no internal storage (instance data). Therefore, it produces
the same result for the same set of input values every time it executes.

A function block defines data as a set of inputs and output parameters that can be used as software
connections to other blocks and internal variables. It has an algorithm that runs every time the function
block is executed. Because a function block has instance data, that is it can store values, it has a
defined state.

The following table describes the types of instructions that make up the PACSystems instruction set.

Instruction Type Instance Data Examples

Functions None BIT_SEQ, ADD, RANGE
Built-in function blocks WORD array. TMR, PID_IND, PID_ISA
Standard function blocks Structure variable. (Refer to TP, TOF, TON

Instance Data Structures.)

Note: A user defined function block (UDFB) is a block of logic that can be called in your program logic
to create multiple instances of the block, allowing you to create a block of logic once and reuse
it as if it was a standard function block instruction. For additional information, refer to Types of
Blocks and User-Defined Function Blocks (UDFBs).

6 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

2.1.3 How Blocks Are Called

A block executes when called from the program logic in the _MAIN

LD_ELEI
block or another block. In this example, LD_BLK1 is always called. -
Conditional logic can be used to control calling a block. For
LD_BLK2 to be called, input %l00500 and output %Q00100 must be | ' " LD_ELEZ

I00500 Oooioo

ON. For details on using the Call function, refer to Chapter 4 (LD

programming), Chapter 5 (FBD programming) or Chapter 8 (ST
programming).

2.1.4 Nested Calls

The CPU allows nested block calls as long as there is enough execution stack space to support the call.
If there is not enough stack space to support a given block call, an Application Stack Overflow fault is
logged. In these circumstances, the CPU cannot execute the block. Instead, it sets all of the block’s
Boolean outputs to FALSE, and resumes execution at the point after the block call instruction.

Note: To halt the CPU when there is not enough stack space to execute a block, there are two
choices. The best method is to add logic to detect the occurrence of any User Application Fault
by testing the diagnostic bit %SA38, and then call SVC_REQ 13 to halt the CPU. An alternative
method is to add logic that tests for a negative OK value coming out of the block and then call
SVC_REQ 13 to halt the CPU.

A call depth of eight levels or more can be expected, except in rare cases where several of the called
blocks have very large numbers of parameters. The actual call depth achieved depends on several
factors, including the amount of data (non-Boolean) flow used in the blocks, the particular functions
called by the blocks, and the number and types of parameters defined for the blocks. If blocks use less
than the maximum amount of stack resources, more than eight nested calls may be possible. The call
level nesting counts the _MAIN block as level 1.

GFK-2950D November 2018 7

Chapter 2. Program Organization

2.1.5 Types of Blocks
PACSystems supports four types of blocks.

Block Type Local Data Programming Size Limit Parameters
Languages
Has its own local LD Oinputs
Block FBD 128 KB P
data 1 output
ST
. . LD .
Parameterized | Inherits local data 63 inputs
FBD 128 KB
Block from caller T 64 outputs
User Defined D 63 inputs
ser Define .
64 outputs
Function Block ;':‘tsa'ts own local FBD 128 KB OULPLES
(UDFB) ST UnI'|m|ted internal member
variables
. user memory .
External Block Inherits local data C size limit (10 63 inputs
from caller MB) 64 outputs

All PACSystems block types automatically provide an OK output parameter. The name used to
reference the OK parameter within a block is YO. Logic within the block can read and write the YO
parameter. When a block is called, its YO parameter is automatically initialized to TRUE. This will result
in a positive power flow out of the block call instruction when the block completes execution, unless YO
is set to FALSE within the logic of the block.

For all block types, the maximum number of input parameters is one less than the maximum number of
output parameters. This is because the EN input to the block call is not considered to be an input
parameter to the block. It is used in LD language to determine whether or not to call the block, but is
not passed into the block if the block is called.

Program Blocks

Any block can be a program block. The _MAIN block is automatically declared when you create a block-
structured program. When you declare any other block, you must assign it a unique block name. A block
is automatically configured with no input parameters and one output parameter (OK).

When a block-structured program is executed, the _MAIN block is automatically executed. Other blocks

execute when called from the program logic in the _MAIN block, another block, or itself. In the following
example, if %M00001 is ON, the block named ProcessEGD will be executed:

EgdAvailable CALL
] 1 ProcessEGD

11
‘ ooom

Figure 1: Conditional Block Call

Program Blocks and Local Data

Program blocks support the use of %P global data. In addition, each block, except _MAIN, has its own
%L local data. Blocks do not inherit %L local data from their callers.

8 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

Using Parameters with a Program Block

Every block is automatically defined to have one formal ‘power flow’ (or OK) output parameter, named
YO0. Y0 is a BOOL parameter of LENGTH 1, passed by initial-value result. It indicates successful
execution of the block. It can be read and written to by the logic within the block.

Parameterized Blocks

Any block except _MAIN can be a parameterized block. When you declare a parameterized block, you
must assign it a unique block name. A parameterized block can be configured with up to 63 input and
64 output parameters.

A parameterized block executes when called from the program logic in the _MAIN block, another block,
or itself. In the following example, if %100001 is set, the parameterized block named LOAD_41 will be
executed.

100001 CALLLOATD 41 Qooon
11 £y
b sy

100100 — AEC Ti— TO000
Inozon — X2 T2 RO0200

Figure 2: Block Call with Parameters

Parameterized Blocks and Local Data

Parameterized blocks support the use of %P global data. Parameterized blocks do not have their own
%L data, but instead inherit the %L data of their calling blocks. Parameterized blocks also inherit the
FST_EXE system reference and time-stamp data that is used to update timer functions from their
calling blocks. If %L references are used within a parameterized block and the block is called by _MAIN,
%L references will be inherited from the %P references wherever encountered in the parameterized
block (for example, %L0005 = %P0005).

Note: Itis possible, by using Online Editing in the programming software to cause a parameterized
block to use %L higher than allowed because of the way it inherits data. Using a word-for-word
change to restore this reference to a valid address does not correct the block because the
variable still exists in the variable list. Deleting the variable from the variable list does not cause
an update to the CPU, so the parameterized block still sees the reference out of range fault. To
correct this condition, you must remove the unused variables from the variable list after
deleting them from the logic.

Using Parameters with a Parameterized Block

A parameterized block may be defined to have between 0 and 63 formal input parameters, and
between 1 and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter, named Y0, is
automatically defined for every parameterized block. It is a BOOL parameter of LENGTH 1, and
indicates the successful execution of the parameterized block. It can be read and written to by the
parameterized block’s logic.

The following table lists the TYPEs, LENGTHs, and parameter-passing mechanisms allowed for
parameterized block parameters. (For definitions of the parameter passing types, refer to Parameter
Passing Mechanisms.)

GFK-2950D November 2018 9

Chapter 2. Program Organization

Type Length Default Parameter Passing Mechanism
INPUTS: by reference

BOOL 1to 256 — -
OUTPUTS: by value result; except YO, which is by initial-value result
INPUTS: by reference

BYTE 1to 1024

OUTPUTS: by reference
INPUTS: by reference
OUTPUTS: by reference
INPUTS: by reference
OUTPUTS: by reference
INPUTS: by reference

INT, UINT, and WORD 1to 512

DINT, REAL, and DWORD | 1to 256

LREAL 1to 128
OUTPUTS: by reference
INPUTS: by reference
function block® 1 Y
OUTPUTS: not allowed
1 INPUTS: by reference
UDFB 1

OUTPUTS: not allowed
INPUTS: by reference

OUTPUTS: not allowed

User Defined Type (UDT) | 1to 1024

The PACSystems default parameter passing mechanisms correspond to the way that parameterized
subroutine block (PSB) parameters are passed on 90-70 controllers. The parameter passing
mechanisms of formal parameters cannot be changed from their default values.

Arguments, or actual parameters, are passed into a parameterized block whenever a parameterized
block call is executed. In general, arguments to formal parameters may come from any memory type,
may be data flow, and may be constants (when the formal parameter’s LENGTH is 1). The following list
contains the restrictions on arguments relative to this general rule:

= %S memory addresses cannot be used as arguments to any output parameter. This is because user
logic is not allowed to write to %S memory.

= Indirect references used as arguments are resolved immediately before the parameterized block is
called, and the corresponding direct reference is passed into the block. For example, where %R1
contains the value 10 and @R1 is used as an argument to a call, immediately before calling the
block, @R1 is resolved to be %R10, and %R10 is passed in as the argument to the block. During
execution of the block, the argument remains as %R10, regardless of whether the value in %R1
changes.

In general, formal parameters within a parameterized block may be used with any instruction or with
any block call, as long as their TYPE and LENGTH are compatible with what the instruction, function, or
block call requires. The following list contains the restrictions on formal parameters relative to this
general rule:

= Formal parameters cannot be used on legacy transitional contacts or coils, or on FAULT, NOFLT,
HIALM, or LOALM contacts. However, formal parameters can be used on IEC transitional contacts
and coils.

= Formal BOOL input parameters cannot be used on coils or as output arguments to a function or to
a block call.

= Formal parameters cannot be used with the DO I/O function.

» Formal parameters cannot be used with indirect referencing.

! A maximum of 16 input parameters can be of type function block or UDFB.

10 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

User-Defined Function Blocks (UDFBs)

Users can define their own blocks, which have parameters and instance data, instead of being limited
to the standard and built-in function blocks provided in the PACSystems instruction set. In many cases,
the use of this feature results in a reduction in total program size.

Once defined, multiple instances of a UDFB can be created by calling it within the

program logic. Each instance has its own unique copy of the function block’s instance

data, which consists of the function block’s internal member variables and all of its input and output
parameters except those that are passed by reference. When a UDFB is called on a given instance, the
UDFB's logic operates on that instance’s copy of the instance data. The values of the instance data
persist from one execution of the UDFB to the next.

Note: A member variable is not passed into or out of a UDFB as a parameter. A member variable is used
only within the logic of that function block.

A UDFB cannot be triggered by an interrupt.

UDFB logic is created using FBD, LD or ST. UDFB logic can make calls to all the other types of

PACSystems blocks (blocks, parameterized blocks, external blocks and other UDFBs). Blocks,
parameterized blocks, and other UDFBs can make calls to UDFBs.

Unless otherwise stated, the PACSystems implementation of UDFBs meets the IEC 61131-3
requirements for user defined function blocks.

Defining a UDFB

To create a UDFB in the programming software, create an LD, FBD or ST block in the Program Blocks
folder. In the Properties for the block, select Function Block.

To define instance data for a UDFB, select Parameters in the block’s properties. Input and output
parameters are defined in the same way as for parameterized blocks. In the following example, three
internal member variables are defined: temp, speed, and modelno.

Parameters il

Inputsl Outputs Members |

Marne Type Length | Public | Ret It ¥ al Diezcription
temp BOOL 1 v v over ternperature
speed DWORD i1 v oW motor speed
modelno DWORD 1 v rodel number

0K I Cancel | >» Help |

Figure 3: Defining Member Variables for a User-Defined Function Block

GFK-2950D November 2018 11

Chapter 2. Program Organization

Creating UDFB Instances

You create an instance of a UDFB by calling it in your logic and assigning an instance name in the
function properties.

MOTORS

T

—{IN1 QuT1—

Figure 4: Creating a User-Defined Function Block
In the following LD example, the first rung creates two instances of the UDFB, Motors. The instance
variables associated with the instances are motors.motorl and motors.motor2. The second rung uses
the two instances of the internal variable temp in logic.

MOTORS MOTORS
Feoed FRors
—{IM1 ouTi— —IN1 auT1—
Ao hersipe Hen it CERE motors_hot
] |] |
1 T 1 T

Figure 5: Use of User-Defined Function Block in Ladder Logic
Instance Data Structures

A variable with the format function_block_name.instance_name is =-S5k Rx7iMotors.motor]
automatically created for each instance of a UDFB. The instance data -5 Ini
makes up a single composite variable that is of a structure type. The e madelno
example to the right shows the variable structures associated with two - Bl Curt
instances of the UDFB named Motors. Each instance variable has elements S speed
corresponding to parameters In1, Out1, and Y0, and internal variables - BEF temnp
modelno, speed, and temp. TR
Instances are created as symbolic variables, never as mapped variables. - l__ifi'm':'t':'“'""':'t""z
This ensures that instance data is only referenced by the instance name e Inl
and not by a memory address, which means that no aliases can be created T medelno
for the UDFB data elements. The indirect reference operator cannot be —du Outt
used on an instance variable because indirect references are not permitted G.ﬁ speed
on symbolic variables. L emp

LBEF W

Iu

Figure 6: Display of
Instance Data Structures

UDFBs and Scope
Unlike a parameterized subroutine, a UDFB has its own %L memory.

By default, internal variables of a UDFB have local scope, making them visible only to the logic inside
the UDFB. They cannot be read or written by any external logic or by the hardware configuration. An
internal variable can be made visible outside the UDFB by changing its scope to global. Logic outside
the UDFB can read but cannot write to internal variables whose scope is global.

Note: If you give internal variables global scope, your application will not conform to IEC
requirements.

12 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

Using Parameters with UDFBs

UDFBs support up to 63 inputs and up to 64 outputs.

Each UDFB has a predefined Boolean output parameter, YO, which the CPU sets to true upon each

invocation of the block. YO can be controlled by logic within the block and provides the output status of

the block.

The following table lists the TYPEs, LENGTHSs, and parameter-passing mechanisms allowed for UDFB

parameters. For additional information on parameter passing, refer to Parameter Passing Mechanisms.

reference

OUTPUTS: not allowed

Type Length Parameter Passing Mechanism Retentiveness of Instance Data for
Parameters

BOOL 1to 256 INPUTS: by reference, constant Not Applicable if passed by reference,
reference, value, or value result. since not stored in instance data.
(Default: value) Can be retentive (default) or non-

retentive for value or value result.

OUTPUTS: by result; except YO, Retentive (default) or
which is by initial-value result Non-retentive

BYTE 1to 1024 |[INPUTS: by reference, constant Retentive for value or value result.
reference, value, or value result. Not applicable for reference
(Default: value)
OUTPUTS: by result

INT, UINT,and | 1to 512 INPUTS: by reference, constant Retentive for value or value result.

WORD reference, value, or value result. Not applicable for reference
(Default: value)
OUTPUTS: by result

DINT, REAL, 1to 256 INPUTS: by reference, constant Retentive for value or value result.

and DWORD reference, value, or value result. Not applicable for reference
(Default: value)
OUTPUTS: by result

LREAL 1to 128 INPUTS: by reference, constant Retentive for value or value result.
reference, value, or value result. Not applicable for reference
(Default: value)
OUTPUTS: by result

Function 1 INPUTS: by reference, constant Not applicable since passed by

block reference, (Default: reference) reference

(standard or OUTPUTS: by result

PACMotion)

UDFB? 1 INPUTS: by reference, constant Not applicable since passed by
reference, friend reference
OUTPUTS: not allowed

uDT 1to 1024 |[INPUTS: by reference, constant Not applicable since passed by

reference

2 A maximum of 16 input parameters can be of type UDFB.

GFK-2950D

November 2018

13

Chapter 2. Program Organization

If an input parameter is passed by reference or by value result, it requires an argument. All other
parameters of a UDFB are optional. That is, they do not have to be given arguments on each instance of
the UDFB. If no argument is given for an optional parameter, the variable element associated with the
parameter retains the value it previously had.

UDFB outputs cannot be passed as arguments to input parameters that are passed by reference or
passed by value result. This restriction prevents modification of a UDFB output.

Using Internal Member Variables with UDFBs

A UDFB can have any number of internal member variables. The values of internal variables are not
passed via the input and output parameters. An internal variable cannot have the same name as a
parameter of the UDFB it is defined in.

An internal variable can be:

* Any basic type supported by PACSystems (BOOL, INT, UINT, DINT, REAL, LREAL, BYTE, WORD, and
DWORD).

= A UDFB type. Such member variables are known as nested instances. For example, the function
block Motor can have an internal variable of type Valve, where Valve is a UDFB type. Note that
defining a member variable as a UDFB type does not create an instance.

A nested instance cannot be of the same type as the UDFB being defined because this would set up
an infinitely recursive definition. Nor can any level of a nested instance be of the same type as the
parent UDFB being defined. For example, the UDFB Motor cannot have an internal variable of type
Valve, if the Valve UDFB contains an internal variable of type Motor.

= A UDT: a structured, user-defined data type consisting of elements of other selected data types.
= Aone-dimensional array.

Internal variables of TYPE BOOL can be retentive (default) or non-retentive. All other TYPEs must be
retentive.

Member variables corresponding to a UDFB'’s input parameters cannot be read or written outside of
the UDFB. (This is more restrictive than the IEC 61131-3 requirements for user defined function blocks.)
Member variables corresponding to the UDFB's output parameters can be read but not written outside
the UDFB.

Internal member variables that have basic types may be given initial values. The same initial values
apply to all instances of a UDFB. If an initial value isn’t given, the internal member variable is set to zero
when the application transitions to RUN mode for the first time.

An internal member variable that is a nested instance has initial values as specified by its UDFB type
definition.

Initial values are not stored during a RUN mode store. They will not take effect until a STOP Mode Store
is performed.

14 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

UDFB Logic

An instance of a BOOL parameter or internal variable can be forced ON or OFF, or used with transition-
detecting instructions. The exception to this is that BOOL input parameters passed by reference
cannot be forced or used with the Series 90-70 legacy transition-detecting instructions (POSCOIL,
NEGCOIL, POSCON and NEGCON) because their values are not stored in instance data.

All input parameters to a UDFB, and their corresponding instance data elements, can be read by the
logic of that particular UDFB.

Input parameters that are passed by reference or passed by value result to a UDFB can be written to by
their UDFB'’s logic. Input parameters passed by value cannot be written to by their UDFB logic. Note
that the restriction on writing to input parameters passed by value does not apply to other types of
blocks.

All UDFB output parameters can be both read and written to by their logic.

UDFB Operation with Other Blocks

A UDFB instance that is of global scope can be invoked by another UDFB's logic or any other block’s
logic.

A UDFB instance that is passed (by reference) as an argument to a UDFB can be invoked by the UDFB’s
logic.

A UDFB instance that is passed (by reference) as an argument to a parameterized block can be invoked
by the parameterized block’s logic.

The output parameters, and their corresponding instance data elements, of a UDFB instance that is
passed as an argument can be read but not modified by the receiving block’s logic. The input
parameters of a UDFB instance that is passed as an argument cannot be read or modified by the
receiving block’s logic. The internal variables of a UDFB instance that is passed as an argument cannot
be modified by the receiving block’s logic. They can be read if their scope is global, but not if their scope
is local.

External Blocks

External blocks are developed using external development tools as well as the C Programmer’s Toolkit
for PACSystems. Refer to the C Programmer’s Toolkit for PACSystems, GFK-2259 for detailed
information regarding external blocks.

Any block except _MAIN can be an external block. When you declare an external block, you must assign
it a unique block name. It can be configured with up to 63 input parameters and 64 output parameters.

An external block executes when called from the program logic in the _MAIN block or from the logic in
another block, parameterized block, or UDFB. External blocks themselves cannot call any other block. In
the following example, if %l00001 is set, the external block named EXT_11 is executed.

10000 CALL EXT 11 Qoo
1| £
bt s

I00i0n —x1 T T00001
00200 — X2 Y2 RO0Z00

Figure 7: Calling an External Block in Ladder Logic

Note: Unlike other block types, external blocks cannot call other blocks.

GFK-2950D November 2018 15

Chapter 2. Program Organization

External Blocks and Local Data

External blocks support the use of %P global data. External blocks do not have their own %L data, but
instead inherit the %L data of their calling blocks. They also inherit the FST_EXE system reference and
the time-stamp data that is used to update timer function blocks from their calling blocks. If %L
references are used within an external block and the block is called by _MAIN, %L references will be
inherited from the %P references wherever encountered in the external block (for example, %L0005 =
%P0005).

Initialization of C Variables

When an external block is stored to the CPU, a copy of the initial values for its global and static
variables is saved. However, if static variables are declared without an initial value, the initial value is
undefined and must be initialized by the C application. (Refer to Global Variable Initialization and Static
Variable in the C Programmer’s Toolkit for PACSystems, GFK-2259). The saved initial values are used to
re-initialize the block’s global and static variables whenever the CPU transitions from STOP Mode to
RUN Mode.

16 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

Using Parameters with an External Block

An external block may be defined to have between zero and 63 formal input parameters and between
one and 64 formal output parameters. A ‘power-flow out’ (or OK) parameter, named YO0, is
automatically defined for every external block. YO is a BOOL parameter of LENGTH 1, and indicates the
successful execution of the block. It can be read and written to by the external block’s logic.

The following table gives the TYPEs, LENGTHSs, and parameter-passing mechanisms allowed for
external block parameters.

Type Length Default Parameter Passing Mechanism

BOOL 1to 256 INPUTS: by reference

OUTPUTS: by reference; except YO, which is by initial-value result

BYTE 1to 1024 INPUTS: by reference

OUTPUTS: by reference

INT, UINT, and WORD 1to 512 INPUTS: by reference

OUTPUTS: by reference

DINT, REAL, and 1to 256 INPUTS: by reference
DWORD

OUTPUTS: by reference

LREAL 1to 128 INPUTS: by reference

OUTPUTS: by reference

unT? 1to 128 INPUTS: by reference

OUTPUTS: not allowed

The PACSystems default parameter passing mechanisms correspond to the way that external block
parameters are passed on 90-70 controllers. The parameter passing mechanisms of formal parameters
cannot be changed from their default values.

You must define a name for each formal input and output parameter.

Arguments, or actual parameters, are passed into an external block whenever an external block call is
executed.

Arguments may be any valid reference address including an indirect reference, may be flow, or may be
a constant if the corresponding parameter's LENGTH is 1.

3 To use a UDT, you must include the UDT definition as a C structure in the external block. For details, refer to Using a UDT as a
C block input parameter data type in the online help.

GFK-2950D November 2018 17

Chapter 2. Program Organization

2.1.6 Local Data

Each block or UDFB in a block-structured program has an associated local data block. _MAIN'’s data
block memory is referenced by %P; all other data block memories are referenced by %L.

The size of the data block is dependent on the highest reference in its block for %L and in all blocks for
%P.

data data
%P %L
-
-MAIN h —> Block
block — 5 |
Data
%L
> Block
3
Data
%L
> Block
4 |

Figure 8: Relationship of %L & %P to Program Blocks

All blocks within the program can use data associated with the _MAIN block (%P). Blocks and UDFBs
can use their own %L data as well as the %P data that is available to all blocks. The _MAIN block cannot
use %L.

External blocks and parameterized blocks can use the Local Data (%L) of their calling block as well as
the %P data of the _MAIN block. If a parameterized block or external block is called by MAIN, all %L
references in the parameterized block or external block will actually be references to corresponding %P
references (for example, %L0005 = %P0005). In addition to inheriting the Local Data of their calling
blocks, parameterized blocks and external blocks inherit the FST_EXE status of their calling blocks.

data
%P
Inherits as %L _| PSB1
_MAIN E%f 1
Block — >
data
%L
Inherits as %L _| PsB2
= or
BLOCK EB 2
1 -

Figure 9: Local Data (%L) Usage by Program Blocks

18 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

2.1.7 Parameter Passing Mechanisms

All blocks (except _MAIN) have at least one parameter and thus are affected by parameter passing
mechanisms. A parameter passing mechanism describes the way that data is passed from an argument
in a calling block to a parameter in the called block, and from the parameter in the called block back to
the argument in the calling block.

PACSystems supports the following parameter-passing mechanisms: pass by reference, pass by
constant reference, pass by value, pass by value result, pass by result and pass by initial-value result.
An additional type, pass by friend, is available when the input Data Type is a UDFB. A parameter is
defined by its TYPE, LENGTH, and parameter passing mechanism.

When a parameter is passed by reference, the address of its argument is passed into the function
block instance or parameterized block. All logic within the called block that reads or writes to the
parameter directly reads or writes to the actual argument.

When a parameter is passed by constant reference, the CPU passes a reference address pointer,
symbolic variable pointer, or 1/O variable pointer into the function block instance or parameterized
block. The instance or block can only read the reference address or variable.

When a parameter is passed by friend (UDFB inputs only), the CPU passes a UDFB instance
variable pointer into the function block instance or parameterized block. The instance or block can
write to any output or member, whether public or private, of the UDFB instance variable passed as
a friend.

Tip: In the logic of a UDFB, when you want to pass the UDFB as a friend, assign the pseudo-
variable #This to the input that expects an instance variable of that UDFB type. In the following
example, the In2 input of the LDPSB parameterized block expects a UDFB instance variable friend
of the ABC data type. Inside the logic of ABC, assign #This to In2 in the call to LDPSB.

Err CALL
Ifrl LOCFPSE |
HALW_ON ErrCn
| | Int Err O —
#This —{In2

LDPSE Parameters

Inputs lOutputs | Members |

Mame Data Type | Length | Pass By Retertive | Initial Value | Description

3 U nt |[BOOL |1 vaue _~ | [
4 In2 ABC ~|1 Fiend = |

* Rl ~

Figure 10: Parameter Passing Example

When a parameter is passed by value (UDFB inputs only), the value of its argument is copied
into a local stack memory associated with the called block. All logic within the called block that
reads or writes to the parameter is reading or writing to this stack memory. Thus, no changes are
ever made to the actual argument.

GFK-2950D November 2018 19

Chapter 2. Program Organization

= When a parameter is passed by value result (UDFB inputs only), the value of its argument is
copied into a local stack memory associated with the called block, and the address of its argument
is saved. All logic within the called block that reads or writes to the parameter is reading or writing
to this stack memory. When the called block completes its execution, the value in the stack
memory is copied back to the actual argument’s address. Thus, no changes are made to the actual
argument while the called block is executing, but when it completes execution, the actual
argument is updated.

20 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

2.1.8 Languages
Ladder Diagram (LD)

Logic written in Ladder Diagram language consists of a sequence of rungs that execute from top to
bottom. The logic execution is thought of as power flow, which proceeds down along the left rail of the
ladder, and from left to right along each rung in sequence.

Power) .) Coil
Ra\illv Relay Power flow into function Power flow out of function
\ ML INT \
\ 00001 / / Qo000
| | i

t *)_I .

ROMZZ —IN1 O EO0z24

oooooz —INz \

Multiplication function

Figure 11: Explanation of Ladder Diagram Rung

The flow of logical power through each rung is controlled by a set of simple program instructions that
work like mechanical relays and output coils. Whether or not a relay passes logical power flow along
the rung depends on the content of a memory location with which the relay has been associated in the
program. For instance, a relay might pass positive power flow if its associated memory location
contains the value 1. The same relay passes negative power flow if the memory location contains the
value 0.

Usually an instruction that receives negative power flow does not execute and propagates the negative
power flow on to the next instruction in the rung. However, some instructions such as timers and
counters execute even when they receive negative power flow, and may even pass positive power flow
out. Once a rung completes execution, with either positive or negative power flow, power flows down
along the left rail to the next rung.

Within a rung, there are many complex functions that are part of the standard function library and can
be used for operations like moving data stored in memory, performing math operations, and controlling
communications between the CPU and other devices in the system. Some program functions, such as
the Jump function and Master Control Relay, can be used to control the execution of the program itself.
Together, this large group of Ladder Diagram instructions and standard library functions makes up the
instruction set of the CPU.

GFK-2950D November 2018 21

Chapter 2. Program Organization

Function Block Diagram

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that represents the
behavior of functions, function blocks and programs as a set of interconnected graphical blocks.

FBD depicts a system in terms of the flow of signals between processing elements, in a manner very
similar to signal flows depicted in electronic circuit diagrams. Instructions are shown with inputs
entering from the left and outputs exiting on the right. A function block type name is always shown
within the element and the name of the function block instance is shown above the element.

Instance of
UDFB, “Weight” \ Solve Order

Weighit!
Weigﬂ/ Wire indicates data flow
1 from output to input

= EN ENG) /
IMPUT QUTPLTA ——I—- AgD
Instance of 0 M1 Q 5]

UDFB, “Weight” a n 4
\ M2 1M 0 f= Average
Welght? n

WWeight 2 w12
2
- ER ERIC j

INPLIT1 OUTPUTY

1]

Figure 12: lllustration of Function Block Diagram

The order of execution of instructions in an FBD is determined by the following;

a) The display position of the instruction in the FBD editor
b) Whether the inputs to the FBD instruction are resolved.

To determine the order of execution of FBD instructions in the FBD editor, the FBD compiler performs
the following steps:

1. The FBD compiler scans the instructions in the FBD editor, beginning from left to right, and top to
bottom. When an instruction is encountered, the compiler attempts to resolve the instruction, that
is, the inputs are known. If the inputs are known, the instruction is solved, and scanning continues
for the next instruction.

2. Ifthe currentinstruction cannot be resolved, that is, the inputs are not known, then the compiler
scans for the previous instruction, using the wire connecting the output of the previous instruction
to the input of the current instruction.

3. If the previous instruction can be resolved, the compiler calculates the output. The output of the
previous instruction then becomes the input to the current instruction, the current instruction is
resolved, and scanning continues for the next instruction.

4. If the previous instruction cannot be resolved, that is, the inputs are not known, then step 2 is
repeated until an instruction is encountered, which can be resolved.

22 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

Structured Text

The Structured Text (ST) programming language is an IEC 1131-3 textual programming language. A
structured text program consists of a series of statements, which are constructed from expressions
and language keywords. A statement directs the PLC to perform a specified action. Statements provide
variable assignments, conditional evaluations, iteration, and the ability to call other blocks. For details
on ST statements, parameters, keywords, and operators supported by PACSystems, refer to Structured
Text (ST) Programming in Chapter 8.

Blocks, parameterized blocks, and UDFBs can be programmed in ST. The _MAIN program block can also
be programmed in ST.

A block programmed in ST can call blocks, parameterized blocks, and UDFBs.

GFK-2950D November 2018 23

Chapter 2. Program Organization

2.2 Controlling Program Execution

There are many ways in which program execution can be controlled to meet the system’s timing
requirements. The PACSystems CPU instruction set contains several powerful control functions that
can be included in an application program to limit or change the way the CPU executes the program
and scans I/O. For details on using these functions, refer to Chapter 4.

The following is a partial list of the commonly used methods:

24

The Jump (JUMPN) function can be used to cause program execution to move either forward or
backward in the logic. When a JUMPN function is active, the coils in the part of the program that is
skipped are left in their previous states (not executed with negative power flow, as they are with a
Master Control Relay). Jumps cannot span blocks.

The nested Master Control Relay (MCRN) function can be used to execute a portion of the program
logic with negative power flow. Logic is executed in a forward direction and coils in that part of the
program are executed with negative power flow. Master Control Relay functions can be nested to
255 levels deep.

The Suspend 1/O function can be used to stop both the input scan and output scan for one sweep.
I/O can be updated, as necessary, during the logic execution through the use of DO I/O instructions.
The Service Request function can be used to suspend or change the time allotted to the window
portions of the sweep.

Program logic can be structured so that blocks are called more or less frequently, depending on
their importance and on timing constraints. The CALL function can be used to cause program
execution to go to a specific block. Conditional logic placed before the Call function controls the
circumstances under which the CPU executes the block logic. After the block execution is finished,
program execution resumes at the point in the logic directly after the CALL instruction.

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

2.3 Interrupt-Driven Blocks

Three types of interrupts can be used to start a block’s execution:

*= Timed Interrupts are generated by the CPU based on a user-specified time interval with an initial
delay (if specified) applied on STOP Mode to RUN Mode transition of the CPU.

* 1/O Interrupts are generated by I/O modules to indicate discrete input state changes (rising/falling
edge), analog range limits (low/high alarms), and high-speed signal counting events.

= Module Interrupts are generated by VME modules. A single interrupt is supported per module.

Caution

Interrupt-driven block execution can interrupt the
execution of non-interrupt-driven logic. Unexpected
results may occur if the interrupting logic and
interrupted logic access the same data. If necessary,
Service Request #17 or Service Request # 32 can be used
to temporarily mask 1/0 and Timed Interrupt-driven
logic from executing when shared data is being
accessed.

GFK-2950D November 2018 25

Chapter 2. Program Organization

2.3.1 Interrupt Handling

An I/O, Module, or Timed interrupt can be associated with any block except _MAIN, as long as the block
has no parameters other than an OK output. After an interrupt has been associated with a block, that
block executes each time the interrupt trigger occurs. A given block can have multiple timed, I/0, and
module interrupt triggers associated with it. It is executed each time any one of its associated
interrupts triggers. For details on how interrupt blocks are prioritized, refer to Interrupt Block
Scheduling.

If a parameterized block or external block is triggered by an interrupt, it inherits %P data as its %L local
data. For example, a %L00005 reference in the parameterized block or C block actually references
%P00005.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a result of
an interrupt.

Blocks that are triggered by interrupts can make calls to other blocks. The application stack used during
interrupt-driven execution is different from the stack used during normal block-structured program
execution. In particular, the nested call limit is different from the limit described for calls from the
_MAIN block. If a call results in insufficient stack space to complete the call, the CPU logs an Application
Stack Overflow fault.

Note: We strongly recommend that interrupt-driven blocks not be called from the _MAIN block or
other non-interrupt driven blocks because the interrupt and non-interrupt driven blocks could
be reading and writing the same global memories at indeterminate times relative to each
other. In the following example (Figure 13) INT1, INT2, BLOCKS5, and PB1 should not be called
from _MAIN, BLOCK2, BLOCK3, or BLOCKA4.

INT Block 1
Y
_MAIN > Block INT Block 2 |
Block 2
Block
5
Block
3
- PB
1
"1 Block
4

Figure 13: Conflict Avoidance when using Interrupt-Driven Blocks

26 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 2. Program Organization

2.3.2 Timed Interrupts
A block can be configured to execute on a specified time interval with an initial delay (if specified)
applied on a STOP Mode to RUN Mode transition of the CPU.

To configure a timed interrupt block, specify the following parameters in the scheduling properties for
the block:

Time Base The smallest unit of time that you can specify for Interval and Delay. The time base can be 1.0
second, 0.10 second, or 0.01 second, or 0.001 second.

Interval Specifies how frequently the block executes in multiples of the time base.
Delay (Optional) Specifies an additional delay for the first execution of the block in multiples of the
time base.

The first execution of a Timed Interrupt block will occur at
((delay * time base) + (interval * time base)) after the CPU is placed in RUN Mode.

2.3.3 1/O Interrupts

A block can be triggered by an interrupt input from certain hardware modules. For example, on the 32-
Circuit 24 Vdc Input Module (IC697MDL650), the first input can be configured to generate an interrupt
on either the rising or falling edge of the input signal. If the interrupt is enabled in the module
configuration, that input can serve as a trigger to cause the execution of a block.

To configure an I/O interrupt, specify a trigger in the scheduling properties for the block. The trigger
must be a global variable in %I, %Al or %AQ memory, or an |/O variable. (An I/O variable is a form of
symbolic variable that is mapped to a module 1/O point in hardware configuration.)

PACSystems modules that can trigger user interrupt logic always send the interrupt to the CPU when
configured to do so. If the CPU is in STOP mode when it receives the interrupt, it does not run the user
interrupt block. The CPU does not run the user interrupt block when it transitions from STOP Mode to
RUN Mode.

2.3.4 Module Interrupts

A block can be triggered by an interrupt from a module that supports I/O interrupts if the Interrupt
parameter is enabled in the module’s hardware configuration.

To configure a module interrupt, specify the module by rack/slot/interrupt ID as the Trigger in the
scheduling properties for the block.

GFK-2950D November 2018 27

Chapter 2. Program Organization

2.3.5 Interrupt Block Scheduling

You can select one of two types of interrupt block scheduling at the target level:

* Normal block scheduling allows you to associate a maximum of 64 /O and Module Interrupts and
16 Timed Interrupts. With normal block scheduling, all interrupt-triggered blocks have equal
priority. This is the default scheduling mode.

= Preemptive block scheduling allows you to associate a maximum of 32 interrupt triggers. With
preemptive block scheduling, each trigger can be assigned a relative priority.

Normal Block Scheduling

Interrupt-driven logic has the highest priority of any user logic in the system. The execution of a block
triggered from an interrupt preempts the execution of the normal CPU sweep activities. Execution of
the normal CPU sweep activities is resumed after the interrupt-driven block execution completes.

If the CPU receives one or more interrupts while executing an interrupt block, it places the incoming
interrupts into the queue while it finishes executing the current interrupt block. Timed interrupt driven
blocks are queued ahead of /O or Module driven blocks. /O or Module interrupt driven blocks are
queued in the order in which the interrupts are received. If an interrupt driven block is already in the
queue, additional interrupts that occur for this block are ignored.

Preemptive Block Scheduling

Preemptive scheduling allows you to assign a priority to each interrupt trigger. The priority values range
from 1 to 16, with 1 being the highest. A single block can have multiple interrupts with different
priorities or the same priorities.

An incoming interrupt is handled according to its priority compared to that of the currently executing
block as follows:

= [fanincominginterrupt has a higher priority than the interrupt associated with the block that is
currently executing, the currently executing block is stopped and put in the interrupt queue. The
block associated with the incoming interrupt begins executing.

= [fanincominginterrupt has the same priority as the interrupt trigger associated with the block
that is currently executing, that block continues to execute and the incoming interrupt is placed in
the queue.

= [fanincominginterrupt has a lower priority than the interrupt associated with the block that is
currently executing, the incoming interrupt is placed in the queue.

When the CPU completes the execution of an interrupt block, the block associated with the interrupt

trigger that has the highest priority in the queue begins execution — or resumes execution if the block's

execution was preempted by another interrupt block and was placed in the queue.

If multiple blocks in the queue have the same interrupt priority, their execution order is not

deterministic.

Note: Certain functions, such as DOIO, BUS_RD, BUS_WRT, COMMREQ, SCAN_SET_IO, and some
SVC_REQs may cause a block to yield to another queued block that has the same priority

28 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3 Program Data

This chapter describes the types of data that can be used in an application program, and explains how
that data is stored in the PACSystems CPU’s memory.

» Variables

* Reference Memory

= User Reference Size and Default
* Genius Global Data

» Transitions and Overrides

» Retentiveness of Logic and Data
» Data Scope

= System Status References

*= How Program Functions Handle Numerical Data
» User Defined Types (UDTs)

= Operands for Instructions

= Word-for-Word Changes

GFK-2950D November 2018 29

Chapter 3. Program Data

3.1 Variables

A variable is a named storage space for data values. It represents a memory location in the target
PACSystems CPU.

A variable can be mapped to a reference address (for example, %R00001). If you do not map a variable
to a specific reference address, it is considered a symbolic variable. The programming software handles
the mapping for symbolic variables in a special portion of PACSystems user space memory.

The kinds of values a variable can store depend on its data type. For example, variables with a UINT
data type store unsigned whole numbers with no fractional part. Data types are described in How
Program Functions Handle Numerical Data.

In the programming software, all variables in a project are displayed in the Variables tab of the
Navigator. You create, edit, and delete variables in the Variables tab. Some variables are also created
automatically by certain components (such as TIMER variables when you add a Timer instruction to
ladder logic). The data type and other properties of a variable, such as reference address are configured
in the Inspector.

For more information about system variables, which are created when you create a target in the
programming software, refer to System Status References.

3.1.1 Mapped Variables

Mapped (manually located) variables are assigned a specific reference address. For details on the types
of Reference Memory and their uses, refer to Reference Memory.

30 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.1.2 Symbolic Variables

Symbolic variables are variables for which you do not specify a reference address (similar to a variable
in a typical high-level language). Except as noted in this section, you can use these in the same ways
that you use mapped variables.

In the programming software, a symbolic variable is displayed with a blank address. You can change a
mapped variable to a symbolic variable by removing the reference address from the variable’s
properties. Similarly, you can change a symbolic variable into a mapped variable by specifying a
reference address for the variable in its properties.

The memory required to support symbolic variables counts against user space. The amount of space
reserved for these variables is configured on the Memory tab in the CPU hardware configuration.

Restrictions on the Use of Symbolic Variables

= Symbolic variables cannot be used with indirect references (for example, @Name). For a full
description, refer to Indirect References.

= Only global scope Symbolic variables can be used in EGD pages.

= Avariable must be globally scoped and published (internal or external) to be used in a C block.

= Symbolic variables cannot be used in the COMMREQ status word.

= Use of symbolic variables is not supported on web pages.

= Symbolic Boolean variables are not allowed on non-BOOL parameters.

= Symbolic non-discrete variables cannot be used on Series 90-70 style Transition contacts and coils.
(Symbolic discrete variables are supported.)

= Qverrides and Forces cannot be used on symbolic non-discrete variables. (Symbolic discrete
variables are supported.)

= Arrays of the following data types are not supported:
o Arrays of user defined function block (UDFB) instance variables.
o Arrays of PACMotion function block instance variables.
o Arrays of TON, TOF, or TP instance variables.
o Arrays of reference ID variables (RIVs) that contain one or more linked RIV elements.

Note: An RIV array is supported when none of its elements is linked.

GFK-2950D November 2018 31

Chapter 3. Program Data

3.1.3 1/0 Variables

An I/O variable is a symbolic variable that is mapped to a terminal in the hardware configuration. A
terminal can be one of the following: Physical discrete or analog I/O point on a PACSystems module or
on a Genius device, a discrete or analog status returned from a PACSystems module, or Global Data.
The use of I/O variables allows you to configure hardware modules without having to specify the
reference addresses to use when scanning their inputs and outputs. Instead, you can directly associate
variable names with a module’s inputs and outputs.

As with symbolic variables, memory required to support I/O variables counts against user space. You
can configure the space available for I/O variables in the Memory tab of the PACSystems CPU.

For a given module or Genius bus, you must use either I/O variables or manually located mapped
variables: you cannot use both in combination. It is not necessary to map all points on a module. Points
that are disconnected or unused can be skipped. When points are skipped, space is reserved in user
memory for that point (that is, a 32-point discrete module will always use 32 bits of memory).

The hardware configuration (HWC) and logic become coupled in a PACSystems target on your
computer as soon as you do one of the following: Enable I/O variables for a module or Genius bus (even
if you don't create any I/O variables), use one or more symbolic variables in the Ethernet Global Data
(EGD) component, or upload a coupled HWC and logic from a PACSystems PLC. The HWC and logic
become coupled in a PACSystems controller when coupled HWC and logic are downloaded to it.

Effects of coupled HWC and logic:

= Whether the HWC and logic are coupled in the PACSystems target on your computer or in the
PACSystems controller, you cannot download or upload the HWC and logic independently.

= When the HWC and logic are coupled in the PACSystems controller, you cannot clear the HWC and
the logic independently.

= Asfor any download, you cannot RUN Mode Store (RMS) the HWC and logic independently.

= The HWC must be completely equal for you to make word-for-word changes, launch the Online
Test mode of Test Edit, or accept the edits of Test Edit.

I/O variables can be used any place that other symbolic variables are supported, such as in logic as
parameters to built-in function blocks, user defined function blocks, parameterized function blocks, C
blocks, bit-in-word references, and transition contacts and coils.

Restrictions on the Use of I/O Variables

= Since I/O variables are a form of symbolic variable, the same restrictions that apply to other
symbolic variables of the same data type and array bounds apply to I/O variables.

= Only a global variable can become an I/O variable. A local variable cannot become an 1/O variable.

= You can map only a discrete variable to a discrete terminal.

= You can map only a non-discrete variable to an analog terminal.

= Arrays and UDT variables must fit on the number of terminals in the reference address node
counting from and including the terminal where you enter the array head or UDT variable. For
example, if you have 32 analog terminals and you have a WORD array of 12 elements, you can map
it to terminal 21 or any terminal before it (1 through 20).

= You can map a discrete array only to a terminal 8n+1, wheren=0, 1, 2,and so on. The "+1"is
included because the terminals are numbered beginning with 1. If you map it to a terminal other
than 8n+1, an error occurs upon validation.

= Anl/Ovariable cannot be mapped to more than one location in hardware configuration.

= For the DO_IO function block, if an 1/O variable is assigned to the ST parameter, then the same 1/O
variable must also be assigned to the END parameter, and the entire module is scanned.

32 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

= Some I/O modules do not support the use of I/O variables. For a list of modules that support 1/O
variables, please refer to the Important Product Information for Logic Developer - PLC
programming software.

1/O Variable Format

To map an I/O variable, use the format %vdr.s.[z.]g.t:

v = (input) or Q (output)

d = data type: X (discrete) or W (analog).

r = rack number

s = slot number

[z] = sub-slot number. This element and the period that follows it appear only if there is a sub-slot, for
example, the SBA number of a Genius device. For an Ethernet daughterboard, set this value to 0.

g = segment number or number of the reference address node. Set to O for the first reference address

node on the Terminals tab, 1 for the second reference node, and so on.

t = terminal number. One-based, that is, the numbering begins at 1.

Supported 1/0 Variable Types

Data Type Mnemonic |Supported Data Types ::::]?:d()f Consecutive Terminals
BOOL variable 1

X BOOL array Number of elements in array.
BYTE variable 8
BYTE array 8n, where n is the number of array elements.
DINT variable 2
DINT array Number of elements in array times 2
DWORD variable 2
DWORD array Number of elements in array times 2
INT variable 1
INT array Number of elements in array

W LREAL variable 4
LREAL array Number of elements in array times 4
REAL variable 2
REAL array Number of elements in array times 2
UINT variable 1
UINT array Number of elements in array
WORD variable 1
WORD array Number of elements in array

The 1/O variable, Sample_lO_Variable is mapped to a non-discrete (W) output point (Q) on the module
located in rack O, slot 8. The variable is mapped to the first point in the first group of non-discrete

Sample_[0_Variable

output reference addresses.
- 12 I0_WAR_ExAMPLE XI=<0522

GFK-2950D

w0800

November 2018

Chapter 3. Program Data

The 1/O variable, IO_VAR_EXAMPLE, is mapped to a discrete (X) input point (I) on the module located in
rack O, slot 5. The point is located in the module’s third group of discrete input points and is point 2 in
that group.

34 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.1.4 Arrays

An array is a complex data type composed of a series of variable elements with identical data types.
Any variable can become an array, except for another array, a variable element, or a UDFB. In Machine
Edition, you can create single-dimensional arrays and two-dimensional arrays.

In the controller CPU, each element of an array is treated as a separate variable with a separate, read-
only reference address. The root node of the array variable also has a reference address that is editable.
When you set or change the reference address of the root node of an array variable, the reference
addresses of its elements are filled in with a range of addresses starting at that reference address and
incremented for each element so as to create contiguous non-overlapping memory.

3.1.5 Variable Indexes and Arrays

PACSystems CPUs with firmware version 6.00 or later support variable indexes for arrays. With a
variable index, when logic is executed, the value of the variable is evaluated and the corresponding
array element is accessed.

Note: The numbering of array elements is zero-based.

For example, to access an element of the array named ABC, you could write ABC[DEF] in logic. When
logic is executed, if the value of DEF is 5, then ABC[DEF] is equivalent to ABC[5], and the sixth element
of array ABC is accessed.

If the value of the variable index exceeds the array boundary, a non-fatal fault is logged to the CPU fault
table. In LD, the instruction for which this occurred does not pass power to the right.

Requirements and Support
An index variable must be of the INT, UINT, or DINT data type.

The valid range of values for an index variable is O through Y, where Y = [the number of array elements
in the array] - 1. Refer to Ensuring that a Variable Index does not Exceed the Upper Boundary of an
Array.

An index variable can be one of the following:

= Symbolic variable

= |/Ovariable

= Variable mapped to % memory areas such as %R

= Structure element

= Array element with a constant index

= Array element with a variable index

= Aliasvariable

* Inthelogic of a UDFB or parameterized block: formal parameter

The following support a variable index:

= Array elements of any data type except STRING
= Parameter array elements of any data type
= Aliasvariables

GFK-2950D November 2018 35

Chapter 3. Program Data

Dimensional support:

= One-dimensional (1D) formal parameter arrays in the logic of a UDFB or parameterized block
= 2D support for the top level of an array of structures and 1D support for a structure element that
is an array. For example:

PQRIa, b].STRUIy].Zed,

where Zed is an element of the array of structures STRU, which itself is an element of the 2D
array of structures PQR.

= 1D and 2D arrays for other variables

Other features:

= Anarray with a variable index supports a bit reference, for example
MyArray[nindex].X[4],

where .X[4] is the fifth bit of the value stored in MyArray[nindex]. The bit reference itself, [4] in
the example, must be a constant.

* In LD, the following word-for-word changes are supported for array elements with variable
indexes:

Replacing an index variable with another index variable

Replacing an index variable with a constant

Replacing a constant with an index variable

In LD, Diagnostic Logic Blocks support the use of array elements with variable indexes.

Where Array Elements with Variable Indexes are Not Supported:

The following do not support array elements with variable indexes:

= Indirect references

= EGDvariables

= Reference ID variables (RIVs) and I/O variables when accessed in the Hardware Configuration
Note: In logic, RIVs and I/O variables support variable indexes.

= STRING variables

A variable index cannot be one of the following:

= A math expression. For example, ABC[GH+1] is not supported.

= Anindirect reference. For example, W[@XYZ] is not supported.

= Abitreference. For example, ABC[DEF.X[3]] is not supported.

Note: You can use a bit reference on an array element designated by a variable index. For example,

ABC[DEF].X[3] is supported.

= Anarray head. For example, if MNP and QRS are arrays, MNP[QRS] is not supported, but
MNP[QRSI[3]] and MNP[QRS[TUV]] are, where TUV is an index variable.

* Anegative index. This generates a run-time non-fatal CPU fault.

= Avalue greater than Y, where Y = [number of array elements] - 1. This generates a run-time non-
fatal CPU fault.

36 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Ensuring that a Variable Index does not Exceed the Upper Boundary of an Array

One-Dimensional Array

1. Once per scan, execute ARRAY_SIZE_DIM1 to count the number of elements in the array.

Note: The array size of a variable can be changed in a RUN Mode Store but it will not be changed

while logic is executing.

ARRAY_SIZE_DIM1 places the count value in the variable associated with its output Q.

2. Before executing an instruction that uses a variable index, compare the value of the index variable
with the number of elements in the array.

Tip: In LD, use a RANGE instruction.

Notes Checking before executing each instruction that uses an indexed variable is recommended in
case logic has modified the index value beyond the array size or in case the array size has been
reduced before the scan to less than the value of an index variable that has not been reduced
accordingly since.

Valid range of an index variable: 0 through (n-1), where n is the number of array elements.
Array indexes are zero-based.

Two-Dimensional Array

= Execute both ARRAY_SIZE_DIM1 and ARRAY_SIZE_DIM2 to count the number of elements in
respectively the first and second dimensions of the array.

GFK-2950D November 2018 37

Chapter 3. Program Data

3.2 Reference Memory

The CPU stores program data in bit memory and word memory. Both types of memory are divided into
different types with specific characteristics. By convention, each type is normally used for a specific
type of data, as explained below. However, there is great flexibility in actual memory assignment.

Memory locations are indexed using alphanumeric identifiers called references. The reference’s letter
prefix identifies the memory area. The numerical value is the offset within that memory area, for
example %AQ0056.

3.2.1 Word (Register) References

Type |Description

%Al | The prefix %Al represents an analog input register. An analog input register holds the value of one
analog input or other non-discrete value.

%AQ | The prefix %AQ represents an analog output register. An analog output register holds the value of one
analog output or other non-discrete value.

%R Use the prefix %R to assign system register references that will store program data such as the results
of calculations.

%W | Retentive Bulk Memory Area, which is referenced as %W (WORD memory).

%P Use the prefix %P to assign program register references that will store program data with the _MAIN
block. This data can be accessed from all program blocks. The size of the %P data block is based on the
highest %P reference in all blocks. %P addresses are available only to the LD program they are used in,
including C blocks called from LD blocks; they are not system-wide.

Note: All register references are retained across a power cycle to the CPU.

Indirect References

An indirect reference allows you to treat the contents of a variable assigned to an LD instruction
operand as a pointer to other data, rather than as actual data. Indirect references are used only with
word memory areas (%R, %W, %Al, %AQ, %P, and %L). An indirect reference in %W requires two %W
locations as a DWORD indirect index value. For example, @%W0001 would use the %W2:W1 as a
DWORD index into the %W memory range. The DWORD index is required because the %W size is
greater than 65K.

Indirect references cannot be used with symbolic variables.

To assign an indirect reference, type the @ character followed by a valid reference address or variable
name. For example, if %R00101 contains the value 1000, @R00101 instructs the CPU to use the data
location of %R01000.

Indirect references can be useful when you want to perform the same operation to many word
registers. Use of indirect references can also be used to avoid repetitious logic within the application
program. They can be used in loop situations where each register is incremented by a constant or by a
value specified until a maximum is reached.

38 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Bit in Word References

Bit in word referencing allows you to specify individual bits in a word reference type as inputs and
outputs of Boolean expressions, functions, and calls that accept bit parameters (such as parameterized
blocks). This feature is restricted to word references in retentive memory. The bit number in the bit
within word construct must be a constant.

You can use the programmer or an HMI to set an individual bit on or off within a word, or monitor a bit
within a word. Also, C blocks can read, modify, and write a bit within a word.

Bit in Word references can be used in the following situations:

m Inretentive 16-bit memory (Al, AQ, R, W, P, and L) and symbolics.

m Onall contacts and coils except legacy transition contacts (POSCON/NEGCON) and transition coils

(POSCOIL/NEGCOIL).
m Onall functions and call parameters that accept single or unaligned bit parameters.

Functions that accept Parameters
unaligned discrete references

ARRAY MOVE (BIT) SR and DS
ARRAY RANGE (BIT) Q

MOVE (BIT) INand Q
SHFR (BIT) IN,STand Q

Restrictions
The use of Bit in Word references has the following restrictions:

m Bitin Word references cannot be used on legacy transition contacts (POSCON/NEGCON) and
transition coils (POSCON/NEGCON).

m The bit number (index) must be a constant; it cannot be a variable.

m Bit addressing is not supported for a constant.

m Indirect references cannot be used to address bits in 16-bit memory.
m You cannot force a bit within 16-bit memory.

Examples:

%R2.X [0] addresses the first (least significant) bit of %R2
%R2.X [1] addresses the second bit of %R2. In the examples
In the examples [0] and [1] are the bit indexes. Valid bit indexes for the different variable types are:

BYTE variable [0] through [7]
WORD, INT, or UINT variable [0] through [15]
DWORD or DINT variable [0] through [31]

GFK-2950D November 2018 39

Chapter 3. Program Data

3.2.2 Bit (Discrete) References

Type |Description

%I Represents input references. %l references are located in the input status table, which stores the state
of all inputs received from input modules during the last input scan. A reference address is assigned to
discrete input modules using your programming software. Until a reference address is assigned, no
data will be received from the module. %I memory is always retentive.

%Q Represents physical output references. The coil check function checks for multiple uses of %Q
references with relay coils or outputs on functions. You can select the level of coil checking desired
(Single, Warn Multiple, or Multiple).

%Q references are located in the output status table, which stores the state of the output references
as last set by the application program. This output status table’s values are sent to output modules at
the end of the program scan. A reference address is assigned to discrete output modules using your
programming software. Until a reference address is assigned, no data is sent to the module. A
particular %Q reference may be either retentive or non-retentive.

%M Represents internal references. The coil check function of your programming software checks for
multiple uses of %M references with relay coils or outputs on functions. A particular %M reference may
be either retentive or non-retentive.

%T Represents temporary references. These references are never checked for multiple coil use and can,
therefore, be used many times in the same program even when coil use checking is enabled—this is not
a recommended practice because it makes subsequent trouble-shooting more difficult. %T may be
used to prevent coil use conflicts while using the cut/paste and file write/include functions. Because
this memory is intended for temporary use, it is cleared on STOP Mode to RUN Mode transitions and
cannot be used with retentive coils.

%S Represent system status references. These references are used to access special CPU data such as
%SA |timers, scan information, and fault information. For example, the %SC0012 bit can be used to check the
%SB | status of the CPU fault table. Once the bit is set on by an error, it will not be reset until after the sweep.
%SC | %S, %SA, %SB, and %SC can be used on any contacts.

= %SA, %SB, and %SC can be used on retentive coils -(M)-.

Note: Although the programming software forces the logic to use retentive coils with %SA, %SB, and
%SC references, most of these references are not preserved across power cycles regardless of
the state of the battery or Energy Pack.

%S can be used as word or bit-string input arguments to functions or function blocks.

%SA, %SB, and %SC can be used as word or bit-string input or output arguments to functions and
function blocks.

For a description of the behavior of each bit, refer to System Status References.

%G Represents global data references. These references are used to access data shared among several
control systems.

Note: For details on retentiveness, refer to Retentiveness of Logic and Data.

40 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.3 User Reference Size and Default

Maximum user references and default reference sizes are listed in the table below.

Item Range Default
Reference Points
%I reference 32768 bits 32768 bits
%Q reference 32768 bits 32768 bits
%M reference 32768 bits 32768 bits
%S total (S, SA, SB,SC) | 512 bits 512 bits
(128 each) (128 each)
%T reference 1024 bits 1024 bits
%G 7680 points 7680 points
Total Reference Points | 107520 107520
Reference Words
%Al reference 0—32640 words 64 words
%AQ reference 0—32640 words 64 words
%R, 1K word increments |0—32640 words 1024 words
%W O—maximum available user RAM 0 words
Total Reference Words | 0—maximum available user RAM 1152 words
%L (per block) 8192 words 8192 words
%P (per program) 8192 words 8192 words
Managed Memory
Symbolic Discrete 0—83,886,080 (bits) 32768
Symbolic Non-Discrete | 0—5,242,880 (words) 65536
I/O Discrete 0 through 83,886,080 0
1/O Non-Discrete 0 through 5,242,880. 0
Total Symbolic 0—42,088,704 bytes 143360
(This is the total memory available for the combined total of
symbolic memory. This also includes other user memory use,
program etc.)

3.3.1 %G User References and CPU Memory Locations

The CPU contains one data space for all of the global data references (%G). The internal CPU memory
for this data is 7680 bits long. For Series 90-70 systems, the programming software subdivides this
range using %G, %GA, %GB, %GC, %GD, and %GE prefixes—allowing each of these prefixes to be used
with bit offsets in the range 1-1280. For PACSystems, these ranges are converted to %G.

GFK-2950D

November 2018

41

Chapter 3. Program Data

3.4 Genius Global Data

PACSystems supports the sharing of data among multiple control systems that share a common
Genius 1/O bus. This mechanism provides a means for the automatic and repeated transfer of %G, %!,
%Q, %Al, %AQ, and %R data. No special application programming is required to use global data since it
is integrated into the 1/O scan. All devices that have Genius I/O capability can send and receive global
data from a PACSystems CPU.

Using I/O Variables, you can directly associate variable names to a module’s Genius global data that is
scanned as part of an input/output scan.

42 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.5 Transitions and Overrides

The %I, %Q, %M, and %G user references, and symbolic variables of type BOOL, have associated
transition and override bits. %T, %S, %SA, %SB, and %SC references have transition bits but not
override bits. The CPU uses transition bits for counters, transition contacts, and transitional coils. Note
that counters do not use the same kind of transition bits as contacts and coils. Transition bits for
counters are stored within the locating reference.

The transition bit for a reference tells whether the most recent value (ON, OFF) written to the reference
is the same as the previous value of the reference. Therefore when a reference is written and its new
value is the same as its previous value, its transition bit is turned OFF. When its new value is different
from its previous value, its transition bit is turned ON. The transition bit for a reference is affected every
time the reference is written to. The source of the write is immaterial; it can result from a coil
execution, an executed function’s output, the updating of reference memory after an input scan, etc.

When override bits are set, the associated references cannot be changed from the program or the
input device; they can only be changed on command from the programmer. Overrides do not protect
transition bits. If an attempted write occurs to an overridden memory location, the corresponding
transition bit is cleared.

GFK-2950D November 2018 43

Chapter 3. Program Data

3.6 Retentiveness of Logic and Data

Data is defined as retentive if it is saved by the CPU when the CPU transitions from STOP Mode to RUN
Mode.

The following items are retentive:

program logic

fault tables and diagnostics

checksums for program logic

overrides and output forces

word data (%R, %W, %L, %P, %Al, %AQ)

bit data (%l, %G, fault locating references, and reserved bits)

%Q and %M variables that are configured as retentive (%T data is non-retentive and therefore not
saved on STOP Mode to RUN Mode transitions).

symbolic variables that have a data type other than BOOL

symbolic variables of BOOL type that are configured as retentive

Retentive data is also preserved during power-cycles of the CPU with battery backup or Energy
Pack backup. Exceptions to this rule include the fault locating references and most of the %S, %SA,
%SB, and %SC references. These references are initialized to zero at power-up regardless of the
state of the battery or Energy Pack. (For a description of the behavior of each, refer to System
Status References.)

When %Q or %M variables are configured as retentive, the contents are retained through power loss
and Run-to-Stop-to-Run transitions.

44

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.7 Data Scope

Each of the user references has scope; that is, it may be available throughout the system, available to
all programs, restricted to a single program, or restricted to local use within a block.

User Reference Type Range Scope

%l, %Q, %M, %T, %S, %SA, %SB, |Global From any program, block, or host computer. Variables defined in
%SC, %G, %R, %W, %Al, %AQ, these registers have system (global) scope by default. However,
convenience references, fault variables with local scope can also be assigned in these

locating references registers.

Symbolic variable Global From any program, block, or host computer. Symbolic variables

have system (global) scope by default. However, symbolic
variables with local scope can be created using the naming
conventions for local variables.

I/O variable Global From any program, block, or host computer.

%P Program From any block, but not from other programs (also available to a
host computer).

%L Local From within a block only (also available to a host computer).

In an LD block:

= %P should be used for program references that are shared with other blocks.

= %L are local references that can be used to restrict the use of register data to that block. These
local references are not available to other parts of the program.

= %I, %Q, %M, %T, %S, %SA, %SB, %SC, %G, %R, %W, %Al, and %AQ references are available
throughout the system.

GFK-2950D November 2018 45

Chapter 3. Program Data

3.8 System Status References

System status references in the CPU are assigned to %S, %SA, %SB, and %SC memory. The four timed
contacts (time tick references) include #T_10MS, #T_100MS, #T_SEC, and #T_MIN. Examples of other
system status references include #FST_SCN, #ALW_ON, and #ALW_OFF

Note: %S bits are read-only bits; do not write to these bits. However, you can write to %SA, %SB, and
%SC bits.

Listed below are available system status references that can be used in an application program. When
entering logic, either the reference or the nickname can be used. Refer to Chapter 9 for detailed fault
descriptions and information on correcting faults.

46 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.8.1 %S References

Reference |System Variable Definition

%S0001 #FST_SCN Current sweep is the first sweep in which the LD executed. Set the first time the user
program is executed after a STOP Mode to RUN Mode transition and cleared upon
completion of its execution.

%S0002 #LST_SCN Set when the CPU transitions to RUN Mode; cleared when the CPU is performing its
final sweep. The CPU clears this bit and then performs one more complete sweep
before transitioning to STOP or STOP Faulted mode. If the number of last scans set to 0,
%S0002 will be cleared after the CPU is stopped and user logic will not see this bit
cleared.

%S0003 #T_10MS 0.01 second timed contact.

%S0004 #T_100MS 0.1 second timed contact.

%S0005 #T_SEC 1.0 second timed contact.

%S0006 #T_MIN 1.0 minute timed contact.

%S0007 #ALW_ON Always ON.

%S0008 #ALW_OFF Always OFF.

%S0009 #SY_FULL Set when the CPU fault table fills up (size configurable with a default of 16 entries).
Cleared when an entry is removed from the CPU fault table and when the CPU fault
table is cleared.

%S0010 #1O_FULL Set when the I/O Fault Table fills up (size configurable with a default of 32 entries).
Cleared when an entry is removed from the 1/O Fault Table and when the 1/O Fault Table
is cleared.

%S0011 #OVR_PRE Set when an override exists in %I, %Q, %M, or %G, or symbolic BOOL memory.

%S0012 #FRC_PRE Set when force exists on a Genius point.

%S0013 #PRG_CHK Set when background program check is active.

%S0014 #PLC_BAT CPUs with batteries, including CPU310, CPU315, CPU/CRU320 and NIU0O1
= [fthe battery is disconnected, this contact is set to 1.
= Whenever a Smart Battery fails during operation, this contact is set to 1. If used in

conjunction with a legacy (non-smart) battery, this indication is not reliable.
Battery-less CPUs, including CPE302, CPE305, CPE310 and CPE330:
= Energy Pack is connected and functioning = 0
= Energy Packis not connected or has failed = 1
Set to 1 if the local unit is configured as the Secondary CPU: otherwise it is cleared. For

%S0034 #SEC_UNT any given local unit, if SEC_UNTgis set, PRI_UNT canngt be set.

%S0035 #LOC_RDY Set to 1 if local unit is in Run mode with outputs enabled. Otherwise set to 0.

%S0037 #REM_RDY Set to 1 if remote unit is in Run mode with outputs enabled. Otherwise set to 0.

%S0039 #LOGICEQ (S;LZ(:\Alliisfet:;at%pcl)i.cation logic for both units in the redundant system is the same.

%S0041 #RDN_COMM_AVAIL | Redundancy Communication Link Available: 1 indicates that the two CPUs can
communicate with each other and will be able to synchronize when required.

%50042 #RDN_P1_LINK_UP |Redundancy Ethernet Port 1 on LAN3 has link on its PHY.

%S0043 #RDN_P2_LINK_UP |Redundancy Ethernet Port 2 on LAN3 has link on its PHY.

%S0049 #FA_OK Field Agent OK: 1 indicates Field Agent running and connected to cloud.

Note: The #FST_EXE name is not associated with a %S address, it must be referenced by the name
#FST_EXE only. This bit is set when transitioning from STOP Mode to RUN Mode and indicates
that the current sweep is the first time this block has been called.

GFK-2950D

November 2018 47

Chapter 3. Program Data

3.8.2

%SA, %SB, and %SC References

Note: %SA, %SB, and %SC contacts are not set or reset until the input scan phase of the sweep
following the occurrence of the fault or a clearing of the fault table(s). %SA, %SB, and %SC
contacts can also be set or reset by user logic and CPU monitoring devices.

Reference |System Definition
Variable

%SA0001 [#PB_SUM Set when a checksum calculated on the application program does not match the
reference checksum. If the fault was due to a temporary failure, the condition can be
cleared by again storing the program to the CPU. If the fault was due to a hard RAM
failure, then the CPU must be replaced.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0002 [#OV_SWP Set when the CPU detects that the previous sweep took longer than the time
specified by the user. To clear this bit, clear the CPU fault table or power cycle the
CPU. Only occurs if the CPU is in Constant Sweep mode.

%SA0003 [#APL_FLT Set when an application fault occurs. To clear this bit, clear the CPU fault table or
power cycle the CPU.

%SA0009 [#CFG_MM Set when a configuration mismatch fault is logged in the fault tables. To clear this bit,
clear the CPU fault table or power cycle the CPU.

%SA0008 [#OVR_TMP Set when the operating temperature of the CPU exceeds the normal operating
temperature, 58°C. To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0010 [#HRD_CPU Set when the diagnostics detects a problem with the CPU hardware. To clear this bit,
clear the CPU fault table or power cycle the CPU.

%SA0011 [#LOW_BAT [The low battery indication is not supported for all CPU modules. For details, refer to
Battery Status (Group 18) in Chapter 9.
The CPU may set this contact when an I/O module or special-purpose module has
reported a low battery. In this case, a fault will be reported in the 1/O Fault Table.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0012 #LOS_RCK Set when an expansion rack stops communicating with the CPU. To clear this bit,
clear the CPU fault table or power cycle the CPU.

%SA0013 #LOS_IOC Set when a Bus Controller stops communicating with the CPU.
To clear this bit, clear the 1/O Fault Table or power cycle the CPU.

%SA0014 #LOS_IOM Set when an I/O module stops communicating with the CPU.
To clear this bit, clear the 1/O Fault Table or power cycle the CPU.

%SA0015 [#LOS_SIO Set when an option module stops communicating with the CPU.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0017 [#ADD_RCK Set when an expansion rack is added to the system.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SA0018 [#ADD_IOC Set when a Bus Controller is added to a rack.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0019 [#ADD_IOM Set when an I/O module is added to a rack.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0020 [#ADD_SIO Set when an intelligent option module is added to a rack.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0022 [#IOC_FLT Set when a Bus Controller reports a bus fault, a global memory fault, or an 10C
hardware fault. To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0023 [H#IOM_FLT Set when an I/O module reports a circuit or module fault.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0027 [#HRD_SIO Set when a hardware failure is detected in an option module.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

48 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Reference [System Definition
Variable

%SA0029 #SFT_IOC Set when there is a software failure in the 1/0 Controller.
To clear this bit, clear the 1/O Fault Table or power cycle the CPU.

%SA0030 |#PNIO_ALARM|A PROFINET alarm has been received and an 1/O fault has been logged in group 28.To
clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0031 [#SFT_SIO Set when an option module detects an internal software error.
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0032 [#SBUS_ER Set when a bus error occurs on the VME bus backplane
To clear this bit, clear the I/O Fault Table or power cycle the CPU.

%SA0081 - Set when a user-defined fault is logged in the CPU fault table.

%SA0112 To clear these bits, clear the CPU fault table or power cycle the CPU. For more
information, see discussion of SVC_REQ 21: User-Defined Fault Logging in Chapter 7.

%SB0001 #WIND_ER Set when there is not enough time to start the Programmer Window in Constant
Sweep mode.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0009 [#NO_PROG |Set when the CPU powers up with memory preserved, but no user program is
present. Cleared when the CPU powers up with a program present or by clearing the
CPU fault table.

%SB0010 [#BAD_RAM |Set when the CPU detects corrupted RAM memory at power-up. Cleared when the
CPU detects that RAM memory is valid at power-up or by clearing the CPU fault table.

%SB0011 [#BAD_PWD |Set when a password access violation occurs. Cleared when
the CPU fault table is cleared or when the CPU is power cycled.

%SB0012 [#NUL_CFG Set when an attempt is made to put the CPU in RUN Mode when there is no
configuration data present.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0013 [#SFT_CPU Set when the CPU detects an error in the CPU operating system software.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0014 |[#STOR_ER Set when an error occurs during a programmer store operation.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0016 #MAX_IOC Set when more than 32 10Cs are configured for the system.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SB0017 [#SBUS_FL Set when the CPU fails to gain access to the bus.
To clear this bit, clear the CPU fault table or power cycle the CPU.

%SC0009 [#ANY_FLT Set when any fault occurs that causes an entry to be placed in the CPU or I/O Fault
Table. Cleared when both fault tables are cleared or when the CPU is power cycled.

%SC0010 [#SY_FLT Set when any fault occurs that causes an entry to be placed in the CPU fault table.
Cleared when the CPU fault table is cleared or when the CPU is power cycled.

%SC0011 [#IO_FLT Set when any fault occurs that causes an entry to be placed in the I/O Fault Table.
Cleared when the I/O Fault Table is cleared or when the CPU is power cycled.

%SC0012 |[#SY_PRES Set as long as there is at least one entry in the CPU fault table. Cleared when the CPU
fault table is cleared.

%SC0013 [#IO_PRES Set as long as there is at least one entry in the 1/O Fault Table. Cleared when the I/O
Fault Table is cleared.

%SC0014 |#HRD_FLT Set when a hardware fault occurs. Cleared when both fault tables are cleared or
when the CPU is power cycled.

%SC0015 WHSFT_FLT Set when a software fault occurs. Cleared when both fault tables are cleared or when

the CPU is power cycled.

GFK-2950D

November 2018 49

Chapter 3. Program Data

3.8.3 Fault References

The fault references are discussed in Chapter 9 of this manual but are also listed here for your
convenience.

System Fault References

System Fault Description

Ref

#ANY_FLT Any new fault in either table since the last power-up or clearing of the fault tables

#SY_FLT Any new system fault in the CPU fault table since the last power-up or clearing of the
fault tables

#IO_FLT Any new fault in the 1/O Fault Table since the last power-up or clearing of fault tables

#SY_PRES Indicates that there is at least one entry in the CPU fault table

#|O_PRES Indicates that there is at least one entry in the 1/O Fault Table

#HRD_FLT Any hardware fault

#SFT_FLT Any software fault

Configurable Fault References

Configurable Faults
(Default Action) Description

#SBUS_ER (diagnostic) |System bus error. (The BSERR signal was generated on the VME system bus.)

#SFT_IOC (diagnostic) |Non-recoverable software error in a Genius Bus Controller.

#LOS_RCK (diagnostic) |Loss of rack (BRM failure, loss of power) or missing a configured rack.

#LOS_IOC (diagnostic) |Loss of Bus Controller missing a configured Bus Controller.

#LOS_IOM (diagnostic) |Loss of /O module (does not respond) or missing a configured 1/0 module.

#LOS_SIO (diagnostic) | Loss of intelligent option module (does not respond) or missing a configured module.

#IOC_FLT (diagnostic) |Non-fatal bus or Bus Controller error—more than 10 bus errors in 10 seconds (error
rate is configurable).

#CFG_MM (fatal) Wrong module type detected during power-up, store of configuration, or RUN Mode.
The CPU does not check the configuration parameters set up for individual modules
such as Genius I/O blocks.

50 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Non-Configurable Faults

Non-Configurable Faults
(Action)

Description

#SBUS_FL (fatal)

System bus failure. The CPU was not able to access the VME bus. BUSGRT-
NMl error.

#HRD_CPU (fatal)

CPU hardware fault, such as failed memory device or failed serial port.

#HRD_SIO (diagnostic)

Non-fatal hardware fault on any module in the system.

#SFT_SIO (diagnostic)

Non-recoverable software errorin a LAN interface module.

#PB_SUM (fatal)

Program or block checksum failure during power-up or in RUN Mode.

#LOW_BAT (diagnostic)

The low battery indication is not supported for all CPU modules. For details,
refer to Battery Status (Group 18) in Chapter 9.

The CPU may set this contact when an I/O module or special-purpose
module has reported a low battery. In this case, a fault will be reported in
the 1/O Fault Table.

To clear this bit, clear the CPU fault table or power cycle the CPU.

#OV_SWP (diagnostic)

Constant sweep time exceeded.

#SY_FULL, IO_FULL (diagnostic)

CPU fault table full
1/O Fault Table full

#IOM_FLT (diagnostic)

Point or channel on an I/O module—a partial failure of the module.

#APL_FLT (diagnostic)

Application fault.

#ADD_RCK (diagnostic)

New rack added, extra, or previously faulted rack has returned.

#ADD_IOC (diagnostic)

Extra 1/O Bus Controller or reset of 1/O Bus Controller.

#ADD_IOM (diagnostic)

Previously faulted 1/0 module is no longer faulted or extra 1/0 module.

#ADD_SIO (diagnostic)

New intelligent option module is added, extra, or reset.

#NO_PROG (information)

No application program is present at power-up. Should only occur the first
time the CPU is powered up or if the user memory is not retained.

#BAD_RAM (fatal)

Corrupted program memory at power-up. Program could not be read
and/or did not pass checksum tests.

#WIND_ER (information)

Window completion error. Servicing of Programmer or Logic Window was
skipped. Occurs in Constant Sweep mode.

#BAD_PWD (information)

Change of privilege level request to a protection level was denied; bad
password.

#NUL_CFG (fatal)

No configuration present upon transition to RUN Mode. Running without a
configuration is similar to suspending the 1/O scans.

#SFT_CPU (fatal)

CPU software fault. A non-recoverable error has been detected in the CPU.
May be caused by Watchdog Timer expiring.

#MAX_IOC (fatal)

The maximum number of bus controllers has been exceeded. The CPU
supports 32 bus controllers.

#STORL_ER (fatal)

Download of data to CPU from the programmer failed; some data in CPU
may be corrupted.

GFK-2950D

November 2018 51

Chapter 3. Program Data

3.9 How Program Functions Handle Numerical Data

Regardless of where data is stored in memory - in one of the bit memories or one of the word
memories - the application program can handle it as different data types.

3.9.1 Data Types
Type Name Description Data Format
BOOL Boolean The smallest unit of memory. It has two states: 1 or O.
A BOOL array may have length N.
BYTE Byte Has an 8-bit value. Has 256 values (0-255). A BYTE
array may have length N.
WORD |Word Uses 16 consecutive bits of data memory. The valid Register _
range of word values is 0000 hex to FFFF hex. o 1 (16 bit states)
DWORD |Double Word |Has the same characteristics as a single word data Register 2 Register 1
type, except that it uses 32 consecutive bits in data l] |
; ; 32 17 16 1
memory instead of only 16 bits. (32 bit states)
UINT Unsigned Uses 16-bit memory data locations. They have a valid Register)
Integer range of O to +65535 (FFFF hex). % (Binary value)
INT Signed Uses 16-bit memory data locations, and are Registerl (Two's
Integer represented in 2's complement notation. The valid Complement
range of an INT data type is -32768 to +32767. 16 1 value)
s=sign bit
(O=positive, 1=negative)
DINT Double Stored in 32-bit data memory locations (two Register 2 Register 1
Precision consecutive 16-bit memory locations). Always signed |LS] | | |
K 32 17 16 1
Integer values (bit 32 is the sign bit). The valid range of a DINT (Binary valuge)
data type is -2147483648 to +2147483647 s=sign bit
(O=positive, 1=negative)
REAL Floating Point | Uses 32 consecutive bits (two consecutive 16-bit Register 2 Register 1
memory locations). l ! |
The range of numbers that can be stored in this 32 (|Eéé forr]hGat) !
format is from +1.401298E-45 to +3.402823E+38.
For the IEEE format, refer to Floating Point Numbers.
LREAL |Double Uses 64 consecutive bits (four consecutive 16-bit Register 2 Register 1
Precision memory locations). [32 171 [16 1]
Floating Point | The range of numbers that can be stored in this _ _
format is from +2.2250738585072020E-308 to Register 4~ Register 3
+1.7976931348623157E+308. | | | |
] ; . ot .) 64 49 48 33
For the IEEE format, refer to Floating Point Numbers. (IEEE format)
BCD-4 Four-Digit Uses 16-bit data memory locations. Each binary coded | _Register 1 -
. . . . _-- 4 BCD digit
BCD decimal (BCD) digit uses four bits and can represent 39 2 ¢ fois)
numbers between 0 and 9. This BCD coding of the 16
bits has a legal value range of 0 to 9999.
52 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Type

Name

Description

Data Format

BCD-8

Eight-Digit
BCD

Uses two consecutive 16-bit data memory locations
(32 consecutive bits). Each BCD digit uses 4 bits per
digit to represent numbers from O to 9. The complete
valid range of the 8-digit BCD data type is O to
99999999.

Register 2 Register 1
[e]7]6]5] [4]3]8]1]
3229252117 16139 5 1

(8 BCD digits)

MIXED

Mixed

Available only with the MUL and DIV functions. The
MUL function takes two integer inputs and produces a
double integer result. The DIV function takes a double
integer dividend and an integer divisor to product an
integer result.

ASCII

ASCII

Eight-bit encoded characters. A single word reference
is required to make two (packed) ASCII characters. The
first character of the pair corresponds to the low byte
of the reference word. The remaining 7 bits in each
section are converted.

Note: Using functions that are not explicitly bit-typed will affect transitions for all bits in the written
byte/word/dword. For information about using floating point numbers, refer to Floating Point

Nu

GFK-2950D

mbers.

November 2018

53

Chapter 3. Program Data

3.9.2 Floating Point Numbers

Floating point numbers are stored in one of two IEEE 754 standard formats that uses adjacent 16-bit
words: 32-bit single precision or 64-bit double precision.

The REAL data type represents single precision floating point numbers. The LREAL data type represents
double precision floating point numbers. REAL and LREAL variables are typically used to store data
from analog 1/O devices, calculated values, and constants.

Types of Floating Point Variables

Data Type Precision and Range

REAL Limited to 6 or 7 significant digits, with a range of approximately
+1.401298x10™ through +3.402823x10%.

LREAL Limited to 17 significant digits, with a range of approximately
+2.2250738585072020x107% to +1.7976931348623157x10°%,

Note: The programming software allows 32-bit and 64-bit arguments (DWORD, DINT, REAL, and
LREAL) to be placed in discrete memories such as %l, %M, and %R in the PACSystems target.
This is not allowed on Series 90-70 targets. (Note that any bit reference address that is passed
to a non-bit parameter must be byte-aligned. This is the same as the Series 90-70 CPU.)

Internal Format of REAL Numbers

44— Bits 17-32 > « Bits 1-16 4
el [[[[T T T T T L[hauel T T T T LTI TT]]a]
« 23-bit mantissa)
« » 8-bit exponent
< 1-bit sign (Bit 32)

Register use by a single floating point number is diagrammed below. For example, if the floating point
number occupies registers R5 and R6, R5 is the least significant register and R6 is the most significant
register.
4—— Most Significant Register ————» €—————— Least Significant Register ———
44— Bits 17-32——9Pp ¢ —Bis 1-16——p
IBZQIIIIIIIIIIIIINI pe [[T LT T[T LT LT[[a]

/
Most Significant Bit Least Significant Bit Most Significant Bit Least Significant Bit

Internal Format of LREAL Numbers

«4— Bits 49-64 —p €4— Bits 33-48 —Pp-€4—— Bits 17-32 —Pp 44— Bits 1-16 —Pp
L e e O T

¢ 52-bit mantissa p

P 11-bit exponent
€« 1-bitsign (Bit 64)

54 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

Errors in Floating Point Numbers and Operations

Overflow occurs when a REAL or LREAL function generates a number outside the allowed range. When
this occurs, the Enable Out output of the function is set Off, and the result is set to positive infinity (for
a number greater than the upper limit) or negative infinity (for a number less than the lower limit). You
can determine where this occurs by testing the sense of the Enable Out output.

Binary representations of Infinity and NaN values have exponents that contain all 1s.

IEEE 754 Infinity Representations

REAL LREAL
POS_INF (positive infinity) 7F800000h | = 7FFO000000000000h
NEG_INF (negative infinity) |= FF800000h | = 7FFO000000000001h

If the infinities produced by overflow are used as operands to other REAL or LREAL functions, they may
cause an undefined result. This undefined result is referred to as an NaN (Not a Number). For example,
the result of adding positive infinity to negative infinity is undefined. When the ADD_REAL function is
invoked with positive infinity and negative infinity as its operands, it produces an NaN. If any operand of
a function is a NaN, the result will be some NaN.

Note: For NaN, the Enable Out output is Off (not energized).
IEEE 754 Representations of NaN values:

REAL LREAL
7F800001 through 7FFFFFFF | 7FF8000000000001 through 7FFFFFFFFFFFFFFF
FF800001 through FFFFFFFF | FFFO000000000001 through FFFFFFFFFFFFFFFF

Note: For releases 5.0 and greater, the CPU may return slightly different values for NaN compared to
previous releases. In some cases, the result is a special type of NaN displayed as #IND in
Machine Edition. In these cases, for example, EXP(-infinity), power flow out of the function is
identical to that in previous releases.

GFK-2950D November 2018 55

Chapter 3. Program Data

3.10 User Defined Types (UDTs)

A UDT is a structured data type consisting of elements of other selected data types. Each top-level UDT
element can be one of the following:

Top-level UDT Element Example

Simple data type, except STRING INT

Another UDT, except any in which the current UDT | A UDT named UDT_ABC has a top-level element whose

is nested at any level. data type is another UDT, named UDT_2.

Note: A UDT cannot be nested within itself.

Array of a simple data type LREAL array of length 8.

Array of UDTs A UDT named UDT_ABC has a top-level element that is an
Note: A UDT cannot be nested within itself. array whose data type is another UDT, named UDT_row.

3.10.1 Working with UDTs

1. In Machine Edition, add a UDT as a node under a target in =48 Logic
the Project tab of the Navigator. A UDT will be saved with +-Ta Program Blocks
2. Editthe UDT properties and define the elements in the UDT's o CmdBicks
structure. b CmdBlcks

3. Create a variable whose data type is the UDT. By default,
the variable resides in symbolic memory. You can convert
the symbolic variable to an 1/0 variable by assigning it to an
/0 terminal.

4. Use the variable in logic.

3.10.2 UDT Properties

Name: The UDT's name. Maximum length: 32 characters.

Description: The user-defined description of the UDT.

Memory Type: The type of symbolic or I/O variable memory in which a variable of this UDT resides.
Non-Discrete: (Default) Word-oriented memory organized in groups of 16 contiguous bits.
Discrete: Bit-oriented memory.

Notes: You cannot nest a UDT of one memory type in a UDT of a different memory type. Changing the
memory type propagates to existing variables of this UDT only after target validation.

Is Fixed Size: If set to True, you can increase the Size (Bytes) value to a maximum of 65,535 bytes to
create a buffer at the end of the UDT. The buffer is included in the memory allocated to every
downloaded variable of that UDT data type. Use of a buffer may allow RUN Mode store of a UDT when
the size of the UDT definition has changed. For details, refer to RUN Mode Store of UDTs.

If set to False (default), the Size (Bytes) value is read-only and does not include a buffer at the end of
the UDT.

Size (bytes): (Read-only when Is Fixed Size is set to False.) The total number of bytes required to store
a structure variable of the user-defined data type (UDT).

Bytes Remaining: (Read-only; displayed if Is Fixed Size is set to True.) The UDT's buffer size; the
number of bytes available before the actual size of the UDT reaches the value of the Size (bytes)
property.

56 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.10.3 UDT Limits

Maximum number of UDTs per target: 2048
Maximum UDT size: 65,535 bytes

Note: Bit spares created to line up the end of a section of BOOL variables or arrays with the end of a

byte will count toward the maximum size.

Maximum number of top-level UDT elements: 1024
Maximum array size of a top-level UDT element: 1024 array elements
UDTs do not support the following:
- Two-dimensional arrays
- Function block data types
- Enumerated data types
You cannot nest a UDT of one memory type in a UDT of a different memory type.
You cannot alias a variable to a UDT variable or UDT variable element.
A FAULT contact supports a BOOL element of a UDT I/O variable, but not a BOOL element of a UDT
parameter in a UDFB or parameterized block.
POSCON and NEGCON do not support BOOL elements of UDT parameters in parameterized blocks
or UDFBs.

3.10.4 RUN Mode Store of UDTs

An RMS can be performed on a target that contains a variable of a UDT, unless:

An operation in the UDT editor modifies the offset or bit mask of an element that has the same
name before and after the operation.
The size of the UDT definition increases.
Array length increases.
The memory type of the UDT definition changes.
There is a data type change in the UDT definition, except for the following interchangeable data
types:
- WORD, INT, UINT
- DWORD, DINT
The UDT definition is renamed.

GFK-2950D November 2018 57

Chapter 3. Program Data

3.10.5 UDT Operational Notes

= Bydefault,a UDT variable resides in symbolic memory. You can convert the symbolic variable to an
I/O variable.

= AlIlUDT elements are public and, therefore, readable and writeable.

= Properties of elements of UDT variables:

The Input Transfer List and Output Transfer List properties are read-only and set to False.

The Retentive property is editable only for BOOLs and only if the UDT Memory Type is discrete. For
UDTs whose Memory Type is non-discrete, a BOOL variable has its Retentive property set to True
during validation.

= UDT variables are supported in LD, FBD, and ST blocks, as well as in Diagnostic Logic Blocks.
For additional operational notes, refer to the programmer Help.

Example

You want to set up six COMMREQ commands to send values to a series of six identical intelligent
modules that require individualized data of the same data types in the same format, specified by the
manual for the intelligent module. This data contains header information and several words of data.
You could proceed as follows:

1. Add a UDT named COMMREQS6 and edit it to contain the data in the required data types and
sequence.

2. Create an array of length 6, named ABC, of the COMMREQ6 data type.

The array resides in symbolic memory. You can convert the symbolic variable to an I/O variable.

4. Populate the variable. If the value of an element needs to be the same for all six COMMREQ6
elements, you can set up an ST for loop that uses a variable index to populate each element with the
same data, for example:

w

fori=1to6do
ABCli].WaitFlag := 0;
end_for;

5. Just before issuing one or more COMMREQs, use the Move to Flat instruction to flatten the
COMMREQ6 array or one or more of its top-level elements from a structure to a flat series of
contiguous registers in an area of % memory supported by COMMREQ.

6. Issue the COMMREQs based on the % memory registers that you just populated with the Move to
Flat instruction.

Although you can populate the memory registers directly without a UDT and Move to Flat, there are
advantages when working with UDT variables:

= UDT variables reside in symbolic or I/O variable memory, which protects them from memory
overlaps and offers more protection against overwriting, whereas reference memory areas offer
no such protection. It is best to use reference memory just before issuinga COMMREQ.

= You can work with meaningful structure variable names and structure element names.

= You can set up loops with variable indexes to populate some of the values.

58 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.11 Operands for Instructions

The operands for PACSystems instructions can be in the following forms:
= Constants

= Variables that are located in any of the PACSystems memory areas (%!, %Q, %M, %T, %G, %S, %SA,

%SB, %SC, %R, %W, %L, %P, %Al, %AQ)
= Symbolic variables, including I/O variables
= Parameters of a Parameterized block or C block
= Power flow
= Dataflow
= Computed references such as indirect references or bit-in-word references
= BOOL arrays

An operand’s type and length must be compatible with that of the parameter it is being passed into.
PACSystems instructions and functions have the following operand restrictions:

= Constants cannot be used as operands to output parameters because output values cannot be
written to constants.

= Variables located in %S memory cannot be used as operands to output parameters because %S
memory is read-only.

= Variables located in %S, %SA, %SB, and %SC memories cannot be used as operands to numerical

parameters such as INTs, DINTs, REALs, LREALSs, etc.

= Data flow is prohibited on some input parameters of some functions. This occurs when the
function, during the course of its execution, actually writes a value to the input parameter. Data
flow is prohibited in these cases because data flow is stored in a temporary memory and any
updated value assigned to it would be inaccessible to the user application.

= The arguments to EN, OK, and many other BOOLEAN input and output parameters are restricted to

be power flow.

= Restrictions on using Parameterized block or External block parameters as operands to
instructions or functions are documented in Chapter 2.

= References in discrete memory (I, Q, M, and T) must be byte-aligned.

Note the following:

= |ndirect references, which are available for all WORD-oriented memories (%R, %W, %P, %L, %Al,
%AQ), can be used as arguments to instructions wherever located variables in the corresponding

WORD-oriented memory are allowed. Note that indirect references are converted into their
corresponding direct references immediately before they are passed into an instruction or
function.

= Bit-in-word references are generally allowed on contact and coil instructions other than legacy

transition contacts and coils (POSCON, NEGCON, POSCOIL and NEGCOIL). They are also allowed as

arguments to function parameters that accept single or unaligned bits.

GFK-2950D November 2018

59

Chapter 3. Program Data

BOOL arrays can be used as parameters to an instruction instead of variables of other data types. The
array must be of sufficient length to replace the given data type. For example, instead of using a 16-bit
INT variable, you could use a BOOL array of length 16 or more.

The following conditions must be met:

= The BOOL array must be byte-aligned, that is, the reference address of the first element of the
BOOL array must be 8n + 1, where n =0, 1, 2, 3, and so on. For example, %M00033 is byte-aligned,
because 33 = (8 x 4) + 1.

= The parameter in question must support discrete memory reference addresses.

= Theinstruction in question must not have a Length parameter. (The Length parameter is displayed
as ??in the LD editor until a value has been assigned.)

= The data type to be replaced with a BOOL array must be one of the following:

Data Type Minimum Length
BYTE 8

INT, UINT, WORD 16

DINT, DWORD, REAL | 32

REAL 64

= Excess bits are ignored. For example, if you use a BOOL array of length 12 instead of an 8-bit BYTE,
the last four bits of the BOOL array are ignored.

60 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 3. Program Data

3.12 Word-for-Word Changes

Many changes to the program that do not modify the size of the program are considered word-for-
word changes. Examples include changing the type of contact or coil, or changing a reference address
used for an existing function block.

The following are word-for-word changes:

= Switching between two symbolic variables
= Switching between a symbolic variable and a mapped variable
= Switching between a constant and a symbolic variable

3.12.1 Exception: Symbolic Variables

Creating, deleting, or modifying a symbolic variable definition is not a word-for-word change.

GFK-2950D November 2018 61

Chapter 4 Ladder Diagram (LD) Programming

This chapter describes the programming instructions that can be used to create ladder logic programs
for the PACSystems control system.

For an overview of the types of operands that can be used with instructions, refer to Operands for
Instructions in Chapter 3.

The ladder logic implementation of the PACSystems instruction set includes the following categories:

= Advanced Math Functions

» Bit Operation Functions

= Coils

= Contacts

= Control Functions

= Conversion Functions

= Counters

= Data Move Functions

= Data Table Functions

= Math Functions

= Program Flow Functions

» Relational Functions

= Timers

= Motion Functions and Function Blocks
RX3i CPUs support PLCopen compliant motion functions and function blocks. Details of these
function blocks can be found in the PACMotion Multi-Axis Motion Controller User’s Manual,
GFK-2448.

= PROFINET I/O Communication
Consists of the PNIO_DEV_COMM function. For details, refer to the PACSystems RX3i & RSTi-EP
PROFINET I/O Controller Manual, GFK-2571.

GFK-2950D November 2018 63

Chapter 4. Ladder Diagram (LD) Programming

4.1 Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root, trigonometric, and inverse
trigonometric operations.

Function Mnemonic Description
Exponential |EXP_REAL Raises e to the value specified in IN (e"). Calculates the inverse natural
EXP_LREAL logarithm of the IN operand.
EXPT_REAL Calculates IN1 to the IN2 power (IN1"?).
EXPT_LREAL
Inverse Trig |ACOS_REAL Calculates the inverse cosine of the IN operand and expresses the result in
ACOS_LREAL radians.
ASIN_REAL Calculates the inverse sine of the IN operand and expresses the result in
ASIN_LREAL radians.
ATAN_REAL Calculates the inverse tangent of the IN operand and expresses the result in
ATAN_LREAL radians.
Logarithmic |LN_REAL Calculates the natural logarithm of the operand IN.
LN_LREAL
LOG_REAL Calculates the base 10 logarithm of the operand IN.
LOG_LREAL
Square Root [SQRT_DINT Calculates the square root of the operand IN, a double-precision integer, and
stores in Q the double-precision integer portion of the square root of the input
IN.
SQRT_INT Calculates the square root of the operand IN, a single-precision integer, and
stores in Q the single-precision integer portion of the square root of the input
IN.
SQRT_REAL Calculates the square root of the operand IN, a real number, and stores the
SORT_LREAL real-number resultin Q
Trig COS_REAL Calculates the cosine of the operand IN, where IN is expressed in radians.
COS_LREAL
SIN_REAL Calculates the sine of the operand IN, where IN is expressed in radians.
SIN_LREAL
TAN_REAL Calculates the tangent of the operand IN, where IN is expressed in radians.
TAN_LREAL
64 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.1.1 Exponential/Logarithmic Functions

When an exponential or logarithmic function receives power flow, it performs the appropriate
operation on the REAL or LREAL input value(s) and places the result in output Q.

The inverse natural log (EXP) EXF LREAL EXF REAL
function raises e to the power — — — —
specified by IN.

The Power of X (EXPT) function EXFT REAL EXFT LREAL
raises the value of input IN1 to the | — — — —
power specified by the value IN2.

—{IN1 Q— —{IM1 o

—{IMZ —{IM2

The Base 10 Logarithm (LOG) LCE LREAL LOG REAL
function calculates the base 10 — — — |
logarithm of IN.

The Natural Logarithm (LN) LN REAL LM LREAL
function calculates the logarithm — - — —
of IN.

—IM Q—

The power flow output is energized when the function is performed, unless Overflow or one of the
following invalid conditions occurs:

IN < O, for LOG or LN

IN1 < O, for EXPT

IN is negative infinity, for EXP

IN, IN1, or IN2 is a NaN (Not a Number)

Operands of the Exponential/Logarithmic Functions

Parameter |Description Allowed Operands Optional
INorIN1 For EXP, LOG, and LN, IN contains the REAL or LREAL value to |All except variables No
be operated on. located in %S—%SC

The EXPT function has two inputs, IN1 and IN2. For EXPT, IN1
is the base value and IN2 is the exponent.

IN2 (EXPT) |The REAL or LREAL exponent for EXPT. All except variables No
located in %S—%SC
Q Contains the REAL or LREAL logarithmic/exponential value of |All except constants and [No
IN or of IN1 and IN2. variables located in %S—
%SC

GFK-2950D November 2018 65

Chapter 4. Ladder Diagram (LD) Programming

4.1.2 Square Root

SQRT DINT Mnemonics:

| SQRT_DINT
SQRT_INT

[~ SQRT_REAL
SQRT_LREAL

When the Square Root function receives power flow, it finds the square root of IN and stores the result
in Q. The output Q must be the same data type as IN.

The power flow output is energized when the function is performed without Overflow, unless one of
these invalid REAL operations occurs:

m IfIN<O,Qissetto0andENO is set FALSE.
m IfINisaNaN (Not a Number), Q will also be a NaN value and ENO will be set false.
Example

The square root of the integer number located at %AI0001 is placed into %R00003 when %100001 is
ON.

SORT INT
100004

mooni —{IN 2 [~ ROOO0Z

Operands for the Square Root Function

Parameter |Description Allowed Operands Optional

IN The value to calculate the All except variables located in %S - %SC No
square root of. If IN < 0, the
function does not pass power
flow.

Q The calculated square root. |All except constants and variables located in %S - %SC |No

66 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.1.3

SIM LREAL

Trig Functions

Mnemonics:

SIN_REAL
SIN_LREAL

COS_REAL
COS_LREAL

TAN_REAL
TAN_LREAL

The SIN, COS, and TAN functions are used to find the trigonometric sine, cosine, and tangent,

respectively, of an input whose units are radians. When one of these functions receives power flow, it

computes the sine (or cosine or tangent) of IN and stores the result in output Q.

The SIN, COS, and TAN functions accept a broad range of input values, where -2°° < IN < 2%,
(2% is approximately 9.22x10"). Input values outside this range will produce incorrect results.

The power flow output is energized unless the following invalid condition occurs:
m INorQisaNaN (Nota Number)

Operands of Trig Functions

Parameter |Description Allowed Operands Optional
IN Number of radians. All except variables located in %S—%SC [No
2P < IN<2®
Q Trigonometric value of IN (REAL or LREAL) |All except constants and variables No
located in %S—%SC
Example

The COS of the value in V_R00001 is placed in V_R00033.

GFK-2950D

ROOOO1 —IN

CCS REAL

QF— Rooo22

November 2018

67

Chapter 4. Ladder Diagram (LD) Programming

4.1.4 Inverse Trig - ASIN, ACOS, and ATAN

AZIN LREAL Mnemonics:
ASIN_REAL
ASIN_LREAL
- ACOS_REAL
ACOS_LREAL

ATAN_REAL
ATAN_LREAL

When an Inverse Sine (ASIN), Inverse Cosine (ACOS), or Inverse Tangent (ATAN) function receives
power flow, it respectively computes the inverse sine, inverse cosine or inverse tangent of IN and
stores the result in radians in output Q.

The ASIN and ACOS functions accept a narrow range of input values, where -1 < IN < 1. Given a valid
value for the IN parameter, the ASIN function produces a result Q such that:

ASlN(lN):—gngg

The ACOS function produces a result Q such that:
ACOS(IN)=—-0<Q<Tr

The ATAN function accepts the broadest range of input values, where -oo < N < +00, Given a valid value
for the IN parameter, the ATAN function produces a result Q such that:

ATAN(lN):—gSng

The power flow output is energized unless one of the following invalid conditions occurs:

m INis outside the valid range for ASIN, ACOS, or ATAN
m INisaNaN (Nota Number)

Operands of Inverse Trig Functions

Parameter |Description Allowed Operands Optional

IN The REAL or LREAL value to process. |All except variables located in %S - %SC No
ASINand ACOS:-1<IN<1
ATAN: -0 <IN <€ +o0

Q Trigonometric value of IN. REAL or All except constants and variables located in [No
LREAL value expressed in radians. %S - %SC
ASIN: (-1t/2) < Q < (r/2)
ACOS: 0<Q<m

ATAN: (-n/2) <Q < (rn/2)

68 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.2 Bit Operation Functions

The Bit Operation functions perform comparison, logical, and move operations on bit strings.

Function Mnemonics Description
Bit Position BIT_POS_DWORD Bit Position. Locates a bit set to 1 in a bit string.
BIT_POS_WORD
Bit Sequencer |BIT_SEQ Bit Sequencer. Sequences a string of bit values, starting at ST. Performs

a bit sequence shift through an array of bits. The maximum length
allowed is 256 words.

Bit Set, Clear |BIT_SET_DWORD Bit Set. Sets a bit in a bit string to 1.
BIT_SET_WORD
BIT_CLR_DWORD Bit Clear. Clear a bit within a string by setting that bit to 0.
BIT_CLR_WORD
Bit Test BIT_TEST_DWORD Bit Test. Tests a bit within a bit string to determine whether that bit is
BIT_TEST_WORD currently 1 or 0.
Logical AND AND_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
AND_WORD corresponding bits are both 1, places a 1 in the corresponding location
in output string Q; otherwise, places a 0 in the corresponding location in
Q.
Logical NOT NOT_DWORD Logical invert. Sets the state of each bit in output bit string Q to the
NOT_WORD opposite state of the corresponding bit in bit string IN1.
Logical OR OR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
OR_WORD corresponding bits are both 0, places a 0 in the corresponding location
in output string Q; otherwise, places a 1 in the corresponding location in
Q.
Logical XOR XOR_DWORD Compares the bit strings IN1 and IN2 bit by bit. When a pair of
XOR_WORD corresponding bits are different, places a 1 in the corresponding
location in the output bit string Q; when a pair of corresponding bits are
the same, placesa 0in Q.
Masked MASK_COMP_DWORD [|Masked Compare. Compares the contents of two separate bit strings
Compare MASK_COMP_WORD |With the ability to mask selected bits.
Rotate Bits ROL_DWORD Rotate Left. Rotates all the bits in a string a specified number of places
ROL_WORD to the left.
ROR_DWORD Rotate Right. Rotates all the bits in a string a specified number of places
ROR_WORD to the right.
Shift Bits SHIFTL_DWORD Shift Left. Shifts all the bits in a word or string of words to the left by a
SHIFTL_WORD specified number of places.
SHIFTR_DWORD Shift Right. Shifts all the bits in a word or string of words to the right by
SHIFTR_WORD a specified number of places.
GFK-2950D November 2018 69

Chapter 4. Ladder Diagram (LD) Programming

4.2.1 Data Lengths for the Bit Operation Functions

The Bit Operation functions operate on a single WORD or DWORD of data or up to 256 WORDs or
DWORDs that occupy adjacent memory locations.

Bit Operation functions treat the WORD or DWORD data as a continuous string of bits, with bit 1 of the
first WORD or DWORD being the Least Significant Bit (LSB). The last bit of the last WORD or DWORD is
the Most Significant Bit (MSB). For example, if you specify three WORDs of data beginning at reference
%R0100, they are treated as 48 contiguous bits.

WRMOO |16 |15 (14 (1512|1110 9| & | 7| 634 3| 2] 1 |[hbit1(LsE)
FROI01 | 32 |3 |30 |29 |28 |27 (26 |25 (24 |23 (22|21 (2019 (18 |17

WROM0Z) 45 | 47 |46 | 45|44 |45 (42 |41 (40|39 (33| 57 [36 |35 | 34 | 33

T
(MSE)

Warning

Overlapping input and output reference address ranges in multiword
functions is not recommended, as it can produce unexpected results.

Note that for all functions (Bit Test, Bit Set, Bit Clear, and Bit Position) that return a bit position
indicator as an output parameter (POS), bit position numbering starts at 1, not 0, as shown in the
diagram above.

70 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,2.2 Bit Position

BIT BIT
| FOS | _| PO5
DHORD HOED
" i
—IN ar —IN ar
POS POS

The Bit Position function locates a bit set to 1 in a bit string.

Each scan that power is received, the function scans the bit string starting at IN. When the function
stops scanning, either a bit equal to 1 has been found or the entire length of the string has been
scanned.

POS is set to the position within the bit string of the first non-zero bit; POS is set to zero if no non-zero
bit is found.

A string length of 1 to 256 WORDs or DWORDs can be selected. The function passes power flow to the
right whenever it receives power.

Operands of Bit Position

Parameter Description Allowed Operands Optional

Length The number of WORDs or DWORDs in the bit string. [Constants No
(displayed as ??) |1 <Length < 256.

IN The data to operate on All. Constants may only be No
used when Length is 1.

Q Energized if a bit set to 1 is found Flow Yes

POS An unsigned integer giving the position of the first |All except constants and No
nonzero bit found, or zero if no non-zero bit is found [variables located in %S - %SC

Examples

When V_I00001 is set, the bit string starting at V_M00001 is searched until a bit equal to 1 is found, or
6 words have been searched. Coil V_Q00001 is turned on. If a bit equal to 1 is found, its location within
the bit string is written to V_AQ0001 and V_Q00002 is turned on. For example, if V_00001 is set, bit
V_M00001 is 0, and bit V_M0002 is 1, the value written to V_AQO0001 is 2.
_I000m EIT PO | V_O00001

N HOED { F—
E V_ 0000z

v_moooo1 {18 o——

POS— W_A000M

GFK-2950D November 2018 71

Chapter 4. Ladder Diagram (LD) Programming

4.2.3 Bit Sequencer

The Bit Sequencer (BIT_SEQ) function performs a bit sequence shift through a series of

contiguous bits. BIT SEQ
The operation of BIT_SEQ depends on the value of the reset input (R), and both the .
current value and previous value of the enabling power flow input (EN): 7
E
DIE
¥
&T
R Current EN Previous EN Current Bit Sequencer Execution
Execution Execution Execution
ON ON/OFF ON/OFF Bit sequencer resets
OFF OFF ON Bit sequencer increments/decrements by 1
OFF Bit sequencer does not execute
ON ON/OFF Bit sequencer does not execute

The reset input (R) overrides the enabling power flow (EN) and always resets the sequencer. When R is
active, the current step number is set to the value of the optional N operand. If you did not specify N,
the step number is set to 1. All bits in the bit sequencer, ST, are set to 0, except for the bit pointed to by
the current step, which is set to 1.

When EN is active and R is not active, and the previous EN was OFF, the bit pointed to by the current
step number is cleared. The current step number is incremented or decremented, based on the
direction (DIR) operand. Then the bit pointed to by the new step number is set to 1.

m When the step number is being incremented and it goes outside the range of
(1 < step number < Length), it is set back to 1.

m When the step number is being decremented and it goes outside the range of
(1 < step number < Length), it is set to Length.

The parameter ST is optional. If it is not used, BIT_SEQ operates as described above, except that no bits
are set or cleared. The function just cycles the current step number through its allowed range.

BIT_SEQ passes power to the right whenever it receives power.

Note: Before using the BIT_SEQUENCER function block, the current step number (Word 1 in the
control block) must be set to an integer value between 1 and the length, as defined in the
function block properties. Failure to properly initialize the step number in the BIT_SEQUENCER
function block may result in the CPU going to STOP-HALT mode.

Asserting the Reset parameter (R), before using the BIT SEQUENCER function block assures
that the current step number is set to a valid value.

72 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Memory Required for Bit Sequencer

Each bit sequencer uses a three-word array of control block information. The control block can be a
symbolic variable or it can be located in %R, %W, %L, or %P memory:

Word 1 | current step number

Word 2 | length of sequence (in bits)

Word 3 | control word

Note: Do not write to the control block memory registers from other functions.

Word 3 (the control word) stores the state of the Boolean inputs and outputs of its associated function
in the following format:
[15]14]13]12]11]10] 9] 8] [71e6[5]4a]3]2]1]o0]

=

Reserved
Reserved

OK (status input
EN (enable input

Notes:
Bits O through 13 are not used.
In the N operand, bits are entered as 1 through 16, not 0 through 15.

Operands for Bit Sequencer

Warning

Do not write to the Control Block memory with other instructions.
Overlapping references may cause erratic operation of BIT_SEQ.

Parameter |Description Allowed Operands |Optional
Address Beginning address of the Control Block, which is a three-word Symbolic variables, |No
(222?) array: variables located in

Word 1: current step number %R, %W, %P, or %L

Word 2: length of sequence in bits
Word 3: control word, which tracks the status of the last enabling
power flow and the status of the power flow to the right.

Length (??) |The number of bits in the bit sequencer, ST, that BIT_SEQ will step [Constants No
through. 1 <Length < 256.

R When R is energized, the step number of BIT_SEQ is set to the Flow No
value in N (default = 1), and the bit sequencer, ST, is filled with
zeroes, except for the current step number bit.

DIR (Direction) When DIR is energized, the step number of BIT_SEQ is [Flow No
incremented prior to the shift. Otherwise, it is decremented.

GFK-2950D November 2018 73

Chapter 4. Ladder Diagram (LD) Programming

Parameter |Description Allowed Operands |Optional

N The value that the step number is set to when R is energized. All except variables |Yes
Default valueis 1. 1 <N < Length. If N < 1, the step number will be |located in %S - %SC
reset to 1 when Ris energized. If N > Length, the step number will
be reset to Length. Must be an integer variable or constant.

ST Contains the first word of the bit sequencer. All except constants, |Yes
flow, and variables

If ST is not used, the Bit Sequencer function operates as described
located in %S

above, except that no bits are set or cleared. The function just
cycles the current step number (in word 1 of the control block)
through its allowed range.

If ST is in %M memory and the Length is 3, the bit sequencer
occupies 3 bits; the other 5 bits of the byte are not used. If ST is in
%R memory, and the Length is 17, the bit sequencer uses 4 bytes,
all of %R1 and %R2.

Example

In the following example, a #FST_SCN system variable is used to set CLEAR to ON for one scan. This
sets the step number in Word 1 of the Bit Sequencer’s control block to an initial value of 3.

The Bit Sequencer operates on register memory %R00001. Its control block is stored in registers
%R0010, %R0011, and %R0012. When CLEAR is active, the sequencer is reset and the current step is
set to step number 3, as specified in N. The third bit of %R0001 is set to one and the other seven bits
are set to zero.

When NXT_CYC is active and CLEAR is not active, the bit for step number 3 is cleared and the bit for
step number 2 or 4 (depending on whether DIRECTION is energized) is set.

#FST_SCH CLEAR
1 it
P Ry

HET_CYC BIT SEQ
| | f—

11

CLEAR ROOZ00
| | g
1 1]

DIRECTION
| | DIR

3 —H
ROOOOY —5T

74 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.2.4

BIT
5ET
DHORD
"7

1IN

—EIT

Bit Set, Bit Clear

| [1:31.1; i Mnemonics
Dﬂgﬂﬂ BIT_SET_DWORD
. BIT_SET_WORD
BIT_CLR_DWORD
—|BIT BIT_CLR_WORD

The Bit Set (BIT_SET_DWORD and BIT_SET_WORD) function sets a bit in a bit string to 1. The Bit Clear

(BIT_CLR_DWORD and BIT_CLR_WORD) function clears a bit in a string by setting the bit to 0.

Each scan that power is received; the function sets or clears the specified bit. If a variable rather than a
constant is used to specify the bit number, the same function can set or clear different bits on
successive scans. Only one bit is set or cleared, and the transition information for that bit is updated.

The transition status of all the other bits in the bit string is not affected.

The function passes power flow to the right, unless the value for BIT is outside the specified range.

Operands for Bit Set, Bit Clear

Parameter |Description Allowed Operands Optional
Length (??) |The number of WORDs or DWORDs in the [Constants No
bit string. 1 < Length < 256.
IN The first WORD or DWORD of the data to |All except constants, flow, and variables No
process located in %S
BIT The number of the bit to set or clear in IN. |All except variables located in %S - %SC No
1 <BIT <(16 x Length) for WORD.
1< BIT <£(32 x length) for DIWVORD
Example 1
Whenever input V_10001 is set, bit 12 of the ;tring beginning at reference v 0000 [BITEET
%R00040 (as specified by variable V_R0040) is set to 1. | WORD |
148
W_RO0040 — TN
1z —|EIT
Example 2
Whenever V_I00001 is set, %M00043, the third bit of the string beginning at v—fu?um B‘Eigl’
%MO00041, is set to 1. Note that neither the status nor the transition value of any L B
of the other bits in the same byte as %M00043 (e.g., %M00041, %M00042, !
%M00044, etc.) is affected by the BIT_SET function V_M00041 1N
3 —EIT
GFK-2950D November 2018 75

Chapter 4. Ladder Diagram (LD) Programming

4.2.5

When the Bit Test function receives power flow, it tests a bit within a bit string to
determine whether that bit is currently 1 or 0. The result of the test is placed in

Bit Test

output Q.

Each scan that power is received, the Bit Test function sets its output Q to the

same state as the specified bit. If a register rather than a constant is used to specify _|

the bit number, the same function can test different bits on successive sweeps. If

the value of BIT is outside the range (1 <BIT < (16 x length) for a WORD and 1 <BIT

< (32 x length) for a DWORD), then Q is set OFF.

You can specify a string length of 1 to 256 WORDs or DWORDs.

Note: When using the Bit Test function, the bits are numbered 1 through 16 for a WORD, not 0
through 15. They are numbered 1 through 32 for a DWORD.

Operands for Bit Test

BIT BIT
| TE5T [_| TEST
DHOERD HWOED
7 7
—IN aF —IN
EIT —EIT

Parameter|Description Allowed Operands Optional

Length (??) |The number of WORDs or DWORDs in the data stringto [Constant No
test. 1 < Length < 256.
IN The first WORD or DWORD in the data to test All No
BIT The number of the bit to testin IN. 1 < BIT < (16xLength). |All except variables located in |No
%S - %SC
Q The state of the specific bit tested; Q is energized if the bit |Flow No
testedisa 1.

Example 1

When input V_I0001 is set, the bit at the V_looom BITTEST

location contained in reference PICKBIT is . B

tested. f ADD

o . PRD_CDE —|IN O DINT L

The bit is part of string PRD_CDE. -

If it is 1, output Q passes power flow to the ADD PICERIT — EIT FND O —|INt O F¥D_ON

function, causing 1 to be added to the current

value of the ADD function input IN1. 1z
Example 2

When input V_I0001 is set, the bit at the location

contained in reference PICKBIT is tested. V_tooom B

The bit is part of string PRD_CDE. L HOED

Ifitis 1, output Q passes power flow and the coil + v-aonaot

Lo PED_CDE —|IN —
V_0Q0001 is turned on -
FICEEIT —EIT

76 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.2.6 Logical AND, Logical OR, and Logical XOR

AND AND OE OE XDE XOE
_|owoEn| _| woED | _|oworn{ | woED | _nwoEn| | woED |
o2 29 22 7 o o2
Nt oF —IN o ofF -t of A o <INt OF —IN O

1z 1z —1nz iz 1z 1z

Each scan that power is received, the Logical function examines each bit in bit string IN1 and the
corresponding bit in bit string IN2, beginning with the least significant bit in each. You can specify a
string length of 1 to 256 WORDs or DWORDs. The IN1 and IN2 bit strings specified may overlap.

Logical AND

If both bits examined by the Logical AND function are 1, AND places a 1 in the corresponding location in
output string Q. If either bit is O or both bits are 0, AND places a 0 in string Q in that location.

AND passes power flow to the right whenever it receives power.

Tip: You can use the Logical AND function to build masks or screens, where only certain bits are
passed (the bits opposite a 1 in the mask), and all other bits are set to 0.

Logical OR

If either bit examined by the Logical OR function is 1, OR places a 1 in the corresponding location in
output string Q. If both bits are 0, Logical OR places a 0 in string Q in that location. The function passes
power flow to the right whenever it receives power.

Tips:

m You can use the Logical OR function to combine strings or to control many outputs with one simple
logical structure. The Logical OR function is the equivalent of two relay contacts in parallel
multiplied by the number of bits in the string.

m You can use the Logical OR function to drive indicator lamps directly from input states or to
superimpose blinking conditions on status lights.

Logical XOR

When the Exclusive OR (XOR) function receives power flow, it compares each bit in bit string IN1 with

the corresponding bit in string IN2. If the bits are different, a 1 is placed in the corresponding position in

the output bit string.

For each pair of bits examined, if only one bit is 1, then XOR places a 1 in the corresponding location in

bit string Q. XOR passes power flow to the right whenever it receives power.

Tips for Logical XOR

m If string IN2 and output string Q begin at the same reference, a 1 placed in string IN1 will cause the
corresponding bit in string IN2 to alternate between 0 and 1, changing state with each scan as long
as power is received.

m You can program longer cycles by pulsing the power flow to the function at twice the desired rate
of flashing. The power flow pulse should be one scan long (one-shot type coil or self-resetting
timer).

m You can use XOR to quickly compare two bit strings, or to blink a group of bits at the rate of one ON
state per two scans.

m XORis useful for transparency masks.

GFK-2950D November 2018 77

Chapter 4. Ladder Diagram (LD) Programming

Operands for Logical AND, OR, and XOR

Parameter Description Allowed Operands Optional

Length (??) The number of words in the bit string [Constant No
on which to perform the logical
operation. 1 < Length < 256.

IN1 The first WORD or DWORD of the first |All No
string operate on.

IN2 (Must be the same data |The first WORD or DWORD of the All No

type as IN1.) second string to operate on.

Q (Must be the same data |The first WORD or DWORD of the All except constants and No

type as IN1.) operation’s result. variables located in %S memory

Example: Logical AND

When input v_l0001 is set, the 16-bit strings represented by variables WORD1 and WORD?2 are
examined. The logical AND places the results in output string RESULT.

F_Io00m ANT
| — WOrD |
1

HORD1 —{IMN

]

—~ RESULT

WORDZ —|INz

WORDI |0 (0 (0|1 |11 (1 (1|1 |1 (0 |O |1 |0 (O |0D
WORDZ2 |1 (1 (001 |1 |1 (00 (0O O (O (0|0 |1 |1 (1|1

RESULT |u |n |n |1 |1 |1 |n |n |n |n |n |n |1 |n |n |n |

Example: Logical XOR

Whenever V_I0001 is set, the bit string represented by the variable WORD3 is cleared (set to all
zeroes).

i_Iooam wAOR
| — WORD [
1

]

HORD3 —|IN1 - WORDZ

HOED2 —INZ

N{WoRrRDY (0|0 |01 |1 (1|11 |1 (10|01 |O(0]aO
RWORDY (00O |1 |1)1|1|1|1|(1|O(O0|1(O(O(f0D

Q (WORD3) |n|n|n|n|n|n|n|n|n|n|u|n|n|n|n|u|

78 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.2.7 Logical NOT

NOT NOT
_|{DWORD| | WORD |
e e
—IN] —IN ar

When the Logical Not or Logical Invert (NOT) function receives power flow, it sets the state of each bit
in the output bit string Q to the opposite of the state of the corresponding bit in bit string IN1.

All bits are altered on each scan that power is received, making output string Q the logical complement
of input string IN1. Logical NOT passes power flow to the right whenever it receives power. You can
specify a string length of 1 to 256 WORDs or DWORDs

Operands for Logical NOT

Parameter Description Allowed Operands Optional
Length (??) The number of WORDs or DWORDs in [Constant No
the bit string to NOT. 1 < Length < 256.
IN1 The first WORD or DWORD of the input|All No
string to NOT.
Q (Must be the same data [The first WORD or DWORD of the All except constants and No
type as IN1) NOT's result. variables located in %S memory
Example

When input V_I0001 is set, the bit string represented by the variable A is negated. Logical NOT stores
the resulting inverse bit string in variable B. Variable A retains its original bit string value.

_100001 HOT
WOED |

A —IN o- B

GFK-2950D November 2018 79

Chapter 4. Ladder Diagram (LD) Programming

4.2.8 Masked Compare

HMASKE HASK The Masked Compare (MASK_COMP_DWORD and MASK_COMP_WORD)
| COMP | COMP
DWORD WORD function compares the contents of two bit strings. It provides the ability
” ” to mask selected bits
<INl MCp ={IN1 MCR
Tip: Inputstring 1 might contain the states of outputs such as
e o Jdoe o ;olenoids or motor starters. Inpu‘g string 2 might contain their
input state feedback, such as limit switches or contacts.
4 BN M EBNE
- EIT —EIT

When the function receives power flow, it begins comparing the bits in the first string with the
corresponding bits in the second string. Comparison continues until a miscompare is found or until the
end of the string is reached.

The BIT input stores the bit number where the next comparison should start. Ordinarily, this is the
same as the number where the last miscompare occurred. Because the bit number of the last
miscompare is stored in output BN, the same reference can be used for both BIT and BN. The
comparison actually begins 1 bit following BIT; therefore, the initial value of BIT should be 1 less first bit
to be compared (for example, zero (0) to begin comparison at %100001). Using the same reference for
BIT and BN causes the compare to start at the next bit position after a miscompare; or, if all bits
compared successfully upon the next invocation of the function, the compare starts at the beginning.

Tip: If you want to start the next comparison at some other location in the string, you can enter
different references for BIT and BN. If the value of BIT is a location that is beyond the end of the
string, BIT is reset to 0 before starting the next comparison.

The function passes power flow whenever it receives power. The other outputs of the function depend
on the state of the corresponding mask bit.

If all corresponding bits in strings IN1 and IN2 match, the function sets the miscompare output MC
to 0 and BN to the highest bit number in the input strings. The comparison then stops. On the next
invocation of a Masked Compare, it is reset to 0.

If a Miscompare is found, that is, if the two bits being compared are not the same, the function
checks the correspondingly numbered bit in string M (the mask).

If the mask bit is a 1, the comparison continues until it reaches another miscompare or the end of the
input strings.

If a miscompare is detected and the corresponding mask bit is a 0, the function does the following:

1. Setsthe corresponding mask bitin Mto 1.

Sets the miscompare (MC) output to 1.

Updates the output bit string Q to match the new content of mask string M.
Sets the bit number output (BN) to the number of the miscompared bit.
Stops the comparison.

ks wN

80 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands for Masked Compare Function

Parameter |Description Allowed Operands Optional
Length (??) |The number of DWORDs or WORDs in thetwo |[Constant No
compared strings.
DWORD: 1 < Length £2,048
WORD: 1 < Length < 4,096
IN1 The first bit string to be compared All. Constants are legal only when No
Lengthis 1
IN2 The second bit string to be compared All. Constants are legal only when No
Lengthis 1
M The bit string mask containing the ongoing All except flow or variables in %S No
status of the compare memory. Constants are legal only
when Lengthis 1
BIT BIT+1=the bit number where the next All except variables in %S - %SC No
comparison starts memories
Q The output copy of the compare mask bit string |All except constants No
BN The number of the bit where the latest All except constants and variablesin [No
miscompare occurred, or the highest bit number |%S memory
in the inputs if no miscompare occurred
MC Can be used to determine if a miscompare has [flow Yes
occurred.
Masked Compare Example 1
When %100001 is set, MASK_COMP_WORD compares the bits W_tooom Eiuiﬁg V_0oo0m
represented by the reference VALUES against the bits represented . moRD [T
by the reference EXPECT. Comparison begins at BITNUM+1. If an 25 | v_0oo00z
unmasked miscompare is detected, the comparison stops. The VALUES —INT MC { —
corresponding bit is set in the mask RESULT. BITNUM is updated to
contain the bit number of the miscompared bit. In addition, the EXFECT TINZ - DO NEWVALS
output string NEWVALS is updated with the new value of RESULT,
and coil %000002 is turned on. Coil %Q00001 is turned on RESILT —|M BN~ BITNUM
whenever MASK_COMP_WORD receives power flow.
EITNUM — EIT
GFK-2950D November 2018 81

Chapter 4. Ladder Diagram (LD) Programming

Masked Compare Example 2

On the first scan, the Masked MASK COMP

Compare Word function executes. HST e WeRD

%M0001 through %MO0016 is — ~

compared with %M0017 through 1

%MO0032. %M0033 through I
%MO0048 contains the mask value. wooood —JMi MG @-

The value in %R0001 determines
the bit position in the two input
strings where the comparison
starts.

Moo 7 —IN2 Q— monpzEs

Mooz —M BN [~ Rooond

Rooood —{BT

Before the function is executed, the contents of the above references are:
(T1) = %i0001 = aCacCh =
[ofla1J1Jofa[1]Jofofof[1][4fof[1[1[0fo]
T IvI0017 = &0aFh=

o1 1 fofa]1fof1]ofaf1]of1]n]

1 (1]
(VI = %0035 = 000Fh =
[o]ofofoJofJo|oJoJofJo|[o]o[4[1][1]1]
(BIT/BH) -%.R0001 =0
(IWICH %0001 = OFF
The contents of these references after the function block is executed are as follows:
(113 = %I000l =
[o]1[1]of1]1]oJoJo[a[1]o[1[1]0]o]
{12y = %0017 =
(o1 [1]Jofa]1]ofJrJofa[r]of1][1][1]1]

(WL =% I0033 =

[o[ofJofoJoJoJofJ4 [ofofofofJ1[1]17[1]
(BIT/BN} - %RO001 = &

(TWICH —%.00001 =0

The #FST_SCN contact forces one and only one execution; otherwise, the function would repeat with
possibly unexpected results.

82 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,2.9 Rotate Bits

_ml:gin i Mnemonics:
. ROL_DWORD

oL ROL_WORD
ROR_DWORD

g ROR_WORD

When receiving power flow, the Rotate Bits Right (ROR_DWORD and ROR_WORD) and Rotate Bits Left
(ROL_DWORD and ROL_WORD) functions rotate all the bits in a string of WORDs or DWORDs N
positions respectively to the right or to the left. When rotation occurs, the specified number of bits is
rotated out of the input string respectively to the right or to the left and back into the string on the
other side.

The Rotate Bits function passes power flow to the right, unless the number of bits to rotate is less than
0, or is greater than the total length of the string. The result is placed in output string Q. If you want the
input string to be rotated, the output parameter Q must use the same memory location as the input
parameter IN. The entire rotated string is written on each scan that power is received.

A string length of 1 to 256 words or double words can be specified.

Operands for Rotate Bits

Parameter|Description Allowed Operands Optional
Length (??) |The number of WORDs or DWORDs in the |Constant No
string to be rotated. 1 <Length < 256.
IN The string to rotate All. Constants are legal when Length is 1 No
N The number of positions to rotate. 0 < N < |All except variables in %S - %SC memories No
Length.
Q The resulting rotated string All except constants and variables in %S No
memory
Example
Whenever input V_I0001 is set, the input bit string in v_100001 ROL location
%R0001 is rotated left 3 bits and the result is placed in { WOED L %R00002.
The actual input bit string %R0001 is left unchanged. If 1 the same
reference had been used for IN and Q, a rotation would v _Rooom —{IN O v Rooooz have
occurred in place.
2N
MSB
%R0001 <_|1|1|1|1|1|n|n|n|u|n|n|n|u|n|n|n|<_
MSB
%R0002 (after %100001 is set) [1]1]oJoJofJoJoJoJoJofofofo]1]1]1]

GFK-2950D November 2018 83

Chapter 4. Ladder Diagram (LD) Programming

4.2.10 Shift Bits

SHIFTL -
|pwozn | Mnemonics:

. SHIFTL_DWORD
—Hm B2l SHIFTL_WORD

SHIFTR_LDWORD

™o SHIFTR_WORD
—E
Shift Left

When the Shift Left (SHIFTL_WORD) function receives power flow, it shifts all the bits in a word or

group of words to the left by a specified number of places, N. When the shift occurs, the specified

number of bits is shifted out of the output string to the left. As bits are shifted out of the high end of the

string (Most Significant Bit (MSB)), the same number of bits is shifted in at the low end (Least Significant

Bit (LSB)). The SHIFTL_DWORD function operates in a similar manner on DWORDs instead of WORDs.
MsB LSH

Ez<_|1|1|n|1|1|1|1|1|1|1|n|n|1|n|u|n|<—51

Shift Right
When the Shift Right (SHIFTR_WORD) function receives power flow, it shifts all the bits in a word or
group of words a specified number of places to the right (N). When the shift occurs, the specified
number of bits is shifted out of the output string to the right. As bits are shifted out of the low end of
the string (LSB), the same number of bits is shifted in at the high end (MSB).

MSB L=B
pr[1[1]ol1 1]]r][1]1][1]o]o]1]o]0]0]-82

Shift Left and Shift Right
A string length (Length) of 1 to 256 words can be specified.

The bits being shifted into the beginning of the string are specified via input parameter B1. If the value
of N is greater than 1, each bit is filled with the same value (0 or 1). This can be:

m The Boolean output of another program function.

m All 1s. To do this, use the #AWL_ON (always on) system bit (in memory location %S7), as a
permissive to input B1.

m All 0s. To do this, use the #ALW_OFF (always off) system bit (in memory location %S58), as a
permissive to input B1.

The Shift Bits function passes power flow to the right, unless the number of bits specified to shift is

zero or is greater than the array size.

Output Q is the shifted copy of the input string. If you want the input string to be shifted, the output

parameter Q must use the same memory location as the input parameter IN. The entire shifted string is

written on each scan that power is received. Output B2 is the last bit shifted out. For example, if four

bits were shifted, B2 would be the fourth bit shifted out.

84 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands for Shift Left, Shift Right, Shift Left and Shift Right

Parameter Description Allowed Operands Optional
Length (??) The number of WORDs or DWORDs in the string. |Constants. No
1<Length < 256.
IN The string of WORDs or DWORDs to shift All. Constants are legal only|No
when Length = 1.
N The number of places (bits) to shift the array. All except variables in No
0 <N < Length %S— %SC memories
If N is 0, no shift occurs, but power flow is
generated.
If N is greater than the number of bits in the string
(Length), all bits in Q are set to the value B1, OK is
set FALSE, and B2 is set to B1.
Bl The bit value to shift into the array flow No
B2 The bit value of the last bit shifted out of the flow Yes
array.
Q The first WORD or DWORD of the shifted array ~ [All except constantsand |No
(Must be the same variables in %S memory.
data type as IN)
Example
Whenever input V_10001 is set, the bits in the input string that begins v_Lonaot SHIFTL
at WORD1 are copied to the output bit string that starts at WORD?2. L B
WORD? is left-shifted by 8 bits, as specified by the input N. The 7
resulting open bits at the beginning of the output string are set to the WORDM —IN - B2r
value of V_10002.
g—|¥ O WORDZ
_I0000Z
— ——®

GFK-2950D

November 2018

85

Chapter 4. Ladder Diagram (LD) Programming

4,3 Coils

Coils are used to control the discrete (BOOL) references assigned to them. Conditional logic must be
used to control the flow of power to a coil. Coils cause action directly. They do not pass power flow to
the right. If additional logic in the program should be executed as a result of the coil condition, you can
use an internal reference for the coil or a continuation coil/contact combination.

A continuation coil does not use an internal reference. It must be followed by a continuation contact at
the beginning of any rung following the continuation coil.

Coils are always located at the rightmost position of a line of logic.

4.3.1 Coil Checking

The level of coil checking is set to Show as error by default. If you want a coil conflict to resultin a
warning instead of this error, or if you want no warning at all, edit the Controller option: Multiple Coil
Use Warning in the programming software.

The Show as warning option enables you to use any coil reference with multiple Coils, Set Coils, and
Reset Coils, but you will be warned at validation time every time you do so. With both the Show as
warning and the no warning options, a reference can be set ON by either a Set Coil or a normal Coil and
can be set OFF by a Reset Coil or by a normal Coil.

86 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.3.2 Graphical Representation of Coils

The programming software displays the COIL, NCCOIL, SETCOIL, and RESETCOIL instructions differently
depending on the retentive state of the BOOL variables assigned to them. Examples are provided in the
discussion of each type of coil. For a discussion of retentiveness, refer to Retentiveness of Logic and
Data in Chapter 3.

Coil (Normally Open)

O O

A retentive variable is assigned to the coil A non-retentive variable is assigned to the coil

When a COIL receives power flow, it sets its associated BOOL variable ON (1). When it receives no
power flow, it sets the associated BOOL variable OFF (0). COIL can be assigned a retentive variable or a
non-retentive variable.

Valid memory areas: %l, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are permitted.
Bit-in-word references on any word-oriented memory except %Al, including symbolic non-discrete
memory, are also permitted.

Continuation Coil

A continuation coil instructs the PLC to continue the present rung's LD logic power flow value
(:} (TRUE or FALSE) at the continuation contact on a following rung.

The flow state of the continuation coil is passed to the continuation contact.
Notes:

m If the flow of logic does not execute a continuation coil before it executes a continuation contact,
the state of the continuation contact is no flow (FALSE).

m The continuation coil and the continuation contact do not use parameters and do not have
associated variables.

m You can have multiple rungs with continuation contacts after a single continuation coil.
You can have multiple rungs with continuation coils before one rung with a continuation contact.

Negated Coil

) -

A retentive variable is assigned to the negated A non-retentive variable is assigned to the negated
coil coil

When it does not receive power flow, a negated coil (NCCOIL) sets a discrete reference ON. When it
does receive power flow, NCCOIL sets a discrete reference OFF. NCCOIL can be assigned a retentive
variable or a non-retentive variable.

Valid memory areas: %l, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are permitted.
Bit-in-word references on any word-oriented memory except %Al, including symbolic non-discrete
memory, are also permitted.

GFK-2950D November 2018 87

Chapter 4. Ladder Diagram (LD) Programming

4.3.3 Set Coil, Reset Coil

@ Sostos

Set Coil and Reset Coil with a retentive variable Set Coil and Reset Coil with a non-retentive variable
assigned assigned

The SET and RESET coils can be used to keep (i.e. latch) the state of a reference either ON or OFF.

Warning

SET / RESET coils write an undefined result to the
transition bit for the given reference. This result differs
from that written by Series 90-70 CPUs and could
change for future PACSystems CPU models.

Because they write an undefined result to transition
bits, do not use SET or RESET coils with references used
on POSCON or NEGCON transition contacts.

When a SET coil receives power flow, it sets its discrete reference ON. When a SET coil does not receive
power flow, it does not change the value of its discrete reference. Therefore, whether or not the coil
itself continues to receive power flow, the reference stays ON until the reference is reset by other logic,
such as a RESET coil.

When a RESET coil receives power flow, it resets a discrete reference to OFF. When a RESET coil does
not receive power flow, it does not change the value of its discrete reference. Therefore, its reference
remains OFF until it is set ON by other logic, such as a SET coil.

The last solved SET coil or RESET coil of a pair takes precedence.
The SET and RESET coils can be assigned a retentive variable or a non-retentive variable.

Valid memory areas: %I, %Q, %M, %T, %SA - %SC, and %G. Symbolic discrete variables are permitted.
Bit-in-word references on any word-oriented memory except %Al, including symbolic non-discrete
memory, are also permitted.

Example of Set Coil, Reset Coil

EZ E1 The coil represented by E1 is turned ON when reference E2 or E6
| =) | is ON and is turned OFF when reference E5 or E3 is ON.

EE

[

= E1

N {RI—

Ez

| 1

88 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,.3.4 Transition Coils

PACSystems controllers provide four transition coils: PTCOIL, NTCOIL, POSCOIL, and NEGCOIL.
POSCOIL and NEGCOIL are updated every time they are called.

PTCOIL and NTCOIL are updated once per CPU scan.

For examples showing the differences in the operation of the two types of transition coils, see

Examples Comparing PTCOIL and POSCOIL
POSCOIL and NEGCOIL

Warning

m These transition coil instructions should not be used in a
parameterized block or user-defined function block
(UDFB) with a parameter or member. In these cases, an
R_TRIG or F_TRIG should be used instead.

m Do notoverride a transition coil by putting a force on its
reference bit. If a transition coil is overridden, the coil
has no effect on the bit, and if the override is then
removed, the coil might be set ON for one sweep. . This
can cause unexpected behavior in the Controller logic
and in field devices attached to the Controller.

m Do not write to the reference bit of a transition coil using
any other instruction or from an external device. Doing
so will destroy the coil’s one-shot nature and the coil
may not behave as described.

m Do not use a transition contact with the same reference
address used on a transition coil because the value of
the transition bit, which stores the power flow value
into the coil, will be affected.

Positive Transition Coil (POSCOIL) 2

Negative Transition Coil (NEGCOIL) 2

If:

m the transition bit is OFF, and
m theinput power flow is ON,

the POSCOIL sets the reference bit of its
associated variable ON until the coil is executed
again. When the coil is executed again, it sets its
reference bit OFF.

Note: When the Positive Transition Coil sets its
reference bit ON, it also sets its transition
bit to ON. The next time the Positive
Transition coil executes, it finds its
transition bit set to ON and sets its

reference bit to OFF.

If:

m the transition bit is OFF, and
m theinput power flow input is OFF,

the NEGCOIL sets the reference bit of its
associated variable ON until the coil is executed
again. When the coil is executed again, it sets its
reference bit OFF.

Note: When the Negative Transition Coil sets its
reference bit ON, it also sets its transition
bit to ON. The next time the Negative
Transition Coil executes, it finds the
transition bit set to ON and sets its
reference bit to OFF.

GFK-2950D

November 2018 89

Chapter 4. Ladder Diagram (LD) Programming

Operands for POSCOIL and NEGCOIL

Parameter

Description

Allowed Operands

Optional

BOOL_V

The variable associated with
POSCOIL or NEGCOIL

BOOL variable: I, Q,M, T, G, SA, SB, SC, symbolic
discrete variables, and 1/O variable.

Bit reference in BOOL variable: 1, Q, M, T, G, SA, SB, SC

No

Example for POSCOIL and NEGCOIL

When reference E1 goes from OFF to ON, coils E2 and E3 receive power flow, turning E2 ON. When E1
goes from ON to OFF, power flow is removed from E2 and E3, turning coil E3 ON.

El

EZ

@_

E3

PTCOIL and NTCOIL

Because the behavior of PTCOILs and NTCOILs is determined only by the current power flow into the
coil and the previous power flow into the coil (i.e., the transition bit), it is not affected by writes to its
associated BOOL variable by other coils or instructions in the logic. Therefore, many of the cautions

@_

that apply to POSCOILs and NEGCOILs do not apply to PTCOILs and NTCOILs.

Warning

PTCOIL and NTCOIL instructions should not be used in a
parameterized block or user-defined function block (UDFB)
with a parameter or member. In these cases, an R_TRIG or
F_TRIG should be used instead.

The transition bit of a given PTCOIL or NTCOIL is changed
only once per CPU scan. Therefore, using a PTCOIL or NTCOIL
in a block that can be called multiple times per scan can
have adverse effects on all calls after the first one because
the PTCOIL or NTCOIL cannot detect the transition on the
second and subsequent calls.

Do not override a transition coil by putting a force on its
reference bit. If a transition coil is overridden, the coil has no
effect on the bit, and if the override is then removed, the coil
might be set ON for one sweep. . This can cause unexpected
consequences in the Controller logic and in field devices
attached to the Controller.

Do not use a transition contact with the same reference
address used on a transition coil because the value of the
transition bit, which stores the power flow value into the
coil, will be affected.

90 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

@

Positive Transition Coil (PTCOIL)

'ox

Negative Transition Coil (NTCOIL)

If:
m thetransition bit is OFF, and
m theinput power flow is ON

the PTCOIL sets the reference bit and transition bit
of its associated variable ON.

If:
m thetransition bit is OFF, and
m theinput power flow is OFF

the NTCOIL sets the reference bit and transition
bit of its associated variable ON.

was executed.

The transition bit depends on the value of the input power flow the last time the PTCOIL or NTCOIL

Multiple instances of PTCOIL and/or NTCOIL can be associated with the same BOOL variable,

but the transition status of each instance of the PTCOIL or NTCOIL associated with the BOOL

Notes:
m AssoonasaPTCOIL or NTCOIL is set to ON or OFF, it updates its transition bit.
| |
variable is unique, that is, it is tracked independently.
| |

The transition bit is non-retentive, that is, it is cleared to OFF when the CPU transitions from

STOP Mode to RUN Mode. As a result, the first time a PTCOIL executes with its input power
flow set to ON its associated BOOL variable will be set to ON.

Operands for PTCOIL and NTCOIL

Parameter |Description

Allowed Operands

Optional

BOOL_V The variable associated with

PTCOIL or NTCOIL

Variablesin |, Q, M, T, SA, SB, SC, or G memories as well
as symbolic discrete variables. In addition, bit-in-word
references on any non-discrete memory (e.g., %R) or on
symbolic non-discrete variables are allowed.

No

GFK-2950D

November 2018

91

Chapter 4. Ladder Diagram (LD) Programming

Examples Comparing PTCOIL and POSCOIL

PTCOIL

In the example below, the power flow into the PTCOIL alternates between OFF and ON. On the first
sweep the power flow in is OFF, on the second sweep it is ON, and so forth. Each time the power flow
into the PTCOIL changes from OFF to ON, the value of Xsition is turned ON. Therefore, on the first
sweep, the PTCOIL turns Xsition OFF, on the second sweep it turns it ON, on the third sweep it turns it
OFF, and so forth. Notice that the behavior of the PTCOIL is not affected by the presence of the fourth
rung, which also writes to Xsition. PTCOIL behaves the same way when the fourth rung is removed.

POSCOIL

If a POSCOIL is used in place of the PTCOIL in the example below (keeping the rest of the logic identical
and same alternation of power flow into the POSCOIL), the behavior of the logic will be different. The
behavior of the POSCOIL is affected by the execution of the fourth rung, which writes to Xsition and
changes both its value and its transition bit. In this example, the POSCOIL never turns Xsition ON. If the
fourth rung is removed, POSCOIL will behave exactly as the PTCOIL behaves, turning Xsition OFF on the
first sweep, ON on the second sweep, and so forth.

" PFlowIn ' ' ' ' ' ' ’ " Xsition |

— |

?

" CopyPFI|

0

' Flip the value of PflowlIn. If it was ON turn it OFF. If it was OFF turn it ON.

FPFlowIn PFlowIn
| | (I

" CopyPFI " PFlowIn |
.4} O_

" Xsition |

O_

92 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.4 Contacts

A contact is used to monitor the state of a reference address. Whether the contact passes power flow
depends on positive power flow into the contact, the state or status of the reference address being
monitored, and the contact type.

A reference address is ON if its state is 1; it is OFF if its state is O.

Contact Display [Mnemoni [Contact Passes Power to Right...
c

Continuation —+——|CONTCON |if the preceding continuation coil is set ON
Contact

Fault Contact BHVAR pAULT if its associated BOOL or WORD variable has a point fault

——F}—
High Alarm HOBDY |0 R if the high alarm bit associated with the analog (WORD) reference is ON
Contact —B4—
Low Alarm WOEDV || OALR if the low alarm bit associated with the analog (WORD) reference is ON
Contact —iLal—
No Fault Contact| BHVAR INOFLT if its associated BOOL or WORD variable does not have a point fault
—{NF—
Normally Closed | BOOL¥ INCCON |if associated BOOL variable is OFF
—

Contact

Normally Open | BPOL¥ INOCON [if associated BOOL variable is ON

Contact
Transition BOOLY INEGCON |(negative transition contact) if BOOL reference transitions from ON
Contacts —— to OFF. Updated every time it is called.
BOOL_¥ INTCON |(negative transition contact) if BOOL reference transitions from
—H— ON to OFF. Updated once per scan.
BOOLY |pOSCON |(positive transition contact) if BOOL reference transitions from OFF
—it— to ON. Updated every time it is called.
BOOL_¥ \pTCON (positive transition contact) if BOOL reference transitions from OFF
F— to ON. Updated once per scan.

GFK-2950D November 2018 93

Chapter 4. Ladder Diagram (LD) Programming

4.4.1 Continuation Contact

——

A continuation contact continues the LD logic from the last previously-executed rung in the block that
contained a continuation coil.

The flow state of the continuation contact is the same as the preceding executed continuation coil. A
continuation contact has no associated variable.

Notes:

m Ifthe flow of logic does not execute a continuation coil before it executes a continuation contact,
the state of the continuation contact is no flow.

m The state of the continuation contact is cleared (set to no flow) each time a block begins execution.

m The continuation coil and the continuation contact do not use parameters and do not have
associated variables.
You can have multiple rungs with continuation contacts after a single continuation coil.

m You can have multiple rungs with continuation coils before one rung with a continuation contact.

94 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.4.2 Fault Contact
BHVAR
—F—

A Fault contact (FAULT) detects faults in discrete or analog reference addresses, or locates faults (rack,
slot, bus, module).

m To guarantee correct indication of module status, use the reference address (%!, %Q, %Al, %AQ) with the
FAULT/NOFLT contacts.

m Tolocate afault, use the rack, slot, bus, module fault locating system variable with a FAULT/NOFLT
contact.

Note: The fault indication of a given module is cleared when the associated fault is cleared from the
fault table.

m For /O point fault reporting, you must enable point fault references in Hardware Configuration.

FAULT passes power flow if its associated variable or location has a point fault.

Operands

Parameter|Description Allowed Operands Optional

BWVAR The variable associated with the |variables in %l, %Q, %Al, and %AQ memories, and No
FAULT contact predefined fault-locating references

GFK-2950D November 2018 95

Chapter 4. Ladder Diagram (LD) Programming

4.4.3 High and Low Alarm Contacts

HOEDV HORDV
—Es— —LAF—

The high alarm contact (HIALR) is used to detect a high alarm associated with an analog reference.

Use of this contact and the low alarm contact must be enabled during CPU configuration.

A high alarm contact passes power flow if the high alarm bit associated with the analog reference is

ON.

The low alarm contact (LOALR) detects a low alarm associated with an analog reference. Use of this

contact must be enabled during CPU configuration.

A low alarm contact passes power flow if the low alarm bit associated with the analog reference is ON.

Operands

Parameter|Description

Allowed Operands

Optional

WORDV The variable associated with the HIALR or LOALR contact

variables in Al and AQ memories|No

96 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.4.4 No Fault Contact

BHVAE
—HF}—

A No Fault (NOFLT) contact detects faults in discrete or analog reference addresses, or locates faults
(rack, slot, bus, module). NOFLT passes power flow if its associated variable or location does not have a

point fault.

m To guarantee correct indication of module status, use the reference address (%l, %Q, %Al, %AQ)

with the FAULT/NOFLT contacts.

m To locate a fault, use the rack, slot, bus, module fault locating system variables with a FAULT/NOFLT

contact.

m For /O point fault reporting, you must configure your Hardware Configuration (HWC) to enable the

PLC point faults.

Note: The fault indication of a given module is cleared when the associated fault is cleared from the

fault table.
Operands
Parameter|Description Allowed Operands Optional
BWVAR The variable associated with the |variables in %I, %Q, %Al, and %AQ memories, and No
NOFLT contact predefined fault-locating references
GFK-2950D November 2018 97

Chapter 4.

Ladder Diagram (LD) Programming

4.4.5

BOOLY
—

Normally Closed and Normally Open Contacts

BOOLY
—

A normally closed contact (NCCON) acts as a switch that passes power flow if the BOOLV operand is

OFF (false, 0).
A normally open contact (NOCON) acts as a switch that passes power flow if the BOOLV operand is
ON (true, 1).
Operands
Parameter|Description Allowed Operands Optional
BOOLV BOOLV may be a predefined system variable or a user- |discrete variablesinl,Q,M,T,S, |No
defined variable. SA, SB, SC, and G memories;
NCCON: symbolic discrete variables; bit-
If BOOLV is ON, the normally closed contact !n-word refe'rences on variables
in any non-discrete memory
does not pass power flow. .
(e.g., %L) or on symbolic non-
If BOOLV is OFF, the contact passes power flow. |discrete variables.
NOCON:
If BOOLV is ON, the normally open contact
passes power flow.
If BOOLV is OFF, the contact does not pass
power flow.
98 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.4.6 Transition Contacts

PACSystems controllers provide four transition contacts: POSCON, NEGCON, PTCON and NTCON.

m The power flow out of the POSCON and NEGCON transition contacts is determined by the last
write to the BOOL variable associated with the contact. The associated transition bit is updated
every time the function is called.

m The power flow out of the PTCON and NTCON transition contacts is determined by the value that
the associated BOOL variable had the last time the contact was executed. The associated
transition bit is updated once per scan.

For an example showing the differences in the operation of the two types of transition contacts, see
Examples Comparing PTCON and POSCON.

POSCON and NEGCON

Warning

m These transition contact instructions should not be used
in a parameterized block or user-defined function block
(UDFB) with a parameter or member. In these cases, an
R_TRIG or F_TRIG should be used instead.

m Do not use POSCON or NEGCON transition contacts for
references used with transition coils (also called one-
shot coils) or with SET and RESET coils.

m IfaSETCOIL or RESETCOIL receives positive power flow
and its associated variable is not overridden, the
SETCOIL or RESETCOIL writes the expected result to the
transition bit for the associated variable (that is, the
transition bit is set if the variable’s value is set from ON
to OFF or is set from OFF to ON, and is cleared when its
value remains the same). However, if the SETCOIL or
RESETCOIL receives positive power flow and its
associated variable is overridden, the SETCOIL or
RESETCOIL causes the transition bit to be cleared.

m Do not use a transition contact with the same reference
address used on a transition coil because the value of
the transition bit, which stores the power flow value
into the coil, will be affected.

GFK-2950D November 2018 99

Chapter 4. Ladder Diagram (LD) Programming

BOOLY BOOLY
— it —
Positive Transition Contact POSCON Negative Transition Contact NEGCON

POSCON starts passing power flow and continues|NEGCON starts passing power flow and continues
passing power flow to the right only when all of |passing power flow to the right only when all of the

the following conditions are met: following conditions are met:
m theinput power flow to POSCON is ON, m theinput power flow to NEGCON is ON
m thevalue of the associated variable is ON, m thevalue of the associated variable is OFF, and
and m the transition bit for the associated variable is
m the transition bit for the associated variable is ON
ON The NEGCON's transition bit is set to ON when the
The POSCON's transition bit is set to ON when variable associated with the NEGCON transitions
the variable associated with the POSCON from ON to OFF.

transitions from OFF to ON.

The transition bit is set to OFF when the associated variable is written to while the POSCON or
NEGCON contact is passing power flow, regardless of whether the value written is ON or OFF. Power
flow stops when the transition bit is set to OFF.

Depending on the logic flow, writes to the POSCON'’s or NEGCON's associated variable can occur at
different intervals within the Controller scan:

m multiple times during a Controller scan, resulting in the transition bit being ON for only a portion of
the scan.

m several Controller scans apart, resulting in the transition bit being ON for more than one scan.

m once per scan, for example if the POSCON or NEGCON's associated variable is a %l input bit.

The source of the write is immaterial; it can be an output coil, a function block output, the input scan,
an input interrupt, a data change from the program, or external communications. When the variable is
written, the transition bit is immediately affected. The scan does not affect the transition bit. The only
way to clear the transition bit is to write to the associated variable.

Overrides

Overrides do not protect transition bits. If a write is attempted to an overridden point, the point’s
transition bit is cleared. As a result, any associated POSCON or NEGCON contacts will stop passing
power flow.

Transition to RUN Mode

= Variables that are non-retentive and not overridden will have values and transitions cleared to O.
= Variables that are non-retentive and overridden will retain their values and transition bits.
= Variables that are retentive will retain their values and transition bits.

Operands for POSCON and NEGCON

Parameter [Description Allowed Operands Optional

BOOLV The variable associated with the |BOOL variable: I, Q, M, T, S, SA, SB, SC, and G, symbolic|No
transition contact discrete variables, |/O variables

Bit reference in BOOL variable: 1, Q, M, T, S, SA, SB, SC.

100 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

POSCON and NEGCON Example 1

Coil E2 is turned ON when the value of the variable E1 transitions El fz

from OFF to ON. It stays ON until E1 is written to again, causing the [{

POSCON to stop passing power flow. E3 Ed
— 4| { +—

Coil E4 is turned ON when the value of the variable E3 transitions
from ON to OFF. It stays ON until E3 is written to again, causing the
NEGCON to stop passing power flow.

POSCON and NEGCON Example 2

Bit %M00017 is set by a BIT_SET function and then cleared by a x EIT SET E2
BIT_CLR function. The positive transition contact X1 activates it ROED { —
the BIT_SET, and the negative transition X2 activates the
BIT CLR. Mo0017 —IN
The positive transition associated with bit %M00017 will be on

until %M00017 is reset by the BIT_CLR function. This occurs 1T

because the bit is only written when contact X1 goes from OFF Xz BICLE| B

to ON. Similarly, the negative transition associated with bit i (o
%M00017 will be ON until %6M00017 is set by the BIT_SET
function.

Mo007 —(IN

1 —|EIT

GFK-2950D November 2018 101

Chapter 4. Ladder Diagram (LD) Programming

PTCON and NTCON

Warning

PTCON or NTCON instructions should not be used in a

parameterized block or user-defined function block with a
parameter or member. In these cases, an R_TRIG or F_TRIG
should be used instead.

The transition bit of a given PTCON or NTCON is updated
only once per CPU scan. Therefore, using a PTCON or NTCON
in a block that can be called multiple times per scan may

have adverse effects on all calls after the first one because
the PTCON or NTCON cannot detect the transition on the
second and subsequent calls.

BOOL_¥
—|P|—

Positive Transition Contact PTCON

BOOL_V
— | N—
Negative Transition Contact NTCON

is OFF

PTCON passes power flow to the right only when
all of the following conditions are met:

m The input power flow to PTCON is ON.

all of the following conditions are met:

with NTCON is OFF.

is ON

NTCON passes power flow to the right only when

m The input power flow to NTCON is ON.

m The value of the BOOL variable associated m Thevalue of the BOOL variable associated
with PTCON is ON.

m The transition bit associated with the PTCON [m The transition bit associated with the NTCON

The transition bit depends on the value of the BOOL variable associated with this PTCON or NTCON
when it was last executed.

Notes:

m AssoonasaPTCON or NTCON is set to ON or OFF, it updates its transition bit.
m Multiple instances of PTCON and/or NTCON can be associated with the same BOOL variable, but
the instance data of each instance of the PTCON or NTCON associated with the BOOL variable is
unique, thatis, it is tracked independently.
m Transition data is non-retentive, that is, it is cleared to OFF when the CPU transitions from STOP
Mode to RUN Mode. As a result, the first time a PTCON executes with its input power flow set to
ON and its associated BOOL variable also set to ON, it passes power flow to the right.

Operands for PTCON and NTCON

Parameter [Description Allowed Operands Optional
BOOL_V The variable associated with BOOL variable:1,Q, M, T, S, SA, SB, SC, and G No
PTCON or NTCON contact memories, symbolic discrete variables, /O variables.
Bit reference in non-BOOL variable: R, Al, AQ, L, P, W,
and on symbolic non-discrete variables.
102 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Examples Comparing PTCON and POSCON

PTCON

The logic in the following example starts execution with all variables set to 0. Before the second sweep
begins, the Xsition variable used on the PTCON instruction is set to 1. It retains that value for sweeps 2,
3,and 4. Then it is reset back to 0 before sweep 5 begins and retains its O value for sweeps 5, 6, and 7.
This pattern repeats. The PTCON instruction in rung two passes power flow on the 2nd sweep, the 8™
sweep, the 14" sweep, and so on. These are sweeps where the Xsition variable’s value becomes a 1,
after having been a 0 on the previous sweep. On all other sweeps, the PTCON instruction does not pass
power flow.

POSCON

If a POSCON is used in place of the PTCON in the following example (keeping the rest of the logic
identical), the same alternation of the Xsition variable’s value occurs. The POSCON instruction passes
power flow on sweeps 2, 3, and 4; then again on sweeps 8, 9, and 10; and so forth. The POSCON's
behavior is dependent on Xsition's transition bit. Since Xsition’s value is written once and then simply
retained for three sweeps, its transition bit retains its same value for three sweeps. Thus the POSCON
will pass or not pass power flow for three sweeps in a row. Note that if Xsition’s value is actually
written on each sweep, the POSCON and the PTCON behave identically.

Logic Example Using PTCON

HFST_SCH ovE]

11 INT |
1T

Bettolwhe.

0 <IN O ScanCoumt

© Matiem ' ' ' ' ' ' ' "PFlowOut|
{F} Q_

' On the 2nd sweep, turn Xsition ON for 3 sweeps; on the 5™ sweep, turn it OFF for 3 sweeps, etc.

HMOD WE INT
INT L
over
SeanCount —{IN1 0O M 0O [TOMEH|
3 —IN2 0z
| Mation ' ' ' ' ' ' T
{1 M
o
4TI TNT

1—IH1 O ScanCoumt

ScanCoumt —INZ

GFK-2950D November 2018 103

Chapter 4. Ladder Diagram (LD) Programming

4.5 Control Functions

The control functions limit program execution and change the way the CPU executes the application

program.
Function Mnemonic Description
Do I/O DO_IO For one scan, immediately services a specified range of inputs or outputs. (All
inputs or outputs on a module are serviced if any reference locations on that
module are included in the DO I/O function. Partial /O module updates are not
performed.) Optionally, a copy of the scanned I/O can be placed in internal
memory, rather than at the real input points.
Drum DRUM Provides predefined On/Off patterns to a set of 16 discrete outputs in the
manner of a mechanical drum sequencer.
Edge Detectors |F_TRIG Detect the changing state of a Boolean signal.
R_TRIG
For Loop FOR_LOOP For loop. Repeats the logic between the FOR_LOOP instruction and END_FOR
EXIT_FOR instruction a specified number of times or until EXIT_FOR is encountered.
END_FOR
Mask I/O MASK_IO_INTR|Mask or unmask an interrupt from an 1/O module when using I/O variables. If not
Interrupt using 1/O variables, use SVC_REQ 17: Mask/Unmask I/O Interrupt, described
in Chapter 6.
Proportional PID_ISA Provides two PID (Proportional/Integral/Derivative) closed-loop control
Integral PID_IND algorithms:
Derivative Standard ISA PID algorithm (PID_ISA)
Control Independent term algorithm (PID_IND)
Note: For details, refer to Chapter 7.
Read Switch SWITCH_POS |Reads position of the Run/Stop switch and the mode for which the switch is
Position configured.
Scan Set 10 SCAN_SET_IO (Scans the IO of a specified scan set.
Service Request [SVC_REQ Requests a special PLC service.
Note: For details, refer to Chapter 6.
Suspend IO SUS_IO Suspends for one sweep all normal I/O updates, except those specified by DO
I/O instructions.
Suspend or SUSP_IO_INTR [Suspend or resume an |/O interrupt when using /O variables. If not using I/O
Resume /O variables, use SVC_REQ 32: Suspend/Resume /O Interrupt, described in
Interrupt Chapter 6.
104 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.5.1 Do I/O

Do 10 When the DO 1/O (DO_IO) function receives power flow, it updates inputs or outputs for
one scan while the program is running. You can also use DO_ IO to update selected I/O
during the program in addition to the normal I/O scan.

You can use DO_IO in conjunction with a Suspend 10 (SUS_IO) function, which stops the

- normal I/O scan. For details, refer to Suspend I/0.

If input references are specified, DO_IO allows the most recent values of inputs to be
—arr obtained for program logic. If output references are specified, DO I/O updates outputs
based on the most current values stored in I/O memory. I/O is serviced in increments of
entire I/O modules; the PLC adjusts the references, if necessary, while DO_IO executes. DO_IO does not
scan I/O modules that are not configured.

DO_IO continues to execute until all inputs in the selected range have reported or all outputs have
been serviced on the I/0 modules. Program execution then returns to the function that follows the
DO_IO.

If the range of references includes an option module (HSC, APM, etc.), all the input data (%I and %Al) or
all the output data (%Q and %AQ) for that module are scanned. The ALT parameter is ignored while
scanning option modules.

DO_IO passes power to the right whenever it receives power unless:

m Not all references of the type specified are present within the selected range.
m The CPU is not able to properly handle the temporary list of I/O created by the function.
m The range specified includes I/O modules that are associated with a Loss of I/O fault.

Warning

If DO_IO is used with timed or 1/0 interrupts, transition
contacts associated with scanned inputs may not
operate as expected.

Note: The Do I/O function skips modules that do not support DO_IO scanning:
IC693BEM331 90-30 Genius Bus Controller
IC694BEM331 RX3i Genius Bus Controller
IC693BEM341 90-30 2.5 GHz FIP Bus Controller
IC693DNM200 90-30 DeviceNet Master
IC695PBM300 RX3i PROFIBUS Master
IC695PBS301 RX3i PROFIBUS Slave
IC687BEM731 90-70 Genius Bus Controller
IC697BEM731 90-70 Standard Width Genius Bus Controller

GFK-2950D November 2018 105

Chapter 4. Ladder Diagram (LD) Programming

Do 1/O for Inputs

When DO_IO receives power flow and input references are specified, the PLC scans input points from
the starting reference (ST) to the ending reference (END). If a reference is specified for ALT, a copy of
the new input values is placed in memory beginning at that reference, and the real input values are not
updated. ALT must be the same size as the reference type scanned. If a discrete reference is used for
ST and END, ALT must also be discrete.

If no reference is specified for ALT, the real input values are updated. This allows inputs to be scanned
one or more times during the program execution portion of the CPU scan.

Do 1/0 for Outputs

When DO_IO receives power flow and output references are specified, the PLC writes to the output
points. If no value is specified in ALT, the range of outputs written to the output modules is specified by
the starting reference (ST) and the ending reference (END). If outputs should be written to the output
points from internal memory other than %Q or %AQ, the beginning reference is specified for ALT and
the end reference is automatically calculated from the length of the END—ST range.

Operands
Parameter |Description Allowed Operands |Optional
ST The starting address of the set of input or output points or words |I, Q, Al, AQ, I/O No

to be serviced. ST and END must be in the same memory area. Variable

m |fSTand END are placed in BOOL memory, ST must be byte-
aligned. That is, its reference address must start at (8n+1), for
example, %101, %Q09, %Q49.

m |f ST and END are mapped to analog memory, they can have
the same reference address.

m |f STis mapped to an I/O variable, the same I/O variable must
also be assigned to the END parameter, and the entire module

is scanned.
END The address of the end bit of input or output points or words to be [I, Q, Al, AQ, I/O No
serviced. Must be in the same memory area as ST. Variable

m If ST and END are placed in BOOL memory, END's reference
address must be 8n, for example, %108, %Q16.

m |f ST and END are mapped to analog memory, they can have
the same reference address.

m If STis mapped to an I/O variable, the same /O variable must
also be assigned to the END parameter, and the entire module
is scanned.

ALT For an input scan, ALT specifies the address to store scanned input |, Q, M, T, G, R, Al, AQ |Yes

point/word values. For an output scan, ALT specifies the address to

get output point/word values from, to send to the I/O modules.

Note: ALT can be a WORD only if ST and END are in analog
memory.

106 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example - Do I/O for Inputs

When DO_IO receives power flow, the PLC scans references
%10001—64 and %Q0001 is turned on. A copy of the scanned
inputs is placed in internal memory from %MO0001-64. Because a
reference is specified for ALT, the real inputs are not updated. This
allows the current values of inputs to be compared with their
values at the beginning of the scan. This form of DO_IO allows
input points to be scanned one or more times during the program
execution portion of the CPU scan.

Example - Do 1/O for Outputs

Because a reference is entered for ALT, the values at %AQ001—
004 are not written to output modules. When DO_IO receives
power flow, the PLC writes the values from references %R0001-
0004 to the analog output modules and %Q0001 is turned on.

GFK-2950D

November 2018

_I0000 0o 10

W_Ionam —| 2T

V_Ionogd — EWD

¥_MO00001 —ALT

V_0oo0o1

—

S7_I000m 0o 10

W_a00nn — 5T

W_400004¢ —{(END

W_R0000 —| ALT

¥_000001

—

107

Chapter 4. Ladder Diagram (LD) Programming

4.5.2 Edge Detectors

FTRIG R TRI
HcLk L oLk L
Falling Edge Trigger Rising Edge Trigger

These function blocks detect the changing state of a Boolean signal and produce a single pulse when an
edge is detected.

When transitional instructions, such as Transition Coils or Transition Contacts, are used inside a
function block, there is a problem when the same function block is called more than once per scan. The
first call executes the transition correctly but subsequent calls do not because they see the state as
adjusted from the first call. The rising and falling edge trigger instructions solve this problem. These
instructions have their own instance data that can be a member or an input of the function block so
that the transition state follows that of the function block instance and not the function block.

If an edge detector function block is used within a UDFB, its instance data must be a member variable
of the UDFB.

Operands
Parameter |Description Allowed Operands Optional
?2?77? Instance data for function block. Thisis a F_TRIG, R_TRIG No
structure variable, described below.
CLK Input to be monitored for a change in state. |All Yes
Q Edge detection output. Must be flow in LD. In other languages all |Yes
types allowed except S, SA, SB, SC and
constants.

Instance Data Structure

These elements cannot be published or written to.

Element Name Type Description

CLK BOOL Edge detection input. Not accessible in user logic.

Q BOOL Edge detection output. Accessible in user logic. Read only.
STATE BOOL Internal value. Not accessible in user logic.

ENO BOOL Enable Output. User logic can access as read-only.

108 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

F_TRIG Operation

When the CLK input goes from true to false, the output Q is true
for one function block instance execution. The output Q then CLK J
remains false until a new falling edge is detected.

When the Controller transitions from STOP Mode to RUN Mode

and the CLK input is false and the instance memory is non- Q S —
retentive, the output Q is true after the function block’s first
execution. After the next execution, the output is false.

7

The F_TRIG output Q will be true for one function block instance _ .
Function Block Execution

execution at a STOP Mode to RUN Mode transition after the first
download, whether or not instance memory is retentive.

R_TRIG Operation

When the CLK input transitions from false to true, the
output Q is true for one function block execution. The
output Q then remains false until a new rising edge is
detected.

When the Controller transitions from STOP Mode to RUN Q
Mode and the CLK input is true and the instance memory

is non-retentive, the output Q is set to true after the

function block's first execution. After the second Functioﬁ?,lock Execution
execution, the output is false.

CLK _J I_

If the CLK input is initialized on, the R_TRIG output Q will be true for one function block instance
execution at a STOP Mode to RUN Mode transition after the first download, whether or not instance
memory is retentive.

Example

In the following example, when Inputl transitions from false to true, the coil, Detected, is set ON for
one function block execution. The output Q remains false until a new rising edge is detected.

R TRIG

Menitor Detected

- T
p—

Inputt —CLK o

GFK-2950D November 2018 109

Chapter 4. Ladder Diagram (LD) Programming

4.5.3 Drum
DEIM The Drum function operates like a mechanical drum sequencer, which steps
—] — through a set of potential output bit patterns and selects one based on inputs to
?33? the function. The selected value is copied to a group of 16 discrete output
—s = o~ references.

When the Drum function receives power flow, it copies the contents of a selected

—k DEC|—
reference to the Q reference.

—|{rrw oo~ Power flow to the R (Reset) input or to the S (Step) input selects the reference to
be copied.

T TFI— The function passes power to the right only if it receives power from the left and
no error condition is detected.

—FIT FF|—

The DTO (Dwell Timeout Output) bit is cleared the first time the drum is in a new step. This is true:

» Whether the drum is introduced to a new step by changing the Active Step or by using the S (Step)
Input.

= Regardless of the DT (Dwell Time array) value associated with the step (even if it is 0).

= During the first sweep the Active Step is initialized.

Using Drum in Parameterized Blocks

The Drum dwell and fault timer features use an internal timer that is implemented in the same manner
as for the OFDT, ONDTR, and TMR timers. Therefore, special care must be taken when programming
Drum in parameterized blocks. Drum functions in parameterized blocks can be programmed to track
true real-time as long as the guidelines and rules below are followed. If the guidelines and rules
described here are not followed, the operation of the Drum function in parameterized blocks is
undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to ensure
these rules are followed.

The best use of a Drum function is to invoke it with a particular reference address exactly one time
each scan. With parameterized blocks, it is important to use the appropriate reference memory with
the Drum function and to call the parameterized block an appropriate number of times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that appears above
the parameterized block in the call tree. To determine the source block for a given parameterized block,
determine which block invoked that parameterized block. If the calling block is _MAIN or of type Block,
it is the source block. If the calling block is any other type (parameterized block or function block), apply
the same test to the block that invoked this block. Continue back up the call tree until the _MAIN block
or a block of type Block is found. This is the source block for the parameterized block.

110 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Programming Drum in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the parameterized block in
more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a Drum function will be called from only one logic block,
follow these rules:

1. Call the parameterized block exactly one time per execution of its source block.
2. Choose a reference address for the Drum control block that will not be manipulated anywhere else.
The reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L memory
corresponds to %P memory when the source block is _MAIN.

Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the Drum
reference memory used by each call to the parameterized block. Follow these rules and guidelines:

1. Call the parameterized block exactly one time per execution of each source block that it appears in.
2. Choose a %L reference or parameterized block formal parameter for the Drum control block. Do
not use a %R, %P, %W, or symbolic memory reference.

Notes:

m The strongly recommended choice is a %L location, which is inherited from the parameterized
block’s source block. Each source block has its own %L memory space except the _MAIN block,
which has a %P memory area instead. When the _MAIN block calls another block, the %P mappings
from the _MAIN block are accessed by the called block as %L mappings.

m If you use a parameterized block formal parameter (word array passed-by-reference), the actual
parameter that corresponds to this formal parameter must be a %L, %R, %P, %W, or symbolic
reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a unique reference
address must be used by each source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and your
parameterized block contains a Drum function, you must follow two additional rules:

m Program the source block so that it invokes the parameterized block before making any recursive
calls to itself.
m Do not program the parameterized block to call itself directly.

Using Drum in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on these and
other types of blocks, refer to Chapter 2.

When a Drum function is present inside a UDFB, and a member variable is used for the control block of
a Drum function, the behavior of the Drum function may not match your expectations. If multiple
instances of the UDFB are called during a logic sweep, only the first-executed instance will update the
timer in the Drum function. If a different instance is then executed, the timer value will remain
unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed time to its
timer functions. This behavior matches the behavior of the Drum function timer in a normal program
block.

GFK-2950D November 2018 111

Chapter 4. Ladder Diagram (LD) Programming

Example

A UDFB is defined that uses a member variable for a Drum function block. Two instances of the
function block are created: Drum_A and Drum_B. During each logic scan, both Drum_A and Drum_B are
executed. However, only the member variable in Drum_A is updated and the member variable in
Drum_B always remains at O.

Operands for Drum

Parameter

Description

Allowed Operands

Optional

77?

(Control Block) The beginning address of a five-word array that
contains the Drum Sequencer's control block. The contents of the
control block are described below.

R, P, L, W, Symbolic

No

?7?

(Length) Value between 1 and 128 that specifies the number of
steps.

Constant

No

Step input. Used to go one step forward in the sequence. When
the function receives power flow and S makes an OFF to ON
transition, the Drum Sequencer moves one step. When R (Reset)
is active, the function ignores S.

flow

No

Reset input. Used to select a specific step in the sequence. When
the DRUM function and Reset both receive power flow, DRUM
copies the Preset Step value in the Control Block to the Active
Step reference in the Control Block. Then the function copies the
value in the Preset Step reference to the Q reference bits. When
Ris active, the function ignores S.

flow

No

PTN

(Pattern) The starting address of an array of words. The number
of words is specified by the Length (??) operand. Each word
represents one step of the Drum Sequencer. The value of each
word represents the desired combination of outputs for a
particular value of the Active Step word in the control block. The
first element corresponds to an Active Step value of 1; the last
element corresponds to an Active Step value of Length. The
programming software does not create an array for you. You
must ensure you have enough memory for PTN.

All except constant
and S, SA—SC
numerical data.

No

DT

(Dwell Time) If you use the DT operand, you must also use the
DTO operand and vice-versa. The DT operand is the starting
address of Length words of memory, where Length is the number
of steps. Each DT word corresponds to one word of PTN. The
value of each word represents the dwell time for the
corresponding step of the Drum Sequencer in 0.1 second units.
When the dwell time expires for a given step the DTO bit is set.

If a Dwell Time is specified, the drum cannot sequence into its
next step until the Dwell Time has expired. The programming
software does not create an array for you. You must ensure you
allocate enough memory for DT.

All except S, SA, SB,
SC and constant

Yes

112

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Parameter | Description Allowed Operands | Optional
FTT (Fault Timeout) If you use the FTT operand, you must also use the | All except S, SA, SB, |Yes
TFT operand, and vice-versa. The FTT operand is the starting SC and constant

address of Length words of memory, where Length is the number
of steps. Each FTT word corresponds to one word of PTN. The
value of each word represents the fault timeout for the
corresponding step of the Drum Sequencer in 0.1 second units.

When the fault timeout has expired the Fault Timeout bit is set.

The programming software does not create an array for you. You
must ensure you allocate enough memory for FTT.

Q A word of memory containing the element of the PTN that All except S and No
corresponds to the current Active Step. constant
DRC (Drum Coil) Bit reference that is set whenever the function is All except S Yes

enabled and Active Step is not equal to Preset Step.

DTO (Dwell Timeout) If you use the DTO operand, you must also use All except S and Yes
DT and vice-versa. This bit reference is set if the dwell time for constant
the current step has expired.

TFT (Timeout Fault) If you use the TFT operand, you must also use the | All except S and Yes
FTT operand and vice-versa. Bit reference that is set if the drum | constant
has been in a particular step longer than the step’s specified
Fault Timeout.

FF (First Follower) The starting address of (Length/8+1) bytes of All except S and Yes
memory, where Length is the number of steps. If MOD constant
(Length/8+1)>0, FF has (Length/8+1) bytes. Each bit in the bytes
of FF corresponds to one word of PTN. No more than one bit in
the FF bytes is ON at any time, and that bit corresponds to the
value of the Active Step. The first bit corresponds to an Active
Step value of one. The last used bit corresponds to an Active Step
value of Length.

Control Block for the Drum Sequencer Function

The control block for the Drum Sequencer function contains information needed to operate the Drum
Sequencer.

address Active Step
address +1 Preset Step
address + 2 Step Control
address + 3 Timer Control

Active Step The active step value specifies the element in the Pattern array to copy to the Out
output memory location. This is used as the array index into the Pattern, Dwell Time, Fault Timeout,
and First Follower arrays.

Preset Step A word input that is copied to the Active Step output when the Reset is On.

Step Control A word that is used to detect Off to On transitions on both the Step input and the
Enable input. The Step Control word is reserved for use by the function, and must not be written to.

Timer Control Two words of data that hold values needed to run the timer. These values are reserved
for use by the function and must not be written to.

GFK-2950D November 2018 113

Chapter 4. Ladder Diagram (LD) Programming

4.5.4 For Loop

| oo | EXIEDE A FOR loop repeats rung logic a specified number of times
while varying the value of the INDEX variable in the loop.

— iwpEX A FOR loop begins with a FOR_LOOP instruction and ends
with an END_FOR instruction.

—|STAET The logic to be repeated must be placed between the FOR

| @ and END_FOR instructions.

—|EHD The optional EXIT_FOR instruction enables you to exit the loop
if a condition is met before the FOR loop ends normally.

—{INC

When FOR_LOOP receives power flow, it saves the START, END, and INC (Increment) operands and
uses them to evaluate the number of times the rungs between the FOR_LOOP and its END_FOR
instructions are executed. Changing the START and END operands while the FOR loop is executing does
not affect its operation.

When an END_FOR receives power flow, the FOR loop is terminated and power flow jumps directly to
the statement following the END_FOR instruction.

There can be nothing after the FOR_LOOP instruction in the rung and the FOR_LOOP instruction must
be the last instruction to be executed in the rung. An EXIT_FOR statement can be placed only between
a FOR instruction and an END_FOR instruction. The END_FOR statement must be the only instruction

in its rung.

A FOR_LOOP can assign decreasing values to its index variable by setting the increment to a negative
number. For example, if the START value is 21, the END value is 1, and the increment value is -5, the
statements of the FOR loop are executed five times, and the index variable is decremented by 5 in each
pass. The values of the index variable will be 21, 16, 11, 6, and 1.

When the START and END values are set equal, the statements of the FOR loop are executed only once.

When START cannot be incremented or decremented to reach the END, the statements within the FOR

loop are not executed. For example, if the value of START is 10, the value of END is 5, and the

INCREMENT is 1, power flow jumps directly from the FOR statement to the statement after the

END_FOR statement.

Note: Ifthe FOR_LOOP instruction has power flow when it is first tested, the rungs between the FOR
and its corresponding END_FOR statement are executed the number of times initially specified
by START, END, and INCREMENT. This repeated execution occurs on a single sweep of the PLC
and may cause the watchdog timer to expire if the loop is long.

Nesting of FOR loops is allowed, but it is restricted to five FOR/END_FOR pairs. Each FOR instruction

must have a matching END_FOR statement following it.

Nesting with JUMPs and MCRs is allowed, provided that they are properly nested. MCRs and ENDMCRs

must be completely within or completely outside the scope of a FOR_LOOP/END_FOR pair. JUMPs and

LABEL instructions must also be completely within or completely outside the scope of a

FOR_LOOP/END_FOR pair. Jumping into or out of the scope of a FOR/END_FOR is not allowed.

114 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands
Only the FOR_LOOP function requires operands.
Parameter |[Description Allowed Operands Optional
INDEX The index variable. When the loop has completed, this value|All except constants, flow, No
is undefined. and variables in %S - %SC

Note: Changing the value of the index variable within the
scope of the FOR loop is not recommended.

START The index start value. All except variablesin %S - [No
%SC

END The index end value. All except variablesin %S - [No
%SC

INC The increment value. (Default: 1.) Constants Yes

For Loop Example 1

The value for %M00001 (START) is 1 and the value for %M00017 v roR
(END) is 10. The INDEX (%R00001) increments by the value of the INC -

operand (which is assumed to be 1 when omitted) starting at 1 until V_R00001 —| INDEX
it reaches the ending value 10. The ADD function of the loop is

executed 10 times, adding the current value of 11 (%R00001), which V_M00001 7 START
will vary from 1 to 10, to the value of 12 (%R00002). v_mesetrr - B4m

— INC

W_I0oom AT INT

V_Ro00o1 — 1M1

im]

— V_RO0003

V_R0000z —|INZ

B2
For Loop Example 2
The value for %T00001 (START) is -100 and the value for %T00017 Ve[R
(END) is 100. The INDEX (%R00001) increments by tens, starting -
at -100 until it reaches it end value of +100. The EQ function of the %_R000at — INDEX
loop tries to execute 21 times, with the INDEX (%R00001) being
equal to -100, -90, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, V_T00001 7 START

30, 40, 50, 60, 70, 80, 90, and 100. However, when the INDEX
(%R00001) is O, the EXIT statement is enabled and power flow jumps
directly to the statement after the END_FOR statement. 1o —{INC

10000 EQ INT

V_T00017 — EXD

U_R00001 —IN1 O—EXITFOR

0 —INz

2

GFK-2950D November 2018 115

Chapter 4. Ladder Diagram (LD) Programming

4.5.5 Mask I/O Interrupt
MASK 10 Mask or unmask an interrupt from an I/O board when using I/O variables. If
— INTR L not using I/O variables, use SVC_REQ 17.
When the interrupt is masked, the CPU processes the interrupt but does not
—|mtask schedule the associated logic for execution. When the interrupt is unmasked,
the CPU processes the interrupt and schedules the associated logic for
i1 execution.
When the CPU transitions from STOP Mode to RUN Mode, the interrupt is
unmasked

The function passes power to the right when it executes successfully.

Operands
Parameter |Description Allowed Types Allowed Operands Optional
MASK Selects unmask or mask operation. |BOOL variable data flow,1,Q, M, T,G,S, SA, [No
Unmask=0; Mask=1 or Bit reference in SB,SC,R, P, L, Al, AQ, W,
non-discrete memory [symbolic, I/O variable
IN1 The interrupt trigger to be masked [BOOL or WORD ,Q,M,T,G,R, P, L, Al, AQ, W, |No
or unmasked. variable I/O variable
m Thel/Oboard mustbea
supported input module.
m The reference address specified
must correspond to a valid
interrupt trigger reference.
m Theinterrupt for the specified
channel must be enabled in the
configuration.
Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware module and is
configured as an 1/O interrupt to a program block. When the BOOL variable MaskOn_Off transitions
from OFF to ON and A1l is set to ON, the interrupt Mod_Int is masked (not executed) for one scan.

hla

116

MazkOn_OfFf —hASK

d_Int —IN1

h==k On_Off h==k On_Off
I ®
A MASH 10
1| INTR

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,5.6 Read Switch Position

Read Switch Position (SWITCH_POS) allows the logic to read the current position of the
RUN/STOP switch, as well as the mode for which the switch is configured.

Operands
Parameter |Description Allowed Operands |(Optional
POS Memory location at which to write current switch position value. |All except S, SA, SB, SC |No

1- RUN I/O Enabled
2 - RUN Outputs Disabled
3- STOP Mode

MODE Memory location to which switch configuration value is written. |All except S, SA, SB, SC |No
0 - Switch configuration not supported

1 - Switch controls RUN/STOP mode

2 - Switch not used, or is used by the user application

3 - Switch controls both memory protection and RUN/STOP mode

4 - Switch controls memory protection

GFK-2950D November 2018 117

Chapter 4. Ladder Diagram (LD) Programming

4,5.7 Scan Set 10

SCAN SET IO The Scan_Set_lO function scans the I/O of a specified scan set

— number. (Modules can be assigned to scan sets in hardware
configuration.) You can specify whether the Inputs and/or Outputs of
N the associated scan set will be scanned.

Execution of this function block does not affect the normal scanning

auT process of the corresponding scan set. If the corresponding scan set

SET

is configured for non-default Number of Sweeps or Output Delay
settings, they remain in effect regardless of how many executions of
the Scan Set 10 function occur in any given sweep.

The Scan Set 10 function skips those modules that do not support Do I/O scanning.

Operands for SCAN_SET_IO

Parameter |Description Allowed Types Allowed Operands |(Optional
IN If true the inputs will be scanned. BOOL variable or bit Power flow No
reference in a non-
BOOL variable
ouT If true the outputs will be scanned. BOOL variable or bit Power flow No
reference in a non-
BOOL variable
SET Number of the scan set to be scanned. UINT All except %S No
Scan sets are specified in the CPU memory types.
hardware configuration and assigned to
modules in the module hardware
configuration.
ENO Energized when all arguments to the BOOL variable or bit Power flow. Yes
function are valid and there are no errors |reference in a non-
in scanning. BOOL variable
Example
By using the Scan Set IO function block in an SCAN SET 10
interrupt block, you can create a custom 1/0 L
scan. For example, two Scan Set 10 function
blocks can be used in an interrupt block to Scaninputs

scan the inputs of a scan set at the
beginning of the block and the outputs of

the

same scan set at the end of the block.

In the example at right:

118

When Scanlnputs is ON, input data for all I/0
modules assigned to Scan Set 2 is updated.
When ScanOutputs is ON, output data for all

I/0 modules assigned to Scan Set 2 is
updated

ScanCutputs

oUT

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.5.8 Suspend I/O

sos1o] 1he Suspend 1/O (SUS_IO) function stops normal 1/O scans from occurring for one CPU

- - sweep. During the next output scan, all outputs are held at their current states. During the
next input scan, the input references are not updated with data from inputs. However,
during the input scan portion of the sweep, the CPU verifies that Genius bus controllers have
completed their previous output updates.

Note: The PACSystems SUS_IO function suspends analog and discrete /O, whether integrated 1/O or
Genius I/0. It does not suspend Ethernet Global Data. For details, refer to PACSystems RX7i,
RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual, GFK-2224.

When SUS_IO receives power flow, all /O servicing stops except that provided by DO_IO functions.

Warning

If SUS_IO were placed at the left rail of the ladder,
without enabling logic to regulate its execution, no
regular 1/0 scan would ever be performed.

SUS_IO passes power flow to the right whenever it
receives power.

GFK-2950D November 2018 119

Chapter 4. Ladder Diagram (LD) Programming

Example

The example at right shows a SUS_IO function and a
DO_IO function used to stop 1/0 scans, then cause certain
I/0 to be scanned from the program.

Inputs %100010 and %100011 form a latch circuit with the
contact from %MO00001. This keeps the SUS_IO function
active on each sweep until %100011 goes on. If this input
were not scanned by DO_IO after SUS_IO went active,
SUS_IO could only be disabled by powering down the PLC.

Output %Q00002 is set when both DO_IO functions
execute successfully. The rung is constructed so that both
DO_|0 functions execute even if one does not set its OK

output. With normal 1/0 suspended, output %Q00002 is not

updated until a DO_IO function with %Q00002 in its range
executes. This does not occur until the sweep after the
setting of %Q00002. Outputs that are set after a DO_IO
function executes are not updated until another DO_IO
function executes, typically in the next sweep. Because of
this delay, most programs that use SUS_IO and DO_IO
place the SUS_IO function in the first rung of the program,
the DO_IO function that processes inputs in the next rung,
and the DO_IO function that processes outputs in the last
rung.

The range of the DO_IO function doing outputs is %Q00001
through %Q00030. If the module in this range were a 32-point

module, the DO_IO function would actually perform a scan of the

entire module. A DO_|O function will not break the scan in the
middle of an I/0 module

|Start of Frograrm

V_I00010 V_I000M 203 10
N 1}
V_Mo0ooi
N
V_M00001 ToIo | V_Mo0551
N {
W_Innoat — 8T
V_I0aoie —| EWD
— ALT

| Oitker logic goes here.

V_MO00001 | Coo | V_MO00551 V_0000
N N { F
¥_Qooool —5T
V_000030 —END
—ALT
|End of prograte,
GFK-2950D

120 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Chapter 4. Ladder Diagram (LD) Programming

4.5.9 Suspend or Resume I/O Interrupt

Suspend or resume an I/O interrupt when using 1/O variables. [susF o
If not using I/O variables, use SVC_REQ 32. — mwTR
—{susF

—{IN1

The function executes successfully and passes power to the right unless:

m The I/O module associated with the interrupt trigger specified in IN1 is not supported.
m The reference address specified does not correspond to a valid interrupt trigger reference.
m The specified channel does not have its interrupt enabled in the configuration.

Operands
Parameter|Description Allowed Types Allowed Operands Optional
SUSP Selects a suspend or resume |BOOL variable or bit data flow,1,Q, M, T, G, S, SA, |No
operation. reference in a non-BOOL SB, SC, R, P, L, discrete
1 (ON)=suspend variable symbolic, 1/0 variable
0 (OFF)=resume
IN1 The interrupt trigger to be BOOL or WORD variable ,Q,M, T,G,R,P, L, Al AQ, W, |No
suspended or resumed. I/O variable
Example

In the following example, the variable Mod_Int is mapped to an I/O point on a hardware module and is
configured as an 1/O interrupt to a program block. When the BOOL variable SuspOn_Off is set to ON
and Al is set to ON, interrupts from Mod_Int are suspended until SuspOn_Off is reset.

Susp On_Off Su=p On_ Off
N (3)
A =
A1 SUSF [0
1| INTR |

SuspOn_Off —SUSP

tod_Int —]IN4

GFK-2950D November 2018 121

Chapter 4. Ladder Diagram (LD) Programming

4.6 Convers

ion Functions

The Conversion functions change a data item from one number format (data type) to another. Many
programming instructions, such as math functions, must be used with data of one type. As a result,
data conversion is often required before using those instructions.

Function

| Description

Convert Angles

DEG_TO_RAD

Converts degrees to radians

RAD_TO_DEG

Converts radians to degrees

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT_TO_BCD4

Converts UINT (16-bit unsigned integer) to BCD4

INT_TO_BCD4

Converts INT (16-bit signed integer) to BCD4

Convert to BCD8 (8-digit Binary-Coded-Decimal)

DINT_TO_BCDS8

| Converts DINT (32-bit signed integer) to BCD8

Convert to INT (16-bit signed integer)

BCD4_TO_INT Converts BCD4 to INT
UINT_TOL_INT Converts UINT to INT
DINT_TO_INT Converts DINT to INT
REAL_TO_INT Converts REAL to INT

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT Converts BCD4 to UINT
INT_TO_UINT Converts INT to UINT

DINT_TO_UINT Converts DINT to UINT
REAL_TO_UINT Converts REAL to UINT

Convert to DINT (32-bit signed integer)

BCD8_TO_DINT Converts 8-digit Binary-Coded-Decimal (BCD8) to DINT
UINT_TO_DINT Converts UINT to DINT

INT_TO_DINT Converts INT to DINT

REAL_TO_DINT Converts REAL (32-bit signed real or floating-point values) to DINT
LREAL_TO_DINT Converts REAL (64-bit signed real or floating-point values) to DINT
Convert to REAL (32-bit signed real or floating-point values)

BCD4_TO_REAL

Converts BCD4 to REAL

BCD8_TO_REAL

Converts BCD8 to REAL

UINT_TO_REAL Converts UINT to REAL
INT_TO_REAL Converts INT to REAL
DINT_TO_REAL Converts DINT to REAL

LREAL_TO_REAL

Converts LREAL to REAL

Convert to LREAL(64-bit signed real or floating-point values)

DINT_TO_LREAL

Converts DINT to LREAL

REAL_TO_LREAL

Converts REAL to LREAL

Truncate
TRUNC_DINT Rounds a REAL number down to a DINT (32-bit signed integer) number
TRUNCL_INT Rounds a REAL number down to an INT (16-bit signed integer) number

122 PACSys

tems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.6.1 Convert Angles

DEG TO RAD REAL Mnemonics:
DEG_TO_RAD_REAL
DEG_TO_RAD_LREAL

—In 89— RAD_TO_DEG_REAL
RAD_TO_DEG_LREAL

When the Degrees to Radians (DEG_TO_RAD) or the Radians to Degrees (RAD_TO_DEG) function
receives power flow, it performs the appropriate angle conversion on the REAL or LREAL value in input
IN and places the result in output Q.

DEG_TO_RAD and RAD_TO_DEG pass power flow to the right when they execute, unless IN is NaN (Not
a Number).

Operands
Parameter Description Allowed Operands Optional
IN The value to convert. All except S, SA, SB, and SC No
Q The converted value. All except S, SA, SB, and SC No
Example

A value of +1500 radians is converted to degrees. The result is El%ﬂ

placed in %R00001 and %R00002. DEG |

1500 —{IN OF Y_R000m

GFK-2950D November 2018 123

Chapter 4. Ladder Diagram (LD) Programming

4.6.2 Convert UINT or INT to BCD4

UINT mr1o] When this function receives power flow, it converts the input unsigned
- BE?H L | BCD4 | (UINT) or signed single-precision integer (INT) data into the equivalent 4-digit

—IN aF —{IN

jm)

used directly as input for another program function.

Binary-Coded-Decimal (BCD) values, which it outputs to Q.
- This function does not change the original input data. The output data can be

The function passes power flow when power is received, unless the conversion would result in a value

that is outside the range 0 to 9,999.

Tip: Data can be converted to BCD format to drive BCD-encoded LED displays or presets to external

devices such as high-speed counters.

Operands
Parameter |Description Allowed Operands Optional
IN The UINT or INT value to convert to BCD4. |All except S, SA, SB, and SC No
Q The BCD4 equivalent value of the original |All except S, SA, SB, and SC No
UINT or INT value in IN.

Example - UINT to BDC4

Whenever input %100002 is set and no errors exist, the
UINT at input location %100017 through %100032 is
converted to four BCD digits and the result is stored in
memory locations %Q00033 through %0Q00048. Coil
%M01432 is used to check for successful conversion.

Example - INT to BCD4

Whenever input %10002 is set and no errors exist, the INT
values at input locations %10017 through %10032 are
converted to four BCD digits, and the result is stored in
memory locations %Q0033 through %Q0048. Coil %Q1432
is used to check for successful conversion.

| S I0000E UINT TO V_MO01432
|| EBCD4 { :| 1
W I00mT —IN O ¥_000032
v_I0002 NTTo | Y_01432
|} BCD4 (:] |
%I00002 H01432
W I0017 —IM B—v_Q0033
00017 %200033
GFK-2950D

124 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Chapter 4. Ladder Diagram (LD) Programming

4.6.3 Convert DINT to BCDS8

DII_ET When DINT_TO_BCDS receives power flow, it converts the input signed double-

BCcDE | precision integer (DINT) data into the equivalent 8-digit Binary-Coded-Decimal (BCD)
- values, which it outputs to Q. DINT_TO_BCD8 does not change the original DINT data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the conversion would result in a value
that is outside the range 0 to 99,999,999.

Operands
Parameter |Description Allowed Operands Optional
IN The DINT value to convert to BCD8 All except S, SA, SB, and SC |No
Q The BCD8 equivalent value of the original DINT value in IN [All except S, SA, SB, and SC |No
Example
Whenever input %100002 is set and no errors exist, the | 1_100002 DINTTO
double-precision signed integer (DINT) at input location . B
%AI0003 is converted to eight BCD digits and the result is
stored in memory locations %L00001 through %L00002. V_ALIOODZ DTN O 4 L
GFK-2950D November 2018

125

Chapter 4. Ladder Diagram (LD) Programming

4.6.4 Convert BCD4, UINT, DINT, or REAL to INT

BCD4 UINT DINT REAL
_| TO INT | _|TO INT | _|TOINT | TO INT |
—IN oF —IN ar —IN aF —IN or

BDC4, UINT, and DINT

When this function receives power flow, it converts the input data into the equivalent single-precision
signed integer (INT) value, which it outputs to Q. This function does not change the original input data.
The output data can be used directly as input for another program function, as in the examples.

The function passes power flow when power is received, unless the data is out of range.
REAL

When REAL_TO_INT receives power flow, it rounds the input REAL data up or down to the nearest

single-precision signed integer (INT) value, which it outputs to Q. REAL_TO_INT does not change the
original REAL data.

Note: The output data can be used directly as input for another program function.

The function passes power flow when power is received, unless the data is out of range or NaN (Not a
Number).

Warning

Converting from REAL to INT may result in Overflow. For
example, REAL 7.4E15, which equals 7.4 x 10**, converts
to INT OVERFLOW.

Tip: Totruncate a REAL value and express the result as an INT, i.e., to remove the fractional part of
the REAL number and express the remaining integer value as an INT, use TRUNC_INT.

Operands

Parameter |Description Allowed Operands Optional
IN The value to convert to INT. All except S, SA, SB, and SC No

Q The INT equivalent value of the original value in IN. All except S, SA, SB, and SC No

126 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example: BCD4 to INT

Whenever input %l0002 is set, the BCD-4
value in PARTS is converted to a signed
integer (INT) and passed to the ADD_INT
function, where it is added to the INT value
represented by the reference RUNNING. The
sum is output by ADD_INT to the reference

TOTAL.

Example: UINT to INT

Whenever input %M00344 is set, the UINT value in
%R00234 is converted to a signed integer (INT)
and passed to the ADD function, where it is added
to the INT value in %R06488. The sum is output by
the ADD function to the reference CARGO.

Example: DINT to INT

Whenever input %M00031 is set, the DINT value in
%R00055 is converted to a signed integer (INT) and
passed to the ADD function, where it is added to the
INT at %R02345. The sum is output by the ADD

function to %R08004.

GFK-2950D

November 2018

V_R02345 —

TNz

W_I0000z BCD4 4 0T THT
E— |_TD INT B
PARTS —{IN O %_Rooooi W_Roooo —IN1 O TOT.
EONNI.. —(INZ
V_MO00344 [UINTTO ADDINT
11 INT |
1 I
V_R00z234 —|IN 0 INl O CARE
V_ROE438 —|INZ
V_MO00031 [DINTTO ATIT INT
| INT |
V_R00Ss —IN 0 IN OF ¥_E0g00

127

Chapter 4. Ladder Diagram (LD) Programming

4.6.5 Convert BCD4, INT, DINT, or REAL to UINT

BCD4 INT TO DINT EEAL i i i i
o | Jomrl | o | %5e | When this fur.lctlon receives power f!ow, it
UINT UINT UINT converts the input data into the equivalent
. single-precision unsigned integer (UINT) value,
w d o wf wf which it outputs to Q.

The conversion to UINT does not change the original data. The output data can be used directly as input
for another program function, as in the example.

The function passes power flow when power is received, unless the resulting data is outside the range
0 to +65,535.

Warning

Converting from REAL to UINT may result in Overflow. For
example, REAL 7.2E17, which equals 7.2 x 10, converts
to UINT OVERFLOW.

Operands

Parameter |Description Allowed Operands Optional
IN The value to convert to UINT. All except S, SA, SB, and SC No

Q The UINT equivalent value of the original input value in IN. |All except S, SA, SB,and SC [No

128 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example: BCD4 to UINT
Tip:

One use of BCD4_TO_UINT is to convert BCD data from the I/O structure into integer data and

store it in memory. This can provide an interface to BCD thumbwheels or external BCD electronics,

such as high-speed counters and position encoders.

In the example at right, whenever input %10002 is
set, the BCD4 value in PARTS is converted to an
unsigned single-precision integer (UINT) and
passed to the ADD_UINT function, where it is
added to the UINT value represented by the
reference RUNNING. The sum is output by
ADD_UINT to the reference TOTAL.

Example: INT to UINT

Whenever input %l0002 is set, the INT value in
%L00050 is converted to an unsigned single-
precision integer (UINT) and passed to the
ADD_UINT function, where it is added to the UINT
value in %R08833. The sum is output by
ADD_UINT to the reference TOTAL.

Example: DINT to UINT

Whenever input %I00002 is set and no errors

exist, the double precision signed integer (DINT)
at input location %R00007 is converted to an
unsigned integer (UINT) and passed to the SUB
function, where the constant value 145 is
subtracted from it. The result of the subtraction
is stored in the output reference location

Example: REAL to UINT

Whenever input %I00045 is set, the REAL value in
%L00045 is converted to an unsigned single-
precision integer (UINT) and passed to the
ADD_UINT function, where it is added to the UINT
value in %R00045. The sum is output by
ADD_UINT to the reference TOTAL.

GFK-2950D November 2018

V_I00002 EBCD4TO ATD
|} UINT UINT |
PARTS —|IN u| IN1 O TOTA
BRUNNING —IN2
V_I00002 INTTO ADD
|} LUINT LINT
I Eeiimey —IN u] IH1 O TOTA
V_R02g33 —INz
V_I00002 [DINTTO S0E UINT
|} LUINT |
YV_Roooo7 —IN 0O INl O ¥_0000;
145 —{IN2
V_I0004% EEALTO ATT
|| UINT UINT [
I Doy —{IN u] I O TOTA

V_RO0045 —|IN:Z

129

Chapter 4. Ladder Diagram (LD) Programming

4.6.6 Convert BCDS8, UINT, INT, REAL or LREAL to DINT

REAL TO DINT BCDS TO DINT UINT TS DINT REAL TO DINT LREAL TO DInT

—In o —n — I 2 —im

2]

BCDS, UINT, and INT

When this function receives power flow, it converts the data into the equivalent signed double-
precision integer (DINT) value, which it outputs to Q. The conversion to DINT does not change the
original data.

The output data can be used directly as input for another program function. The function passes power
flow when power is received, unless the data is out of range.

REAL and LREAL

When REAL_TO_DINT or LREAL_TO_DINT receives power flow, it rounds the input data to the nearest
double-precision signed integer (DINT) value, which it outputs to Q. These functions do not change the
original REAL or LREAL data.

The output data can be used directly as input for another program function. The function passes power
flow when power is received, unless the conversion would result in an out-of-range DINT value.

Warning
Converting from LREAL or REAL to DINT may result in
Overflow. For example, REAL 5.7E20, which equals 5.7 x
10%°, converts to DINT OVERFLOW.

Tip: Totruncate a REAL value and express the result as a DINT, i.e., to remove the fractional part of
the REAL number and express the remaining integer value as a DINT, use TRUNC_DINT.

Operands

Parameter |Description Allowed Operands Optional
IN The value to convert to DINT. All except S, SA, SB,and SC [No

Q The DINT equivalent value of the original input value in IN. |All except S, SA, SB,and SC [No

130 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example: UINT to DINT
Whenever input %M01478 is set, the unsigned single-

precision integer (UINT) value at input location %R00654 is
converted to a double-precision signed integer (DINT) and

the result is placed in location %L00049. The output

%MO00065 is set whenever the function executes

successfully.

Example: BCD8 to DINT

Whenever input %l00025 is set, the BCD-8 value in
%L00046 is converted to a signed double-
precision integer (DINT) and passed to the
ADD_DINT function, where it is added to the DINT
value in %R00797. The sum is output by
ADD_DINT to the reference TOTAL.

Example: INT to DINT

Whenever input %100002 is
set, the signed single- |

V_MO0I4TE [OyTTO | V_MO006S
IINT | ¢y
V_E00654 —(IN OF & Laids
W_I00023 ECDETO ADD
|} DINT DINT [
I Eevivga —(IN u] IN1 O TOTA
5_RO07a7 —IN:
V_I0000Z INTTO | ¥_0O00001
N TNt { —

precision integer (INT) value

at input location %100017
is converted to a double-

W_I00oT —(IN O & Zdmwe

precision signed integer (DINT) and the result is placed in
location %L00001. The output %Q01001 is set whenever
the function executes successfully.

Example: REAL to DINT

Whenever input
%10002 is set, the
REAL value at input
location %R0017 is

convertedtoa

double precision
signed integer (DINT)
and the result is
placed in location

Wol0002 REAL TO Y Qo001
|| DINT () |
%0000z %0000t
YV_ROD1T —iM Q=Y _RO0m
%RO0017 %RO0001

%R0001. The output %Q1001 is set whenever the function

executes successfully.

GFK-2950D

November 2018

131

Chapter 4.

Ladder Diagram (LD) Programming

4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
BCD4 TO BCDE TO UIMT TO INT TO DINT TO ORD TO LREAL

REAL | _| [INT | _| REAL | _] REAL | _| REAL | _| REAL | _|TOREAL[

—IN o~ —IN o —IN o —IN O N o —InN o —IN Q-

When this function receives power flow, it converts the input data into the equivalent 32-bit floating-
point (REAL) value, which it outputs to Q. The conversion to REAL does not change the original input

data.
The output
The functio

data can be used directly as input for another program function.

n passes power flow when power is received, unless the conversion would result in a value

that is out of range.

Warning

Converting from BCD8 to REAL may result in the loss of
significant digits.

This is because a BCD8 value is stored in a DWORD,
which uses 32 bits to store a value, whereas a REAL (32-
bit IEEE floating point number) uses 8 bits to store the
exponent and the sign and only 24 bits to store the
mantissa.

Warning

Converting from DINT to REAL may result in the loss of
significant digits for numbers with more than 7
significant base-10 digits.

This is because a DINT value uses 32 bits to store a value,
which is the equivalent of up to 10 significant base-10
digits, whereas a REAL (32-bit IEEE floating point
number) uses 8 bits to store the exponent and the sign
and only 24 bits to store the mantissa, which is the
equivalent of 7 or 8 significant base-10 digits. When the
REAL result is displayed as a base-10 number, it may
have up to 10 digits, but these are converted from the
rounded 24-bit mantissa, so that the last 2 or 3 digits
may be inaccurate.

Operands

Parameter |Description Allowed Operands Optional
IN The value to convert to REAL. All except S, SA, SB,and SC [No

Q The REAL equivalent value of the original input value in IN. |All except S, SA, SB,and SC [No

132

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example: UINT to REAL

The unsigned integer value in %L00001 is 825. The value UINT TO
placed in %L00016 is 825.000. REAL |

Ladadd —IN Q= Looads
L0000 L0006

Example: INT to REAL

The integer value of input IN is -678. The value placed in INT TO
%R00010 is -678.000. REAL |

G753 —IN Q= ROOO10

WROOO40

Example: LREAL to REAL

The double-precision floating REAL To FEAL
point value of the square root of -
2 isrounded to the nearest
single-precision floating point
value and placed in RO0300.

1.4142138623731 1.414214

Rasult_Lresl

GFK-2950D November 2018 133

Chapter 4. Ladder Diagram (LD) Programming

4.6.8 Convert REAL to LREAL
REAL TO When REAL_TO_LREAL receives power flow, it converts the 32-bit single precision
—| LREAL L floating point REAL data to the equivalent 64-bit double-precision floating point data.
REAL_TO_LREAL does not change the original REAL data.

—{IH Q-
Operands

Parameter |Description Allowed Operands Optional
IN The REAL value to convert to LREAL. All except S, SA, SB, and SC No
Q The LREAL equivalent value of the original REAL value. |All except S, SA, SB, and SC No
Example

The REAL value of the square root of 2 is converted to the LREAL data type and placed in R00200.
Because the actual precision of the data in Result_Real is seven decimal places, the additional decimal
places in the data in R00200 are not valid.

4.6.9

1424

4

Result_Real

134

REAL TS LREAL

Convert DINT to LREAL

DINT TC LREAL

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

When DINT_TO_LREAL receives power flow, it converts the double-precision
— input data to 64-bit double-precision floating point data.

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.6.10 Truncate
s e When power is received, the Truncate functions TRUNC_DINT and
]] i TRUNCL_INT round a floating-point (REAL) value down respectively to the
- - nearest signed double-precision signed integer (DINT) or signed single-

precision integer (INT) value. TRUNC_DINT and TRUNC_INT output the

converted value to Q. The original data is not changed.

Note: The output data can be used directly as input for another program function.

TRUNC_DINT and TRUNC_INT pass power flow when power is received, unless the specified conversion
would result in a value that is out of range or unless IN is NaN (Not a Number).

Operands
Parameter |Description Allowed Operands |Optional
IN The REAL value whose copy is to be converted and truncated. The |All exceptS, SA,SB, |No
original is left intact. and SC
Q The truncated value of the original REAL value in IN. All except S, SA,SB, [No
and SC
Example
The displayed constant is truncated and the integer result 562 is placed in %T0001.
W |0ooz2 TRUNC
|] INT L
11
00002
5.6298TE+02 —IM —_TO001
%To0001
GFK-2950D November 2018 135

Chapter 4. Ladder Diagram (LD) Programming

4.7 Counters

Function Mnemonic |Description

Down Counter |DNCTR Counts down from a preset value. The output is ON whenever the
Current Value is<0.

Up Counter UPCTR Counts up to a designated value. The output is ON whenever the Current
Value is > the Preset Value.

4.7.1 Data Required for Counter Function Blocks

Warning

Do not use two consecutive words (registers) as the
starting addresses of two counters. Logic Developer PLC
does not check or warn you if register blocks overlap.
Timers will not work if you place the current value of a
second timer on top of the preset value for the previous
timer.

136 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Each counter uses a one-dimensional, three-word array of %R, %W, %P, %L, or symbolic memory to
store the following information:

Current value Word 1
(cv)

Warning

The first word (CV) can be read but should not be written
to, or the function may not work properly.

Preset value (PV) Word 2 When the Preset Value (PV) operand is a variable, it is normally set to a
different location than word 2 in the timer’s or counter’s three-word array.
m Ifyou use a different address and you change word 2 directly, your
change will have no effect, as PV will overwrite word 2.
m Ifyou use the same address for the PV operand and word 2, you can
change the Preset Value in word 2 while the timer or counter is
running and the change will be effective.

Control word Word 3

The control word stores the state of the Boolean inputs and outputs of its
associated timer or counter, as shown in the following diagram:

Warning

The third word (Control) can be read but should not be
written to; otherwise, the function will not work.

Word 3: Control Word Structure
15| 241312 21]10] 9] 8 | l7zlels]lals3]l2]l1]o0]
[Reserved I T A A O

Reset input

Enable input, previous execution
Q (counter/timer status output)

EN (enable input

Note: Bits Othrough 13 are not used for counters.

GFK-2950D November 2018 137

Chapter 4. Ladder Diagram (LD) Programming

4.7.2

DHNCTE

e

-k

PV CW

Down Counter

The Down Counter (DNCTR) function counts down from a preset value. The minimum Preset
Value (PV) is zero; the maximum PV is +32,767 counts. When the Current Value (CV) reaches
the minimum value, -32,768, it stays there until reset. When DNCTR is reset, CV is set to PV.
When the power flow input transitions from OFF to ON, CV is decremented by one. The
output is ON whenever CV 0.

The output state of DNCTR is retentive on power failure; no automatic initialization occurs
at power-up.

Warning

Do not use the Address of the down counter with other
instructions. Overlapping references cause erratic
counter operation.

Note: For DNCTR to function properly, you must provide an initial reset to set the CV to the value in
PV.If DNCTR is not initially reset, CV will decrement from 0 and the output of DNCTR will be set
to ON immediately.

Operands
Parameter|Description Allowed Operands Optional
Address The beginning address of a three-word WORD array: R, W, P, L, symbolic No
(2227) Word 1: Current Value (CV)
Word 2: Preset Value (PV)%
Word 3: Control word
R When R receives power flow, it resets the counter's CVto PV. [Power flow No
PV Preset Value to copy into word 2 of the counter's address when |All except S, SA, SB, SC No
the counter is enabled or reset. 0 <PV < 32,767. If PV is out of
range, word 2 cannot be reset.
cVv The current value of the counter All except S, SA, SB, SC No
and constant
Example - Down Counter

DNCTR counts 5000 new parts before energizing output %Q00005.

NEW_FET TNCTE V_Ooooos
N { —
NXT_BAT |W_R0O100
{ | E
So00 —FY CV— Current_¥
138 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.7.3 Up Counter

UFCTE

e

-k

i A o

The Up Counter (UPCTR) function counts up to the Preset Value (PV). The range is O to +32,767 counts.
When the Current Value (CV) of the counter reaches 32,767, it remains there until reset. When the
UPCTR reset is ON, CV resets to 0. Each time the power flow input transitions from OFF to ON, CV
increments by 1. CV can be incremented past the Preset Value (PV). The output is ON whenever CV >
PV. The output (Q) stays ON until the R input receives power flow to reset CV to zero.

The state of UPCTR is retentive on power failure; no automatic initialization occurs at power-up.

Warning

Do not use the Address of the up counter with other
instructions. Overlapping references cause erratic

counter operation.
Operands
Parameter|Description Allowed Operands [Optional
Address [The beginning address of a three-word WORD array: R, W, P, L, symbolic |No
(2222) Word 1: Current Value (CV)
Word 2: Preset Value (PV)
Word 3: Control word
R When Ris ON, it resets the counter's CV to 0. Power flow No
PV Preset Value to copy into word 2 of the counter's address when the [All except S, SA, SB, |No
counter is enabled or reset. 0 <PV < 32,767.If PV is out of range, it |and SC
does not affect word 2.
Ccv The current value of the counter All except S, SA, SB, [No
SC and constant

Example - Up Counter

Every time input %0012 transitions from OFF to ON, the Up Counter counts up by 1; internal coil
%MO0001 is energized whenever 100 parts have been counted. Whenever %M0001 is ON, the
accumulated count is reset to zero.
V_Io0Mz [OPCIR| V_MO00O1
N { —
Y_MO0001 |i_RO0OI
I} E

00 F¥ CV— Current_W

GFK-2950D November 2018 139

Chapter 4. Ladder Diagram (LD) Programming

Example - Up Counter and Down Counter

This example uses an up/down counter pair with a shared register for the accumulated or current
value. When the parts enter the storage area, the up counter increments by 1, increasing the current
value of the parts in storage by a value of 1. When a part leaves the storage area, the down counter
decrements by 1, decreasing the inventory storage value by 1. To avoid conflict with the shared
register, both counters use different register addresses but each has a current value (CV) address that
is the same as the accumulated value for the other register.

W_IO0oo:
— |
100001 OFCIE ¥_Qooooi
| —
W_I0000a W_RO0i00
— | E
5—FV¥ CVWr v _RO0I04
W_IO0oo:
— |
7 IN0002 ONCTE | ¥ 000002
| | —
W_RO0104
—E
5 —BFV CV[¥ _RODIDOM]
140 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8 Data Move Functions

The Data Move functions provide basic data move capabilities.

Function Mnemonics Description
Array Size ARRAY_SIZE Counts the number of elements in an array.
Array Size ARRAY_SIZE_DIM1 |Returns the value of the Array Dimension 1 property of a one- or two-
Dimension 1 dimensional array.
Array Size ARRAY_SIZE_DIM2 |Returns the value of the Array Dimension 2 property of a two-
Dimension 2 dimensional array.
Block Clear BLK_CLR_WORD Replaces all the contents of a block of data with zeroes. Can be used
to clear an area of WORD or analog memory.
Block Move BLKMOV_DINT Copies a block of seven constants to a specified memory location. The
BLKMOV_DWORD |[constants are input as part of the function.
BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD
Bus Read BUS_RD_BYTE Reads data from a module on the bus.
BUS_RD_DWORD
BUS_RD_WORD

Bus Read Modify
Write

BUS_RMW_BYTE
BUS_RMW_DWORD
BUS_RMW_WORD

Uses a read/modify/write cycle to update a data element in a module
on the bus.

Bus Test and Set

BUS_TS_BYTE
BUS_TS_WORD

Handles semaphores on the bus.

Bus Write

BUS_WRT_BYTE
BUS_WRT_DWORD
BUS_WRT_WORD

Writes data to a module on the bus.

Communication COMMREQ Allows the program to communicate with an intelligent module, such
Request as a Genius Bus Controller or a High Speed Counter.
Data Initialization |DATA_INIT_DINT Copies a block of constant data to a reference range. The mnemonic
DATA_INIT_DWORD [specifies the data type.
DATA_INIT_INT

DATA_INIT_REAL
DATA_INIT_LREAL
DATA_INIT_UINT
DATA_INIT_WORD

Data Initialize ASCII

DATA_INIT_ASCII

Copies a block of constant ASCII text to a reference range.

Data Initialize DLAN

DATA_INIT_DLAN

Used with a DLAN Interface module.

Data Initialize
Communications
Request

DATA_INIT_COMM

Initializes a COMMREQ function with a block of constant data. The
length should equal the size of the COMMREQ function’s entire
command block.

GFK-2950D

November 2018 141

Chapter 4. Ladder Diagram (LD) Programming

Function

Mnemonics

Description

Move

MOVE_BOOL
MOVE_DATA
MOVE_DINT
MOVE_DWORD
MOVE_INT
MOVE_REAL
MOVE_LREAL
MOVE_UINT
MOVE_WORD

Copies data as individual bits, so the new location does not have to be
the same data type. Data can be moved into a different data type
without prior conversion.

Move Data Explicit

MOVE_DATA_EX

Provides an input that allows for data coherency by locking symbolic
memory being written to during the copy operation.

Move from Flat

MOVE_FROM_FLAT

Copies reference memory data to a UDT variable or UDT array.
Provides the option of locking the symbolic or 1/O variable memory
area being written to during the copy operation.

Move to Flat

MOVE_TO_FLAT

Copies data from symbolic or 1/O variable memory to reference
memory. Copies across mismatching data types.

Shift Register SHFR_BIT Shifts one or more data bits, data WORDs or data DWORDs from a
SHFR_DWORD reference location into a specified area of memory. Data already in
SHFR_WORD the area is shifted out.

Size Of SIZE_OF Counts the number of bits used by a variable.

Swap SWAP_DWORD Swaps two BYTEs of data within a WORD or two WORDs within a
SWAP_WORD DWORD.

142 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.1 Array Size

ARRAY EIZE Counts the number of elements in the array assigned to input IN and writes
] — the number to output Q.

In an array of structure variables, the number of structure variables is
— I Z— written to Q; the elements in the structure variables are not counted.

Tip: Ifthe array assigned to input IN of ARRAY_SIZE is passed to a parameterized C block for
processing, also pass the value of output Q to the block. In the C block logic, use the value of output Q
to ensure all array elements are processed without exceeding the end of the array. For a two-
dimensional array, this method works only if all elements are treated identically; for example, all are
initialized to the same value.

Operands
Parameter |Description Allowed Operands Optional
IN Array of any data type whose elements Data flow, I, Q, M, T, S, SA, SB, SC, G, discrete No

are counted. symbolic, I/O variable

If a non-array variable is assigned to IN,
the value of Qs 1.

Q Number of elements in the array assigned |DINT or DWORD variable. No

toinput IN. Data flow, 1, Q, M, T, G, R, P, L, Al, AQ, W,
symbolic, I/O variable

Example

The two-dimensional array TestArray has its Array Dimension 1 property set to 4 and its Array
Dimension 2 property set to 3. ARRAY_SIZE calculates 4 x 3 and writes the value 12 to the variable
Elements.

ARRAY SIZE

TestAmray —{IN L Elemsants

GFK-2950D November 2018 143

Chapter 4. Ladder Diagram (LD) Programming

4.8.2 Array Size Dimension Function Blocks

Array Size Dimension 1

ARRAY SIZE DIMT Returns the value of the Array Dimension 1 property of an array and writes
—] L the value to output Q. If a non-array variable is assigned to IN, the value of
QisO.
—in a|— InanLD or ST block that is not a parameterized block or a User Defined

Function Block (UDFB), you can use the output Q value to ensure that a loop
using a variable index to access array elements does not exceed the array’s
first dimension.

Operands
Parameter |Description Allowed Operands Optional
IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, |No
SC, G, discrete symbolic, 1/0
variable
Q The value of the Array Dimension 1 property of the array |DINT or DWORD variable. No
assigned to input IN. The value is set to O if a non-array is |pata flow, I, Q, M, T, G, R, P, L,
assigned to IN. Al, AQ, W, symbolic,
Note: Because the index of the first element of an array |I/O variable
is zero, the index of the last element is one less
than the value assigned to Q.

Array Size Dimension 2

ARRAY SIZE DIM2 Returns the value of the Array Dimension 2 property of an array and writes
= — the value to output Q. If a non-array variable is assigned to IN, the value of Q
is 0.
—IN 2= Inan LD or ST block that is not a parameterized block or a User Defined

Function Block (UDFB), you can use the output Q value to ensure that a loop
using a variable index to access array elements does not exceed the array”s
second dimension.

Operands
Parameter [Description Allowed Operands Optional
IN Array of any data type. Data flow, I, Q, M, T, S, SA, SB, |No
SC, G, discrete symbolic, 1/0
variable
Q The value of the Array Dimension 2 property of the array |DINT or DWORD variable. No
assigned to input IN. The value is set to O if a non-array is |pata flow, I, Q, M, T, G, R, P, L,
assigned to IN. Al, AQ, W, symbolic,
Note: Because the index of the first element of an array |I/O variable
is zero, the index of the last element is one less
than the value assigned to Q.

144 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

To use a FOR_LOOP to access array elements by means of a variable index, you must ensure that the
FOR_LOOP does not iterate beyond the last element of the array.

In the following logic, MOVE_DINT initializes the variable D1_temp to 0. ARRAY_SIZE_DIM1 counts the
number of elements of a one-dimensional array named D1_Array and outputs the result to output Q.
Because the index of the first element of an array is zero, the loop must iterate (Q - 1) times. SUB_DINT
performs the subtraction and the result is converted to an INT value and assigned to variable D1_size.

MOWVE DINT

o —]IN QF— D1_temp

ARRAY SIZE SUB DINT UINT TS INT
DIk

D1_Amay —|IN Q 1M1 o 1N O D1_siz=

1 —IN2

In the following rungs, the FOR_LOOP executes when D1ON is set to On. The variable index D1_Index
increments by 1 from 0 through D1_size, the value calculated by ARRAY_SIZE_DIM1 and SUB_DINT. In
each loop, the value of D1_temp is assigned to the element D1_Array[D1_Index] and D1_temp is
increased by 1.

0MOn FOR LOOF
{1
Oi_Indsx —]INDEX
g —START
D1 _size —END
1 —ine
MOVE DINT ADD DINT
01 _temg —IM S D1 _Aray]D1_Index] O _temp —IN1 Q— Di_temp
—IN2

You can use a FOR_LOOP to iterate through an array’s second dimension in a method similar to this
example. You can also use nested FOR_LOOPs to ensure that operations on elements using two
variable indexes each do not exceed their array dimension. For additional examples, refer to the online
help.

GFK-2950D November 2018 145

Chapter 4. Ladder Diagram (LD) Programming

4.8.3 Block Clear
ELE When the Block Clear (BLKCLR_WORD) function receives power flow, it fills the specified
. HEEII.EED - block of data with zeroes, beginning at the reference specified by IN. When the data to be
77 cleared is from BOOL (discrete) memory (%l, %Q, %M, %G, or %T), the transition information
- associated with the references is updated. BLKCLR_WORD passes power to the right

whenever it receives power.

Note: The input parameter IN is not included in coil checking.

Operands
Parameter |Description Allowed Operands Optiona
|
Length (??) |The number of words to clear, starting at the IN Constant No
location. 1 < Length < 256 words.
IN The first WORD of the memory block to clear to O. All except %S and data flow. No
Example

At power-up, 32 words of %Q memory (512 points) beginning at %Q0001 are filled with zeroes. The
transition information associated with these references will also be updated.

#FST_SCN

I WOED |

¥_0o00001 —IN

146

BLE CLE

a2

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.4

| DINT

—IN1

—INZ

—IN3

—IN¢

—ING

—INE

—IN7

BLEMOWV

aF

Operands

Block Move

When the Block Move (BLKMOV) function receives power flow, it Mnemonics:
BLKMOV_DINT
BLKMOV_DWORD

copies a block of seven constants into consecutive locations
beginning at the destination specified in output Q. BLKMOV

passes power to the right whenever it receives power.

BLKMOV_INT
BLKMOV_REAL
BLKMOV_UINT
BLKMOV_WORD

Note: For each mnemonic, use the corresponding data type for the Q operand. For example,
BLKMOV_DINT requires Q to be a DINT variable.

Parameter |Description Allowed Operands Optional
IN1to IN7 [The seven constant values to move. Constants. Constant type must match No
function type.
Q The first memory location of the All except %S. No
destination for the moved values. INLis |ossa SB, SC are also prohibited on BLKMOV
moved to Q. REAL, BLK_LMOV_INT, and BLK_MOV_UINT.
Example
When the enabling input represented by the name #FST_SCN is ON, #FST_SCHN [ELEMOV
BLKMOV_INT copies the seven input constants into memory locations | INT L
%R0010 through %R0016.
z27e7 —IN1 O V_Ro0oi0
-32768 —|IN2
1—{IK3
2 —|IN
2 —|INS
1—{INE
1—{IN7
GFK-2950D November 2018 147

Chapter 4. Ladder Diagram (LD) Programming

4.8.5

BUS_ Functions

Four program functions allow the PACSystems CPU to communicate with modules in the system.

Bus Read (BUS_RD)

Bus Write (BUS_WRT)

Bus Read/Modify/Write (BUS_RMW)
Bus Test and Set (BUS_TS)

These functions use the same parameters to specify which module on the bus will exchange data with
the CPU.

Note: Additional information related to addressing modules is required to use the BUS_ functions. For
open VME modules in an RX7i system, refer to the PACSystems RX7i User’s Guide to Integration
of VME Modules, GFK-2235. For other modules, refer to the product documentation provided by
the manufacturer.

Rack, Slot, Subslot, Region, and Offset Parameters

The rack and slot parameters refer to a module in the hardware configuration. The region parameter
refers to a memory region configured for that module. The sub-slot is ordinarily set to 0. The offsetis a
0-based number that the function adds to the module’s base address (which is part of the memory
region configuration) to compute the address to be read or written.

BUS Read

EUS RD
EYTE

7

—R 1)

—RGN

—{oFF

F=

The BUS_RD function reads data from the bus.

|_This function should be executed before the data is needed in the
program. If the amount of data to be read is greater than 32767 BYTES,
WORDS, or DWORDS, use multiple instructions to read the data.

When BUS_RD receives power flow, it accesses the module at the

| specified rack (R), slot (S), subslot (SS), address region (RGN) and offset
(OFF). BUS_RD copies the specified number (Length) of data units
(DWORDS, WORDs or BYTEs) from the module to the CPU, beginning at
output reference (Q).

The status of the operation is reported in the status location (ST).

Note: For each BUS_RD function type, use the corresponding data
type for the Q operand. For example, BUS_RD_BYTE requires Q
to be a BYTE variable.

Note: Aninterrupt block can preempt the execution of a BUS_RD
function. On the bus, only 256 bytes are read coherently (i.e.,
read without being preempted by an interrupt).

148

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

— The function passes power to the right when its operation is successful.

Mnemonics:
BUS_RD_DINT
BUS_RD_DWORD
BUS_RD_WORD

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands for BUS READ
Parameter [Description Allowed Operands Optional
Length (??) |The number of BYTEs, DWORDs, or WORDs. Constant No
1to 32,767.
R Rack number. UINT constant or variable. All except %S—%SC No
S Slot number. UINT constant or variable. All except %S—%SC No
SS i;lrl?:gltq:z?wvlﬁl{a(s;faults to 0). UINT All except %S—%SC Yes
RGN Region (defaults to 1). WORD constantor |All except %S—%SC Yes
variable.
OFF The offset in bytes. DWORD constant or All except %S—%SC No
variable.
ST The status of the operation. WORD variable. |All except variables located in %S—%SC, Yes
and constants
Q Reference for data read from the module. |All except variables located in %S—%SC, No
DWORD variable. and constants
BUS_RD Status in the ST Output
The BUS_RD function returns one of the following values to the ST output:
0 Operation successful.
Bus error
2 Module does not exist at rack/slot location.
3 Module at rack/slot location is an invalid type.
4 Start address outside the configured range.
5 End address outside the configured address range.
6 Absolute address even but interface configured as odd byte only
8 Region not enabled
10 Function parameter invalid.
GFK-2950D November 2018 149

Chapter 4. Ladder Diagram (LD) Programming

BUS Read Modify Write

BLIS R
ENTE

150

The BUS_RMW function updates one byte, word, or double word of

Other mnemonic:

data on the bus. This function locks the bus while performing the read- gys_rRMw_WORD

modify-write operation.

When the BUS_RMW function receives power flow through its enable
input, the function reads a dword, word or byte of data from the
module at the specified rack (R), slot (S), subslot (SS) and optional
address region (RGN) and offset (OFF). The original value is stored in
parameter (OV).

The function combines the data with the data mask (MSK). The
operation performed (AND / OR) is selected with the OP parameter.
The mask value is dword data. When operating on a word of data, only
the lower 16 bits are used. When operating on a byte of data, only the
lower 8 bits of the mask data are used. The result is then written back
to the same address from which it was read.

The BUS_RMW function passes power to the right when its operation
is successful, and returns a status value to the ST output.

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands for BUS_RMW

For BUS_RMW_WORD, the absolute bus address must be a multiple of 2. For BUS_.RMW_DWORD, it
must be a multiple of 4.

The absolute bus address is equal to the base address plus the offset value.

Parameter [Description Allowed Operands Optional

OoP Type of operation: No
0=AND Constant
1=0R

MSK The data mask. DWORD constant or variable. All except %S—%SC No

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (optional, defaults to 0). UINT Yes

o) 0,
constant or variable. All except %5—9SC

RGN Region (defaults to 1). WORD constant or All except %S—%SC Yes
variable.
OFF The offset in bytes. DIWORD constant or variable. |All except %S—%SC No
ST The status of the operation. WORD variable. All except variables located in %S—%SC,|Yes
and constants
ov Original value. DWORD variable. All except variables located in %S—%SC,|Yes

and constants

BUS_RMW Status in the ST Output
The BUS_RMW function returns one of the following values to the ST output:

0

Operation successful.

Bus error

Module does not exist at rack/slot location.

Module at rack/slot location is an invalid type.

Start address outside the configured range.

End address outside the configured address range.

Absolute address even but interface configured as odd byte only

N | o | o | W N

For WORD type, absolute bus address is not a multiple of 2. For DWORD type, absolute bus address is
not a multiple of 4.

00

Region not enabled

Function type too large for configured access type.

10

Function parameter invalid.

GFK-2950D November 2018 151

Chapter 4.

Ladder Diagram (LD) Programming

BUS Test and Set

BUSTS
EYTE

—RiGH

—uFF

The BUS_TS function uses semaphores to control access to specific ~ Other
memory in a module located on the bus. mnemonic:

currently at the semaphore location. If that value was already a 1, then
the BUSTST function does not acquire the semaphore. If the existing
value was 0, the semaphore is set and the BUS_TS function has the

—r 8T~ semaphore and the use of the memory area it controls. The

semaphore can be cleared and ownership relinquished by using the
BUSWRT function to write a O to the semaphore location. This function
locks the bus while performing the operation.

—: a2~ When the BUS_TS function receives power flow through its enable

input, the function exchanges a Boolean TRUE (1) with the address
specified by the RACK, SLOT, SUBSLOT, RGN, and OFF parameters. The
function sets the Q output on if the semaphore was available (0) and
was acquired. It passes power flow to the right whenever power is
received and no errors occur during execution.

Operands for BUS Test and Set
BUS_TS can be programmed as BUS_TS_BYTE or BUS_TS_WORD. For BUS_TS_WORD, the absolute

address of the module must be a multiple of 2. The absolute address is equal to the base address plus

the offset value.

Parameter |Description Allowed Operands Optional

R Rack number. UINT constant or variable. All except %S—%SC No

S Slot number. UINT constant or variable. All except %S—%SC No

SS Subslot number (defaults to 0). UINT constant or |All except %S—%SC Yes
variable.

RGN Region (defaults to 1). WORD constant or variable. |All except %S—%SC Yes

OFF The offset in bytes. DIWORD constant or variable. |All except %S—%SC No

ST The status of the bus test and set operation. All except variables located in %S— |Yes
WORD variable. %SC, and constant

Q Output set on if the semaphore was available (0). |Power flow Yes
Otherwise, Q is set off.

152

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

The BUS_TS function exchanges a Boolean TRUE (1) for the value BUS_TS_WORD

Chapter 4. Ladder Diagram (LD) Programming

BUS Write
ELIS AT When the BUS_WRT function receives power flow through its enable Mnemonics:
EYTE input, it writes the data located at reference (IN) to the module atthe BUS_WRT_DINT
— — specified rack (R), slot (S), subslot (SS) and optional address region BUS_WRT_DWORD
(RGN) apd offset (OFF). BUSWRT writes the specified length (LEN) of BUS_WRT_WORD
i data units (DWORDS, WORDs or BYTEs).
N o The BUS_WRT function passes power to the right when its operation is
successful. The status of the operation is reported in the status location
(ST).
Note: For each BUS_WRT function type, use the corresponding data
_r type for the IN operand. For example, BUS_WRT_BYTE requires
IN to be a BYTE variable.
Note: Aninterrupt block can preempt the execution of a BUS_WRT
function. On the bus, only 256 bytes are written coherently (i.e.,
- written without being preempted by an interrupt).
—]55
—RGH
—oFF
Operands for Bus Write
Parameter |Description Allowed Optional
Length (??) [Length. The number of BYTEs, DWORDs, or WORDs. 1 to 32,767. [Constant No
IN Reference for data to be written to the module. DWORD All except variables No
variable. located in %S—%SC,
and constant
R Rack number. UINT constant or variable. All except %S—%SC No
S Slot number. UINT constant or variable. All except %S—%SC No
SS Subslot number (defaults to 0) UINT constant or variable. All except %S—%SC Yes
RGN Region. (defaults to 1) WORD constant or variable. All except %S—%SC Yes
OFF The offset in bytes. DIWORD constant or variable. All except %S—%SC No
ST The status of the operation. WORD variable. All except variables Yes
located in %S—%SC,
and constant

GFK-2950D November 2018 153

Chapter 4. Ladder Diagram (LD) Programming

4.8.6 Communication Request (COMMREQ)

CEII_:!QH The Communication Request (COMMREQ) function communicates with an intelligent
module, such as a Genius Communications Module or High Speed Counter.
— FT-
—{ 5510
—T4SE
Notes:

* The information presented in this section shows only the basic format of the COMMREQ function.
Many types of COMMREQs have been defined. You will need additional information to program the
COMMREQ for each type of device. Programming requirements for each module that uses the
COMMREQ function are described in the specialty module's user documentation.

» Ifyou are using the COMMREQ to conduct serial communications, refer to the Serial I/O, SNP and
RTU Protocols section in PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

» Ifyou are using the COMMREQ to interface with an intelligent module (such as Genius
Communications Gateway), refer to that product’s user manual for operational details.

= A COMMREQ instruction inside an interrupt block being executed may cause the block to be
preempted when a new, incoming interrupt has the same priority.

When COMMREQ receives power flow, it sends the command block of data specified by the IN operand
to the communications TASK in the intelligent or specialty module, at the rack/slot location specified by
the SYSID operand. The command block contents are sent to the receiving device and the program
execution resumes immediately. (Because PACSystems does not support WAIT mode COMMREQs, the
timeout value is ignored.)

The COMMREQ passes power flow unless the following fault conditions exist. The Function Faulted (FT)
output may be set ON if:

= Control block is invalid
= Destination is invalid (target module is not present or is faulted)
= Target module cannot receive mail because its queue is full

The Function Faulted output may have these states:

Enable Error? Function Faulted Output
active no OFF

active yes ON

not active no execution OFF

Command Block

The command block provides information to the intelligent module on the command to be performed.
The command block starts at the reference specified by the operand IN. This address may be in any
word-oriented area of memory (%R, %P, %L, %W, %Al, %AQ, or symbolic non-discrete variables). The
length of the command block depends on the amount of data sent to the device.

The Command Block contains the data to be communicated to the other device, plus information
related to the execution of the COMMREQ. Information required for the command block can be placed

154 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

in the designated memory area using a programming function such as MOVE, BLKMOV, or
DATA_INIT_COMM.

Command Block Structure

Address Data Block Length (in|The number of data words starting with the data at address+6 to the
words) end of the command block, inclusive. The data block length ranges
from 1 to 128 words. Each COMMREQ command has its own data
block length. When entering the data block length, you must ensure
that the command block fits within the register limits
Address + 1 Wait/No Wait Flag Must be set to 0 (No Wait)
Address + 2 Status Pointer Specifies the memory type for the location where the COMMREQ
Memory Type status word (CSR) returned by the device will be written when the
COMMREQ completes.
Address + 3 Status Pointer Offset [The word at address + 3 contains the offset for the status word within
the selected memory type.
Note: The status pointer offset is a zero-based value. For example,
%R00001is at offset zero in the register table.
Address + 4 Idle Timeout Value This parameter is ignored in No Wait mode.
Address + 5 Maximum This parameter is ignored in No Wait mode.
Communication Time
Address + 6 Data Block The data block contains the command's parameters. The data block
to Address + 133 begins with a command number in address + 6, which identifies the
type of communications function to be performed. Refer to the specific
device manual for COMMREQ command formats.

Status Pointer Memory Type

Status pointer memory type contains a numeric code that specifies the user reference memory type for
the status word. The table below shows the code for each reference type:

For this memory type Enter this decimal value
%l Discrete input table (BIT mode) 70

%Q Discrete output table (BIT mode) 72

%l Discrete input table (BYTE mode) 16

%Q Discrete output table (BYTE mode) 18

%R Register memory 8

%W Word memory 196

%Al Analog input table 10

%AQ |Analog output table 12

Notes:

m The value entered determines the mode. For example, if you enter the %l bit mode is 70, then the
offset will be viewed as that bit. On the other hand, if the %l value is 16, then the offset will be
viewed as that byte.

m The high byte at address + 2 should contain zero.

GFK-2950D

November 2018 155

Chapter 4. Ladder Diagram (LD) Programming

Operands for COMMREQ
Parameter |Description Allowed Operands Optional
IN The reference of the first WORD of the command block. Variables in %R, %P, %L, No
%Al, %AQ, %W, and
symbolic non-discrete
variables
SYSID The rack number (most significant byte) and slot number All except flow and variables |No
(least significant byte) of the target device (intelligent in %S - %SC
module).
Note: For systems that do not have expansion racks,
SYSID must be zero for the main rack.
TASK The task ID of the process on the target device Constants; variables in %R, |No

%P, %L, %Al, %AQ, %W, and
symbolic non-discrete

variables
FT Function Faulted output. FT is energized if an error is Power flow Yes
detected processing the COMMREQ:
= Thisis a WAIT mode COMMREQ and the CPU does not
support it
* The specified target address (SYSID operand) is not
present.
» The specified task (TASK operand) is not valid for the
device.
= ThedatalengthisO.
= The devices status pointer address (part of the
command block) does not exist. This may be due to an
incorrect memory type selection, or an address within
that memory type that is out of range.
COMMREQ Status Word
The CRS word consists of two byte CRS Word
values, a major code and a minor code. (hexadecimal)
Refer to the specific device manual for High Low
CRS major and minor codes used by 00 [o1

COMMREQ commands at that device.

Minor Error Code (high byte)
Success and Major Error Code (low byte)

COMMREQ Example 1

When enabling input %M0020 is ON, a command block V_M00020 COMM EEQ)
starting at %R0016 is sent to communications task 1 in 1
the device located at rack 1, slot 2 of the PLC. If an error v_000010
occurs processing the COMMREQ, %Q0100 is set. U_R000ME — 1N FI— —
0z — 551D
1 —TASK

156 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

COMMREQ Example 2

The MOVE function can be used to enter the command block contents for the COMMREQ described in
example 1.

MOWE UINT WEWE LINT MOVE UINT
#FST_SCN
1 | -
1 i i
o0 —{IH 4= ROOD1G 0 —H Q= RoOMT g —H A Ro001S
MOWE LINT
1
51z —|M O ROO0AE
COMM REQ
MO0a20
— -

Qo100

Roooig —[N FT O—

{0z —5vsID

1 —{Task

Input IN of the COMMREQ specifies %R00016 as the beginning reference for the command block.
Successive references contain the following:

%R00016 Data Block Length

%R00017 Wait/No Wait Flag

%R00018 Status Pointer Memory Type

%R00019 Status Pointer Offset

%R00020 Idle Timeout Value (Because this parameter is ignored in NO WAIT mode, no value is
input).

%R00021 Maximum Communication Time Value (Because this parameter is ignored in NO WAIT
mode, no value is input).

%R00022 to end of data |Data Block

MOVE functions supply the following command block data for the COMMREQ.

= The first MOVE function places the length of the data being communicated in %R00016.

= The second MOVE function places the constant 0 in %R00017. This specifies NO WAIT mode.

= The third MOVE function places the constant 8 in %R00018. This specifies the register table as the
location for the status pointer.

= The fourth MOVE function places the constant 512 in reference %R00019. Therefore, the status
pointer is located at %R00513.

GFK-2950D November 2018 157

Chapter 4. Ladder Diagram (LD) Programming

The programming logic displayed in example 2 can be simplified by replacing the six MOVE functions

with one DATA_INIT_COMM function.
#FST_SCN TATA INTT gooooz |
| COMM o
P S
124
O Moo0m
p_ Ll COMM EEQ oooion
- P
P L
000010
EO00tE —|IN FT O
12 —|5YSID
1 —TASE

158 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.7 Data Initialization

Dli'# The Data Initialization (DATA_INIT) function copies a block of constant Mnemonics:

pINT | datato areference range. DATA_INIT_DWORD
1 . L B
al When the DATA_INIT instruction is first programmed, the constants are paTA_INIT_DWORD

initialized to zeroes. To specify the constant data to copy, double-click
' DATA_INIT_INT
the DATA_INIT instruction in the LD editor. T
DATA_INIT_UINT

Note: The mnemonics DATA_INIT_ASCII (refer to Data Initialize ASCII)
and DATA_INIT_COMM (refer to Data Initialize Communications PATA-INIT_REAL
Request) operate differently from the other six functions. DATA_INIT_LREAL
DATA_INIT_WORD

When DATAL_INIT receives power flow, it copies the constant data to output Q. DATA_INIT's constant
data length (LEN) specifies how much constant data of the function type is copied to consecutive
reference addresses starting at output Q. DATA_INIT passes power to the right whenever it receives
power.

Notes:

» The output parameter is not included in coil checking.

* Ifyou replace one DATA_INIT instruction (except DATA_INIT_ASCII or DATA_INIT_COMM) with
another (except DATA_INIT_ASCII or DATA_INIT_COMM), Logic Developer - PLC attempts to keep
the same data. For example, configuring a DATA_INIT_INT with eight rows and then replacing the
instruction with a DATA_INIT_DINT would keep the data for the eight rows. Some precision may be
lost when replacing a DATA_INIT_ instruction, and a warning message will be displayed when this
case is detected.

Operands

Note: For each mnemonic, use the corresponding data type for the Q operand. For example,
DATA_INIT_DINT requires Q to be a DINT variable.

Parameter [Description Allowed Operands Optional
Length The quantity (default 1) of constant data copied |Constants No
to consecutive reference addresses starting at
output Q.
Q The beginning address of the area to which the |All, except %S. SA, SB,and SC are not |No
datais copied. allowed for REAL, LREAL, INT, and UINT
versions.
Example
On the first scan (as restricted by the #FST_SCN system #EST_SCN (DATh
variable), 100 words of initial data are copied to %R00005 _ = B
through %R00104. wo | 0
O ¥_R00005

GFK-2950D November 2018 159

Chapter 4. Ladder Diagram (LD) Programming

4.8.8 Data Initialize ASCII

%ﬁ%ﬁ The Data Initialize ASCII (DATA_INIT_ASCII) function copies a block of constant ASCII text

ASCII to a reference range.
1
When DATA_INIT_ASCII is first programmed, the constants are initialized to zeroes. To

specify the constant data to copy, double-click the DATA_INIT_ASCII instruction in the
LD editor.

aF

When DATA_INIT_ASCII receives power flow, it copies the constant data to output Q.
DATA_INIT_ASCII's constant data length (LEN) specifies how many bytes of constant text are copied to
consecutive reference addresses starting at output Q. LEN must be an even number. DATA_INIT_ASCII
passes power to the right whenever it receives power.

Note: The output parameter is not included in coil checking.

Operands
Parameter |Description Allowed Operands (Optional
Length The number (default 1) of bytes of constant text copied to Constants No

consecutive reference addresses starting at output Q. LEN must be
an even number.

Q The beginning address of the area where the data is copied. All except %S. No
Example
On the first scan (as restricted by the #FST_SCN system H#EST_SCN DATA v_000002
variable) the decimal equivalent of 100 bytes of ASCII text —— ascx [H
is copied to %R00050 through %R00149. %Q00002 oo
receives power. Q[V_R00030

160 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.9

DATA
INIT |

COMM
T

Data Initialize Communications Request

The Data Initialize Communications Request (DATA_INIT_COMM) function initializes a
COMMREQ function with a block of constant data. The IN parameter of the COMMREQ
must correspond with output Q of this DATA_INIT_COMM function.

When DATA_INIT_COMM is first programmed, the constants are initialized to zeroes. To specify the

constant data to copy, double-click the DATA_INIT_COMM instruction in the LD editor.

When DATA_INIT_COMM receives power flow, it copies the constant data to output Q.
DATA_INIT_COMM's constant data length operand specifies how many words of constant data to copy
to consecutive reference addresses starting at output Q. The length should be equal to the size of the
COMMREQ function’s entire command block. DATA_INIT_COMM passes power to the right whenever it
receives power.

Note: The output parameter is not included in coil checking.

Operands
Parameter [Description Allowed Operands Optional
Length The number of WORDs (default 7) of constant data Constant No

copied to consecutive reference addresses starting at
output Q. Must equal the size of the COMMREQ
function’s entire command block, including the header
(words 0-5).

The beginning address of the area where the data is
copied.

R, W, P, L, Al, AQ, and symbolic |No

non-discrete variables

Example

On the first scan (as restricted by the #FST_SCN system
variable), a command block consisting of 100 words of
data, including the 6 header words, is copied to %P00001
through %P00100. %Q00002 receives power.

GFK-2950D

November 2018

#FST_SCNH TIAT &
INIT
100

COMM

[m)

v_000002

—

[~ W_Foooom

161

Chapter 4. Ladder Diagram (LD) Programming

4.8.10 Data Initialize DLAN

The Data Initialize DLAN (DATA_INIT_DLAN) function is used with a DLAN Interface module, which is a
limited availability, specialty system. If you have a DLAN system, refer to the DLAN/DLAN+ Interface
Module User’s Manual, GFK-0729, for details.

Operands

Parameter |Description Allowed Operands Optional

Q The beginning address of the area where the datais |Flow, R, W, P, L, Al, AQ, and No
copied. symbolic non-discrete variables

162 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.11 Move
HMOVE
| BooL
72
T type as the original.

When the MOVE function receives power flow, it copies data as individual
| bits from one location in PLC memory to another. Because the data is
copied in bit format, the new location does not need to be the same data

Mnemonics:

MOVE_BOOL
MOVE_DINT
MOVE_DWORD

The MOVE function copies data from input operand IN to output operand Q MOVE_INT

as bits. If data is moved from one location in BOOL (discrete) memory to
another, for example, from %I memory to %T memory, the transition
information associated with the BOOL memory elements is updated to
indicate whether or not the MOVE operation caused any BOOL memory
elements to change state. Data at the input operand does not change

unless there is an overlap in the source and destination.

MOVE_REAL
MOVE_UINT
MOVE_WORD

Note: If an array of BOOL-type data specified in the Q operand does not include all the bits in a byte,
the transition bits associated with that byte (which are not in the array) are cleared when the
Move function receives power flow. The input IN can be either a variable providing a reference
for the data to be moved or a constant. If a constant is specified, then the constant value is
placed in the location specified by the output reference. For example, if a constant value of 4 is
specified for IN, then 4 is placed in the memory location specified by Q. If the length is greater
than 1 and a constant is specified, then the constant is placed in the memory location specified
by Q and the locations following, up to the length specified. Do not allow overlapping of IN and

Q operands.

The result of the MOVE depends on the data type selected for the function, as shown below. For
example, if the constant value 9 is specified for IN and the length is 4, then 9 is placed in the bit
memory location specified by Q and the three locations following:

MOVE BOOL

Enable — move |[—OK
BOOL

4

9—(N Q|—Output

MSB LSB

(Length = 4 bits)

MOVE WORD

Enable

MOVE
WORD

4

9-N @

—OK

— Output

[(e]l [{s} [{o]

9

(Length = 4 words)

The MOVE function passes power to the right whenever it receives power.

GFK-29

50D

November 2018

163

Chapter 4. Ladder Diagram (LD) Programming

MOVE Operands
Parameter |Description Allowed Operands Optional
Length (??) |The length of IN; the number of bits, words, or double [Constant No

words to copy.

IfINis a constant and Q is BOOL, then 1 < Length < 16;
otherwise, 1 < Length < 256.

1<Length<32,767
IN The location of the first data item to copy. All. %S, %SA, %SB, %SC allowed|No
For MOVE_BOOL, any discrete reference may be used. |only for WORD, DWORD, BOOL
It does not need to be byte-aligned. However, 16 bits ~ [tYPes
beginning with the reference address specified are
displayed online.
If IN is a constant, it is treated as an array of bits. The
value of the least significant bit is copied into the
memory location specified by Q. If Length is greater
than one, the bits are copied in order from the least
significant to the most significant into successive
memory locations, up to the length specified.
Q The location of the first destination data item. No
For MOVE_BOOL, any discrete reference may be used. |[All except %S. Also no %SA, SB,
It does not need to be byte-aligned. However, 16 bits [SC except for WORD, DWORD,
beginning with the reference address specified are BOOL types.
displayed online.
MOVE_BOOL Example
When %100003 is set, the three bits %M00001, %M00002, and VoI008 MOvE
%M00003 are moved to %M00100, %M00101, and %M00102, B
respectively. Coil %Q00001 is turned on. ?
V_Moo0ol —IN O ¥_Mo00100
MOVE_WORD Example
V_M00001 and V_M00033 are both WORD arrays of length 3, for
a total of 48 bits in each array. Since PLCs do not recognize
arrays, Length has to be set at 3, for the total number of WORDs v_Ooo0o1d EDD;-']?
to be moved. When enabling input V_Q0014 is ON, — -
MOVE_WORD moves 48 bits from the memory location 3
%MO00001 to memory location %M00033. Even though the V_Mo0001 I O~ _MO00033
destination overlaps the source for 16 bits, the move is done
correctly.
164 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.12 Move Data
fgi#f The MOVE_DATA function copies the variable assigned to the input, IN to the Mnemonic:
" variable assigned to the output, Q. If the constant 0 is assigned to IN, the MOVE_DATA
variable assigned to Q is initialized to its default value.
MOVE_DATA Operands
Parameter |Description Allowed Operands Optional
Length (??) |The length of IN; the number of elements |Constant No
to copy.
1<Length<32,767
IN The location of the data item to copy. Enumerated variable, structure variable, or |No
IfINis O, Q is set to its default value. array of these types; the constant 0.
For details, refer to Data Types and
Structures in the PACMotion Multi-Axis
Motion Controller User’s Manual, GFK-2448.
Q The location of the data copied from IN. [Enumerated variable, structure variable, or |No
Q must be the same data type as IN, array of these types.
unless IN is the constant O.
GFK-2950D November 2018 165

Chapter 4.

Ladder Diagram (LD) Programming

4.8.13

Move Data Explicit

MOVE DATA EX

can increase interrupt latency.

MOVE_DATA_EX Operands

MOVE_DATA_EX provides optional data coherency by locking the symbolic
memory being written to during the copy operation. This allows data to be
copied coherently when accessed by multiple logic threads (i.e. interrupt
blocks). Note that copying large amounts of data with coherency enabled

Parameter

Description

Allowed Operands

Optional

Length (??)

The length of IN; the number of elements to copy.
1<Length<32,767

Constant

No

DC

Data coherency.

If True memory being written to is locked, enabling
coherent copying of data from one Controller memory area
to another.

If False (default), data is copied normally from one
Controller memory area to another without data coherency.

The input DC should be used only when using interrupt
blocks and is required only when the same memory is
used in more than one interrupt block, or in the main
program and an interrupt block.

If DC is True, an interrupt block cannot preempt the
copy operation.

If DC is False or not present, then interrupts can
preempt the copy.

Using DC can impact interrupt latency if the amount of
data copied is large.

Data flow.

Yes

The location of the data item to copy.

IfINis O (LD only), length is assigned the constant 1 and the
variable or structure assigned to Q is set to its default value.

Enumerated variable or

structure variable, or array of
these types; the constant 0.

No

Variable or array to which IN is copied.

Q must be the same data type as IN, unless IN is the
constant 0.

Enumerated variable or

structure variable, or array of

these types.

No

Example

Enum_Array and Enum_Array_Out are arrays of
enumerated variables, with three elements each. | |
To copy all elements in Enum_Array, input Length

should be

on, MOVE_
memory location Enum_Array to memory location
Enum_Array_Out.

166

Qooo14

MOVE DATA

Ex

3. When the enabling input Q00014 is |

OC_select

a

DATA_EX copies three elements from

2]

— Enum_Amay_Ou

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.14 Move From Flat

MOVE FROM FLAT MOVE_FROM_FLAT copies reference memory data to a User-defined Data
— — Type (UDT) variable or UDT array.

MOVE_FROM_FLAT provides optional data coherency by locking the data
—oc 2= being written to during the copy operation. This allows data to be copied
coherently when accessed by multiple logic threads (i.e. interrupt blocks).
i Note that copying large amounts of data with coherency enabled can
increase interrupt latency.

Operation

Copying arrays and array elements

The constant value assigned to input LEN (Length) determines the number of UDT array elements to be
filled by copying data from reference memory to output Q.

Example:

If constant value 6 is assigned to input LEN (Length), there should be a UDT array of at least six
elements assigned to output Q. During logic execution, n bytes of data are copied from reference
memory to the first six UDT array elements, where n is the length of the UDT array element (in bytes)
times six.

Copying to specified array elements

For output Q, a single element of a UDT array can be specified, for example, myUDT_array[4] (5th
element of myUDT _array). In this case, the input LEN (Length) operand applies to the array elements
starting from and including myUDT _array[4].

Example:

myUDT_array is a UDT array of ten elements, of which each element is a UDT variable, and

myUDT _array[4] is assigned to output Q. This restricts the value of input LEN (Length) to six or less

because there are six remaining UDT array elements that can be filled in myUDT _array.

Notes:

= Length determines how many UDT variable elements to overwrite in Q.

= Ifanarray head is assigned to input IN, the Length determines how many UDT array elements
assigned to Q are filled by copying data from reference memory.

GFK-2950D November 2018 167

Chapter 4.

Ladder Diagram (LD) Programming

MOVE_FROM_FLAT Operands

Parameter

Description

Allowed Operands

Optional

Length (??)

Determines the number of UDT array elements to be filled by
copying data from reference memory to output Q.

1<length<32,767

Constant

No

DC

Data coherency.

If True, memory being written to is locked, enabling coherent
copying of data from one Controller memory area to another.

If False (default), data is copied normally from one Controller
memory area to another; that is without data coherency.

= Theinput DC should be used only when using interrupt
blocks and is required only when the same memory is
used in more than one interrupt block, or in the main
program and an interrupt block.

= |fDCis True, aninterrupt block cannot preempt the copy
operation.

= |fDCis False or not present, then interrupts can preempt
the copy.

= Using DC can impact interrupt latency if the amount of
data copied is large.

Data flow.

Yes

Reference memory data being copied to UDT variable
elements in output Q as determined by the Length.

All except %S, symbolic, or
I/O variable.

No

UDT variable or UDT array to which IN is copied.

Discrete or non-discrete
symbolic, discrete or non-
discrete 1/O variable.

No

Example

A WORD variable mapped to %R1 is assigned to input IN and a value of 1 is assigned to Length. A UDT
variable or UDT array is assigned to output Q.
When MOVE_FROM_FLAT executes, n bytes of data are copied, starting at %R1 to a UDT variable or

UDT array, where n is the UDT array element length (in bytes). If a UDT array is assigned to output Q, n
bytes of data are copied to the first UDT array element.

168

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,.8.15 Move to Flat

MOWE TO FLAT

Notes:

MOVE_TO_FLAT instruction copies data from symbolic or I/O variable
memory to reference memory. MOVE_TO_FLAT copies across mismatched
data types for an operation such as a Modbus transfer.

MOVE_TO_FLAT provides optional data coherency by locking the reference
memory being written to during the copy operation. This allows data to be
copied coherently when accessed by multiple logic threads (i.e. interrupt
blocks). Note that copying large amounts of data with coherency enabled
canincrease interrupt latency.

The Data Coherency (DC) input should be used only when using interrupt
blocks and is required only when the same memory is used in more than
one interrupt block, or in the main program and an interrupt block.

If DCis True, an interrupt block cannot preempt the copy operation.

If DC is False or not present, then interrupts can preempt the copy.

Using DC can impact interrupt latency if the amount of data copied is large.

Copying Arrays and Array Elements

The Length determines the number of UDT array elements to be copied to the reference memory of the
variable assigned to output Q.

Example: If the value 6 is assigned to Length, there should be a UDT array of at least six elements
assigned to input IN. When logic executes, n bytes of data are copied from the UDT array elements to
the reference memory of the variable assigned to output Q, where n is the length of the UDT array
element (in bytes) times six.

GFK-2950D

November 2018 169

Chapter 4. Ladder Diagram (LD) Programming

MOVE_TO_FLAT Operands

Parameter|Description Allowed Operands Optional

Length (??) |The length of IN; the number of elements to copy. Constant No
1<Length<32,767

DC Data coherency. Data flow. Yes

If True, the memory being written to is locked. This
enables a coherent copy of a UDT to reference memory.

If False (default), data is copied normally from one
Controller memory area to another; that is without data
coherency.

= DC should be used only when using interrupt blocks
and is required only when the same memory is used
in more than one interrupt block, or in the main
program and an interrupt block.

= IfDCis True, an interrupt block cannot preempt the
copy operation.

= If DCis False or not present, interrupts can preempt
the copy.

= Using DC can impact interrupt latency if the amount
of data copied is large.

IN UDT variable or UDT array. The data copied to the Discrete or non-discrete No
reference memory mapped to the variable assigned to Q. [symbolic, discrete or non-
If INis 0, length is assigned the constant 1 and the discrete I/O variable.
variable or structure assigned to Q is set to its default
value.

Q Variable or array to which IN is copied. The amount of All memory areas except %S, [No
data copied is determined by the constant value assigned |discrete symbolic, discrete 1/O
to input LEN (Length). variable.

® |ndirect referencingis
available for all register
references (%R, %P, %L,
%W, %Al, and %AQ).

® BYTE arrays must be
packed; that is, they must
be in discrete memory.

Example

A UDT variable or UDT array is assigned to input IN.

The constant value 8 is assigned to input LEN (Length).

A DWORD variable mapped to %R1 is assigned to output Q.

If the constant value 8 is assigned to LEN (length), there should be a UDT array of at least eight
elements assigned to IN. When MOVE_TO_FLAT executes, n bytes of data are copied from the UDT
variable or array to %R memory, starting at %R1 in the example, where n is the length of a UDT array
element (in bytes) times eight.

170 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.16 Shift Register

5113{11;'1_3 When the Shift Register (SHFR_BIT, SHFR_LDWORD, or SHFR_WORD) Mnemonics:
7] " function receives power and the R operand does not, SHFR shifts one or SHFR_BIT
e more data BITs, data DWORDs, or data WORDs from a reference location

—E al. . . . SHFR_DWORD
into a specified area of memory. A contiguous section of memory serves as a

Ay shift register. For example, one word might be shifted into an area of SHFR_WORD
memory with a specified length of five words. As a result of this shift,

i another word of data would be shifted out of the end of the memory area.

T

Warning
The use of overlapping input and output reference

address ranges in multiword functions is not
recommended, as it may produce unexpected results.

The reset input (R) takes precedence over the function enable input. When the reset is active, all
references beginning at the shift register (ST) up to the length specified, are filled with zeroes.

If the function receives power flow and R is not active, each BIT, DWORD, or WORD of the shift register
is moved to the next highest reference. The elements shifted out of ST are shifted into Q. The highest
reference of IN is shifted into the vacated element starting at ST.

Note: The contents of the shift register are accessible throughout the program because they are
overlaid on absolute locations in logic addressable memory.

The function passes power to the right whenever it receives power flow and the R operand does not.

GFK-2950D November 2018 171

Chapter 4. Ladder Diagram (LD) Programming

Operands for Shift Register

Parameter |Description Allowed Operands |Optional
Length (??) |The number of data items in the shift register, ST. No
1<Llength <256
R Reset. When R is ON, the shift register located at ST is filled with |Power flow No
zeroes.
N The number of data items to shift into ST. Constants No
IN The value to shift into the first data item of ST. All No
SHFR_BIT: For %l, %Q, %M and %T memory, any BOOL reference
may be used; it does not need to be byte-aligned. However, 1 bit,
beginning with the reference address specified, is displayed
online.
ST The first data item of the shift register. All except data flow, [No
Note: For %l, %Q, %M and %T memory, any BOOL reference constants, S
may be used; it does not need to be byte-aligned.
However, 16 bits, beginning with the reference address
specified, are displayed online.
Q The data shifted out of ST. The same number of data items will be |All except S No
shifted into Q as were shifted out of ST.
SHFR_BIT: For %I, %Q, %M and %T memory, any BOOL reference
may be used; it does not need to be byte-aligned. However, 1 bit,
beginning with the reference address specified, is displayed
online.
Example
SHFR_WORD operates on register memory locations MAT_CYC =RFR WoRD
%R0001 through %R0100. When the reset reference CLEAR | L
is active, the Shift Register words are set to zero. CLEAR a0
When the NXT_CYC reference is active and CLEAR is not, | R 2 moooos
the two words at the starting address V_Q00033 are
shifted into the Shift Register at %R0001. The words shifted |
out of the Shift Register from %R0100 are stored in output }
%MO0005. Note that, for this example, the length specified
and the amount of data to be shifted (N) are not the same. Q0033 —IN
RODDD1 —5T
172 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.8.17 Size Of

SIZE OF Counts the number of bits used by the variable assigned to input ~ Mnemonics:
] — IN and writes the number of bits to output Q. SIZE_OF
—in o
Operands
Parameter |Description Allowed Operands Optional
IN The variable whose size in bits is Variable of any data type except BYTE No
calculated. arrays in non-discrete memory and double-

segment structures.

Q The number of bits used by the variable [DINT or DWORD variable. No
assigned to input IN. ST also supports INT and WORD variables.

Example

The single-segment structure named Var assigned to
input IN contains eight BOOL elements (8 x 1 = 8 bits)
and twelve WORD elements (12 x 16 = 192 bits).

SIZE_OF outputs the value 8 + 192 = 200 to the ,
variable R00001 assigned to output Q. var It

— ROD001

GFK-2950D November 2018 173

Chapter 4. Ladder Diagram (LD) Programming

4.8.18 Swap

DS;';ED The SWAP function is used to swap two bytes within a word (SWAP WORD) Other
N |~ or two words within a double word (SWAP DWORD). The SWAP can be mnemonic:
performed over a wide range of memory by specifying a length greater than gwap_ WORD
" 1. if that is done, the data in each word or double word within the specified

length is swapped.

"7

—IN

When the SWAP function receives power flow, it swaps the data in reference IN and places the
swapped data into output reference Q. The function passes power to the right whenever it receives
power.

PACSystems CPUs use the Intel convention for storing word data in bytes. They store the least
significant byte of a word in address n and the most significant byte in address n+1. Many VME modules
follow the Motorola convention of storing the most significant byte in address n and the least
significant byte in address n+1.

The PACSystems CPU assigns byte address 1 to the same storage location regardless of the byte
convention used by the other device. However, because of the difference in byte significance, word and
multiword data, for example, 16-bit integers (INT, UINT), 32-bit integers (DINT) or floating point (REAL)
numbers, must be adjusted when being transferred to or from Motorola-convention modules. In these
cases, the two bytes in each word must be swapped, either before or after the transfer. In addition, for
multiword data items, the words must be swapped end-for-end on a word basis. For example, a 64-bit
real number transferred to the PACSystems CPU from a Motorola-convention module must be byte-
swapped and word-reversed, either before or after reading, as shown below:

| Bt | B2 || B3 | B4 |[B |BE |[B7 | 8BS |

A
A ¢

Character (ASCII) strings or BCD data require no adjustment since the Intel and Motorola conventions
for storage of character strings are identical.

-
Y

Operands for Swap

The two parameters, IN and Q, must both be the same type, WORD or DWORD.

Parameter |Description Allowed Operands (Optional

Length (??) |The number of WORDs or DIWORDs to operate on. Constant No
1<Llength<256

IN Reference for data to be swapped. (must be the same type as Q) [All No

Q Reference for swapped data. (must be the same type as IN) All except S No

Example for Swap

Two bytes located in bits %l00033 through %100048 are swapped. f;';;l’n
The result is stored in %L00007. B

v_Ionnz: —|IN O &7 Lo

174 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.9 Data Table Functions

Function

Mnemonic

Description

Array Move

ARRAY_MOVE_BOOL
ARRAY_MOVE_BYTE
ARRAY_MOVE_DINT
ARRAY_MOVE_INT
ARRAY_MOVE_WORD

Copies a specified number of data elements from a source memory
block to a destination memory block.

Note: The memory blocks do not need to be defined as arrays. You
must supply a starting address and the number of contiguous

registers to use for the move.

Array Range

ARRAY_RANGE_DINT
ARRAY_RANGE_DWORD
ARRAY_RANGE_INT
ARRAY_RANGE_UINT
ARRAY_RANGE_WORD

Determines if a value is between the range specified in two tables

FIFO Read

FIFO_RD_DINT
FIFO_RD_DWORD
FIFO_RD_INT
FIFO_RD_UINT
FIFO_RD_WORD

Removes the entry at the bottom of the First In First Out (FIFO) table,
and decrements the pointer by one

FIFO Write

FIFO_WRT_DINT
FIFO_WRT_DWORD
FIFO_WRT_INT
FIFO_WRT_UINT
FIFO_WRT_WORD

Increments the table pointer and writes data to the bottom of the FIFO
table

LIFO Read

LIFO_RD_DINT
LIFO_RD_DWORD
LIFO_RD_INT
LIFO_RD_UINT
LIFO_RD_WORD

Removes the entry at the pointer location in the LIFO (Last In First Out)
table, and decrements the pointer by one

LIFO Write

LIFO_WRT_DINT
LIFO_WRT_DWORD
LIFO_WRT_INT
LIFO_WRT_UINT
LIFO_WRT_WORD

Increments the LIFO table's pointer and writes data to the table

Search

SEARCH_EQ_BYTE
SEARCH_EQ_DINT
SEARCH_EQ_DWORD
SEARCH_EQ_INT
SEARCH_EQ_UINT
SEARCH_EQ_WORD

Searches for all array values equal to a specified value

SEARCH_GE_BYTE
SEARCH_GE_DINT
SEARCH_GE_DWORD
SEARCH_GEL_INT
SEARCH_GE_UINT
SEARCH_GE_WORD

Searches for all array values greater than or equal to a specified value

GFK-2950D

November 2018 175

Chapter 4. Ladder Diagram (LD) Programming

Function

Mnemonic

Description

SEARCH_GT_BYTE
SEARCH_GT_DINT
SEARCH_GT_DWORD
SEARCH_GT_INT

SEARCH_GT_UINT
SEARCH_GT_WORD

Searches for all array values greater than a specified value

SEARCH_LE_BYTE
SEARCH_LE_DINT
SEARCH_LE_DWORD
SEARCH_LE_INT
SEARCH_LE_UINT
SEARCH_LE_WORD

Searches for all array values less than or equal to a specified value

SEARCH_LT_BYTE
SEARCH_LT_DINT
SEARCH_LT_DWORD
SEARCH_LT_INT
SEARCH_LT_UINT
SEARCH_LT_WORD

Searches for all array values less than a specified value

SEARCH_NE_BYTE
SEARCH_NE_DINT
SEARCH_NE_DWORD
SEARCH_NEL_INT
SEARCH_NE_UINT
SEARCH_NE_WORD

Searches for all array values not equal to a specified value

Sort

SORT_INT
SORT_UINT
SORT_WORD

Sorts a memory block in ascending order

Table Read

TBL_RD_DINT
TBL_RD_DWORD
TBL_RD_INT
TBL_RD_UINT
TBL_RD_WORD

Copies a value from a specified table location to an output reference

Table Write

TBL_WRT_DINT
TBL_WRT_DWORD
TBL_WRTL_INT
TBL_WRT_UINT

TBL_WRT_WORD

Copies a value from an input reference to a specified table location

176

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.9.1 Array Move

‘ﬁ:‘.‘;g When the Array Move function receives power flow, it ~ Mnemonics:
7| BooL | copies a specified number of elements from a source ARRAY MOVE BOOL
i memory block to a destination memory block. Starting at ;)
—5E Dif ARRAY_MOVE_BYTE

the indexed location (SR+SNX-1) of the input memory

block, it copies N elements to the output memory block, ARRAY_MOVE_DINT

—ENX

starting at the indexed location (DS+DNX-1) of the ARRAY_MOVE_DWORD
- output memory block. ARRAY_MOVE_INT
ARRAY_MOVE_UINT
- ARRAY_MOVE_WORD

Note: For ARRAY_MOVE_BOOL, when 16-bit registers are selected for the operands of the source
memory block and/or destination memory block starting address, the least significant bit of the
specified 16-bit register is the first bit of the memory block. The value displayed contains 16
bits, regardless of the length of the memory block.

The indices in an Array Move instruction are 1-based. In using an Array Move, no element outside either
the source or destination memory blocks (as specified by their starting address and length) may be
referenced.

The function passes power flow unless one of the following conditions occurs:

= It receives no power flow.
» (N +SNX-1)is greater than Length.
» (N +DNX-1)is greater than Length.

Note: For each mnemonic, use the corresponding data type for the SR and DS operands. For example,
ARRAY_MOVE_BYTE requires SR and DS to be BYTE variables.

Operands for Array Move

Parameter Description Allowed Operands Optional
Length (??) The length of each memory block (source and destination); [Constant No
the number of elements in each memory block. 1 < Length
<32,767.
SR The starting address of the source memory block. All except constants. [No
(must be the Note: For an Array Move with the data type BOOL, any |%5 - %SC allowed only
same data type reference may be used; it does not need to be for BYTE, WORD,
as DS) byte-aligned. Sixteen bits, beginning with the DWORD types.
reference address specified, are displayed online.
SNX The index of the source memory block All except variablesin [No
%S - %SC.
DNX The index of the destination memory block All except variablesin |No
%S - %SC.
N Count indicator All except variablesin [No
%S - %SC

GFK-2950D November 2018 177

Chapter 4. Ladder Diagram (LD) Programming

same data type
as SR)

reference may be used; it does not need to be
byte-aligned. Sixteen bits, beginning with the
reference address specified, are displayed online.

allowed only for BYTE,
WORD, DWORD types

Parameter Description Allowed Operands Optional
DS The starting address of the destination memory block. All, except S and No
(must be the Note: For an Array Move with the data type BOOL, any [constants. %S5A - %SC

Array Move Example 1

To define the input memory block %R0001 - %R0016 and the
output memory block %R0100 - %R0115, SR is set as %R0001,
DS is set as %R0100, and Length is set to 16.

To copy the five registers %R0003 - %R0007 to the registers
%R0104 - %R0O108, N is set to 5, SNX=%R0100 is set to 3 (to
designate the third register, %R0003, of the block starting at
%R0001), and DNX is set to 5 (to designate the fifth register,
%R0104, of the block starting at %R0100).

Array Move Example 2

Using bit memory blocks, the input block starts at SR=%M0009,
the output block starts at %Q0022, and the length of both
blocks is 16 one-bit registers (Length=16).

To copy the seven registers %M0011 - %M0017 to %Q0026 -
%0Q0032, N is set to 7, SNX is set to 3 (to designate the third
register, %M0011, of the block starting at %M0009), and DNX is
set to 5 (to designate the fifth register, %Q0026, of the block
starting at %Q0022).

Array Move Example 3

Sixteen (=N) bits that are not byte-aligned are moved from the
two 16-bit registers that start at %R00001 (SR) to the two 16-bit
registers that begin at %R00100 (DS). For the purposes of this
Boolean move, Length is set to 20, because the other 12 bits in
either memory block are not considered.

By setting SNX to 3, N to 16, and DNX to 5, the third (SNX) least
significant bit of %R0001 through the second least significant bit
of %R0002 (for a total of 16 bits=N) are written into the fifth
(DNX) least significant bit of %R0100 through the fourth least
significant bit of %R0101 (for the same total of 16 bits).

V_I0o0 [ARBAY

I MOYE |
WOED

16

V_Rooom —5E DEF 3 ROOI00

W_RO000 —SHX

5 —DH>

5—N

i_I00oo ARRAY

11 HOVE [

L BOOL
¥_Mo0009 —5E oS

3 —SHX

5 — DHX

— ¥_00002:

|} MOVE
BOOL
20

3 —SHX
5 —DNX
& —H

_I0000 ARBRAY

v RO0O0 —8E DS v RO0I00

178 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.9.2 Array Range

:::E‘I{:' The ARRAY_RANGE function compares a single input value Mnemonics:
"| o | against two arrays of delimiters that specify an upper and lower ARrRAY RANGE DINT
i bound to determine if the input value falls within the range :)
- af ARRAY_RANGE_DWORD
specified by the delimiters. The output is an array of bits that is

set ON (1) when the input value is greater than or equal to the ARRAY_RANGE_INT
lower limit and less than or equal to the upper limit. The output ARRAY_RANGE_UINT
is set OFF (0) when the input is outside this range or whenthe ARRAY_RANGE_WORD

range is invalid, as when the lower limit exceeds the upper limit.

— UL

—IN

The ARRAY_RANGE function compares a single input value against two arrays of delimiters that specify
an upper and lower bound to determine if the input value falls within the range specified by the
delimiters. The output is an array of bits that is set ON (1) when the input value is greater than or equal
to the lower limit and less than or equal to the upper limit. The output is set OFF (0) when the input is
outside this range or when the range is invalid, as when the lower limit exceeds the upper limit.

When ARRAY_RANGE receives power, it compares the value in input parameter IN against each range
specified by the array element values of LL and UL. Output Q sets a bit ON (1) for each corresponding
array element where the value of IN is greater than or equal to the value of LL and is less than or equal
to the value of UL. Output Q sets a bit OFF (0) for each corresponding array element where the value of
IN is not within this range or when the range is invalid, as when the value of LL exceeds the value of UL.
If the operation is successful, ARRAY_RANGE passes power flow to the right.

Operands for Array Range

Notes:

* For each mnemonic, use the corresponding data type for the LL, UL, and Q operands. For example,
ARRAY_RANGE_DINT requires LL, UL, and Q to be DINT variables.

*= Qisnotaligned. It is displayed in bit format. It displays either a 1 (ON) or a 0 (OFF) for the first array

element. For BOOL references, it represents the reference displayed. For other references, it
represents the low order bit of the reference displayed.

Parameter [Description Allowed Operands Optional
Length (??) [The number of elements in each array. Constant No
LL The lower limit of the range All except constants and %S - No

%SC for INT, DINT.

UL The upper limit of the range All except constants and %S - No
%SC for INT, DINT.

IN The value to compare against each range specified by |All except constants and %S - No
LLand UL %SC for INT, DINT.

Q Energized when the value in IN is within the range All except S No

specified by LL and UL, inclusive.

GFK-2950D November 2018 179

Chapter 4. Ladder Diagram (LD) Programming

Array Range Example 1

The lower limit (LL) values of %R00001 through %R00008 are 1,
20, 30, 100, 25, 50, 10, and 200. The upper limit (UL) values of
%R00100 through %R00108 are 40, 50, 150, 2, 45, 90, 250, and
47.The resulting Q values will be placed in the first 8 bits of
%R00200. The bit values low order to highare: 1,1,1,0,1,0, 1,
and 0. The bit value displayed will be set ON (1) for the low order
bit of %R00200. The ok output will be set ON (1).

Array Range Example 2

The lower limit (LL) array contains %T00001 through %T00016,
%T00017 through %T00032, and %T00033 through %T00048.
The lower limit values are 100, 65, and 1. The upper limit (UL)
values are 29, 165, and 2. The resulting Q values of 0, 1, and 0
will be placed in %0Q00001 through %Q00003. The bit value
displayed will be 0 (OFF), representing the value of %Q00001.
The power output will be set ON (1).

180

_I000m ARRAY| YV_0O00001
e ()
3
W_Rooooi —{LL O _Roonzo
W_R00100 — 0L
40 —IN
V00N [ARRAY| V_MO0001
e T
3
v_Tooo01 —LL O ¥_Qooooi
V_To00049 —UL
ES —IN
GFK-2950D

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Chapter 4. Ladder Diagram (LD) Programming

4.9.3 FIFO Read
1"]15]'3 The First-In-First-Out (FIFO) Read (FIFO_RD) function moves data out of Mnemonics:
“| niwr | tables. Values are always moved out of the bottom of the table. If the FIFO_RD_DINT
?7 . . -RD_

g el pointer reaches the last location and the tal?le becomgs full, FIFO_RD FIFO_RD_DWORD
must be used to remove the entry at the pointer location and decrement

I — the pointer by one. FIFO_RD is used in conjunction with the FIFO_WRT FIFO_RD_INT
function, which increments the pointer and writes entries into the table. FIFO_RD_UINT

FIFO_RD_WORD

1. FIFO_RD copies the top location (entry 0) of the table to output parameter Q. Additional program
logic must then be used to place the data in the input reference.

2. Theremainingitems in the table are copied to a lower numbered position in the table.

3. FIFO_RD decrements the pointer by one.

4. Steps 1,2,and 3 are repeated each time FIFO_RD is executed, until the table is empty (PTR = 0).

The pointer does not wrap around when the table is full.

When FIFO_RD receives power flow, the data at the first location of the table is copied to output Q.
Next, each item in the table is moved down to the next lower location. This begins with item 2 in the
table, which is moved into position 1. Finally, the pointer is decremented. If this causes the pointer
location to become 0, the output EM is set ON, i.e., EM indicates whether or not the table is empty.

FIFO_RD passes power to the right if the pointer is greater than zero and less than the value specified

for LEN.

Note: AFIFO table is a queue. A LIFO table is a stack.

Operands for FIFO Read
Note:

FIFO_RD_DINT requires TB and Q to be DINT variables.

For each mnemonic, use the corresponding data type for the TB and Q operands. For example,

Parameter Description Allowed Operands Optional
Length (??) 1<Llength<32,767. Constants No
TB (must be the same type as Q)[The elements in the FIFO table |All except constants No
PTR Pointer. Index of the last All except constants, data flow, No
element of the FIFO table. and variables in %S -%SC
EM Energized when the last element|Flow No
of the table is read
Q (must be the same type as TB)|The element read from the FIFO [All except constants, S; SA, SB,SC [No
table allowed only for WORD, DWORD
GFK-2950D November 2018 181

Chapter 4. Ladder Diagram (LD) Programming

Example for FIFO Read
PRODUCT is a FIFO table with 100 word-sized elements. When the FACE IT | FIFD
enabling input PACK_IT is ON, the PRODUCT data item in the table — " worn [
location pointed to by STK_PTR is copied to the reference location 100 EMPTY
specified in CART. This table location pointed to would be the PRODUCT —TB EM——(}—
bottom, or oldest data item in the table. The number in STK_PTR is
then decremented. A copy of the oldest data item in the PRODUCT STE_PTR —|FTE O~ CAET

table is left behind in each table location as the current data is
copied out during successive PACK_IT triggers. Output node EM
passes power when the PTR = 0, firing the coil EMPTY. No further
data from the PRODUCT table can be read without first copying data
in using the FIFO_WRT function.

182 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.9.4

FIFD

| WET

DINT
7

—TE FLp-

—FTE

—{IN

FIFO Write

The First-In-First-Out (FIFO) Write (FIFO_WRT) function moves data ~ Mnemonics:

into tables. The function increments the table pointer by one and adds rjro WRT_DINT

an entry at the new pointer location in a FIFO table. Values are always FIFO_WRT DWORD
moved in at the bottom of the table. If the pointer reaches the last - -
location and the table becomes full, FIFO_WRT can add no further FIFO_WRT_INT
values. The FIFO_RD function must then be used to remove the entry FIFO_WRT_UINT
at the pointer location and decrement the pointer by one. FIFO_WRT_WORD

1. FIFO_WRT increments the pointer by one.

2. FIFO_WRT copies data from input parameter IN to the position in the table indicated by the
pointer. (It writes over any value currently at that location.) Additional program logic must then be
used to place the data in the input reference.

3. Steps 1and 2 are repeated each time FIFO_WRT is executed, until the table is full (PTR=0).

The pointer does not wrap around when the table is full.

When FIFO_WRT receives power flow, the pointer is incremented by 1. Then, input data is written into
the table at the pointer location. If the pointer was already at the last location in the table, no data is
written and FIFO_WRT does not pass power to the right. The pointer always indicates the last item
entered into the table. If the table becomes full, it is not possible to add more entries to it.

FIFO_WRT passes power to the right after a successful execution (PTR < LEN).

Operands for FIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For example,
FIFO_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1<length <32,767. Constants No

TB (must be the same data [The elements in the All except constants, data flow, and S. No

type as IN) FIFO table SA - SC allowed only for WORD, DWORD types

PTR Pointer. Index of the last|All except constants, data flow, S - SC. No
element of the FIFO
table.

IN (must be the same data |The element to write to |All. S - SC allowed only for WORD, DWORD No

type as TB) the FIFO table types.

FL Energized when IN is Power flow No
written to the last
element of the table

GFK-2950D November 2018 183

Chapter 4. Ladder Diagram (LD) Programming

Example for FIFO Write

PRODUCT is a FIFO table with 100 word-sized elements. When the
enabling input UNPACK is ON, a data item from P_CODE is copied
to the table location pointed to by the value in STK_PTR. Output
node FL passes power when PTR = LEN, firing the FULL coil. No
further data from P_CODE can be added to the table without first
copying data out, using the FIFO_RD function.

UNFACE

FRODUCT —

STE_PIE —

P_CODE —

FIFO
HET
WORD
00

TE FL

FTE

FULL

()

184 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,9.5 LIFO Read

1-;1;]'3 The Last-In-First-Out (LIFO) Read (LIFO_RD) function moves data out of Mnemonics:

| omwr [tables. Values are always moved out of the top of the table. If the pointer | [Fo RD DINT
72 . _RD_
reaches the last location and the table becomes full, LIFO_RD must be LIFO_RD_DWORD

TF M used to remove the entry at the pointer location and decrement the
lers ok pointer by one. LIFO_RD is used in conjunction with the LIFO_WRT LIFO_RD_INT
function, which increments the pointer and writes entries into the table. LIFO_RD_UINT
LIFO_RD_WORD

1. LIFO_RD copies data indicated by the pointer to output parameter Q. Additional program logic
must then be used to place the data in the input reference.

2. LIFO_RD decrements the pointer by one.

3. Steps 1and 2 are repeated each time the instruction is executed, until the table is empty (PTR =
LEN).

The pointer does not wrap around when the table is full.

When LIFO_RD receives power flow, the data at the pointer location is copied to output Q, then the
pointer is decremented. If this causes the pointer location to become 0, the output EM is set ON, i.e.,
EM indicates whether or not the table is empty. If the table is empty when LIFO_RD receives power
flow, no read occurs. The pointer always indicates the last item entered into the table.

LIFO_RD passes power to the right if the pointer was in range for an element to be read.
Note: ALIFO tableis a stack. A FIFO table is a queue.

Operands for LIFO Read

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For example,
LIFO_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length (??) 1<length<32,767. Constant No

TB (must be the same |The elements in the table All except constants No

type as Q)

PTR Pointer. Index of the next All except constants, S - SC, and data flow |No

element to read.

EM Energized when the last Power flow No
element of the table is read

Q (must be the same The element read from the All except constants and S. SA, SB, SC No
type as TB) table allowed only for WORD, DWORD.
Example for LIFO Read
PRODUCT is a LIFO table with 100 word-sized elements. When FACE IT | LIFO
the enabling input PACK_IT is ON, the data item at the top of the | | woon
table is copied into the reference indicated by the nickname 100 EMPTY
CART. The reference identified by STK_PTR contains the table PRODUCT —{TE EM|— —
pointer. Output coil EMPTY indicates when the table is empty.
STE_PTR —|FTE (O CARET

GFK-2950D November 2018 185

Chapter 4. Ladder Diagram (LD) Programming

4,9.6 LIFO Write

1-‘:;1'}' The Last-In-First-Out (LIFO) Write (LIFO_WRT) function increments ~ Mnemonics:
pint | thetable pointer by one and then adds an entry at the new pointer | |FO WRT _DINT
] . . . - _
o location in a table. Values are always moved in at the top of the table.
_ L . . LIFO_WRT_DWORD
BB fthe pointer reaches the last location and the table becomes full,
LIFO_WRT cannot add further values. LIFO_RD must then be used to LIFO-WRT_INT

remove the entry at the pointer location and decrement the pointer LIFO_WRT_UINT
by one. LIFO_WRT_WORD

—FTE

—IN

1. LIFO_WRT increments the table pointer by one.

2. LIFO_WRT copies data from input parameter IN to the position in the table indicated by the pointer.
(It writes over any value currently at that location.) Additional program logic must then be used to
place the data in the input reference.

3. Steps 1and 2 are repeated each time LIFO_WRT is executed, until the table is full (PTR=LEN).

The pointer does not wrap around when the table is full.

When LIFO_WRT receives power flow, the pointer increments by 1; then the new data is written at the
pointer location. If the pointer was already at the last location in the table, no data is written and
LIFO_WRT does not pass power to the right. The pointer always indicates the last item entered into the
table. If the table is full, it is not possible to add more entries to it.

LIFO_WRT passes power to the right after a successful execution (PTR < LEN).
Note: ALIFO tableis a stack. A FIFO table is a queue.

Operands for LIFO Write

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For example,
LIFO_WRT_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional

Length (??) 1<Llength <32,767. Constants No

TB (must be the |The elements in the table All except constants, S, data flow. SA - SC |No

same type as IN) allowed only for WORD, DWORD.

PTR Pointer. Index of the next elementto |All except constants, S - SC, and data flow|No
write.

IN (must be the |The element to write to the table All. S - SC allowed only for WORD, No

same type as TB) DWORD

FL Energized when IN is written to the last|All No
element of the table

Example for LIFO Write

PRODUCT is a LIFO table with 100 word-sized elements. When the STORE LIFO
enabling input STORE is ON, a data item from NEW_ITEM is copied 1 WORD |
to the table location pointed to by the value in STK_PTR. Output FL 100 FOLL

passes power when PTR = LEN, firing the FULL coil. No further data PrODUCT —TE FL— }—
from NEW_ITEM can be added to the table without first copying
data out, using the LIFO_RD function. STE_PTE —|FTE

186 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,9.7 Search

SE‘E%“ When the Search function receives power, it searches the specified memory block
| myrE for a value that satisfies the search criteria. For example, SEARCH_GE_DWORD
?? searches for a DWORD that is greater than or equal to the specified value (the IN
“1AF FOIF operand).

Search can evaluate six different relationships for six data types, for a total of
thirty-six mnemonics.

INX ONX

—IH

Search Relationships:
SEARCH_EQ_ searches for a value of the specified data type equal to the IN operand.
SEARCH_GE_ searches for a value of the specified data type greater than or equal to IN.
SEARCH_GT_ searches for a value of the specified data type greater than IN.
SEARCH_LE_ searches for a value of the specified data type less than or equal to IN.
SEARCH_LT_ searches for a value of the specified data type less than IN.
SEARCH_NE_ searches for a value of the specified data type that is not equal to IN.

Data types:

BYTE, DINT, DWORD, INT, UINT, WORD

Searching begins at AR+INX, where AR is the starting address and INX is the index value into the

memory block. The search continues either until a register that satisfies the search criteria is found or

until the end of the memory block is reached.

= [faregisteris found, the Found Indication (FD) is set ON and the Output Index (ONX) is set to the
relative position of this register within the block.

= If noregister is found before the end of the block is reached, the Found Indication (FD) is set OFF
and the Output Index (ONX) is set to zero.

The input index (INX) is zero-based, that is, O the means first reference, whereas the output index (ONX)

is one-based, that is, 1 means the first reference.

The valid values for INX are O to (Length - 1). The valid values for ONX are 1 to Length.

INX should be set to zero to begin searching at the memory block'’s first register. This value increments
by one at the time of execution. If the value of input INX is out-of-range,
(< 0 or > Length-1), INX is set to the default value of zero.

SEARCH passes power flow to the right when it performs without error. If INX is out of range, SEARCH
does not pass power flow to the right.

GFK-2950D November 2018 187

Chapter 4. Ladder Diagram (LD) Programming

Operands for the Search Function

Note: For each mnemonic, use the corresponding data type for the AR and IN operands. For example,
SEARCH_EQ_BYTE requires AR and IN to be BYTE variables.
Parameter Description Allowed Operands (Optional
Length (??) The number of registers starting at AR that make up the Constants No
memory block to search. 1 < Length < 32,767 8-bit or 16-bit
registers.
AR (must be the [The starting address of the memory block to search; the All except constants |No
same type as IN) [address of the first register in the memory block.
INX The zero-based index into the memory block at which to begin |All except constants |No
the search. Zero points to the first reference.
Valid range: 0 < INX < (Length-1).
If INX is out of range, it is set to the default value of 0.
IN (must be the |The value that the search is based on. For example: All No
sametypeas |SEARCH_GT_DINT searches for a DINT value that is greater
AR) than IN.
SEARCH_NE_UINT searches for a UINT value that is not equal
to IN.
SEARCH_GE_WORD searches for a WORD value that is greater
than or equal to IN.
ONX The one-based position within the memory block of the search|data flow, |, Q, M, T, G, [No
target. A value of 1 points to the first reference. R,P, L, Al, AQ
Valid range: 1 < ONX < Length
FD Found indicator. This power flow indicator is energized when a [Power flow No
register that satisfies the search criteria is found and the
function was successful.
Example for the Search Function
To search the memory block %AI00001 - %AI00016, AR is set as Y_100001 Slf;f:f
%Al00001 and Length is set as 16. The values of the 16 |
registers are 100, 20, 0, 5, 90, 200, 0, 79, 102, 80, 24, 34,987, 8, 16 v_Mooom
0, and 500. Initially, the search index into AR, %AQ0001, is 5. v_al0001 —|AR FOI—{ }—
When power flow input is ON, each scan searches the memory
block looking for a match to the IN value of 0. The first scan V_400001 —INX ONX = ¥_a00001
starts searching at %AI00006 and finds a match at %AI00007,
so FD turns ON and %AQ00001 becomes 7. The second scan U
starts searching at %AI00008 and finds a match at %AI00015,
so FD remains ON and %AQ0001 becomes 15. The next scan
starts at %AI00016. Since the end of the memory block is
reached without a match, FD is set OFF and %AQ0001 is set to
zero. The next scan starts searching at the beginning of the
memory block.
188 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.9.8 Sort

51'1'11}1_1' When it receives power flow, the SORT function sorts the elements of the ~ Mnemonics:
] | memory block 'IN"in ascending order. The output memory block Q contains gORT_INT
integers that give the index that the sorted elements had in the original
ar . . . SORT_UINT
memory block or list. Q is exactly the same size as IN. It also has a
specification (LEN) of the number of elements to be sorted. SORT_WORD

7

—IN

SORT operates on memory blocks of no more than 64 elements. When EN is ON, all of the elements of
IN are sorted into ascending order, based on their data type. The array Q is also created, giving the
original position that each sorted element held in the unsorted array. OK is always set ON.

Notes: The SORT function is executed each scan it is enabled.
Do not use the SORT function in a timed or triggered input program block.

Operands

Note: For each mnemonic, use the corresponding data type for the IN and Q operands. For example,
SORT_INT requires IN and Q to be INT variables.

Parameter Description Allowed Operands Optional

Length (??) The number (1—64) of elements that make |Constants No
up the memory block to sort.

IN The memory block that contains the All except data flow, S, No
elements to sort. After the sort, IN contains [constants. SA - SC valid
the elements in the sorted order. only for WORD type
Q (must be the same type |An array of indexes that gives the position of |All except S - SC and No
as IN) the sorted elements in the original memory |constants
block
Example
New part numbers (%100017 - %100032) are V_00001 | LIFD
. 11 WET |
pushed onto a parts array PLIST every time T HINT
%Q00014 is ON. When the array is filled, it is 5 SOET | V_00002:
sorted and the output %Q00025 is turned on. The PLIST T FL UTHT { —
array PPOSN then contains the original position 3
that the now-sorted elements held before the 4L Loeds —|FTR PLIST —|IN O PPOSK
sort was done on PLIST.
' V_I00017 —{IN
If PLIST were an array of five elements and -

contained the values 25, 67, 12, 35, 14 before the
sort, then after the sort it would contain the
values 12, 14, 25, 35, 67. PPOSN would contain
the values 3,5, 1, 4, 2.

GFK-2950D November 2018 189

Chapter 4. Ladder Diagram (LD) Programming

4.9.9 Table Read

Tgll-llfrﬂ The Table Read (TBL_RD) function sequentially reads values in a table. Mnemonics:
| . Whgn 'Fhe pointer reaches the e'nd.ofthe table, it‘wraps around to the TBL_RD_DINT
e beginning of the table. (TBL_RD is like FIFO_RD with a wrap-around.) TBL_RD_DWORD
TBL_RD_INT
i TBL_RD_UINT
TBL_RD_WORD

When TBL_RD receives power flow:

1. TBL_RD increments the pointer by one.

2. TBL_RD copies data indicated by the pointer to output parameter Q. Additional program logic must
then be used to capture the data from the output reference.

3. Steps 1and 2 are repeated each time the instruction is executed, until the end of the table is
reached (PTR=the length specified in Length). When the end of the table is reached, the pointer
wraps around to the beginning of the table.

When TBL_RD receives power flow, the pointer (PTR) increments by one. If this new pointer location is
the last item in the table, the output EM is set ON. The next time TBL_RD executes, PTR is automatically
set back to 1. After PTR is incremented, the content at the new pointer location is copied to output Q.
TBL_RD always passes power to the right when it receives power.

Note: The TBL_RD and TBL_WRT functions can operate on the same or different tables. By specifying
a different reference for the pointer, these functions can access the same data table at
different locations or at different rates.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and Q operands. For example,
TBL_RD_DINT requires TB and Q to be DINT variables.

Parameter Description Allowed Operands Optional
Length 1<Length<32,767 Constants No
TB (must be the same |The elements in the table All except constants No
type as Q)
PTR Pointer. Index of the next element. |All except data flow, S - SC, constants No
EM Energized when the last element [Power flow No
of the table is read
Q (must be the same [The element read from the table [All except constants, S. SA, SB, SC allowed |No
type as TB) only for WORD, DWORD
Table Read Example
WIDGETS is a table with 20 integer elements. When the V_MO00346 TBL ED
enabling input %M00346 is ON, the pointer increments and | wro-
the contents of the next element of the table are copied 7 V_MO1001
into ITEM_CT. %L00001 functions as the pointer into the WIDGETS —TE EM— }—
data table. %M01001 is used to signal when all items of
the data table have been accessed. ¥ lagt —FIE O~ ITEM_CT

190 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,9.10 Table Write

:31-1_ The Table Write (TBL_WRT) function sequentially updates valuesin a Mnemonics:

pixt | table that never becomes full. When the pointer (PTR) reaches the end of T WRT_DINT
* | the table, it automatically returns to the beginning of the table.

die m TBL_WRT_DWORD
TBL_WRT_INT

1 TBL_WRT_UINT

i TBL_WRT_WORD

1. TBL_WRT increments the pointer by one.

2. TBL_WRT copies data from input parameter IN to the position in the table indicated by the pointer.
(It writes over any value currently at that location.) Additional program logic must then be used to
place the data in the input reference.

3. Steps 1and 2 are repeated each time the instruction is executed, until the table is full (PTR=LEN).
When the table is full, the pointer wraps around to the beginning of the table.

Note: The TBL_WRT and TBL_RD functions can operate on the same or different tables. By specifying
a different reference for the pointer, these functions can access the same data table at
different locations or at different rates.

When TBL_WRT receives power flow, the pointer (PTR) increments by 1. If this new pointer location is
the last item in the table, the output FL is set to ON. The next time TBL_WRT executes, PTR is
automatically set back to 1. After incrementing PTR, TBL_WRT writes the content of the input reference
to the current pointer location, overwriting data already stored there.

TBL_WRT always passes power to the right when it receives power.
Note: TBL_WRT is like FIFO_WRT with a wrap-around.

Operands

Note: For each mnemonic, use the corresponding data type for the TB and IN operands. For example,
TBL_WRT_DINT requires TB and IN to be DINT variables.

Parameter Description Allowed Operands Optional
Length 1<length <32,767. Constants No
TB (must be the same |The elements in the table All except S, constants, data flow. SA-SC [No
data type as IN) allowed only for WORD, DWORD
PTR Pointer. Index of the next element. [All except constants, data flow, %S - %SC [No
IN (must be the same |The element to write to the table |All. %S - %SC allowed only for WORD, No
data type as TB) DWORD
FL Energized when IN is written to Power flow No
the last element of the table

Table Write Example

WIDGETS is a table with 20 integer elements. When the enabling V_Ino0tz ':'l:l.r
input %100012 is ON, the pointer increments and the contents of — A T [
%P00077 are written into the table at the pointer location. %L00001 2 | V_MO0W0
functions as the pointer into the data table. WIDGETS —TE FL—— }—
I Liwwigd —FTR
V_Po007y —IN

GFK-2950D November 2018 191

Chapter 4. Ladder Diagram (LD) Programming

4,10 Math Functions

Your program may need to include logic to convert data to a different data type before using a Math or
Numerical function. The description of each function includes information about appropriate data
types. Refer to the Conversion Functions section to understand how to convert one data type to a

different data type.
Function |Mnemonics Description
Absolute |ABS_DINT, ABS_INT, Finds the absolute value of a double- precision integer (DINT), signed single-
Value ABS_REAL, ABS_LREAL |precision integer (INT), or floating-point (REAL or LREAL) value. The
mnemonic specifies the value's data type.
Add ADD_DINT, ADD_INT, Addition. Adds two numbers.
ADD_REAL, ADD_LREAL,
ADD_UINT
Divide* [DIV_DINT, DIV_INT, Division. Divides one number by another and outputs the quotient.
DIV_MIXED, DIV_REAL, INgte: Take care to avoid Overflow conditions when performing divisions.
DIV_LREAL, DIV_UINT
Modulus [MOD_DINT, MOD_INT, [Modulo Division. Divides one number by another and outputs the remainder.
MOD_UINT
Multiply* [MUL_DINT, MUL_INT, |Multiplication. Multiplies two numbers.
MUL_MIXED, Note: Take care to avoid Overflow conditions when performing
MUL_REAL, MUL_LREAL, multiplications.
MUL_UINT
Scale SCALE Scales an input parameter and places the result in an output location.
Subtract |SUB_DINT, SUB_INT, Subtraction. Subtracts one number from another.

SUB_REAL, SUB_LREAL,
SUB_UINT

“To avoid Overflows when multiplying or dividing 16-bit numbers, use the Conversion Functions to convert the numbers to a
32-bit data type.

192

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.10.1 Overflow

When an operation results in overflow, there is no power flow.

If an operation on signed operands (INT, DINT, REAL) results in overflow, the output reference is set to
its largest possible value for the data type. For signed numbers, the sign is set to show the direction of
the overflow. If signed or double precision integers are used, the sign of the result for DIV and MUL

functions depends on the signs of I1 and 12.

Maximum MAXINT16 Maximum signed 16-bit 7FFF hex 32,767

values MAXUINT16 Maximum unsigned 16-bit | FFFF hex 65,535
MAXINT32 Maximum signed 32-bit 7FFFFFFF hex 2,147 483,647

Minimum MININT16 Minimum signed 16-bit 8000 hex -32,768

Values MININT32 Minimum signed 32-bit 80000000 hex _2,147,483,648

If an operation on unsigned operands (UINT) results in overflow or underflow, the output value wraps

around. For example the ADD_UINT operation, 65535+16, yields a result of 15.

GFK-2950D

November 2018

193

Chapter 4. Ladder Diagram (LD) Programming

4,10.2 Absolute Value

311:51_ When the function receives power flow, it places the absolute value of Mnemonics:
T " input IN into output Q. ABS_DINT
dw ok ABS_INT
ABS_REAL
ABS_LREAL

The function outputs power flow, unless one of the following conditions occurs:

m For INT type, IN is -32,768.
m For DINT type, INis -2,147,483,648.
m For REAL or LREAL type, IN is NaN (Not a Number).

Operands
Parameter Description Allowed Operands Optional
IN (must be same type as Q) |The value to process. All except S, SA, SB, SC No
Q (must be same type as IN) [The absolute value of IN. All except S, SA, SB, SC and constant |No
Example
The absolute value of -2,976, which is 2,976, is placed in %R00010:
AES INT
2976 —IN OF V_R000i0

194 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.10.3

ADND
DINT |

¥t OrF

—INz

Add

When the ADD function receives power flow, it adds the two operands Mnemonics:
IN1 and IN2 of the same data type and stores the sumin the output ~ App DINT
variable assigned to Q, also of the same data type. ADD_INT

ADD_REAL
ADD_LREAL
ADD_UINT

The power flow output is energized when ADD is performed, unless an invalid operation or Overflow
occurs. (For more information, refer to the section on Overflow.)

Mnemonic

Operation

Displays as

ADDL_INT

Q(16-bit) = IN1(16-bit) + IN2(16-bit)

base 10 number with sign, up to 5 digits long

ADD_DINT |Q(32-bit) = IN1(32-bit) + IN2(32-bit) [base 10 number with sign, up to 10 digits long

ADD_REAL |Q(32-bit) = IN1(32-bit) + IN2(32-bit) |base 10 number, sign and decimals, up to 8 digits long
(excluding the decimals)

ADD_LREAL |Q(64-bit) = IN1(64-bit) + IN2(64-bit) |base 10 number, sign and decimals, up to 17 digits long
(excluding the decimals)

ADD_UINT |Q(16-bit) = IN1(16-bit) + IN2(16-bit) |base 10 number, unsigned, up to 5 digits long

Operands of the ADD Function

Operand |Description Allowed Operands |Optional
IN1 The value to the left of the plus sign (+) in the equation IN1+IN2=Q. |All except S, SA, SB, SC |No
IN2 The value to the right of the plus sign (+) in the equation All except S, SA, SB, SC [No
IN1+IN2=Q.
Q The result of IN1+IN2. If an ADD of signed operands results in All except S, SA, SB, SC |No
Overflow, Q is set to the largest possible value and there is no and constant.
power flow.
If an ADD_UINT operation results in Overflow, Q wraps around.

GFK-2950D

November 2018 195

Chapter 4. Ladder Diagram (LD) Programming

Examplel for ADD

The first example is a failed attempt to create a counter
circuit that would count the number of times switch
%100001 closes. The running total is stored in register
%R00002. The intent of this design is that when %I0001
closes, the ADD instruction should add one to the value in

%R00002 and place the new value right back into %R0002.

The problem with this design is that the ADD instruction
executes once every PLC scan while %10001 is closed. For
example, if %10001 stays closed for five scans, the output
increments five times, even though %I00001 only closed
once during that period.

Example2 for ADD

To correct the above problem, the enable input to the ADD
instruction should come from a transition (one-shot) coil, as
shown below. In the improved circuit, the %I0001 input
switch controls a transition coil, %M0001, whose contact
turns on the enable input of the ADD function for only one
scan each time contact %100001 closes. In order for the
%M00001 contact to close again, contact %0001 has to
open and close again.

Note: If IN1 and/or IN2 is NaN (Not a Number), ADD_REAL
passes no power flow.

196

_I0000

INT

ADD

:

W_R00002 —

1

1M1

INa

]

— W_E000oz

7_T0oom
I

V_Moom

V_Moooo

ADD
INT

{1+

V_000001

:

W_R00002

1

IH1

IN2

O ¥_RO0002

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

f

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.10.4 Divide

];311;-'1_ When the DIV function receives power flow, it divides the operand IN1 by the Mnemonics:
| " operand IN2 of the same data type as IN1 and stores the quotient in the output pjy pINT
- variable assigned to Q, also of the same data type as IN1 and IN2. DIV_INT
The power flow output is energized when DIV is performed, unless an invalid DIV_MIXED
diwz operation or Overflow occurs. (For more information, refer to the section on DIV_REAL
Overflow.) DIV_LREAL
DIV_UINT
Notes:

= DIV rounds down; it does not round to the closest integer. For example,
24DIV5 =4,

= DIV_MIXED uses mixed data types.

= Be careful to avoid overflows.

The following REAL and LREAL operations are invalid for DIV:

= Any number divided by 0. This operation yields a result of 65535.
= oo divided by
= |1and/ori2is NaN (Not a Number)

Mnemonic |Operation Displays as

DIV_UINT Q(16-bit) = IN1(16-bit) / IN2(16-bit) base 10 number, unsigned, up to 5 digits long

DIV_INT Q(16-bit) = IN1(16-bit) / IN2(16-bit) |base 10 number with sign, up to 5 digits long

DIV_DINT Q(32-bit) = IN1(32-bit) / IN2(32-bit) |base 10 number with sign, up to 10 digits long

DIV_MIXED Q(16-bit) = IN1(32-bit) / IN2(16-bit) base 10 number with sign, up to 5 digits long

DIV_REAL Q(32-bit) = IN1(32-bit) / IN2(32-bit) base 10 number, sign and decimals, up to 8 digits long
(excluding the decimals)

DIV_LREAL Q(64-bit) = IN1(64-bit) / IN2(64-bit) base 10 number, sign and decimals, up to 17 digits long

(excluding the decimals)

Operands for the DIV Function

Parameter

Description

Allowed Operands Optional

IN1

Dividend: the value to be divided; shown to the left of DIV in the |All except S, SA, SB, SC [No

equation IN1 DIV IN2=Q.

IN2 Divisor: the value to divide into IN1; shown to the right of DIV in |All except S, SA, SB, SC [No
the equation IN1 DIV IN2=Q.
Q The quotient of IN1/IN2. If a DIV operation on signed operands |All except S, SA, SB, SC |No
results in Overflow, Q is set to the largest possible value and |and constant
there is no power flow.
If a DIV_UINT operation results in Overflow, Q wraps around.
GFK-2950D November 2018 197

Chapter 4. Ladder Diagram (LD) Programming

DIV_MIXED Operands

Parameter |Description Allowed Operands Optional
IN1 Dividend: the value to be divided; shown to the left of DIVin |All except S, SA, SB, SC No
the equation IN1 DIV IN2=Q.
IN2 Divisor: the value to divide into IN1; shown to the right of DIV |All except S, SA, SB, SC No
in the equation IN1 DIV IN2=Q.
Q The quotient of IN1/IN2. If an Overflow occurs, the resultis |All except S, SA, SB, SC No
the largest value with the proper sign and no power flow. and constant

DIV_MIXED Example

DIV_DINT can be used in conjunction with a MUL_DINT function to scale a +10 volt input to +25,000
engineering units. Refer to Example - Scaling Analog Input Values.

198

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.10.5

HOD
DINT |

¥t OrF

—INz

Modulus

When the Modulo Division (MOD) function receives power flow, it divides
input IN1 by input IN2 and outputs the remainder of the division to Q.

Mnemonics:
MOD_DINT

MODL_INT
MOD_UINT

All three operands must be of the same data type. The sign of the result is always the same as the sign
of input parameter IN1. Output Q is calculated using the formula:

Q =IN1-((IN1 DIV IN2) x IN2)
where DIV produces an integer number.

The power flow output is always ON when the function receives power flow, unless there is an attempt
to divide by zero. In that case, the power flow output is set to OFF.

Operands for Modulus Function

Parameter |Description Allowed Operands |Optional
IN1 Dividend: the value to be divided to obtain the remainder; shown |All except S, SA, SB, SC |No

to the left of MOD in the equation IN1 MOD IN2=Q.
IN2 Divisor: the value to divide into IN1; shown to the right of MOD in |All except S, SA, SB, SC |No

the equation IN1 MOD IN2=Q.
Q The remainder of IN1/IN2. All except S, SA, SB, SC |No

and constant

GFK-2950D November 2018 199

Chapter 4. Ladder Diagram (LD) Programming

4.10.6

DINT

—IN1

Multiply

The power flow output is energized when the function is performed, unless an
w2 invalid operation or Overflow occurs. (For more information, refer to the section
on Overflow.)

MUOL | \When the MUL function receives power flow, it multiplies the two operands IN1 Mnemonics:
"and IN2 of the same data type and stores the result in the output variable
assigned to Q, also of the same data type.

MUL_DINT
MUL_INT
MUL_MIXED
MUL_REAL

MUL_LREAL
MUL_UINT

Note: MUL_MIXED uses mixed data types. Be careful to avoid overflows.
The following REAL and LREAL operations are invalid for MUL:

= Oxoo

= |1 and/or12is NaN (Not a Number).

Mnemonic |Operation Displays as

MUL_INT Q(16-bit) = IN1(16-bit) x IN2(16-bit)|base 10 number with sign, up to 5 digits long

MUL_DINT [Q(32-bit) = IN1(32-bit) x IN2(32-bit)|base 10 number with sign, up to 10 digits long

MUL_REAL [Q(32-bit) = IN1(32-bit) x IN2(32-bit)|base 10 number, sign and decimals, up to 8 digits long
(excluding the decimals)

MUL_LREAL [Q(64-bit) = IN1(64-bit) x IN2(64-bit)|base 10 number, sign and decimals, up to 17 digits long
(excluding the decimals)

MUL_UINT [Q(16-bit) = IN1(16-bit) x IN2(16-bit)|base 10 number, unsigned, up to 5 digits long

MUL_MIXED |Q(32-bit) = IN1(16-bit) x IN2(16-bit)|base 10 number with sign, up to 10 digits long

Operands for Multiply

Parameter |Description Allowed Operands Optional
IN1 The first value to multiply; the value to the left of the multiply |[All except S, SA, SB,SC [No
sign (x) in the equation IN1 x IN2=Q.
IN2 The second value to multiply; the value to the right of the All except S, SA, SB,SC [No
multiply sign (x) in the equation IN1 x IN2=Q.
Q The result of IN1 x IN2. If a MUL operation on signed operands |All except S, SA, SB,SC |No
results in Overflow, Q is set to the largest possible value and |and constant
there is no power flow.
If a MUL_UINT operation results in Overflow, Q wraps around.
200 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Example - Scaling Analog Input Values

A common application is to scale analog input values with a MUL operation followed by a DIV and
possibly an ADD operation. A 0 to +10 volt analog input will place values of 0 to £32,000 in its
corresponding %Al input register. Multiplying this input register using an MUL_INT function will result in
an Overflow since an INT type instruction has an input and output range of 32,767 to -32,768. Using the
%Al value as in input to a MUL_DINT also does not work as the 32-bit IN1 will combine 2 analog inputs
at the same time. To solve this problem, you can move the analog input to the low word of a double
register, then test the sign and set the second register to O if the sign tests positive or -1 if negative.
Then use the double register just created with a MUL_DINT which gives a 32-bit result, and which can
be used with a following DIV_DINT function.

For example, the following logic could be used to scale a +10 volt input %Al1 to +25000 engineering
units in %R5.

#ALW ON [MOVE HMOVE
| INT INT {2 3—
1 1
AIODD —{IN O Roooo 0—I¥ OF Rooooz
LT INT
1.1
1+
MOVE
Eoo00t 4 IN1 O INT |
1
0 —INz A-IN OF Ro0OO02
#ALK ON ML nI
| DINT DINT |
Rooom —IN1 O Eo0oo: EoO00: —{IN1 OF ROOO0S
z5000 —{INE F2000 1INz

An alternate, but less accurate, way of programming this circuit using INT values involves placing the
DIV_DINT instruction first, followed by the MUL_DINT instruction. The value of IN2 for the DIV
instruction would be 32, and the value of IN2 for the MUL would be 25. This maintains the scaling
proportion of the above circuit and keeps the values within the working range of the INT type
instructions. However, the DIV instruction inherently discards any remainder value, so when the DIV
output is multiplied by the MUL instruction, the error introduced by a discarded remainder is multiplied.
The percent of error is non-linear over the full range of input values and is greater at lower input values.

By contrast, in the example above, the results are more accurate because the DIV operation is
performed last, so the discarded remainder is not multiplied. If even greater precision is required,
substitute REAL type math instructions in this example so that the remainder is not discarded.

GFK-2950D November 2018 201

Chapter 4. Ladder Diagram (LD) Programming

4,10.7 Scale

SEATETINT When the SCALE function receives power flow, it scales the input Mnemonics:
— | operand IN and places the result in the output variable assigned SCALE_DINT
to output operand OUT. The power flow output is energized when SCALE_INT
—lmr ol SCALE is performed without Overflow. -
SCALE_DINT
—Lo SCALE_UINT
—OHI
—{OLo
—1
Operands
Parameter | Description Allowed Operands Optional
IHI (Inputs High) Maximum input value (module-related). The upper | All except S, SA, SB, SC | No
limit of the unscaled data. IHI is used with ILO, OHl and OLO to
calculate the scaling factor applied to the input value IN.
ILO (Inputs Low) Minimum input value (module-related). The lower | All except S, SA, SB, SC | No
limit of the unscaled data. Must be the same data type as IHI.
OHI (Outputs High) Maximum output value. The upper limit of the | All except S, SA, SB, SC | No
scaled data. Must be the same data type as IHI. When the IN
input is at the IHI value, the OUT value is the same as the OHI
value.
OoLo (Outputs Low) Minimum output value. The lower limit of the All except S, SA, SB, SC | No
scaled data. Must be the same data type as IHI. When the IN
input is at the ILO value, the OUT value is the same as the OLO
value.
IN (INput value) The value to be scaled. Must be the same data All except S, SA, SB, SC |No
type as IHI.
ouT (OUTput value) The scaled equivalent of the input value. Must | All except S, SA, SB, SC | No
be the same data type as IHI.
Example
In the example at right, the registers %R0120 through %R0123 are used et i

to store the high and low scaling values. The input value to be scaled is
analog input %AI0017. The scaled output data is used to control analog
output %AQ0017. The scaling is performed whenever %I0001 is ON.

202

—| '_
W_RO0120 —
W_R00121 —

V_R00izz —

W_RO01Z3 —

T_AI0M7 —

IHI OUT - %_400m7

Lo

OHI

Lo

N

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,10.8 Subtract

nsi];ér When the SUB function receives power flow, it subtracts the operand IN2 Mnemonics:
| " from the operand IN1 of the same data type as IN2 and stores the result gyg pINT
- in the output variable assigned to Q, also of the same data type. SUB_INT
SUB_REAL
Ao SUB_LREAL
SUB_UINT

The power flow output is energized when SUB is performed, unless an invalid operation or Overflow
occurs. (For more information, refer to the section on Overflow.)

If a SUB_UINT operation results in a negative number, Q wraps around, yielding a result that is the
highest possible value (65535) minus the absolute value of the difference -1.

The following REAL and LREAL operations are invalid for SUB:

" (to)- (£

= |1 and/or12is NaN (Not a Number)

Mnemonic [Operation Displays as
SUB_INT Q(16-bit) = IN1(16-bit) - IN2(16- |base 10 number with sign, up to 5 digits long
bit)

SUB_DINT Q(32-bit) = IN1(32-bit) - IN2(32- |base 10 number with sign, up to 10 digits long
bit)

SUB_REAL Q(32-bit) = IN1(32-bit) - IN2(32- [base 10 number, sign and decimals, up to 8 digits long
bit) (excluding the decimals)

SUB_LREAL |Q(64-bit) = IN1(64-bit) - IN2(64- |base 10 number, sign and decimals, up to 17 digits long
bit) (excluding the decimals)

SUB_UINT Q(16-bit) = IN1(16-bit) - IN2(16- |base 10 number, unsigned, up to 5 digits long

bit)
Operands for Subtract
Parameter |Description Allowed Operands |Optional
IN1 The value to subtract from; the value to the left of the minus All except S, SA, SB, SC |No

sign (-) in the equation IN1-IN2=Q.

IN2 The value to subtract from IN1; the value to the right of the All except S, SA, SB, SC |No
minus sign (-) in the equation IN1-IN2=Q.

Q The result of IN1-IN2. If a SUB operation on signed operands All except S, SA, SB, SC |No
results in underflow, Q is set to the smallest possible value and |and constant
there is no power flow.

If a SUB_UINT operation results in Overflow, Q wraps around.
For example,

The SUB_UINT operation 600 - 601 = -1 sets Q to 65535
The SUB_UINT operation 600 - 602 = -2 sets Q to 65534

GFK-2950D November 2018 203

Chapter 4. Ladder Diagram (LD) Programming

4.11 Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes the
application program.

Function Mnemonic|Description

Argument ARG_PRES |Determines whether an input or output parameter value was present when the

Present function block instance of the parameter was invoked. For example, a parameter can
be optional (pass by value).

Call CALL Causes program execution to go to a specified block.

Comment COMMENT [Places a text explanation in the program.

End Master |[ENDMCRN [Nested End Master Control Relay. Indicates that the subsequent logic is to be

Control Relay executed with normal power flow.

End of Logic |END Provides an unconditional end of logic. The program executes from the first rung to
the last rung or the END instruction, whichever is encountered first.

Jump JUMPN Nested jump. Causes program execution to jump to a specified location indicated by
a LABELN. JUMPN/LABELN pairs can be nested within one another. Multiple JUMPNs
can share the same LABELN.

Label LABELN Nested label. Specifies the target location of a JUMPN instruction.

Master MCRN Nested Master Control Relay. Causes all rungs between the MCR and its subsequent

Control Relay ENDMCRN to be executed without power flow. Up to MCRN/ENDMCRN pairs can be
nested within one another. All the MCRNs share the same ENDMCRN.

Wires H_WIRE |Horizontally connects elements of a line of LD logic, to complete the power flow.

V_WIRE |Vertically connects elements of a line of LD logic, to complete the power flow.
204 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.11.1

Argument Present

ARG FRES

optional.

The ARG_PRES function determines whether an input parameter
value was present when the function block instance of the
parameter was invoked. This may be necessary if the parameter is

This function must be called from a function block instance or a

parameterized block.

The standard output parameter ENO is false only when EN is false.

Operands for ARG_PRES

languages all types allowed

Parameter |Description Allowed Operands Optional
IN Parameter name. Must be a parameter of the function [All except flow and constants. [No

block that contains the ARG_PRES instruction. Cannot

be an array element or structure element. An alias to a

parameter should resolve only to the parameter name.
Q True if the parameter is present, otherwise false. Must be flow in LD. In other No

except S, SA, SB, SC and

constants.

Example for ARG_PRES

The following sample rung calls the user defined function block, ReadTemp, which has two parameters,
TempVal and Temp1.

READTEMP

CheckTemp

TankTemp ——TEMFPWAL TEMF1 [—— TempCul

The function block ReadTemp contains the following logic, which uses an ARG_PRES function to
determine whether a value for TempVal is present. If TempVal does not have a value, Temp_Pres is OFF
and Idle is ON. If a value exists for TempVal, the ARG_PRES function sets Temp_Pres ON. When
Temp_Pres and Switch are both ON, Start is set ON.

ARG FRES

Temp_Pres
TempWal “ Q O
Temp_Pres Idle
{1 Ry
Temp_Pres Switch Start
11 11 P
1T 1T WS

GFK-2950D

November 2018

205

Chapter 4. Ladder Diagram (LD) Programming

4,11.2 Call

Y CALL
_|SODARED |
CALL
—IN Qi
—INz D2

Non-parameterized Parameterized. May call a parameterized external block or a parameterized
block. May have up to 7 input and 8 output parameters.

When the CALL function receives power flow, it causes the logic execution to go immediately to the
designated program block, external C block (parameterized or not), or parameterized block and execute
it. After the block’s execution is complete, control returns to the point in the logic immediately
following the CALL instruction.

Notes:

= A CALL function can be used in any program block, including the _MAIN block, or a parameterized
block. It cannot be used in an external block.

= You cannot call a _MAIN block.

» The called block must exist in the target before making the call.

= Thereis no limit to the number of calls that can be made from or to a given block.

* You can set up recursive subroutines by having a block call itself. When stack size is configured to
be the default (64K), the PLC guarantees a minimum of eight nested calls before an Application
Stack Overflow fault is logged.

= Each block has a predefined parameter, YO, which the CPU sets to 1 upon each invocation of the
block. YO can be controlled by logic within the block and provides the output status of the block.
When the YO parameter of a Program Block, parameterized block, or external C block returns ON,
the CALL passes power to the right; when it returns OFF, the CALL does not pass power to the
right.

206 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Operands for Call
Parameter Description
Block Name (???7?) Block name; the name of the block to transfer to.

You cannot CALL the _MAIN block.

A program block or a parameterized block can call itself.

(]

Input parameters (0 - 7)

Output parameters (1 - 8) -
[
[

(Parameterized calls only) [Notes for External (C) blocks:

Notes for Parameterized Blocks:

You must define the TYPE, LENGTH, and NAME for each external C block
parameter.

The valid data type, value range, and memory area for each parameter are
stated in the external block's written documentation.

Data flow is permitted for any parameter.

For additional information, see the section on External Blocks in Chapter 2.

You must define the TYPE, LENGTH, and NAME for each parameter. Valid
operands on the CALL instruction include variables, flow, and indirect
references. Input operands can also be constants.

If a formal parameter is an array of BOOL type and has a length evenly divisible
by 16, then a variable or array residing in word-oriented memory can be
passed on to the parameterized block as an operand. For example, if a
parameterized block has a formal parameter Y1 of data type BIT and length 48,
you can pass a WORD array of length 3 to Y1.

The BOOL parameter Y0 is automatically defined for all parameterized blocks
and can be used in the parameterized block's logic. When the parameterized
block stops executing and YO is ON, the CALL passes power flow to the right. If
Y0 is OFF, the CALL passes no power flow.

A parameterized block is not required to have the same number of inputs and
outputs.

For additional information, refer to Using Parameters with a Parameterized
Block in Chapter 2.

Example 1 for Call

In the example at right, if Enable is

set, the C block named C_123 is Enahle CCJ;LEI; Tonog
executed. C_123 operates on the B

input data located at reference — Q
addresses Datal, Data2, and Data

3, and produces values located at

reference addresses Data4, Datas, Datai —M1 Ut Datad

and Datab. Logic within C_123
controls the power flow output.

GFK-2950D

Datez —{IM2 QU2 — Dats

Dates —{IM3 OU% — etk

November 2018 207

Chapter 4. Ladder Diagram (LD) Programming

Example 2 for Call

Parameterized blocks are useful for building libraries of user-defined om0t CALL 25 4
functions. For example, if you have an equation such as:

E=(A+B+C+D)/4, a parameterized block named AVG_4 could be called —
as shown in the example to the right.

In this example, the average of the values in RO0001, RO0002, RO0003,

and R0O0004 would be placed in RO0005. RoO00$ —A E ™ o000
The logic within the parameterized block would be defined as shown
below.

Rooooz —B

ROOODG —|%

Roonng —{0

Logic for AVG_4 Parameterized Block

D0 LINT AL UINT DI LINT
5 —INd 7 N1 Q N1 9 E
g —Nz Nz —nz
D0 LINT
o —INd Q
o —nz

208 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,.11.3 Comment

=777

The Comment function is used to enter a text explanation in the program. When you insert a Comment
instruction into the LD logic, it displays ????. After you key in a comment, the first few words are
displayed.

| |This is a comment. Comments have no effect on program execution.

You can set the Comment mode option to Brief or Full.
Notes:

= Editing a comment makes the Programmer lose equality.
= Comment text is downloaded to the controller and retrieved upon Logic Upload.

GFK-2950D November 2018 209

Chapter 4. Ladder Diagram (LD) Programming

4.11.4 JumpN

@2 Description Always associated with... Mnemonic
Nested form of Jump instruction. a LABELN instruction JUMPN

A JUMPN instruction causes a portion of the program logic to be bypassed. Program execution
continues at the LABELN specified in the same block. Power flow jumps directly from the JUMPN to the
rung with the named LABELN.

When the Jump is active, any functions between the jump and the label are not executed. All coils
between JUMPN and its associated LABELN are left at their previous states. This includes coils
associated with timers, counters, latches, and relays.

Any JUMPN can be either a forward or a backward jump, i.e., its LABELN can be either in a further or
previous rung. The LABELN must be in the same block.

Note: To avoid creating an endless loop with forward and backward JUMPN instructions, a backward
JUMPN should contain a way to make it conditional.

A JUMPN and its associated LABELN can be placed anywhere in a program, as long as the JUMPN /
LABELN range:

m does not overlap the range of a MCRN / ENDMCRN pair.
m does not overlap the range of a FOR_LOOP / END_FOR pair.

Nothing can be connected to the right side of a JUMPN instruction.

Operands
Parameter Description Optional
Label (?7?7?) Label name; the name assigned to the destination LABEL(N). No

210 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.11.5 Master Control Relay/End Master Control Relay

2977 | 255
MEREM
Description Always associated with... Mnemonics

Nested form of the Master Control Relay an ENDMCRN instruction MCRN
Nested End Master Control Relay an MCRN instruction ENDMCRN

MCRN

An MCRN instruction marks the beginning of a section of logic that will be executed with no power flow.
The end of an MCRN section must be marked with an ENDMCRN having the same name as the MCRN.
ENDMCRNSs must follow their corresponding MCRNs in the logic.

All rungs between an active MCRN and its corresponding ENDMCRN are executed with negative power
flow from the power rail. The ENDMCRN function associated with the MCRN causes normal program
execution to resume, with positive power flow coming from the power rail.

With a Master Control Relay, functions within the scope of the Master Control Relay are executed
without power flow, and coils are turned off.

Block calls within the scope of an active Master Control Relay will not execute. However, any timers in
the block will continue to accumulate time.

A rung may not contain anything after an MCRN.

Unlike JUMP instructions, MCRNs can only move forward. An ENDMCRN instruction must appear after
its corresponding MCRN instruction in a program.

The following controls are imposed by an MCRN:

= Timers do not increment or decrement. TMR types are reset. For an ONDTR function, the

accumulator holds its value.
= Normal outputs are off; negated outputs are on.

Note: When an MCRN is energized, the logic it controls is scanned and contact status is displayed,
but no outputs are energized. If you are not aware that an MCRN is controlling the logic being
observed, this might appear to be a faulty condition.

An MCRN and its associated ENDMCRN can be placed anywhere in a program, as long as the MCRN /
ENDMCRN range:

* |s completely nested within another MCRN / ENDMCRN range, up to a maximum 255 levels of
nesting, or is completely outside of the range of another MCRN / ENDMCRN range.

* |s completely nested within a FOR_LOOP / END_FOR range or is completely outside of the range of
a FOR_LOOP /END_FOR.

GFK-2950D November 2018 211

Chapter 4. Ladder Diagram (LD) Programming

EndMCRN

The End Master Control Relay instruction marks the end of a section of logic begun with a Master
Control Relay instruction. When the MCRN associated with the ENDMCRN is active, the ENDMCRN
causes program execution to resume with normal power flow. When the MCRN associated with the
ENDMCRN is not active, the ENDMCRN has no effect.

ENDMCRN must be tied to the power rail; there can be no logic before it in the rung; execution cannot
be conditional.

ENDMCRN has a name that identifies it and associates it with the corresponding MCRN(s). The
ENDMCRN function has no outputs; there can be nothing after an ENDMCR instruction in a rung.

Operands for MCRN/ENDMCRN

The Master Control Relay function has a single operand, a name that identifies the MCRN. This name is
used again with an ENDMCRN instruction. The MCRN has no output.

Parameter |Description Optional

Name The name associated with the MCRN that starts the section of logic. No
(2222)

Example of MCRN/ENDMCRN

The example at right an MCRN named Sec_MCRN v_l0ooz - First_MCRN
nested inside the MCRN named First_MCRN. |l
— RN
Whenever the V_I0002 contact allows power flow into "
the MCRN function, program execution will continue Hinnno2
without power flow to the coils until the associated
ENDMCRN is reached. If the V_I0001 and V_I0003 v Iaoo4 - Sec_MCRN
contacts are ON, the V_Q0001 coil is turned OFF and | | MCRN
the SET coil V_Q0003 maintains its current state. %(00004
W_ (0001 W_o0001
| | { —
%0000 HHo0000
W_|0003 YW_0003
| | (53—
%I00003 %0003
s sec_MCRM
IR First_MCRN

212 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,11.6 Wires

Horizontal and vertical wires (H_WIRE and V_WIRE)
are used to connect elements of a line of LD logic
between functions. Their purpose is to complete the
flow of logic (power) from left to right in a line of logic.

A horizontal wire transmits the BOOLEAN ON/OFF
state of the element on its immediate left to the
element on its immediate right.

A vertical wire may intersect with one or more
horizontal wires on each side. The state of the vertical
wire is the inclusive OR of the ON states of the
horizontal wires on its left side. The state of the
vertical wire is copied to all of the attached horizontal
wires on its right side.

Note: Wires can be used for data flow, but you cannot route data flow leftwards. Nor can two
separate data flow lines come into the left side of the same vertical wire.

GFK-2950D November 2018 213

Chapter 4. Ladder Diagram (LD) Programming

4.12 Relational Functions

Relational functions compare two values of the same data type or determine whether a number lies
within a specified range. The original values are unaffected.

Function

Mnemonic

Description

Compare

CMP_DINT
CMP_INT
CMP_REAL
CMP_LREAL
CMP_UINT

Compares two numbers, IN1 and IN2, of the data type specified by the
mnemonic.

m IfIN1<IN2,the LT output is turned ON.
m IfIN1=IN2, the EQ outputis turned ON.
m IfIN1>IN2, the GT outputis turned ON.

Equal

EQ_DATA
EQ_DINT
EQ_INT
EQ_REAL
EQ_LREAL
EQ_UINT

Tests two numbers for equality

Greater or Equal

GE_DINT
GE_INT
GE_REAL
GE_LREAL
GE_UINT

Tests whether one number is greater than or equal to another

Greater Than

GT_DINT
GT_INT
GT_REAL
GT_LREAL
GT_UINT

Tests whether one number is greater than another

Less or Equal

LE_DINT
LE_INT
LE_REAL
LE_LREAL
LE_UINT

Tests whether one number is less than or equal to another

Less Than

LT_DINT
LT_INT
LT_REAL
LT_LREAL
LT_UINT

Tests whether one number is less than another

Not Equal

NE_DINT
NE_INT
NE_REAL
NE_LREAL
NE_UINT

Tests two numbers for inequality

Range

RANGE_DINT
RANGE_DWORD
RANGE_INT
RANGE_UINT
RANGE_WORD

Tests whether one number is within the range defined by two other
supplied numbers

214 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.12.1 Compare

CMP
_| DINT |

—INl LT

INz EO

GI‘_

When the Compare (CMP) function receives power flow, it compares Mnemonics:

the value IN1 to the value IN2.

m IfIN1 < IN2, CMP energizes the LT (Less Than) output.
m IfIN1=IN2,CMP energizes the EQ (Equal) output.
m IfIN1>IN2, CMP energizes the GT (Greater Than) output.

IN1 and IN2 must be the same data type.
CMP compares data of the following types: DINT, INT, REAL, LREAL, and UINT.
Tip: To compare values of different data types, first use conversion functions to make the types the

same.

CMP_DINT
CMP_INT
CMP_REAL
CMP_LREAL
CMP_UINT

When it receives power flow, CMP always passes power flow to the right, unless IN1 and/or IN2 is NaN
(Not a Number).

Operands
Parameter Description Allowed Operands Optional
IN1 The first value to compare. All except S, SA, SB, SC No
IN2 The second value to compare. All except S, SA, SB, SC No
LT Output LT is energized when 11 < 12. Power flow No
EQ Output EQ is energized when I1 = 12. Power flow No
GT Output GT is energized when 11 > 12. Power flow No
Example
When %100001 is ON, the integer variable SHIPS is compared V_100001 e
with the variable BOATS. Internal coils %M0001, %M0002, and a B
%MO0003 are set to the results of the compare. v_M00001
SHIFS —{IM LT— +—
V_MO0002
BOATS —(IN2 EO——
V_MO00003
ar— 1

GFK-2950D

November 2018

215

Chapter 4. Ladder Diagram (LD) Programming

4.12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal,

Less Than
EO NE GE GT LE LT DINT
_| DINT | _| DINT | _| DINT | _| DINT [_| DINT | _ |
—IN1 o —IN1 aF —IH1 o —IH1 aF —IN1 aF —IN1 aF
—INZ —INzZ —INZ —INZ —INzZ —INZ

Other data types:

_INT
_REAL
_LREAL
_UINT

When the relational function receives power flow, it compares input IN1 to input IN2. These operands
must be the same data type. Ifinputs IN1 and IN2 are equal, the function passes power to the right,
unless IN1 and/or IN2 is NaN (Not a Number). The following relational functions can be used to
compare two numbers:

Function | Definition Relational Statement
EQ Equal IN1=IN2
NE Not Equal IN12IN2
GE Greater Than or Equal | IN12IN2
GT Greater Than IN1>IN2
LE Less Than or Equal IN1<IN2
LT Less Than IN1<IN2

Note: If an Overflow occurs with a _UINT operation, the result wraps around - refer to the section on
Overflow.

If the _DINT or _INT operations are fed the largest possible value with any sign, they cannot
determine if it is an overflow value. The power flow output of the previous operation would
need to be checked. If an overflow occurred on a previous DINT, or INT operation, the result
was the largest possible value with the proper sign and no power flow.

Tip: To compare values of different data types, first use conversion functions to make the types the
same. The relational functions require data to be one of the following types: DINT, INT, REAL,
LREAL, or UINT.
Operands
Parameter |Description Allowed Operands Optional
IN1 The first value to be compared; the value on the left side of the |All except S, SA, SB,SC [No
relational statement.
IN2 The second value to be compared; the value on the right side of |All except S, SA, SB,SC [No
the relational statement. IN2 must be the same data type as IN1.
Q The power flow. If the relational statement is true, Q is energized, |Power flow No
unless IN1 or IN2 is NaN.
216 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4.12.3 EQ_DATA

EQ DATA

The EQ_DATA function compares two input variables, IN1 and IN2 of the Mnemonic:
same data type. If IN1 and IN2 are equal, output Q is energized. If they are EQ_DATA
i oL notequal, Qis cleared.

—{INZ

Operands
Parameter |Description Allowed Operands Optional
IN1 The first value to be compared; the value on |PACMotion ENUM variable or structure No
the left side of the relational statement. variable.
For details, refer to Data Types and
Structures in the PACMotion Multi-Axis
Motion Controller User's Manual,
GFK-2448.
IN2 The second value to be compared; the value [PACMotion ENUM variable or structure No
on the right side of the relational statement. |variable.
IN2 must be the same data type as IN1.
Q IfIN1 or IN2 is true, Q is energized. Power flow No

GFK-2950D November 2018 217

Chapter 4. Ladder Diagram (LD) Programming

4.12.4 Range

| DINT

T s set ON (1). Otherwise, Q is set OFF (0).

—IN

Operands

BANGE | \When the Range function is enabled, it compares the value of input IN
| against the range delimited by operands L1 and L2. Either L1 or L2 can be
the high or low limit. When L1 <IN < L2 or L2 <IN < L1, output parameter Q

2 If the operation is successful, it passes power flow to the right.

Mnemonics:
RANGE_DINT
RANGE_DWORD
RANGE_INT
RANGE_UINT
RANGE_WORD

Parameter |Description

Allowed Operands |Optional

IN The value to compare against the range delimited by L1 and L2.
Must be the same data type as L1 and L2.

All except S, SA, SB, SC |No

L1 The start point of the range. May be the upper limit or the lower |All except S, SA, SB, SC [No
limit. Must be the same data type as IN and L2.

L2 The end point of the range. May be the lower or upper limit. Must |All except S, SA, SB, SC [No
be the same data type as IN and L1.

Q IfFLLSIN<L2orL2<IN<L1, Qisenergized; otherwise, Qis off. [Power flow No

Example

When RANGE_INT receives power flow from the normally open

contact %10001, it determines whether the value in %R00003 is ‘

within the range 0 to 100 inclusively. Output coil %M00002 is
ON only if 0 < %AI0050 < 100.

V_I000M [FawgE| V_MO0001

0 —L1

00 —Lz

V_Eooog: —|IN

INT {j 1

V_MoD0nz

o——{

218 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,13 Timers

This section describes the PACSystems timed contacts and timer function blocks that are implemented
in the LD language.

4,13.1 Timed Contacts

The PACSystems has four timed contacts that can be used to provide regular pulses of power flow to
other program functions. Timed contacts cycle on and off, in square-wave form, every 0.01 second, 0.1
second, 1.0 second, and 1 minute. Timed contacts can be read by an external communications device
to monitor the state of the CPU and the communications link. Timed contacts are also often used to
blink pilot lights and LEDs.

The timed contacts are referenced as T_10MS (0.01 second), T_100MS (0.1 second), T_SEC (1.0 second),
and T_MIN (1 minute). These contacts represent specific locations in %S memory:

#T_10MS 0.01 second timed contact %S0003
#T_100MS 0.1 second timed contact %S0004
#T_SEC 1.0 second timed contact %S0005
H#T_MIN 1.0 minute timed contact %S0006

These contacts provide a pulse having an equal on and off time duration. The following timing diagram
illustrates the on/off time duration of these contacts.

T_XXXXX F#"
] L | |

X/2 X/2
SEC SEC
Caution

Do not use timed contacts for applications requiring
accurate measurement of elapsed time. Timers, time-
based subroutines, and PID blocks are preferred for
these types of applications.

The CPU updates the timed contact references based on
a free-running timer that has no relationship to the start
of the CPU sweep. If the sweep time remains in phase
with the timed contact clock, the contact will always
appear to be in the same state. For example, if the CPU is
in constant sweep mode with a sweep time setting of
100ms, the T_10MS and T_100MS bits will never toggle.

GFK-2950D November 2018 219

Chapter 4. Ladder Diagram (LD) Programming

4,13.2 Timer Function Blocks

ONDTR_THOUS

Function Function Block Mnemonic Description
Type

Off Delay Timer |Built-in OFDT_HUNDS |The Current Value (CV) of the timer resets to zero
(instance data is OFDT_SEC when power flow input is on. CV increments while
WORD array) OFDT_TENTHS |power flow is off. When CV=PV (Preset Value),
See Built-In Timer OFDT_THOUS power flow is no Ipnger pa§sed to the right until
Function Blocks power flow input is on again.

On Delay below. ONDTR_HUNDS |Retentive on delay timer. Increments while it

Stopwatch ONDTR_SEC receives power flow and holds its value when

Timer ONDTR_TENTHS |power flow stops.

On Delay Timer TMR_HUNDS Simple on delay timer. Increments while it receives
TMR_SEC power flow and resets to zero when power flow
TMR_TENTHS stops.
TMR_THOUS
Timer Off Delay |Standard TOF When the input IN transitions from ON to OFF, the
(instance data is a timer starts timing until a specified period of time
structure variable) has elapsed, then sets the output Q to OFF.
Timer On Delay |See Standard Timer |TON When the input IN transitions from OFF to ON, the
Function Blocks. timer starts timing until a specified period of time
has elapsed, then sets the output Q to ON.
Timer Pulse TP When the input IN transitions from OFF to ON, the

timer sets the output Q to ON for a specified time
interval.

Built-In Timer Function Blocks

Note:

Special care must be taken when programming timers in program blocks that are not called

every sweep, and in parameterized blocks and UDFBs. For details, refer to:

Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
Timers that are Skipped by the Jump Instruction

Using OFDT, ONDTR and TMR in Parameterized Blocks, and

Using OFDT, ONDTR and TMR in UDFBs.

Data Required for Built-in Timer Function Blocks

The data associated with these functions is retentive through power cycles. Each timer uses a three-
word array of %R, %W, %P, %L or symbolic memory to store the following information:

220

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Current value (CV) Word 1

Preset value (PV)

Control word

Word 2
Word 3

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Warning

Do not use two consecutive words (registers) as the
starting addresses of two timers. Logic Developer - PLC
does not check or warn you if register blocks overlap.
Timers will not work if you place the current value of a
second timer on top of the preset value for the previous
timer.

Word 1: Current value (CV)

Warning

The first word (CV) can be read but should not be written
to, or the function may not work properly.

Word 2: Preset value (PV)

When the Preset Value (PV) operand is a variable, it is normally set to a different location than word 2
in the timer’s or counter’s three-word array.

* Ifyou use a different address and you change word 2 directly, your change will have no effect, as PV
will overwrite word 2.

* [fyou use the same address for the PV operand and word 2, you can change the Preset Value in
word 2 while the timer or counter is running and the change will be effective.

Word 3: Control word

The control word stores the state of the Boolean inputs and outputs of its associated timer or counter,
as shown in the following diagram:

[156]14[13]12[11[10[9 [8 | [7]le6e[5]4a]3]2[1]o0]
L1 1]

reseved L L1 T T 1 1 [|

Reset input

Enable input, previous execution

Q (counter/timer status output)

EN (enable input

Warning

The third word (Control) can be read but should not be
written to; otherwise, the function will not work.

GFK-2950D November 2018 221

Chapter 4. Ladder Diagram (LD) Programming

Note: Bits Othrough 13 are used for timer accuracy.

Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep

Care should be taken when timers (ONDTR, TMR, and OFDTR) are used in program blocks that are not
called every sweep. The timers accumulate time across calls to the sub-block unless they are reset.
This means that they function like timers operating in a program with a much slower sweep than the
timers in the main program block. For program blocks that are inactive for large periods of time, the
timers should be programmed in such a manner as to account for this catch up feature.

Timers that are Skipped by the Jump Instruction

You should not program a Jump around an instance of OFTD, ONDTR or TMR. Timers that are skipped
will not catch up and will therefore not accumulate time in the same manner as if they were executed
every sweep.

Note: Timer function blocks do not accumulate time if used in a block that is executed as a result of
an interrupt.

Using OFDT, ONDTR and TMR in Parameterized Blocks

Special care must be taken when programming timers in PACSystems parameterized blocks. Timers in
parameterized blocks can be programmed to track true real-time as long as the guidelines and rules
below are followed. If the guidelines and rules described here are not followed, the operation of the
timer functions in parameterized blocks is undefined.

Note: These rules are not enforced by the programming software. It is your responsibility to ensure
these rules are followed.

The best use of a timer function is to invoke it with a particular reference address exactly one time
each scan. With parameterized blocks, it is important to use the appropriate reference memory with
the timer function and to call the parameterized block an appropriate number of times.

Finding the Source Block

The source block is either the _MAIN block or the lowest logic block of type Block that appears above
the parameterized block in the call tree. To determine the source block for a given parameterized block,
determine which block invoked that parameterized block. If the calling block is _MAIN or of type Block,
it is the source block. If the calling block is any other type (parameterized block or function block), apply
the same test to the block that invoked this block. Continue back up the call tree until the _MAIN block
or a block of type Block is found. This is the source block for the parameterized block.

Programming OFDT, ONDTR and TMR in Parameterized Blocks

Different guidelines and rules apply depending on whether you want to use the parameterized block in
more than one place in your program logic.

Parameterized block called from one block

If your parameterized block that contains a timer will be called from only one logic block, follow these
rules:

1. Callthe parameterized block exactly one time per execution of its source block.
2. Choose a reference address for the timer that will not be manipulated anywhere else. The
reference address may be %R, %P, %L, %W, or symbolic.

Note: %L memory is the same %L memory available to the source block of type Block. %L memory
corresponds to %P memory when the source block is _MAIN.

222 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Parameterized block called from multiple blocks

When calling the parameterized block from multiple blocks, it is imperative to separate the timer
reference memory used by each call to the parameterized block. Follow these rules and guidelines:

1. Call the parameterized block exactly one time per execution of each source block in which it
appears.

2. Choose a %L reference or parameterized block formal parameter for the timer reference memory.
Do not use a %R, %P, %W, or symbolic memory reference.

Notes:

= The strongly recommended choice is a %L location, which is inherited from the parameterized
block’s source block. Each source block has its own %L memory space except the _MAIN block,
which has a %P memory area instead. When the _MAIN block calls another block, the %P mappings
from the _MAIN block are accessed by the called block as %L mappings.

= |fyou use a parameterized block formal parameter (word array passed-by-reference), the actual
parameter that corresponds to this formal parameter must be a %L, %R, %P, %W, or symbolic
reference. If the actual parameter is a %R, %P, %W, or symbolic reference, a unique reference
address must be used by each source block.

Recursion

If you use recursion (that is, if you have a block call itself either directly or indirectly) and your
parameterized block contains an OFDT, ONDTR, or TMR, you must follow two additional rules:

= Program the source block so that it invokes the parameterized block before making any recursive
calls to itself.
* Do not program the parameterized block to call itself directly.

Using OFDT, ONDTR and TMR in UDFBs

UDFBs are user-defined logic blocks that have parameters and instance data. For details on these and
other types of blocks, refer to Chapter 2.

When a timer function is present inside a UDFB, and a member variable is used for the control block of
a timer, the behavior of the timer may not match your expectations. If multiple instances of the UDFB
are called during a logic sweep, only the first-executed instance will update its timer. If a different
instance is then executed, its timer value will remain unchanged.

In the case of multiple calls to a UDFB during a logic scan, only the first call will add elapsed time to its
timer functions. This behavior matches the behavior of timers in a normal program block.
Example

A UDFB is defined that uses a member variable for a timer function block. Two instances of the function
block are created: timer_A and timer_B. During each logic scan, both timer_A and timer_B are executed.
However, only the member variable in timer_A is updated and the member variable in timer_B always
remains at 0.

GFK-2950D November 2018 223

Chapter 4. Ladder Diagram (LD) Programming

Off Delay Timer
Dsli'_:lé':'f The Off-Delay Timer (OFDT) increments while power flow is off, and ~ Mnemonics:

the timer's Current Value (CV) resets to zero when power flowison. ofpT_SEC
OFDT passes power until the specified interval PV (Preset Value) has oFpT TENTHS

elapsed. OFDT_HUNDS
OFDT_THOUS

Y

b LA T

Time may be counted in the following increments:

= Seconds

= Tenths (0.1) of a second

= Hundredths (0.01) of a second

= Thousandths (0.001) of a second

The range for PV is 0 to +32,767 time units. If PV is out of range, it has no effect on the timer's word 2.
The state of this timer is retentive on power failure; no automatic initialization occurs at power-up.

When OFDT receives power flow, CV is set to zero and the timer passes power to the right. The output
remains on as long as OFDT receives power flow.

Each time the OFDT is invoked with its power flow input turned OFF, CV is updated to reflect the
elapsed time since the timer was reset. OFDT continues passing power to the right until CV equals or
exceeds PV. When this happens, OFDT stops passing power flow to the right and stops accumulating
time. If PV is O or negative, the timer stops passing power flow to the right the first time that it is
invoked with its power flow input OFF.

When the function receives power flow again, CV resets to zero.
Notes:

= The best way to use an OFDT function is to invoke it with a particular reference address exactly one
time each scan. Do not invoke an OFDT with the same reference address more than once per scan
(inappropriate accumulation of time would result). When an OFDT appears in a program block, it
accumulates time once per scan. Subsequent calls to that program block within the same scan will
have no effect on its OFDTs.

* Do not program an OFDT function with the same reference address in two different blocks. You
should not program a JUMP around a timer function. Also, if you use recursion (where a block calls
itself either directly or indirectly), program the program block so that it invokes the timer before it
makes any recursive calls to itself.

= Forinformation on using timers inside parameterized blocks, refer to Using OFDT, ONDTR and TMR
in Parameterized Blocks.

= An OFDT expires (turns OFF power flow to the right) the first scan that it does not receive power
flow if the previous scan time was greater than PV.

= When OFDT is used in a program block that is not called every scan, the timer accumulates time
between calls to the program block unless it is reset. This means that OFDT functions like a timer
operating in a program with a much slower scan than the timer in the main program block. For
program blocks that are inactive for a long time, OFDT should be programmed to allow for this
catch-up feature. For example, if a timer in a program block is reset and the program block is not
called (is inactive) for four minutes, when the program block is called, four minutes of time will
already have accumulated. If the enable input is OFF, these four minutes are applied to the timer
(thatis, CV is set to 4 minutes).

224 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Timing diagram

ENABLE _,_|—, ' I—l
o — L

[Lo [[Lo
A B C D E F G H
ENABLE and Q both go high; timer is reset (CV = 0).
ENABLE goes low; timer starts accumulating time.
CV reaches PV; Q goes low and timer stops accumulating time.
ENABLE goes high; timer is reset (CV = 0).
ENABLE goes low; timer starts accumulating time.
ENABLE goes high; timer is reset (CV = 0) before CV had a chance to reach PV. (The diagram is not
to scale.)
G. ENABLE goes low; timer begins accumulating time.
H. CVreaches PV;Q goes low and timer stops accumulating time.

mTmo O P

Operands for OFDT
Warning

Do not use the Address, Address+1, or Address+2

addresses with other instructions. Overlapping

references cause erratic timer operation.
Parameter |Description Allowed Operands |Optional
Address The beginning address of a three-word WORD array: R, W, P, L, symbolic |No
(227?)

Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word

PV The Preset Value, used when the timer is enabled or reset. 0 < PV < [All except S, SA, SB, |Optional
+32,767. If PV is out of range, it has no effect on Word 2. SC
cVv The current value of the timer. All except S, SA, SB, |Optional
SC, constant

Example for OFDT
The output action is reversed by the use of a negated output v_Lonoot ot v_0oo001
coil. In this circuit, the OFDT timer turns off negated output coll — s
%Q0001 whenever contact %10001 is closed. After %10001 _EO0013
opens, %Q0001 stays off for 2 seconds then turns on. 2 —FV EVIT Curremty

GFK-2950D November 2018 225

Chapter 4. Ladder Diagram (LD) Programming

On Delay Stopwatch Timer

”gg{‘ The retentive On-Delay Stopwatch Timer (ONDTR) increments while it Mnemonics:
| I receives power flow and holds its value when power flow stops. ONDTR_SEC
1z e Time may be counted in the following increments: ONDTR_TENTHS
m Seconds ONDTR_HUNDS
—Hrv vl Tenths (0.1) of a second ONDTR_THOUS

| |
m Hundredths (0.01) of a second
m Thousandths (0.001) of a second

The range is 0 to +32,767 time units. The state of this timer is retentive on power failure; no automatic
initialization occurs at power-up.

When ONDTR first receives power flow, it starts accumulating time (Current Value (CV)). When the CV
equals or exceeds Preset Value (PV), output Q is energized, regardless of the state of the power flow
input.

As long as the timer continues to receive power flow, it continues accumulating until CV equals the
maximum value (+32,767 time units). Once the maximum value is reached, it is retained and Q remains
energized regardless of the state of the enable input.

When power flow to the timer stops, CV stops incrementing and is retained. Output Q, if energized, will
remain energized. When ONDTR receives power flow again, CV again increments, beginning at the
retained value.

When reset (R) receives power flow and PV is not equal to zero, CV is set back to zero and output Q is
de-energized.

Note: If PV equals zero, the time is disabled and the reset is activated, and the output of the time
becomes high. Subsequent removal of the reset or activation of input will have no effect on the
timer output; the output of the time remains high.

ONDTR passes power flow to the right when CV is greater than or equal to PV. Since no automatic
initialization to the outgoing power flow state occurs at power-up, the power flow state is retentive
across power failure.

Notes:

= The best way to use an ONDTR function is to invoke it with a particular reference address exactly
one time each scan. Do not invoke an ONDTR with the same reference address more than once per
scan (inappropriate accumulation of time would result). When an ONDTR appears in a program
block, it will only accumulate time once per scan. Subsequent calls to that same program block
within the same scan will have no effect on its ONDTRs. Do not program an ONDTR function with
the same reference address in two different blocks. You should not program a JUMPN around a
timer function. Also, if you use recursion (that is, having a block call itself either directly or
indirectly), program the program block so that it invokes the timer before it makes any recursive
calls to itself.

= Forinformation on using timers inside parameterized blocks, refer to Using OFDT, ONDTR and TMR
in Parameterized Blocks.

= An ONDTR expires (passes power flow to the right) the first scan that is enabled and not reset if the
previous scan time was greater than PV.

226 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

= When ONDTR is used in a program block that is not called every scan, it accumulates time between
calls to the program block unless it is reset. This means that ONDTR functions like a timer
operating in a program with a much slower scan than the timer in the main program block. For
program blocks that are inactive for a long time, ONDTR should be programmed to allow for this
catch-up feature. For example, if a timer in a program block is reset and the program block is not
called (is inactive) for four minutes, when the program block is called, four minutes of time will
already have accumulated. If the enable input is ON and the reset input is OFF, these four minutes
are applied to the timer (that is, CV is set to 4 minutes).

Timing diagram
ENABLEJ I_—l—l_
RESET
Q
| | | | | [|
A B C D E F G H
A. ENABLE goes high; timer starts accumulating.
B. Current value (CV) reaches preset value (PV); Q goes high. Timer continues to accumulate time until

ENABLE goes low, RESET goes high or current value becomes equal to the maximum time.

RESET goes high; Q goes low, accumulated time is reset (CV=0).

RESET goes low; timer then starts accumulating again, as ENABLE is high.

ENABLE goes low; timer stops accumulating. Accumulated time stays the same.

ENABLE goes high again; timer continues accumulating time.

CV becomes equal to PV; Q goes high. Timer continues to accumulate time until ENABLE goes low,
RESET goes high or CV becomes equal to the maximum time.

H. ENABLE goes low; timer stops accumulating time.

@mmoN

Operands for On Delay Stopwatch Timer

Warning

Do not use the Address, Address+1, or Address+2
addresses with other instructions. Overlapping
references cause erratic timer operation.

Parameter |Description Allowed Operands |Optional
Address Beginning address of a three-word WORD array: R, W, P, L, symbolic [No
(2227)

Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word

R When Ris ON, it resets the Current Value (Word 1) to zero. Power flow Optional

PV The Preset Value, used when the timer is enabled or reset. All except S, SA, SB, |Optional
0<PV<+32,767.If PV is out of range, it has no effect on Word 2. |SC

cv Current Value of the timer All except S, SA, SB, |Optional
SC and constant

GFK-2950D November 2018 227

Chapter 4. Ladder Diagram (LD) Programming

Example for On Delay Stopwatch Timer

A retentive on-delay timer is used to create a signal (%Q0011)
that turns on 8.0 seconds after %Q0010 turns on, and turns off
when %Q0010 turns off.

V_0000i0

—||—

¥_000010

——

a —

ONITE
SEC

W_R00004
E

Py CW

v_0oooii

—

— CurrentW.___

228 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

On Delay Timer

ngg The On-Delay Timer (TMR) increments while it receives power flowand Mnemonics:
n | resets to zero when power flow stops. The timer passes power after the TMR SEC
i specified interval PV (Preset Value) has elapsed, as long as power is TMR_TENTHS
TV ™ received. TMR_HUNDS
TMR_THOUS

The range for PV is 0 to +32,767 time units. If PV is out of range, it has no effect on the timer's word 2.
The state of this timer is retentive on power failure; no automatic initialization occurs at power-up.

Time may be counted in the following increments:

= Seconds

= Tenths (0.1) of a second

= Hundredths (0.01) of a second

= Thousandths (0.001) of a second

When TMR is invoked with its power flow input turned OFF, its Current Value (CV) is reset to zero, and
the timer does not pass power flow to the right. Each time the TMR is invoked with its power flow input
turned ON, CV is updated to reflect the elapsed time since the timer was reset. When CV reaches PV,
the timer function passes power flow to the right.

Notes:

= The best way to use a TMR function is to invoke it with a particular reference address exactly one
time each scan. Do not invoke a TMR with the same reference address more than once per scan
(inappropriate accumulation of time would result). When a TMR appears in a program block, it will
only accumulate time once per scan. Subsequent calls to that same program block within the same
scan will have no effect on its TMRs. Do not program a TMR function with the same reference
address in two different blocks. You should not program a JUMP around a timer function. Also, if
you use recursion (that is, having a block call itself either directly or indirectly), program the
program block so that it invokes the timer before it makes any recursive calls to itself.

= Forinformation on using timers inside parameterized blocks, refer to Using OFDT, ONDTR and TMR
in Parameterized Blocks.

= ATMRtimer expires (passes power flow to the right) the first scan that it is enabled if the previous
scan time was greater than PV.

= When TMRis used in a program block that is not called every scan, TMR accumulates time between
calls to the program block unless it is reset. This means that it functions like a timer operatingin a
program with a much slower sweep than the timer in the main program block. For program blocks
that are inactive for a long time, TMR should be programmed to allow for this catch-up feature. For
example, if a timer in a program block is reset and the program block is not called (is inactive) for 4
minutes, when the program block is called, four minutes of time will already have accumulated. If
the enable input is ON, these four minutes are applied to the timer (i.e. CV is set to 4 minutes).

Timing Diagram
ENAEHLE_I
o

I I I I I
) B C o E

ENABLE goes high; timer begins accumulating time.
CV reaches PV; Q goes high and timer continues accumulating time.

GFK-2950D November 2018 229

Chapter 4. Ladder Diagram (LD) Programming

ENABLE goes low; Q goes low; timer stops accumulating time and CV is cleared.

ENABLE goes high; timer starts accumulating time.

ENABLE goes low before current value reaches PV; Q remains low; timer stops accumulating time and
is cleared to zero (CV=0).

Operands for On Delay Timer

Warning

Do not use the Address, Address+1, or Address+2
addresses with other instructions. Overlapping
references cause erratic timer operation.

Parameter |Description Allowed Operands |Optional

??77? The beginning address of a three-word WORD array: R, W, P, L, symbolic No
Word 1: Current value (CV)
Word 2: Preset value (PV)
Word 3: Control word

PV The Preset Value, used when the timer is enabled or reset. All except S, SA, SB, SC |Yes
0<PV<+32,767.If PV is out of range, it has no effect on Word 2.

Ccv The current value of the timer. All except S, SA, SB, SC |Yes
and constant

Example for On Delay Timer

An on-delay timer with address TMRID is used to DO_DHL BEL DWELL
control the length of time that a coil is on. This coil | 11 { =
has been assigned the variable DWELL. When the DWELL

normally open (momentary) contact DO_DWL is ON, |

coil DWELL is energized. m.:zlu. otk BEL

The contact of coil DWELL keeps coil DWELL L TEMID S
energized (when contact DO_DWL is released) and clpv vl curent

also starts the timer TMRID. When TMRID reaches its -

preset value of five tenths of a second, coil REL
energizes, interrupting the latched-on condition of
coil DWELL. The contact DWELL interrupts power
flow to TMRID, resetting its current value and de-
energizing coil REL. The circuit is then ready for
another momentary activation of contact DO_DWL.

230 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

4,13.3 Standard Timer Function Blocks

The standard timers are a pulse timer (TP), an on-delay timer (TON), and an off-delay timer (TOF). The
pulse timer block can be used to generate output pulses of a given duration. The on-delay timer can be
used to delay setting an output ON for a fixed period after an input is set ON. The off-delay timer can be
used to delay setting an output OFF for a fixed period after an input goes OFF so that the output is held
on for a given period longer than the input.

Notes:

m Any block type can contain calls to the standard timers. (See Chapter 2 for a discussion of the
various block types.)

m Interrupt blocks can contain standard timers.
An instance of a timer can be passed by reference to a parameterized block or UDFB.

m When the timer stops timing as a result of reaching its Preset Time (PT), the Elapsed Time (ET)
contains the actual timer duration. For example, if the Preset Time was specified as 333ms, but the
timer actually timed to 350ms, the 350ms value is saved in ET.

Data Required for Standard Timer Function Blocks

Each invocation of a timer has associated instance data that persists from one execution of the timer
to the next. Instance variables are automatically located in symbolic memory. (You cannot specify an
address.) You can specify a stored value for each element. The user logic cannot modify the values.

Each timer instance variable has the following structure. Elements of a timer structure cannot be
published.

The instance data type for each timer must be the same as the timer type:

The TOF timer requires an instance variable of type TOF.

The TON timer requires an instance variable of type TON.

The TP timer requires an instance variable of type TP.

Element | Type Description Details

IN BOOL Timer input Cannot be accessed in user logic.
PT DINT Preset time Cannot be accessed in user logic.
ET DINT Elapsed time Read only. Accessible in user logic.
Q BOOL Set ON when timer finishes timing Read only. Accessible in user logic.
ENO BOOL Enable output Read only. Accessible in user logic.
Tl BOOL Set ON when the timer instance is timing Read only. Accessible in user logic.

(that is, ET is incrementing).

Resetting the Timer
The preset time (PT) may be changed while the timer is timing to affect the duration.

When the timer reaches PT, the timer stops timing and the elapsed time parameter (ET) contains the
actual timer duration.

To reset the timer function block, set the PT input to 0. When the function block resets:

= ETissettoO

= Qissetto off (O)

= TheTlelementissettoO

= The IN parameter is ignored

GFK-2950D November 2018 231

Chapter 4. Ladder Diagram (LD) Programming

Operands

TOF, TON and TP have the same input and output parameters, except for the instance variable, which
must be the same type as the instruction.

Note: Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or Tl may cause
erratic operation of the timer function block.

Parameter

Description

Allowed Types

Allowed Operands

Optional

777

Structure variable containing the internal data
for the timer instance. (Refer to Data Required
for Standard Timer Function Blocks.)

TOF, TON, or TP.
Must be same type
as the instruction.

NA

No

Timer input. Controls when the timer will
accumulate time.

TON and TP will begin to time when IN
transitions from OFF to ON.

TOF will begin to time when IN transitions from
ON to OFF.

Flow

NA

Yes

PT

Preset time (in ms). Indicates the amount of
time the timer will time until turning Q either
ON or OFF, depending on the timer type.

Setting PT to O resets the timer.

DINT

All except S, SA, SB,
SC

Yes

Timer output. Action depends on the timer
type.

When TP is timing, Q is ON.

When TON is done timing, Q turns ON.
When TOF is done timing, Q turns OFF.

Flow

NA

Yes

ET

Elapsed time. Indicates the length of time, (in
ms), that the timer has been measuring time.

DINT

All except S, SA, SB,
SC and constants

Yes

232

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Timer Off Delay

—FT

TOF When the input IN transitions from ON to OFF, the timer starts timing until a specified
— period of time (PT) has elapsed, then sets the output Q to OFF.

ET—

Timing Diagram

IN —— L
Q — |
—PT—p <« PT—>g
ET L
t0 t1l t2 t3 t4 t5
t0 When input IN is set to ON, the output Q follows and remains ON. The elapsed time, ET, does
not increment.
tl When IN goes OFF, the timer starts to measure time and ET increments. ET continues to
increment until its value equals the preset time, PT.
t2 When ET equals PT, Q is set to OFF and ET remains at the preset time, PT.
t3 When input IN is set to ON, the output Q follows and remains ON. ET is set to O.
t4 When IN is set to OFF, ET, begins incrementing. When IN is OFF for a period shorter than that
specified by PT, Q remains ON.
t5 When INis setto ON, ET is set to 0.
Example

In the following sample rung, a TOF function block is used to keep Light ON for 30,000ms (30 seconds)
after Door_Open is set to OFF. As long as Door_Open is ON, Light remains ON.

TOF
Door _Open Off_Delay Light
0000 —FT ET—

GFK-2950D November 2018 233

Chapter 4. Ladder Diagram (LD) Programming

Timer On Delay

TOH When the input IN transitions from OFF to ON, the timer starts timing until a specified
— period of time (PT) has elapsed, then sets the output Q to ON.

ET—

Timing Diagram

IN —
Q
—PT «—PT—
ET —
t0 t1 t2 t3 t4
t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output ET
starts to increment. The output Q remains OFF and ET continues to increment until its value
equals the preset time, PT.
tl When ET equals PT, the output Q is goes ON, and ET remains at the preset time, PT. Q remains
ON until IN goes OFF.
t2 When IN is set to OFF, Q goes OFF and ET is set to O.
t3 When INis set to ON, ET starts To increment.
t4 If INis ON for a shorter time than the delay specified in PT, the output Q remains OFF. ET is set
to O when IN is set to OFF.
Example

In the following sample rung, a TON function block is used to delay setting Start to ON for 1 minute
(60,000ms) after Preheat is set to ON.

234

TOM
Frehe=t O _Delay Start
|} IN Q G
o000 —PT ET—

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 4. Ladder Diagram (LD) Programming

Timer Pulse

TF When the input IN transitions from OFF to ON, the timer sets the output Q to ON for
— the specified time interval, PT

Timing Diagram

IN —
Q — |

«—PT— <+«—PT—
ET ____

t0 t1 2 3 t4 5

t0 When input IN is set to ON, the timer starts to measure time and the elapsed time output, ET,
increments until its value equals that of the specified preset time, PT. Q is set to 0 on until ET
equals PT.

tl When ET equals PT, Q is set to OFF. The value of ET is held until IN is set to OFF.
t2 When IN is set to OFF, ET is set to 0.

t3 When IN is set to ON, the timer starts to measure time and ET begins incrementing. Q Is set to
ON.

t4 If the input is OFF for a period shorter than the input PT, the output Q remains on and ET
continues Incrementing.

t5 When ET equals PT, Q is set to OFF and ET is set to O.

Example

In the following sample rung, a TP function block is used to set Sprayers to ON for a 5-second (5000ms)
pulse.

TF
Rinse COr_Pulse Sprayers
|} M o @
s000 —|FT ET—

GFK-2950D November 2018 235

Chapter 5 Function Block Diagram (FBD)

Function Block Diagram (FBD) is an IEC 61131-3 graphical programming language that represents the
behavior of functions, function blocks and programs as a set of interconnected graphical blocks.

The block types Block, Parameterized Block, and Function Block can be programmed in FBD. The _MAIN
program block can also be programmed in FBD. For details on blocks, refer to Program Data in Chapter
3. For information on using the FBD editor in the programming software, refer to the online help.

For an overview of the types of operands that can be used with instructions, refer to Operands for
Instructions in Chapter 3.

Most functions and function blocks implemented in FBD are the same as their LD counterparts.
Instructions that are implemented differently are discussed in detail in this chapter. FBD has the
following general differences compared to LD:

= In FBD, except for timers and counters, functions and function blocks do not have EN or ENO
parameters.

= InFBD, all functions and function blocks display a solve order, which is calculated by the FBD editor.
The FBD implementation of the PACSystems instruction set includes the following categories:
* Advanced Math Functions

» Bit Operation Functions

» Comments

= Comparison Functions

= Control Functions

= Counters

= Data Move Functions

» Math Functions

*= Program Flow Functions

= Timers

= Type Conversion Functions

= PROFINET Communication
Consists of the PNIO_DEV_COMM function. For details, refer to the PACSystems RX3i & RSTi-EP
PROFINET I/O Controller Manual, GFK-2571.

GFK-2950D November 2018 237

Chapter 5. Function Block Diagram (FBD)

5.1 Note on Reentrancy

When a function block is created using the FBD language, the wires are created as global variables, not
as members. This has two consequences. First, if there are multiple instances of that block in the
program, the wires will show the values from the last instance executed during the sweep, not the
values for the instance being viewed. This will give the appearance of incorrect operation while actually
working properly.

The second consequence is that function blocks written in FBD are not reentrant. If you have multiple
instances of a block, and one of them can be called by an interrupt, then it is possible for the interrupt
to trigger while one instance of the block is in process, change the values of the wires, and then return
control to the original block. This will result in improper operation.

There is a work-around for both of these symptoms, which is to create the wires as member variables
rather than global variables. This must be done manually by creating member variables of the
appropriate types. You can then right-click on each wire in the FBD diagram and use the Replace
Variable command to change the wire from a global variable to a member variable.

Caution

Blocks written in the FBD language are not reentrant.
Because of this, if the block is called directly, or
indirectly, from an interrupt, the block must not be
called anywhere else in the program, except when steps
are taken to explicitly make it reentrant (see above).
Doing so can lead to unexpected operation. This applies
to basic blocks, parameterized blocks, and user-defined
function blocks written in FBD.

238 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.2 Advanced Math Functions

The Advanced Math functions perform logarithmic, exponential, square root, trigonometric, and inverse
trigonometric operations.

Function Description
EES Absolute value. Finds the absolute value of a double- precision integer (DINT), signed single-
1 precision integer (INT), REAL or LREAL (floating-point) value. The mnemonic specifies the

- | i f= [value's data type.
For details, refer to Absolute Value in Chapter 4.

ExF Exponential. Raises e to the value specified in IN (e™). Calculates the inverse natural logarithm
1 of the IN operand.
= IM @ = |For details, refer to Exponential/Logarithmic Functions in Chapter 4.
EET Exponential. Calculates IN1 to the power of IN2 (IN1"™).
1 For details, refer to EXPT Function below.
= |11 () o
- |12
ACOIS Inverse trig. Calculates the inverse cosine of the IN operand and expresses the result in
1 radians.
- 4] i) = |For details, refer to Inverse Trig - ASIN, ACOS, and ATAN in Chapter 4.

=T Inverse trig. Calculates the inverse sine of the IN operand and expresses the result in radians.
1 For details, refer to Inverse Trig — ASIN, ACOS, and ATAN in Chapter 4.
= [[
ATAR Inverse trig. Calculates the inverse tangent of the IN operand and expresses the result in
1 radians.
L [l = |For details, refer to Inverse Trig - ASIN, ACOS, and ATAN in Chapter 4.
LI Logarithmic. Calculates the natural logarithm of the operand IN.
1 For details, refer to Exponential/Logarithmic Functions in Chapter 4.
- [(ny
LOG Logarithmic. Calculates the base 10 logarithm of the operand IN.
1 For details, refer to Exponential/Logarithmic Functions in Chapter 4.
= iy
SORT Square root. Calculates the square root of the operand IN and stores the result in Q.
1 For details, refer to Square Root in Chapter 4.
= [2
TG Trig. Calculates the cosine of the operand IN, where IN is expressed in radians.
1 For details, refer to Trig Functions in Chapter 4.
- | () f

GFK-2950D November 2018 239

Chapter 5. Function Block Diagram (FBD)

Function Description
=T Calculates the sine of the operand IN, where IN is expressed in radians.
1 For details, refer to Trig Functions in Chapter 4.
- [2
TAM Calculates the tangent of the operand IN, where IN is expressed in radians.
1 For details, refer to Trig Functions in Chapter 4.
] (I 2

240 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.2.1 EXPT Function

BT The Power of X (EXPT) function raises the value of input IN1 to the power
1 specified by the value IN2 and places the result in Q. The EXPT function operates
= 11 Q= on REAL or LREAL input value(s) and place the result in output Q. The instruction

is not carried out if one of the following invalid conditions occurs:
= IN1<O,for EXPT
*= IN1orIN2isaNaN (NotaNumber)

Invalid operations (error cases) may yield results that are different from those in
the LD implementation of this function.

= |2

Operands of the EXPT Function

Parameter |Description Allowed Types |Allowed Operands |Optional

Solve Order |Calculated by the FBD editor. NA NA No

IN or IN1 For EXP, LOG, and LN, IN contains the REAL REAL, LREAL All except variables |No
value to be operated on. located in %S—%SC

The EXPT function has two inputs, IN1 and IN2.
For EXPT, IN1 is the base value and IN2 is the

exponent.
IN2 (EXPT) [The REAL exponent for EXPT. REAL, LREAL All except variables |No
located in %S—%SC
Q Contains the REAL logarithmic/exponential REAL, LREAL All except constants |No
value of IN or of IN1 and IN2. and variables

located in %S—%SC

GFK-2950D November 2018 241

Chapter 5. Function Block Diagram (FBD)

5.3 Bit Operation Functions

The Bit Operation functions perform comparison, logical, and move operations on bit strings. Bit
Operation functions treat each WORD or DWORD data as a continuous string of bits, with bit 1 of the
WORD or DWORD being the Least Significant Bit (LSB). The last bit of the WORD or DWORD is the Most
Significant Bit (MSB).

Warning

Overlapping input and output reference address ranges
in multiword functions is not recommended, as it can
produce unexpected results.

Function Description
AND Logical AND. Compares the bit strings IN1 and IN2 bit by bit. When the corresponding bits
1 are both 1, places a 1 in the corresponding location in output string Q; otherwise, places a 0
- M1 in the corresponding location in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the
-2 stringin Q and the result is placed in Q.
For details, refer to Logical AND.
OR Logical OR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of corresponding bits
1 are both 0, places a 0 in the corresponding location in output string Q; otherwise, places a 1
= M1 in the corresponding location in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the
= IN2 string in Q and the result is placed in Q.
For details, refer to Logical OR.
WOR Logical XOR. Compares the bit strings IN1 and IN2 bit by bit. When a pair of corresponding
i bits are different, places a 1 in the corresponding location in the output bit string Q; when a
- (11 pair of corresponding bits are the same, placesa 0in Q.
If additional inputs (IN3 through IN8) are used, each additional bit string is compared to the
-2 string in Q and the result is placed in Q.
For details, refer to Logical XOR.
MOT Logical NOT. Sets the state of each bit in output bit string Q to the opposite state of the
1 corresponding bit in bit string IN1.
- |14 o] For details, refer to Logical NOT.
ROL Rotate Bits Left. Rotates all the bits in a string a specified number of places to the left.
1 For details, refer to Bit Operation Functions in Chapter 4.
= 1
-
= LER
242 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

Function

Description

ROR

Rotate Bits Right. Rotates all the bits in a string a specified number of places to the right.
For details, refer to Bit Operation Functions in Chapter 4.

1
- |14

=M

= B1

= LEM

SHIFTL

B2

8

Shift Bits Left. Shifts all the bits in a word or string of words to the left by a specified number

For details, refer to Bit Operation Functions in Chapter 4.

1
- ([

=

= B1

= LEM

SHIFTR

B2

Q

Shift Bits Right. Shifts all the bits in a word or string of words to the right by a specified
number of places.
For details, refer to Bit Operation Functions in Chapter 4.

GFK-2950D

November 2018

243

Chapter 5. Function Block Diagram (FBD)

5.3.1 Logical AND, Logical OR, and Logical XOR

The Logical functions examine each bit in bit string IN1 and the corresponding bit in bit string IN2,
beginning with the least significant bit in each string, and places the result in Q. If additional inputs (IN3
up to IN8) are used, the function compares each bit in the input with the corresponding bit in Q and
places the result in Q. The comparison is repeated for each input that is used. The input bit strings
specified in IN1 ... IN8 may overlap.

AND N;JD Logical AND
= Ihi 1 a e = |11 Q b= If both bits examined by the Logical AND function are 1, AND
places a 1 in the corresponding location in output string Q. If
= Mz = 2 either bit is 0 or both bits are 0, AND places a 0 in string Q in
3 that location.
Tip: You can use the Logical AND function to build masks
- (1 or screens, where only certain bits are passed (the
bits opposite a 1 in the mask), and all other bits are
= IN3 settoO.
= | Minimum number of inputs = 2
Maximum number of inputs = 8
= M7
- M3
OR OR Logical OR

1 1
= |11 Gl o o 11 Q0 | If either bit examined by the Logical OR function is 1, OR

places a 1 in the corresponding location in output string Q. If

= IN2 =1 M2 both bits are 0, Logical OR places a 0 in string Q in that
location.
. e LEE]
Minimum number Tips:
of inputs = 2 = M4 = You can use the Logical OR function to combine strings or
N5 to control many outputs with one simple logical structure.
The Logical OR function is the equivalent of two relay
- [[4F contacts in parallel multiplied by the number of bits in the
string.
= IN7 = You can use the Logical OR function to drive indicator
NG lamps directly from input states or to superimpose

blinking conditions on status lights.

Maximum number
of inputs = 8

244 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

HOR
1
= M1 [

= M2

Minimum number
of inputs =2

HOR

= |11 8]

= M2

- ([

= 4

= |5

= MG

= M7

- (I3

Maximum number

of inputs = 8

Logical XOR

If the bits in the strings examined by XOR are different,a 1 is
placed in the corresponding position in the output bit string.

For each pair of bits examined, if only one bit is 1, XOR places
a lin the corresponding location in string Q.

If both bits are 0, XOR places a 0 in the corresponding location
in string Q.

Tips:

If string IN2 and output string Q begin at the same
reference, a 1 placed in string IN1 will cause the
corresponding bit in string IN2 to alternate between 0 and
1, changing state with each scan as long as input is
received.

You can program longer cycles by pulsing the input to the
function at twice the desired rate of flashing. The input
pulse should be one scan long (one-shot type coil or self-
resetting timer).

You can use XOR to quickly compare two bit strings, or to
blink a group of bits at the rate of one ON state per two
scans.

XOR is useful for transparency masks.

Operands for AND, OR, and XOR

Parameter Description Allowed Types |Allowed Operands Optional
Solve Order Calculated by the FBD NA NA No
editor.
IN1 The value to operateon. |[BOOL, WORD All No
DWORD
IN2 (Must be the same data The value to operateon. |[BOOL, WORD All No
type as IN1.) DWORD
IN3 ... IN8 (Must be the same Values to operate on. BOOL, WORD All Yes
data type as IN1.) DWORD
Q (Must be the same data type [The operation’s result. BOOL, WORD All except constants [No
asIN1andIN2.) DWORD and variables located
in %S memory

Properties for AND, OR, and XOR

Property Valid Range

Number of Inputs | 2to 8
GFK-2950D November 2018 245

Chapter 5. Function Block Diagram (FBD)

5.3.2 Logical NOT

NOT The Logical Not or Logical Invert (NOT) function sets the state of each bit in the
1 output bit string Q to the opposite of the state of the corresponding bit in bit string
= IM G = IN1.

All bits are altered on each scan that input is received, making output string Q the
logical complement of input string IN1.

Operands
Parameter Description Allowed Types |Allowed Operands |Optional
Solve Order Calculated by the FBD editor. |[NA NA No
IN1 The input string to NOT. WORD All No
DWORD
Q (Must be the same The NOT's result. WORD All except constants |No
data type as IN1) DWORD and variables located
in %S memory

246 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.4 Comments
5.4.1 Text Block

{ enter text) The Text block is used to place an explanation in the program. When you
type in a comment, the first few words are displayed.

To increase the size of the text box and display more text, select the box
L | and drag one of the handles.

There are no operands for the Text block.
= Editing a comment makes the Programmer lose equality.
= Comment text is downloaded to the controller and retrieved upon Logic Upload.

GFK-2950D November 2018 247

Chapter 5. Function Block Diagram (FBD)

5.5 Comparison Functions

Comparison functions compare two values of the same data type or determine whether a number lies
within a specified range. The original values are unaffected.

Function Description
=P Compare. Compares two numbers, IN1 and IN2.
1 For details, refer to Relational Functions in Chapter 4.
N LT
-2 EQ
GT
EQ Equal. Tests two numbers for equality.
1 For details, refer to Comparison Functions.
w— [14]1] o
= M2
GE Greater Than or Equal. Tests whether one number is greater than or equal to another.
1 For details, refer to Comparison Functions.
= |11 (2]
= 12
GT Greater Than. Tests whether one number is greater than another.
1 For details, refer to Comparison Functions.
L 21
-2
LE Less Than or Equal. Tests whether one number is less than or equal to another.
1 For details, refer to Comparison Functions.
= 141)
= |2
LT Less Than. Tests whether one number is less than another.
1 For details, refer to Comparison Functions.
|41 (2] fom
- |12
ME Not Equal. Tests whether two numbers are not equal.
P For details, refer to Comparison Functions.
= |11 (2
= M2
248 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

Function Description
BAMNGE Range. Tests whether one number is within the range defined by two other supplied
1 numbers.
- 1 () o For details, refer to Relational Functions in Chapter 4.
-2
-
GFK-2950D November 2018

249

Chapter 5. Function Block Diagram (FBD)

5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal,
Less Than

EC GE GT LE LT ME
1 1 1 1 1 2
= I11 Q= =N Q= o 5T (o) L O =t I Qo

" = 12 = M2 = |2 - 112 = IM2

The relational functions compare input IN1 to input IN2. These operands must be the same data type. If
inputs IN1 and IN2 are equal, the function outputs the result to Q, unless IN1 and/or IN2 is NaN (Not a
Number). The following relational functions can be used to compare two numbers:

Function | Definition Relational Statement
EQ Equal IN1=IN2
NE Not Equal IN1zIN2
GE Greater Than or Equal | IN12IN2
GT Greater Than IN1>IN2
LE Less Than or Equal IN1<IN2
LT Less Than IN1<IN2

Tip: To compare values of different data types, first use conversion functions to make the types the

same.

Operands
Parameter |Description Allowed Types Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN1 The first value to be compared; the No

value on the left side of the

relational statement. BOOL (for EQ and NE

functions only), BYTE, DINT, |All except S, SA, SB,

IN2 The second value to be compared; |pwORD, INT, REAL, LREAL, SC No

the value on the right side of the |yiNT, WORD
relational statement. IN2 must be
the same data type as IN1.

BOOL ,Q,G,M,T,SA,SB,SC
If the relational statement is true,
Q Q=1. Bit reference in a non-BOOL |All except constants. [NO
variable.

250 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.6 Control Functions

The control functions limit program execution and change the way the CPU executes the application

program.
Function Description
Do_I0 Do I/O Interrupt. For one scan, immediately services a specified range of inputs or
1 outputs. (All inputs or outputs on a module are serviced if any reference locations on that
= EM EMO = |module are included in the DO I/O function. Partial I/O module updates are not
performed.) Optionally, a copy of the scanned I/O can be placed in internal memory,
=T rather than at the real input points.
EMD For details, refer to Control Functions in Chapter 4.
- ALT
MASK 10 IHNTR Mask I/O Interrupt. Mask or unmask an interrupt from an 1/O board when using 1/O
o variables. If not using I/O variables, use SVC_REQ 17: Mask/Unmask I/O Interrupt,
- EL EnO e |described in Chapter 6.
For details, refer to Control Functions in Chapter 4.
o YT
- 11
FID_IMD PID_ISA Proportional Integral Derivative (PID) Control. Provides
1 1 two PID closed-loop control algorithms:
o F E = 5F CY = Standard ISA PID algorithm (PID_ISA)
- Py - Py Independent term algorithm (PID_IND)
Note: For details, refer to Chapter 7.
il A1) Pl
= Ur - LIP
= [={ [
SVC REQ Service Request. Requests a special control system service.
1 Note: For details, refer to Chapter 6.
- EM EMO jum
- FRC
= PR
GFK-2950D November 2018 251

Chapter 5. Function Block Diagram (FBD)

= EM EMO p

Function Description
SCAM_SET IO Scan Set I/0O. Scans the 10 of a specified scan set.
1 For details, refer to Control Functions in Chapter 4.
- ET EMO jum
-
w CILIT
- SET
SUS 10 Suspend 1/0. Suspends for one sweep all normal I/O updates, except those specified by

DO I/O instructions.
For details, refer to Control Functions in Chapter 4.

SUSF_|o_IMTR | |Suspend I/O Interrupt. Suspend or resume an I/O interrupt when using 1/O variables. If not
1 using 1/O variables, use SVC_REQ 32: Suspend/Resume I/O Interrupt, described in Chapter
= EM EMC o |6.
For details, refer to Control Functions in Chapter 4.
- SLISF
=t |1
F_TRIG Falling Edge Trigger. Detects a high-to-low transition of a Boolean input. Produces a

single output pulse when a falling edge is detected.
For details, refer to Control Functions in Chapter 4.

Rising Edge Trigger. Detects a low-to-high transition of a Boolean input. Produces a single
output pulse when a rising edge is detected.

For details, refer to Control Functions in Chapter 4.

252 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.7 Counters

Function Description
control_parameter Down Counter. Counts down from a preset value. The output is ON whenever the
DHCTR Current Value is <0.
EN 1 ENO The parameter that appears above the function block is a one-dimensional, three-
word array in %R, %W, %P, %L, or symbolic memory that the counter uses to store its
- R i current value, preset value and control word.
For details, refer to Counters in Chapter 4.
- P
control_parameter Up Counter. Counts up to a designated value. The output is ON whenever the Current
UP?TR Value is > the Preset Value.
- EM EMC The parameter that appears above the function block is a one-dimensional, three-
word array in %R, %W, %P, %L, or symbolic memory that the counter uses to store its
- R) current value, preset value and control word.
Py For details, refer to Counters in Chapter 4.
GFK-2950D November 2018

253

Chapter 5. Function Block Diagram (FBD)

5.8 Data Move Functions

The Data Move functions provide basic data move capabilities.

Function Description
ARRAY _SIZE Array Size. Counts the number of elements in an array.
1 For details, refer to Data Move Functions in Chapter 4.
= E EMNC o
- I Ol -

- E

= M

ARRAY_ZIZE_DINA

1

EMNO jm

ng

Array Size Dim1. Returns the value of the Array Dimension 1 property of
an array.

For details, refer to Data Move Functions in Chapter 4.

ARRAY_ZIZE_DIMZ

1

Array Size Dim2. Returns the value of the Array Dimension 2 property of
an array.

= EN ENOC p= For details, refer to Data Move Functions in Chapter 4.
= | L
BUS_RD Bus Read. Reads data from the bus.
For details, refer to Data Move Functions in Chapter 4.

- El EMC o

=R ST =

- s G

- 55

= RGM

= OFF

— LEN
254 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

Function Description
BUS_RMW_BYTE Bus Read Modify Write. Uses a read/modify/write cycle to update a data
1 element in a module on the bus.
= EM ENO Other BUS_RMW functions:
- OF aT BUS_RMW_DWORD
BUS_RMW_WORD
- M5k oy . . .
For details, refer to Data Move Functions in Chapter 4.
=- R
-3
- 55
= RGH
= OFF
BUS_TS _BYTE Bus Test and Set. Handles semaphores on the bus.

1 Other BUS_TS function:

- El EMO ju
BUS_TS_WORD
=R 5T = For details, refer to Data Move Functions in Chapter 4.
- 1 o
=- 55
= RGH
= OFF
BUS_WRT Bus Write. Writes data to a module on the bus.

1 For details, refer to Data Move Functions in Chapter 4.
- E[EMC -
=M ST =
- F
-5
- 55
- RGN
= CFF
- LEN

GFK-2950D

November 2018

255

Chapter 5. Function Block Diagram (FBD)

Function Description
COMM_REG Communication Request. Allows the program to communicate with an
1 intelligent module, such as a Genius Bus Controller or a High Speed
| E ENO &= Counter.
- [FT o= For details, refer to Communication Request in Chapter 4.
- S50
= TASK
FAROUT FAMOUT Fan Out. Copies the input value to
1 1 multiple outputs of the same data
-t |4 QUTT =t |1 CUTT f type as the input.
ourz L OUT? b For details, refer to Fan Out below.
OUTS
Minimum Outputs = 2
OUTS
DTS fm
OUTE
OUTT -
DTS e
Maximum Outputs = 8

Moy Move Data. Copies data as individual bits, so the new location does not
1 have to be the same data type. Data can be moved into a different data
= EM EMNO = type without prior conversion.
= |1 () For details, refer to Move Data below.
= LEM
MOVE_DATA_EX Move Data Explicit. Provides data coherency by locking symbolic memory
1 being written to during the copy operation.
= EN ENO For details, refer to Data Move Functions in Chapter 4.
—Do a Note: FBD and ST do not support the constant 0 as a value for the input
- IN.

=
- | EM

256 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

Function Description
MOVE_FROM_FLAT Move From Flat. Copies reference memory data to a UDT variable or UDT
1 array. Provides the option of locking the symbolic or I/O variable memory
- EMN EMT jm area being written to during the copy operation.
e ~ For details, refer to Data Move Functions in Chapter 4.
= Il
= LEM
[MOVE_TO_FLAT] Move to Flat. Copies data from symbolic or I/O variable memory to
1 reference memory. Copies across mismatching data types.
= EN ENG = For details, refer to Data Move Functions in Chapter 4.
—_— DI: Ia p_—
= 1]
- LEN
SIZE_OF Size Of. Counts the number of bits used by a variable.
N - ENO For details, refer to Data Move Functions in Chapter 4
- 1] T

GFK-2950D November 2018 257

Chapter 5. Function Block Diagram (FBD)

5.8.1 Fan Out
FAMCLIT Copies the input IN to multiple outputs.
1
- I QLT
OUTZ =

Operands
Parameter |Description Allowed Types Allowed Operands |Optional
Solve Order |[Calculated by the FBD editor. |NA NA No
IN The input to copy to the BOOL, DINT, DWORD, INT, All except SA, SB, SC. |No

outputs. REAL, UINT, or WORD variable

or constant

OuUT1 Variables of the same data type |Must be same type as IN. All except S, SA,SB, |No
..OUT8 as the IN operand. The outputs. SC and constant.

Minimum: two outputs.

Maximum: eight outputs.

258

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.8.2 Move Data

Moy When the input operand, EN, is set to ON, the MOVE instruction copies data as bits
1 from one location in PACSystems controller memory to another. Because the data
= EN EMO = is copied as bits, the new location does not need to use the same type of memory

area as the source. For example, you can copy data from an analog memory area

- “ T into a discrete memory area, or vice versa.

= LEM

MOV sets its output, ENO, whenever it receives data unless one of the following occurs:
= When theinput, EN, is set to OFF, then the output, ENQ, is set to OFF.

= When theinput, EN is set to ON, and the input, IN, contains an indirect reference, and the memory
of IN is out of range, then the output, ENO, is set to OFF.

The value to store at the destination Q is acquired from the IN parameter. If IN is a variable, the value to
store in Q is the value stored at the IN address. If IN is a constant, the value to store in Q is that
constant

The result of the MOVE depends on whether the data type for the Q operand is a bit reference or a non-
bit reference:

= If Qisanon-bit reference, LEN (the length) indicates the number of memory locations in which the
IN value should be repeated, starting at the location specified by Q.

= IfQisabitreference, IN is treated as an array of bits. LEN therefore indicates the number of bits to
acquire from the IN parameter to make up the stored value. If IN is a constant, bits are counted
from the least-significant bit. If IN is a variable, LEN indicates the number of bits to acquire starting
at the IN location. Regardless, only LEN bits are stored starting at address Q.

For example, if IN was the constant value 29 and LEN is 4, the results of a MOV operation are as follows:
= QisaWORD reference: The value 29 is repeatedly stored in locations Q, Q+1, Q+2,and Q+3.

= QisaBOOL reference: The binary representation of 29 is 11101. Since LEN is 4, only the four least-
significant bits are used (1101). This value is stored at location Q in the same order, so 1 is stored in
Q, lisstored in Q+1, Ois stored in Q+2, and 1 is stored in Q+3.

If data is moved from one location in discrete memory to another, such as from %I memory to %T
memory, the transition information associated with the discrete memory elements is updated to
indicate whether or not the MOVE operation caused any discrete memory elements to change state.

Note: If anarray of BOOL-type data specified in the Q operand does not include all the bits in a byte,
the transition bits associated with that byte (which are not in the array) are cleared when the
Move instruction receives data.

Data at the IN operand does not change unless there is an overlap in the source and destination—a
situation that is to be avoided.

GFK-2950D November 2018 259

Chapter 5. Function Block Diagram (FBD)

MOV Operands
Parameter |Description Allowed Types |Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
EN Enable BOOL variable |dataflow, 1, Q, M, T, G,|No
S, SA, SB, SC, discrete
symbolic, I/O variable
Bit referencein [R,P, L, Al, AQ, W,
anon-BOOL non-discrete
variable symbolic, I/O variable
IN The source of the data to copy into the output |DINT, DWORD, |All. S, SA, SB, SC No
Q. This can be either a constant or a variable INT, REAL, allowed only for
whose reference address is the location of the |LREAL, UINT, WORD, DWORD,
first source data item to move. WORD, or bit |BOOL types.
IN must have the same data type as the variable |"eferencein a
in the Q parameter. non-BOOL
If IN is a BOOL variable or a bit reference, an %, variable
%Q, %M, or %T reference address need not be
byte-aligned, but 16 bits beginning with the
reference address specified are displayed
online.
LEN The length of IN; the number of bits to move. Constant Constant No
If IN is a constant and Q is BOOL:
1<LEN<ZL16;
If IN is a constant and Q is not BOOL:
1<LEN < 256.
All other cases: 1 < LEN< 32,767
LEN is also interpreted differently depending on
the data type of the Q location. For details, see
discussion under Move Data.
ENO Indicates whether the operation was BOOL variable |dataflow, 1, Q, M, T, G,|Yes
successfully completed. discrete symbolic, 1/0
If ENO = ON (1), the operation was initiated. variable
Results of the operation are indicated in the FT |git reference in ,O,M,T,G,R,P,L,Al
output. anon-BOOL AQ, W, non-discrete
If ENO = OFF (0), the operation was not variable symbolic, I/O variable
performed. If EN was ON, the FT output
indicates an error condition. If EN was OFF, FT is
not changed.
Q The location of the first destination data item. Q |DINT, DIWORD, |data flow, |, Q, M, T, S, |No
must have the same data type as the variable in |INT, REAL, SA, SB,SC,G,R, P, L,
the IN parameter. LREAL, UINT, Al, AQ, W, symbolic,
If Q is a BOOL variable or a bit reference, an %I, |WORD, or.bit I/O variable
%Q, %M, or %T reference address does not referencein a
need to be byte-aligned, but 16 bits beginning nor?-BOOL
with the specified reference address are variable
displayed online.
260 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.9 Math Functions

Your program may need to include logic to convert data to a different type before using a Math or
Numerical function. The description of each function includes information about appropriate data
types. The Type Conversion Functions section explains how to convert one data type into a different
data type.

Function Description
ADD Addition. Adds two or up to eight numbers.
1 .
e all For details, refer to Add below.
-2
DIy Division.” Divides one number by another and outputs the quotient.
i L oL Note: Take care to avoid overflow conditions when performing divisions.
For details, refer to Divide below.
= 12
MO0 Modulo Division. Divides one number by another and outputs the remainder.
1 For details, refer to Modulus below.
= 1 ()
= M2
ML Multiplication.” Multiplies two or up to eight numbers.
.- 1 a Note: Take care to avoid overflow conditions when performing multiplications.
For details, refer to Multiply below.
-2
HEG Negate. Multiplies a number by -1 and places the result in an output location.
1 For details, refer to Negate below.
= 1] [

® To avoid Overflows when multiplying or dividing 16-bit numbers, use the Type Conversion Functions to convert the numbers
to a 32-bit data type.

GFK-2950D November 2018 261

Chapter 5. Function Block Diagram (FBD)

Function Description
SCALE Scales an input parameter and places the result in an output location.
1 For details, refer to Math Functions in Chapter 4.
=t [HI CILIT
- L0
= OHI
- 0L
-t 4]
SUB Subtraction. Subtracts one or up to seven numbers from the input IN1 and places the
1 result in an output location.
=t M1] o For details, refer to Subtract below.
- M2

The output is calculated when the instruction is performed without Overflow, unless an invalid
operation occurs.

5.9.1 Overflow

If an operation on integer operands results in overflow, the output value wraps around.

Examples:

» [fthe ADD operation, 32767 + 1, is performed on signed integer operands, the result is -32768
»= Ifthe SUB operation, -32767 - 1, is performed on signed integer operands, the result is 32767
= Ifan ADD_UINT operation is performed on 65535 + 16, the result is 15.

262 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.9.2

Add

ADD
1
= 1

= 2

ADD
m - |11 g

= M2

- |13

= |4

- |5

= |G

= M7

R

Minimum number of Maximum number

inputs =2

of inputs = 8.

Operands of the ADD Function

Adds the operands IN1 and IN2 ... IN8 and stores the sumin Q.
IN1...IN8 and Q must be of the same data type.

The result is output to Q when ADD is performed without

Overflow, unless one of the following invalid conditions occurs:

" (+o)

* IN1and/orIN2..IN8is NaN (Not a Number).

If an ADD operation results in Overflow, the result wraps around.

For example:

= [fan ADD_DINT, ADD_INT or ADD_REAL operation is
performed on 32767 + 1, Q will be set to -32768.

= |fan ADD_UINT operation is performed on 65535 + 16, Q will
be set to 15.

Parameter |Description Allowed Types Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. [NA NA No
IN1...IN8 The values to be added. INT, DINT, REAL, LREAL, UINT All except S, SA, SB, |No
Must be same data type as Q. SC and data flow
Q The sum of IN1...IN8. If an INT, DINT, REAL, LREAL, UINT All except S, SA, SB, |No
Overflow occurs, Q wraps variable SC, constant and
around. Must be same data type as IN1... [data flow
INS.
Properties for ADD
Property Valid Range
Number of Inputs | 2to 8

GFK-2950D

November 2018 263

Chapter 5.

Function Block Diagram (FBD)

5.9.3

Divide

LY
1

= M1 o

= M2

- IN2.

following invalid conditions occurs:

Notes:

= (Odivided by O (Results in an application fault.)
= N1 and/or IN2is NaN (Not a Number).

If an Overflow occurs, the result wraps a

round.

= DIV rounds down; it does not round to the closest integer. For example, 24 DIV 5 = 4.
= Be careful to avoid overflows.

Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

Divides the operand IN1 by the operand IN2 of the same data type as IN1 and stores
the quotient in the output variable assigned to Q, also of the same data type as IN1 and

The result is output to Q when DIV is performed without Overflow, unless one of the

Parameter |Description Allowed Types |Allowed Operands (Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN1 Dividend: the value to be divided; shown to the|INT, DINT, UINT, |All except S, SA, SB, |No
left of DIV in the equation IN1 DIV IN2=Q. REAL, LREAL SC
IN2 Divisor: the value to divide into IN1; shown to |INT, DINT, UINT, |All except S, SA, SB, |No
the right of DIV in the equation IN1 DIV IN2=Q. |REAL, LREAL SC
Q The quotient of IN1/IN2. If an Overflow occurs, [INT, DINT, UINT, |All except S, SA, SB, |No
the result is the largest value with the proper |REALor LREAL |SC and constant
sign. variable
264 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.9.4 Modulus

WMoD Divides input IN1 by input IN2 and outputs the remainder of the division to Q.
1 All three operands must be of the same data type. The sign of the result is always
= M1 L= the same as the sign of input parameter IN1. Output Q is calculated using the
formula:
= M2
Q =IN1-((IN1 DIV IN2) * IN2)

where DIV produces an integer number.

The result is output to Q unless one of the following invalid conditions occurs:
= Odivided by O (Results in an application fault.)

* IN1and/or IN2is NaN (Not a Number)

Operands for Modulus Function

Parameter |Description Allowed Types |Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN1 Dividend: the value to be divided into in order |INT, DINT, UINT [All except S, SA, SB, SC |No

to obtain the remainder; shown to the left of
MOD in the equation IN1 MOD IN2=Q.

IN2 Divisor: the value to divide into IN1; shown to |INT, DINT, UINT [All except S, SA, SB, SC |No
the right of MOD in the equation
IN1 MOD IN2=Q.
Q The remainder of IN1/IN2. INT, DINT, UINT |All except S, SA, SB, SC |No
variable and constant

GFK-2950D November 2018 265

Chapter 5. Function Block Diagram (FBD)

5.9.5

Multiply

ML
1
= 1

= M2

hiLIL
1

oy = |11 ()

= M2

S EE

= M4

= M5

= MG

= M7

= |8

Minimum number of Maximum number of

Multiplies two through eight operands (IN1 ... IN8) of the same
data type and stores the result in the output variable
assigned to Q, also of the same data type.

The output is calculated when the function is performed
without Overflow, unless an invalid operation occurs.

If an Overflow occurs, the result wraps around.

inputs =2 inputs = 8.

Mnemonic |Operation Displays as

INT Q(16-bit) = IN1(16-bit) * IN2(16-bit) [base 10 number with sign, up to 5 digits long

DINT Q(32-bit) = IN1(32-bit) * IN2(32-bit) [base 10 number with sign, up to 10 digits long

REAL Q(32-bit) = IN1(32-bit) * IN2(32-bit) [base 10 number, sign and decimals, up to 8 digits long
(excluding the decimals)

UINT Q(16-bit) = IN1(16-bit) * IN2(16-bit) |base 10 number, unsigned, up to 5 digits long

Operands for Multiply

Parameter |Description Allowed Types Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN1 .. IN8 The values to multiply. Must be the INT, DINT, UINT, REAL |All except S, SA, SB, SC [No
same data type as Q.
Q The result of the multiplication. INT, DINT, UINT, REAL |All except S, SA, SB, SC [No
variable and constant

Properties for Multiply

Property

Valid Range

Number of Inputs | 2to 8

266

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.9.6 Negate

HEG Multiplies a number by -1 and places the result in the output location, Q.
= [1 (o

Operands

Parameter |Description Allowed Types Allowed Operands Optional
Solve Order |Calculated by the FBD editor. NA NA No

IN The value to be negated. INT, DINT, REAL All except S, SA, SB, SC |[No

Q The result, -1(IN) INT, DINT, REAL variable |All exceptS, SA, SB, SC |No

and constant

GFK-2950D November 2018 267

Chapter 5. Function Block Diagram (FBD)

5.9.7 Subtract

TN SUB Subtracts the operands IN2 ...IN8 from the operand IN1
1 1 and stores the result in the output variable assigned to
T) |41) Q.
- 117 - |12 The calculation is carried out when SUB is performed
without Overflow, unless an invalid operation occurs.
= !M3 If a SUB operation results in Overflow, the result wraps
= In4 around. For example:
= [fa SUB_DINT, SUB_INT or SUB_REAL operation is
= |15 performed on 32768 - 1, Q will be set to -32767.
- [1F If a SUB_UINT operation results in a negative number, Q
wraps around. (For example, a result of -1 sets Q to
= M7 65535.)
= 2
Minimum number of Maximum number of
inputs =2 inputs = 8.
Mnemonic|Operation Displays as

SUB_INT |Q(16-bit) = IN1(16-bit) - IN2(16- [base 10 number with sign, up to 5 digits long
bit)

SUB_DINT |Q(32-bit) = IN1(32-bit) - IN2(32- [base 10 number with sign, up to 10 digits long
bit)

SUB_REAL |Q(32-bit) = IN1(32-bit) - IN2(32- |base 10 number, sign and decimals, up to 8 digits long (excluding
bit) the decimals)

SUB_UINT |Q(16-bit) = IN1(16-bit) - IN2(16-|base 10 number, unsigned, up to 5 digits long

bit)

Operands for Subtract
Parameter |Description Allowed Types |Allowed Operands |Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN1 The value to subtract from. DINT, INT, REAL, [All except S, SA, SB, SC |No
IN2..IN8 [The value(s) to subtract from IN1. Must be the UINT All except S, SA, SB, SC |No

same data type as IN1.
Q The result of the subtraction. Must be the DINT, INT, REAL, |All except S, SA, SB, SC |No

same data type as IN1. UINT variable |and constant

Properties for Subtract

Property Valid Range

Number of Inputs | 2to 8

268 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

GFK-2950D November 2018 269

Chapter 5. Function Block Diagram (FBD)

5.10 Program Flow Functions

The program flow functions limit program execution or change the way the CPU executes the
application program.

Function Description
Pragram_Block Frograrm_Block The CALL function causes the logic execution to go
CALL CALL immediately to the designated program block, external C
1 1 block (parameterized or not), or parameterized block and
= EM EMNO = = EN END = execute it. After the block’s execution is complete, control
returns to the point in the logic immediately following the

I OUTH = CALL instruction.

- [7 For details, refer to Program Flow Functions in Chapter 4.

Non-parameterized Parameterized CALL.

CALL May call a
parameterized external
block or a
parameterized block.

ARG _FRES The ARG_PRES (Argument Present) function determines
1 whether a parameter value was present when the function
= EI ENC block instance of the parameter was invoked.

= IM Qb For details, refer to Program Flow Functions in Chapter 4.

270 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.11 Timers

This section describes the PACSystems timing functions that are implemented in the FBD language.

5.11.1 Built-in Timer Function Blocks

These function blocks use WORD Array instance data. The parameter that appears above the function
block is a one-dimensional, three-word array in %R, %W, %P, %L, or symbolic memory that the timer
uses to store its current value, preset value and control word.

Function Description
control_parameter Off Delay Timer. The timer's Current Value (CV) resets to zero when its enable
OFDT_HUMDS parameter (EN) is set to ON.. CV increments while EN is OFF. When CV=PV (Preset
1 Value), ENO is set to OFF until EN is set to ON again.
= EN ENO = Other OFDT functions:
iy . OFDT_SEC
OFDT_TENTHS
OFDT_THOUS

For details, refer to Timers in Chapter 4.

control_parameter |op Delay Stopwatch Timer. Retentive on delay timer. Increments while EN is ON and

ONDTRTHUNDS holds its value when EN is OFF.

Jen Eno L [ONDTR_SEC
ONDTR_TENTHS
—R CY f= [ONDTR_THOUS

= For details, refer to Timers in Chapter 4.

control_parameter |5, pejay Timer. Simple on delay timer. Increments while EN is ON and resets to zero

TMR_TUNDS when EN is OFF.
- E EMC TMR_SEC
TMR_TENTHS
- S TMR_THOUS

For details, refer to Timers in Chapter 4.

GFK-2950D November 2018 271

Chapter 5. Function Block Diagram (FBD)

5.11.2 Standard Timer Function Blocks

These functions blocks use Structure Variable instance data. Each invocation of a timer has associated
instance data that persists from one execution of the timer to the next. Instance variables are
automatically located in symbolic memory. (You cannot specify an address.) You can specify a stored

value for each element. The user logic cannot modify the values.

Function

Description

instance_lar

TOF
1
= M

—FT

o

ET

For details, refer to Timers in Chapter 4.

Timer Off Delay. When the input IN transitions from ON to OFF, the timer starts
timing until a specified period of time has elapsed, then sets the output Q to OFF.

instahce_l/ar

TOM
1
= I+

= PT

i

ET

For details, refer to Timers in Chapter 4.

Timer On Delay. When the input IN transitions from OFF to ON, the timer starts
timing until a specified period of time has elapsed, then sets the output Q to ON.

Ihatahce W ar

Timer Pulse. When the input IN transitions from OFF to ON, the timer sets the

TP output Q to ON for a specified time interval.
I 1 a For details, refer to Timers in Chapter 4.
- FT ET
272 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.12 Type Conversion Functions

The Conversion functions change a data item from one number format (data type) to another. Many
programming instructions, such as math functions, must be used with data of one type. As a result,
data conversion is often required before using those instructions.

Function |Description
Convert Angles
DEG_TO_RAD DEG_TO_RAD: Converts degrees to radians.
1 RAD_TO_DEG: Converts radians to degrees.
=M G - For details, refer to Conversion Functions in Chapter 4.

Convert to BCD4 (4-digit Binary-Coded-Decimal)

UINT TO BCDa UINT_TO_BDC4: Converts UINT (16-bit unsigned integer) to BCD4.
T INT_TO_BCD4: Converts INT (16-bit signed integer) to BCD4.
- |) = |For details, refer to Conversion Functions in Chapter 4.

Convert to BCDS8 (8-digit Binary-Coded-Decimal)

OIFNT TO BCDE DINT_TO_BD8: Converts DINT (32-bit signed integer) to BCD8.
- 1 - For details, refer to Conversion Functions in Chapter 4.

- () fo

Convert to INT (16-bit signed integer)

BCD4 TO_INT BCD4_TO_INT: Converts BCD to INT.

1 UINT_TO_INT: Converts UINT to INT
= IM L= |DINT_TO_INT: Converts DINT to INT..
REAL_TO_INT: Converts REAL to INT.

For details, refer to Conversion Functions in Chapter 4.

WORD TO IMT Converts a 16-bit string (WORD) value to INT.
1 For details, refer to Convert WORD to INT below.
- |1 ol

Convert to UINT (16-bit unsigned integer)

BCD4_TO_UINT BCD4_TO_UINT: Converts BCD4 to UINT.

1 INT_TO_UINT: Converts INT to UINT.
= IM o DINT_TO_UINT: Converts DINT to UINT.
REAL_TO_UINT: Converts REAL to UINT.

For details, refer to Conversion Functions in Chapter 4.

WORD_TO_UIMT WORD_TO_UINT: Converts a 16-bit string (WORD) value to UINT.

N 1 g For details, refer to Convert DWORD to DINT below.

Convert to DINT (32-bit signed integer)

BCDE_TO_DIMT BCD8_TO_DINT: Converts BCD8 to DINT.
1 UINT_TO_DINT: Converts UINT to DINT.
=N G = For details, refer to Conversion Functions in Chapter 4.

GFK-2950D November 2018 273

Chapter 5. Function Block Diagram (FBD)

Function Description
INT_TO DINT INT_TO_DINT: Converts INT to DINT.
1 REAL_TO_DINT: Converts REAL (32-bit signed real or floating-point values) to DINT.
L G = For details, refer to Conversion Functions in Chapter 4.

DWYORD_To_DINT DWORD_TO_DINT: Converts a 32-bit bit string (DWORD) value to DINT.

1 For details, refer to Convert DWORD to DINT below.
- |4 nl ™

Convert to REAL (32-bit signed real or floating-point values)

BCOA_TO_REAL BCD4_TO_REAL: Converts BCD4 to REAL.

1 BCD8_TO_REAL: Converts BCD8 to REAL.

=M @ == |UINT_TO_REAL: Converts UINT to REAL.
INT_TO_REAL: Converts INT to REAL.

DINT_TO_REAL: Converts DINT to REAL.
LREAL_TO_REAL: Converts LREAL to REAL.
For details, refer to Conversion Functions in Chapter 4.

Convert to LREAL(64-bit signed real or floating-point values)
REAL TO LREAL Converts a REAL value to LREAL.

2 For details, refer to Conversion Functions” in Chapter 4.
L G j-

Convert to WORD (16-bit string)
IMT_TO WORD Converts an INT (16-bit signed integer) value to a WORD value.

1 For details, refer to Convert INT or UINT to WORD below.
w4 (2]

UINT_TO_WORD Converts an unsigned single-precision integer (UINT) to WORD.
1 For details, refer to Convert INT or UINT to WORD below.
L (2]

Convert to DWORD (32-bit bit string)

DINT_TO_DWWORD Converts a double-precision signed integer (DINT) value to DWORD.
1 For details, refer to Convert DINT to DWORD below.
- 1] ()
Truncate
TRUMNEC_DINT Rounds a REAL (32-bit signed real or floating-point) number down to a DINT number
1 For details, refer to Conversion Functions in Chapter 4.
- M) o
TRUMZ_INT Rounds a REAL (32-bit signed real or floating-point) number down to an INT number
1 For details, refer to Conversion Functions in Chapter 4.
- (I 2 e

274 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.12.1 Convert WORD to INT
WORD_TO_INT Converts the input data into the equivalent single-precision signed integer
1 (INT) value, which it outputs to Q. This function does not change the original
w14 @ = input data. The output data can be used directly as input for another program
function, as in the examples.
The function passes data to Q, unless the data is out of range (0 through
+65,535).
Operands
Parameter|Description Allowed Types |Allowed Operands Optional
Solve Calculated by the FBD editor. NA NA No
Order
IN The value to convert to INT. WORD All except S, SA, SB,and SC |No
Q The INT equivalent value of the original |INT All except S, SA,SB,SCand |No
value in IN. constant
GFK-2950D November 2018 275

Chapter 5. Function Block Diagram (FBD)

5.12.2 Convert WORD to UINT

WORD_TO_UINT These functions convert the input data into the equivalent single-precision
" 1 a unsigned integer (UINT) value, which it outputs to Q.
The conversion to UINT does not change the original data. The output data

can be used directly as input for another program function, as in the example.

The function passes the converted data to Q, unless the resulting data is
outside the range 0 to +65,535.

Operands
Parameter |Description Allowed Types |Allowed Operands Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN The value to convert to UINT. WORD All except S, SA,SB,and [No
SC
Q The UINT equivalent value of the original |UINT All except S, SA, SB, SC No
input value in IN. and constant

276 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.12.3 Convert DWORD to DINT

DWwoRD_To_DIMT

1

Converts DWORD data into the equivalent signed double-precision integer
(DINT) value and stores the result in Q. The conversion to DINT does not

=™ o change the original data.

The output data can be used directly as input for another program function.
The function passes data to Q unless the data is out of range.

Operands

Parameter [Description Allowed Types |Allowed Operands Optional

Solve Order [Calculated by the FBD editor. NA NA No

IN The value to convert to DINT. DWORD All except S, SA, SB, and SC[No

Q The DINT equivalent value of the UINT All except S, SA, SB, SC and[No

original input value in IN. constant
GFK-2950D November 2018 277

Chapter 5. Function Block Diagram (FBD)

5.12.4 ConvertINT or UINT to WORD

LIMT_TO_WORD Converts an unsigned single-precision integer (UINT) operand IN to a 16-bit
1 bit string (WORD) value and stores the result in the variable assigned to Q.
- | () o
IMT_TO_WORD Converts a 16-bit signed integer (INT) operand IN to a 16-bit bit string
1 (WORD) value and stores the result in the variable assigned to Q.
- [()

The output data can be used directly as input for another program function. The function passes data
to Q unless the data is out of range.

Operands
Parameter |Description Allowed Types Allowed Operands Optional
Solve Order |Calculated by the FBD editor. NA NA No
IN The value to convert to WORD. INT or UINT, depending |All except S, SA, SB, and No
on function SC
Q The WORD equivalent value of the |WORD All except S, SA, SB, SC No
original value in IN.0 < Q <£65,535. and constant

278 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 5. Function Block Diagram (FBD)

5.12.5 Convert DINT to DWORD

DINT_TO_DWWORD
1

When DINT_TO_DWORD receives data, it converts the input double-
precision signed integer (DINT) data into the equivalent DWORD (32-bit bit

= I Q= string) value, which it outputs to Q. DINT_TO_DWORD does not change

the original DINT data.
The output data can be used directly as input for another program
function. The function passes data to Q unless the data is out of range.

Operands

Parameter |Description Allowed Types |Allowed Operands Optional

Solve Order |Calculated by the FBD editor. NA NA No

IN The value to convert to DWORD. DINT All except S, SA, SB, and SC|No

Q The DWORD equivalent value of the DWORD All except S, SA, SB, SC and|No

original value in IN. 0 < Q £ 4,294,967,295.

constant

GFK-2950D

November 2018

279

Chapter 6 Service Request Function

Use a Service Request function to request one of the following control system services:

SVC_REQ 1: Change/Read Constant Sweep Timer

SVC_REQ 2: Read Window Modes and Time Values

SVC_REQ 3: Change Controller Communications Window Mode
SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
SVC_REQ 5: Change Background Task Window Mode and Timer Value
SVC_REQ 6: Change/Read Number of Words to Checksum
SVC_REQ 7: Read or Change the Time-of-Day Clock

SVC_REQ 8: Reset Watchdog Timer

SVC_REQ 9: Read Sweep Time from Beginning of Sweep
SVC_REQ 10: Read Target Name

SVC_REQ 11: Read Controller ID

SVC_REQ 12: Read Controller Run State

SVC_REQ 13: Shut Down (STOP) CPU

SVC_REQ 14: Clear Controller or I/O Fault Table

SVC_REQ 15: Read Last-Logged Fault Table Entry

SVC_REQ 16: Read Elapsed Time Clock

SVC_REQ 17: Mask/Unmask I/O Interrupt

SVC_REQ 18: Read I/O Forced Status

SVC_REQ 19: Set Run Enable/Disable

SVC_REQ 20: Read Fault Tables

SVC_REQ 21: User-Defined Fault Logging

SVC_REQ 22: Mask/Unmask Timed Interrupts

SVC_REQ 23: Read Master Checksum

SVC_REQ 24: Reset Module

SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
SVC_REQ 29: Read Elapsed Power Down Time

SVC_REQ 32: Suspend/Resume I/O Interrupt

SVC_REQ 45: Skip Next I/O Scan

SVC_REQ 50: Read Elapsed Time Clock

SVC_REQ 51: Read Sweep Time from Beginning of Sweep
SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
SVC_REQ 57: Logic Driven Write to Nonvolatile Storage

The following Service Requests are used in CPU HSB redundancy applications.

Refer to the PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308. For non-HSB applications, refer

to PACSystems RX7i, RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual, GFK-2224.

SVC_REQ 26 Role switch (redundancy)

SVC_REQ 27 Write to reverse transfer area (Hot Standby Redundancy)

SVC_REQ 28 Read from reverse transfer area (Hot Standby Redundancy)
SVC_REQ 43 Disable data transfer copy in backup unit (Hot Standby Redundancy)

GFK-2950D November 2018

281

Chapter 6. Service Request Function

SVC_REQ 55 Set application redundancy mode (non-Hot Standby Redundancy)

282 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.1 Operation of SVC_REQ Function
PACSystems supports the Service Request function in LD and FBD.

6.1.1 Ladder Diagram

i‘l-_:'g When SVC_REQ receives power flow, it requests the CPU to perform the special service
a I identified by the FNC operand.
- Parameters for SVC_REQ are located in the parameter block, which begins at the
reference identified by the PRM operand. The number of 16-bit references required
prm depends on the type of special controller service being requested. The parameter block

is used to store both the function's inputs and outputs.

SVC_REQ passes power flow unless an incorrect function number, incorrect parameters, or out-of-
range references are specified. Specific SVC_REQ functions may have additional causes for failure.

Because the service request continues to be invoked each time power flow is enabled to the function,
additional enable/disable logic preceding the request may be necessary, depending upon the
application. (For example, repeated calling of SVC_REQ 24 would continually reset a module, probably
not the intended behavior.) In many cases a transition contact or coil will be sufficient. Alternatively,
you could use more complex logic, such as having the function contained within a block that is only
called a single time.

Operands
Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al, and %AQ).
Operand (Data Type Memory Area Description
FNC INT variable or All except %S - %SC Function number; Service Request number. The
constant constant or reference that identifies the requested
service.
PRM WORD variable All except flow, %S - %SC |The first WORD in the parameter block for the
and constant requested service. Successive 16-bit locations store
additional parameters.

Example
When the enabling input %10001 is ON, SVC_REQ function V_100001 SVCEEQ| ¥ _O000M
number 7 is called, with the parameter block starting at L — —
%R0001. If the operation succeeds, output coil %Q0001 is set
ON. 7 —{FNC
_Rooom —FEM

GFK-2950D November 2018 283

Chapter 6.

Service Request Function

6.1.2 Function Block Diagram
SWC_REQ The SVC_REQ function requests the CPU to perform the special service
1 identified by the FNC operand.
- ENM EMO p . . .
Parameters for SVC_REQ are located in the parameter block, which begins at
- FRC the reference identified by the PRM operand. The number of 16-bit references
required depends on the type of special controller service being requested. The
= PR parameter block is used to store both the function's inputs and outputs.
Operands
Note: Indirect referencing is available for all register references (%R, %P, %L, %W, %Al, and %AQ).
Parameter|Description Allowed Types |Allowed Operands Optional
Solve Calculated by the FBD editor. NA NA No
Order
EN Enable input. When set to ON, the BOOL dataflow, |,Q, M, T,G,S, SA, SB, SC, |No
SVC_REQ executes discrete symbolic, 1/0 variable
Bit referenceina |I,Q,M,T,G,R,P, L, Al, AQ, W,
non-BOOL non-discrete symbolic, 1/O variable
variable
FNC Function number; Service Request INT, DINT, UINT, |All except %S - %SC No
.numt.>er. The constant or varigble that |WORD, DWORD |yoy can use data flow only if the
identifies the requested service. parameter block requires only one
WORD
If you use a symbolic variable or an
I/O variable, ensure that its Array
Dimension 1 property is setto a
value large enough to contain the
entire parameter block.
PRM The first word in the parameter block [INT, DINT, UINT, |All except flow, %S - %SC and No
for the requested service. Successive |WORD, DWORD |constant
16-bit locations store additional
parameters.
ENO Set to ON unless an incorrect function |BOOL data flow, I, Q, M, T, G, non-discrete |Yes
number, incorrect parameters, or out- symbolic, 1/O variable
of-range references are specified. . .
Specific SVC_REQ functions may have Bit referenceina |1, Q, M.’ T.GRPL, Al.’ AQ W, .
o . non-BOOL non-discrete symbolic, 1/0 variable
additional causes for failure. .
variable.
284 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.2 SVC_REQ 1: Change/Read Constant Sweep Timer

Use SVC_REQ function 1 to:

= Disable Constant Sweep mode

= Enable Constant Sweep mode and use the old Constant Sweep timer value
= Enable Constant Sweep mode and use a new Constant Sweep timer value
= Setanew Constant Sweep timer value only

= Read Constant Sweep mode state and timer value.

The parameter block has a length of two words used for both input and output.
SVC_REQ executes successfully unless:

= Anumberotherthan0, 1, 2, or 3 is entered as the requested operation:

» The scan time value is greater than 2550ms (2.55 seconds)

= Constant sweep time is enabled with no timer value programmed or with an old value of O for the
timer.

6.2.1 Todisable Constant Sweep mode:
Enter SVC_REQ 1 with this parameter block:

Address 0

Address + 1 |Ignored

6.2.2 To enable Constant Sweep mode and use the old timer value:
Enter SVC_REQ 1 with this parameter block:

Address 1

Address +1 |0

If the timer value does not already exist, entering 0 causes the function to set the OK output to OFF.

6.2.3 To enable Constant Sweep mode and use a new timer value:
Enter SVC_REQ 1 with this parameter block:

Address 1

Address + 1 |New timer value

Note: If the timer value does not already exist, entering O causes the function to set the OK
output to OFF.

6.2.4 To change the timer value without changing the selection for
sweep mode state:

Enter SVC_REQ 1 with this parameter block:

Address 2

Address + 1 |New timer value

GFK-2950D November 2018 285

Chapter 6. Service Request Function

6.2.5 To read the current timer state and value without changing either:

Enter SVC_REQ 1 with this parameter block:

Address 3

Address + 1 [ignored

Output

SVC_REQ 1 returns the timer state and value in the same parameter block references:

Address 0 = Normal Sweep
1 = Constant Sweep

Address + 1 [Current timer value

If the word address + 1 contains the hexadecimal value FFFF, no timer value has been programmed.

SVC_REQ 1 Example
If contact OV_SWP is set, the Constant Sweep Timer is read, the timer is increased by 2 ms, and the
new timer value is sent back to the CPU. The parameter block is at location %R3050. The example logic
uses discrete internal coil %M0001 as a temporary location to hold the successful result of the first
rung line. On any sweep in which OV_SWP is not set, %M00001 is turned off.

Ov_SHFP MOVE

SWC REQ

1—{FNC

286 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

U_ER02050 —

SWC RECQ

|} WOED
3
1—{IN O w_ER03050
_R03050 —{FREM
v_Mooo01 MOVE
— —— WORD
1
1IN O w_E030s0 1

FNC

FEM

W_R02031 —

3 —

ADDINT

IN1 u]

INz

[~ W_R0205

V_Mo000M

————

GFK-2950D

Chapter 6. Service Request Function

6.3 SVC_REQ 2: Read Window Modes and Time Values

Use SVC_REQ 2 to obtain the current window mode and time values for the controller communications
window and the backplane communications and the background task window.

The parameter block has a length of three words. All parameters are output parameters. It is not
necessary to enter values in the parameter block to program this function.

Output

Address Window High Byte (Low Byte
Address Controller Communications Window |Mode Value in ms
Address + 1 |Backplane Communications Window |Mode Value in ms
Address + 2 |Background Window Mode Value in ms

Note: A window is disabled when the time value is zero.

Mode Values

Mode Name

Value

Description

Limited Mode 0

The execution time of the window is limited to its respective default value or
to a value defined using SVC_REQ 3 for the controller communications
window or SVC_REQ 4 for the systems communications window. The window
will terminate when it has no more tasks to complete.

Constant Mode 1

Each window will operate in a Run to Completion mode, and the CPU will
alternate among the three windows for a time equal to the sum of each
window's respective time value. If one window is placed in Constant mode,
the remaining two windows are automatically placed in Constant mode. If the
CPU is operating in Constant Window mode and a particular window's
execution time is not defined using the associated SVC_REQ function, the
default time for that window is used in the constant window time calculation.

Mode

Run to Completion 2

Regardless of the window time associated with a particular window, whether
default or defined using a service request function, the window will run until
all tasks within that window are completed.

SVC_REQ 2 Example

When %Q00102 is set, the CPU places the current time values of the
windows in the parameter block starting at location %R0010. P i

GFK-2950D

V_Oooinz WL EEQ

2 —|FHC

V_Eoo0n —{FEM

November 2018 287

Chapter 6. Service Request Function

6.4 SVC_REQ 3: Change Controller Communications Window
Mode

Use SVC_REQ 3 to change the controller communications window mode and timer value. The change
takes place during the next CPU sweep after the function is called.

The parameter block has a length of one word.
SVC_REQ 3 executes unless a mode other than 0O (Limited) or 2 (Run to Completion) is selected.

6.4.1 To disable the controller communications window:
Enter SVC_REQ 3 with this parameter block:

Address |High Byte |Low Byte

Address 0 0

6.4.2 Tore-enable or change the controller communications window
mode:

Enter SVC_REQ 3 with this parameter block:

Address [High Byte Low Byte

Address|Mode: 0 = Limited 1ms <value < 255msin 1ms increments
2 = Run to Completion

SVC_REQ 3 Example

When enabling input %100125 transitions VI0ES | MOVE EUC RE(
on, the controller communications window [T "*"
is enabled and assigned a value of 25ms.
When the contact transitions off, the I O v_Pooost e
window is disabled. The parameter block is
in global memory location %P00051.

V_Po00si —|FER

W_I00ES MOV E
- L — UINT

0 —IN O _Pooosi

288 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.5 SVC_REQ 4: Change Backplane Communications Window
Mode and Timer Value

Use SVC_REQ 4 to change the Backplane Communications window mode and timer value. The change
takes place during the next CPU sweep after the function is called.

SVC_REQ 4 executes unless a mode other than O (Limited) or 2 (Run to Completion) is selected.
The parameter block has a length of one word.

6.5.1 Todisable the Backplane Communications window:
Enter SVC_REQ 4 with this parameter block:

Address |High Byte |Low Byte

Address 0 0

6.5.2 To enable the Backplane Communications window mode:
Enter SVC_REQ 4 with this parameter block:

Address [High Byte Low Byte

Address|Mode 0 = Limited 1ms < value £ 255ms
2 = Run to Completion

SVC_REQ 4 Example

When enabling output %M0125 transitions on, the mode and timer value of the Backplane
Communications window is read. If the timer value is greater than or equal to 25ms, the value is not
changed. If it is less than 25ms, the value is changed to 25ms. In either case, when the rung completes
execution the window is enabled. The parameter block for all three windows is at location %R5051.
Since the mode and timer for the Backplane Communications window is the second value in the
parameter block returned from the Read Window Values function (SVC_REQ 2), the location of the
existing window time for the Backplane Communications window is in the low byte of %R5052.

V_I0000 W_MO0012S5
—— ——{t+—1
V_MOMZ3 [svCEEO AND ANT
| WORD WORD |
2 —{FHC V_R0S0Sz —{IM1 OF ¥_R0S060 WV_R0s0sz —{IN1 OF w_RS0061
V_R0s0st —|FEM 1EH#00FF —IN2 1E#FFO0 —IN2
V_MO0MZ3 [ILTINT OF WORED SWC REQ
{ | »
V_R0S0e0 —{INT O V_Roo0g1 —IM1 O ¥_R00052 4 —{FHC
25 —{INZ 25 —{INZ2 V_ERoonsz —| FEM

GFK-2950D November 2018 289

Chapter 6. Service Request Function

6.6 SVC_REQ 5: Change Background Task Window Mode and
Timer Value

Use SVC_REQ 5 to change the Background Task window mode and timer value. The change takes place
during the next CPU sweep after the function is called.

SVC_REQ 5 executes unless a mode other than O (Limited) or 2 (Run-to-Completion) is selected.
The parameter block has a length of one word.

6.6.1 Todisable the Background Task window:
Enter SVC_REQ 5 with this parameter block:

Address |High Byte |Low Byte

Address 0 0

6.6.2 To enable the Background Task window mode:
Enter SVC_REQ 5 with this parameter block:

Address [High Byte Low Byte

Address|Mode 0 = Limited 1ms < value £ 255ms
2 = Run to Completion

SVC_REQ 5 Example

When enabling contact #FST_SCN is set in the first scan, the MOVE function establishes a value of
20ms for the Background task window, using a parameter block beginning at %P00050. Later in the
program, when input %I00500 transitions on, the state of the Background task window toggles on and
off. The parameter block for all three windows is at location %P00051. The time for the Background
task window is the third value in the parameter block returned from the Read Window Values function
(function #2); therefore, the location of the existing window time for the Background window is
%P00053.

#FST_SCH MOVE
| — UINT
1
20 —IN O W_Po0oso
F_I0as0n0 SVC REQ EQUINT | V_MO000Z
— —
2 —|FHNC V_PO0053 —IM aF
V_Fo0051 —|FEM 0 —{INz
_Iooson W_Mo0002 MOVE EWC EEQ
— 1| 1} HINT =
1
0—I¥ O V_P000S3 3 —|FHC
V_Mo0002 MOVE
| | UINT ¥_F000S3 —|FEM
1
V_Fo0asg —IN O ¥_P00a0s:

290 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.7 SVC_REQ 6: Change/Read Number of Words to Checksum

Use SVC_REQ 6 to read the current word count in the program to be check-summed or set a new word
count. By default, 16 words are checked. The function is successful unless some number other than 0 or
1is entered as the requested operation.

The parameter block has a length of 2 words.

6.7.1 To read the word count:

Enter a zero in the first word of the parameter block.

Address 0

Address + 1|Ignored

The function returns the current checksum (word count) in the second word of the parameter block. No
range is specified for the read function; the value returned is the number of words currently being
check-summed.

Address 0

Address + 1|{Current word count

6.7.2 To set a new word count:

Enter a one in the first word of the parameter block and the new word count in the second word.

Address 1

Address + 1{New word count

The CPU changes the number of words to be check-summed to the value given in the second word of
the parameter block, rounded up to the next multiple of 8. To disable check-summing, set the new
word count to 0.

GFK-2950D November 2018 201

Chapter 6. Service Request Function

SVC_REQ 6 Example

When enabling contact
#FST_SCN is set, the
parameter blocks for the
checksum task function are
built. Later in the program,
when input %100137
transitions on, the number of
words being check-summed
is read from the CPU
operating system. This
number is increased by 16,
with the results of the
ADD_UINT function being
placed in the hold new count
for set parameter. The
second service request block
requests the CPU to set the
new word count.

#FET_ECH XOE MOVE
| WORD OINT |
1 1

I rmamr —{IN O B foemt 1—IN O & ass

I oy —{IN2

W_I0037 SV REQ ATIT SV REC

-t — OINT
£ —|FHC g pgeesr —INU O 5 o £ —FHC
& foesr — PEM 1 —INz i Lo —PEM

The example parameter blocks are located at address %L00150. They have the following contents:

292

%L00150

0 =read current count

%L00151

hold current count

%L00152

1 =set current count

%L00153

hold new count for set

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock

Use SVC_REQ 7 to read or change the time of day clock in the CPU. The function is successful unless:

= Aninvalid number is entered for the requested operation.

= Aninvalid data format is specified.

= Datais provided in an unexpected format.

6.8.1

Parameter Block Formats

In the first two words of the parameter block, you specify whether to read or set the time and date, and
which format to use.

Address 2-Digit Year Format 4-Digit Year Format
Address 0 =read time and date 0 =read time and date
(word 1) 1 =set time and date 1 =set time and date
Address+1 0 = numeric data format 80h - numeric data format
(word 2) 1 = BCD format 81h = BCD format
2 = unpacked BCD format 82h = unpacked BCD format
3 = packed ASCII format (with embedded spaces and colons) |83h = packed ASCII format
4 = POSIX format n/a
Address+2 Data Data
(word 3)
to the end

Words 3 to the end of the parameter block contain output data returned by a read function, or new

data being supplied by a change function. In both cases, format of these data words is the same. When
reading the date and time, words (address + 2) to the end of the parameter block are ignored on input.

The format and length of the parameter block depends on the data format and number of digits
required for the year:

GFK-2950D

Data Format and N-digit Year | Length of parameter block
(number of words)
BCD, 2-digit year 6
BCD, 4-digit year 6
POSIX format 6
Unpacked BCD 2 9
Unpacked BCD 4 10
Numeric (2 and 4 digit years) 9
Packed ASCII, 2-digit year 12
Packed ASCII, 4-digit year 13

November 2018

293

Chapter 6. Service Request Function

In any format:

» Hours are stored in 24-hour format.
» Day of the week is a numeric value ranging from 1 (Sunday) to 7 (Saturday).
Value |Day of the Week

BCD, 2-Digit Year

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

N[O~ W (e

Saturday

In BCD format, each time and date item occupies one byte, so the parameter block has six words. The
last byte of the sixth word is not used. When setting the date and time, this byte is ignored; when
reading date and time, the function returns a null character (00).

Parameter Block Format Address Example
(Sun., July 3, 2005, at 2:45:30 p.m.
= 14:45:30 in 24-hour format)
1 =change or 0 = read Address 0 (read)
1 (BCD format) Address+1 |1 (BCD format)
High Byte Low Byte Address High Byte Low Byte
month year Address+2 |07 (July) 05 (year)
hours day of month Address+3 |14 (hours) 03 (day)
seconds minutes Address+4 |30 (seconds) 45 (minutes)
(null) day of week Address+5 |00 01 (Sunday)
BCD, 4-Digit Year
In this format, all bytes are used.
Parameter Block Format Address Example
(Sun., July 3, 2005, at 2:45:30 p.m.
= 14:45:30 in 24-hour format)
1 =change or 0 = read Address 00 (read)
81h (BCD format, 4-digit) Address+1 ([81h (BCD format, 4-digit)
High Byte Low Byte Address High Byte Low Byte
year year Address+2 (20 (year) 05 (year)
day of month month Address+3 |03 (day) 07 (July)
minutes hours Address+4 |45 (minutes) 14 (hours)
day of week seconds Address+5 (01 (Sunday) 30 (seconds)

294 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

POSIX

The POSIX format of the Time-of-Day clock uses two signed 32-bit integers (two DINTSs) to represent
the number of seconds and nanoseconds since midnight January 1, 1970. Reading the clock in POSIX
format might make it easier for your application to calculate time differences. This format can also be
useful if your application communicates to other devices using the POSIX time format. To read and/or
change the date and time using POSIX format, enter SVC_REQ 7 with this parameter block:

Parameter Block Format Address Example: December 1, 2000 at 12 noon
1=change or 0 =read Address 0

4 (POSIX format) Address+1 |4

seconds (LSW) Address+2 [975,672,000

(MSW) Address+3

nanoseconds (LSW) Address+4 |0

(MSW) Address+5

The PACSystems CPU’s maximum POSIX clock value is F48656FE (hexadecimal) seconds and
999,999,999 (decimal) nanoseconds, which corresponds to December 31st, 2099 at 11:59 pm. This is
the maximum POSIX value that SVC_REQ 7 will accept for changing the clock. This is also the maximum
POSIX value SVC_REQ 7 will return once the Time-Of-Day clock passes this date.

If SVC_REQ 7 receives an invalid POSIX time to write to the clock, it does not change the Time-Of-Day

clock and disables its power-flow output.

Note: When reading the PACSystems CPU clock in POSIX format, the data returned is not easily
interpreted by a human viewer. If desired, it is up to the application logic to convert the POSIX
time into year, month, day of month, hour, and seconds.

Note: At 03:14:08 UTC on 19 January 2038, 32-bit versions of the Unix time stamp will cease to work,
as it will overflow the largest value that can be held in a signed 32-bit number (7FFFFFFF16 or
2,147,483,647). Before this moment, software using 32-bit time stamps will need to adopt a
new convention for time stamps, and file formats using 32-bit time stamps will need to be
changed to support larger time stamps or a different epoch.

GFK-2950D November 2018 295

Chapter 6. Service Request Function

Unpacked BCD (2-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order four bits of a
byte. The upper four bits of each byte are always zero. This format requires nine words. Values are

hexadecimal.
Parameter Block Format Address Example
(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)

1=change or 0 =read Address Oh

2 (Unpacked BCD format) Address+1 |2h

High Byte Low Byte High Byte Low Byte
year Address+2 |00h 02h
month Address+3 |0lh 02h
day of month Address+4 |02h 08h
hours Address+5 |00h 0%h
minutes Address+6 |03h 04h
seconds Address+7 |05h 07h
day of week Address+8 |00h 05h

Unpacked BCD (4-Digit Year)

In Unpacked BCD format, each digit of the time and date items occupies the low-order four bits of a
byte. The upper four bits of each byte are always zero. This format requires nine words. Values are

hexadecimal.
Parameter Block Format Address Example
(Thurs., Dec. 8, 2002, at 9:34:57 a.m.)
1 =change or 0 = read Address Oh
82h (Unpacked 4-digit BCD format) Address+1 [82h
High Byte Low Byte High Byte Low Byte
year Address+2 (00h 02h
month Address+3 |[0lh 02h
day of month Address+4 |00h 08h
hours Address+5 |00h 09h
minutes Address+6 |03h 04h
seconds Address+7 |05h 07h
day of week Address+8 |00h 05h
296 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

Numeric, 2-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of week each
occupy one unsigned integer. To read and/or change the date and time using the numeric format, enter
SVC_REQ function #7 with this parameter block:

Parameter Block Format Address Example
Wed., June 15, 2005, at 12:15:30 a.m.

1=change or 0 =read Address 0

0 (Numeric format, 2-digit year) Address+1 |0

High Byte Low Byte Value
year Address+2 |05
month Address+3 |06
day of month Address+4 (15
hours Address+5 |12
minutes Address+6 |15
seconds Address+7 |30
day of week Address+8 |04

Numeric, 4-Digit Year

In numeric format, the year, month, day of month, hours, minutes, seconds and day of week each

occupy one unsigned integer. To read and/or change the date and time using the numeric format, enter
SVC_REQ function #7 with this parameter block:

Parameter Block Format Address Example: Wed., June 15, 2005, at 12:15:30 a.m.
1 =change or 0 = read Address 0
80h (Numeric format, 4 digit year) Address+1 |80h
High Byte Low Byte Value
year Address+2 |2005
month Address+3 |06
day of month |Address+4 |15
hours Address+5 |12
minutes Address+6 |15
seconds Address+7 |30
day of week |Address+8 |04
GFK-2950D November 2018 297

Chapter 6. Service Request Function

Packed ASCII, 2-Digit Year

In Packed ASCII format, each digit of the time and date items is an ASCII formatted byte. Spaces and
colons are embedded into the data to format it for printing or display. ASCII format for a 2-digit year
requires 12 words in the parameter block. Values are hexadecimal.

Parameter Block Format Address Example
(Mon., Oct. 5, 2005, at 11:13:25 p.m. = 23:13:25 in 24-hour
format)

1 =change or 0 = read Address Oh (read)

3 (ASCIl format) Address+1 |3h (ASCII format)

High Byte Low Byte High Byte Low Byte

year year Address+2 |35h (5) 30h (0)

month (space) Address+3 (31h (1) 20h (space)

(space) month Address+4 (20h (space) 30h (0)

day of month |day of month [Address+5 |35h (5) 30h (leading 0)

hours (space) Address+6 |(32h(2) 20h (space)

: (colon) hours Address+7 |3Ah () 33h (3)

minutes minutes Address+8 |33h (3) 31h (1)

seconds : (colon) Address+9 |32h (2) 3Ah (:)

(space) seconds Address+10(20h (space) 35h (5)

day of week |day of week [Address+11|32h (2 =Mon.) 30h (leading 0)

298 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

Packed ASCII, 4-Digit Year

ASCIl format for a 4-digit year requires 13 words in the parameter block. Values are hexadecimal.

Parameter Block Format Address Example
(Mon., Oct. 5, 2005, at 11:13:25 p.m. =
23:13:25 in 24-hour format)
1 =change or 0 = read Address Oh (read)
83 (ASCIl format) Address+1 83h (ASCll format, 4-digit)
High Byte Low Byte High Byte Low Byte
year (hundreds) year (thousands) Address+2 30h (0) 32h (2)
year (ones) year (tens) Address+3 35h (5) 30h (0)
month (tens) (space) Address+4 |31h (1) 20h (space)
(space) month (ones) Address+5 20h (space) 30h (0)
day of month (ones) |day of month (tens) |Address+6 35h (5) 30h (leading 0)
hours (tens) (space) Address+7 32h (2) 20h (space)
: (colon) hours (ones) Address+8 |3Ah () 33h (3)
minutes (ones) minutes (tens) Address+9 [33h (3) 31h (1)
seconds (tens) : (colon) Address+10 (32h (2) 3Ah (A)
(space) seconds (ones) Address+11 |20 (space) 35(5)
day of week (ones) day of week (tens) Address+12 |32h (2 =Mon.) 30h (leading 0)

GFK-2950D

November 2018

299

Chapter 6. Service Request Function

SVC_REQ 7 Example

In this example, the time of day is set to 12:00 pm without changing the current year, BCD format
requires six contiguous memory locations for the parameter block.

Rung 1 sets up the new time of day in two-digit year BCD format. It writes the value 4608 (equivalent to
12 00 BCD) to NOON and the value 0 to MIN_SEC.

Rung 2 requests the current date and time using the parameter block located at %P00300.

Rung 3 moves the new time value into the parameter block starting at R0O0300. It uses AND and ADD
operations to retrieve the current clock value from %P00303 and replace the hours, minutes and
seconds portion of the value with the values in NOON and MIN_SEC.

Rung 4 uses the parameter block beginning at %R00300 to set the new time.

#FST_SCH MOVE INT MOVE INT
1 i —
4608 —|IN 2 noon o —{IN 21— MIN_SEC
Tooo1e MOVE INT MOVE INT SVC REQ Too0o1
2 | &
0 —IN 2 FO0200 1 —{IN Q— FO0201 T —|FHC
FO0200 —PRM
TOO001 100017 END WCAD A00 INT MOVE INT
3 { | { | —
FO0203 —IN1 21— RO0202 RO0Z02 —|IN1 21— RO0202 MIN_SEC —|IM 21— ROD204
188 —{IN2 HOON —(INZ
Toooo1 ooy MCVE INT MCVE INT SVC REQ
4 |t { | —
—ir Q{— RO0300 1 —{IN Q|— RO0301 7 —FNC
RO0200 —PRM

300 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.9 SVC_REQ 8: Reset Watchdog Timer

Use SVC_REQ 8 to reset the watchdog timer during the scan.

Ordinarily, when the watchdog timer expires, the CPU goes to STOP-Halt mode without warning.
SVC_REQ 8 allows the timer to keep going during a time-consuming task (for example, while waiting for
a response from a communications line).

Warning

Be sure that resetting the watchdog timer does not
adversely affect the controlled process.

SVC_REQ 8 has no associated parameter block; however, you must specify a dummy parameter, which
SVC_REQ 8 will not use.

SVC_REQ 8 Example

In the LD example at right, power flow through enabling v_nomzy SVCREQ
output %Q0127 or input %11476 or internal coil 1
%MO00010 causes the watchdog timer to be reset. V_101476
— g —{FHC
W_Moooin
{ | _aTong —FEM

GFK-2950D November 2018 301

Chapter 6. Service Request Function

6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep

Use SVC_REQ 9 to read the time in milliseconds since the start of the sweep. The data format is
unsigned 16-bit integer.

Output
The parameter block is an output parameter block only; it has a length of one word.

Address |time since start of scan

SVC_REQ 9 Example

The elapsed time from the start of the scan is SVCERED GT INT
read into location %R00200. If it is greater
than 100ms, internal coil %M0200 is turned
on.

V_MoO0200

5 —{FHC v_Roozoo —IM1 Ofb— +—

%_ER00zoo —FEM 100 —{IN2

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 51: Read Sweep Time
from Beginning of Sweep.

302 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.11 SVC_REQ 10: Read Target Name

Use SVC_REQ 10 to read the name of the currently executing target.

Output

The output parameter block has a length of four words. It returns eight ASCII characters: the target
name (from one to seven characters) followed by null characters (00h). The last character is always a
null character. If the target name has fewer than seven characters, null characters are appended to the

end.

Address

Low Byte

High Byte

Address

character 1

character 2

Address+1

character 3

character 4

Address+2

character 5

character 6

Address+3

character 7

00

SVC_REQ 10 Example

When enabling input %10301 goes ON, register
location %R0099 is loaded with the value 10, which
is the function code for the Read Target Name
function. The program block READ_ID is then called
to retrieve the target name. The parameter block is
located at address %R0100.

Program block READ_ID:

GFK-2950D

November 2018

100201 MCVE CALL
|| WORD Read_ID |
o —IN 2f— Ro00EE
=ALW_CN SV REQ

| | —

11
RODOSE —{FNC
RO0100 —{PRM

303

Chapter 6. Service Request Function

6.12 SVC_REQ 11: Read Controller ID

Use SVC_REQ 11 to read the name of the controller executing the program.

Output

The output parameter block has a length of four words. It returns eight ASCII characters: the Controller
ID (from one to seven characters) followed by null characters (00h). The last character is always a null

character

If the Controller ID has fewer than seven characters, null characters are appended to the end.

Address

Low Byte

High Byte

Address

character 1

character 2

Address+

character 3

character 4

1

Address+
2

character 5 |character 6

Address+
3

character 7 |00

SVC_REQ 11 Example

When enabling input %10303 is ON, register location
%R0099 is loaded with the value 11, which is the
function code for the Read Controller ID function. The

program block READ_ID is then called to retrieve the ID.

The parameter block is located at address %R0100.

Program Block READ_ID:

304

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

100303 MOVE EEAD_ID

- | —{ WOED L A
1

N—IN O v _Eo0093
#ALM_ON [2%¥CREQ
_| |— —

7_E000s3 —|FHC
W_RO0I00 —{FEM

GFK-2950D

Chapter 6. Service Request Function

6.13 SVC_REQ 12: Read Controller Run State
Use SVC_REQ 12 to read the current RUN state of the CPU.

Output
The output parameter block has a length of one word.

Address |1 =run/disabled

2 =run/enabled

SVC_REQ 12 Example

When contact V_100102 is ON, the CPU run V_I0002 - fevc REQ
state is read into location %R4002. If the state []
is Run/Disabled, the CALL function calls
program block DISPLAY. f2 FNC

V_E04002 —|FEM

GFK-2950D November 2018

1

V_R04002 —

EC INT

I]

INz

DISELAY
—(CAL}-

305

Chapter 6. Service Request Function

6.14 SVC_REQ 13: Shut Down (STOP) CPU

Use SVC_REQ 13 to stop the CPU after the specified number of scans has been performed. All outputs
go to their designated default states at the start of the next CPU scan. An informational Shut Down
Controller fault is placed in the Controller Fault Table. The I/O scan continues as configured.

SVC_REQ 13 has an input parameter block with a length of one word.

Address|Number of scans. Valid values:

-1: The CPU uses the Number of Last Scans value configured in the Hardware Configuration
Scan tab to determine when to transition to STOP Mode. For details on Hardware
Configuration parameters, refer to PACSystems RX7i, RX3i and RSTi-EP CPU Reference
Manual, GFK-2222.

1 through 5: The CPU finishes executing this scan, then executes this number of scans -1, and
transitions to STOP Mode.

Note: For CPUs with firmware version earlier than 2.00, the value must be set to 0; otherwise the CPU
does not stop.

SVC_REQ 13 Example

When a Loss of I/O Module fault occurs, the #LOS_IOM contact turns ON and SVC_REQ 13 executes.

In this example, if the Shut Down CPU function executes, the JUMPN to the end of the program
prevents the logic that follows the JUMPN from executing in the current sweep.

#LOS_[Om END_FROG
¥ @
A W
B S A001 %6 TO0004
END_PRDG W O E WIORD SWC RER EndF’rogram
| | JOMFH
% TO0001
1
1 —IN Q2 — ROOO0A 13 —FHC
%6 RO0001
ROOO01 — PR
S RO0004

The block's last instruction is a LABELN:
@Endegram

306 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.15 SVC_REQ 14: Clear Controller or I/O Fault Table

Use SVC_REQ 14 to clear either the Controller Fault Table or the I/O Fault Table. The SVC_REQ output is
set ON unless some number other than O or 1 is entered as the requested operation.

The parameter block has a length of 1 word. It is an input parameter block only. There is no output
parameter block.

Address|0 = clear Controller Fault Table

1 = clear I/O Fault Table

SVC_REQ 14 Example

When inputs %10346 and %l0349 are on, the Controller Fault Table is cleared. When inputs %l0347 and
%0349 are on, the I/O Fault Table is cleared. When input %10348 is on and input %10349 is on, both are
cleared. Positive transition coils V_M00001 and V_M00002 are used to trigger these service requests to
prevent the fault tables from being cleared multiple times.

The parameter block for the Controller Fault Table is located at %R0500; for the 1/O Fault Table the
parameter block is located at %R0550.

Note: Both parameter blocks are set up elsewhere in the program.

V_I00349 V_100346 ¥_M00001

| | | D—

V_100348

| |
L

¥_M00001 SVC REQ

14 —FNC

V_R00500 —|PRM

V_100349 V_l00347 V_M00002
|| | D
V_100348

[l
|

¥_M00002 SVC REQ

I] —

1T

14 —FNC

V_R00550 —|PRM

GFK-2950D November 2018 307

Chapter 6. Service Request Function

6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry

Use SVC_REQ 15 to read the last entry logged in the Controller Fault Table or the I/O Fault Table. The
SVC_REQ output is set ON unless some invalid number is entered as the requested operation or the
fault table is empty.

The non-extended parameter block has a length of 22 words and the extended parameter block has a
length of 24 words.

Input Parameter Block

Address |Format

Address+0|0 = Read Controller Fault Table

1 =Read I/O Fault Table

80h = Read extended Controller Fault Table

81h = Read extended I/O Fault Table

Output Parameter Block
The format of the output parameter block depends on whether SVC_REQ 15 reads the Controller Fault

Table, the extended Controller Fault Table, the I/O Fault Table or the extended 1/O Fault Table.

Controller Fault Table Output Format Address 1/O Fault Table Output Format
High Byte Low Byte High Byte Low Byte
0 Address+0 1
unused long/short (always 01) Address+1 reference address long/short
memory type (always 03)
unused unused Address+2 reference address offset
slot rack Address+3 slot rack
task Address+4 block bus
fault action fault group Address+5 point
error code Address+6 fault action fault group
Address+7 fault type fault category
fault extra data Address+8 to fault extra data fault description
Address+18
minutes seconds Address+19 minutes seconds
day of month hour Address+20 day of month hour
year month Address+21 year month
milliseconds (extended format only) Address+22 milliseconds (extended format only)
not used (extended format only) Address+23 not used (extended format only)

308

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

Long/Short Value

The first byte (low byte) of word address +1 contains a number that indicates the length of the fault-
specific data in the fault entry. Possible values are as follows:

Controller extended and non-extended fault tables

00 = 8 bytes (short) |01 = 24 bytes (long)

I/O extended and non-extended fault tables

02 = 5 bytes (short) |03 = 21 bytes (long)

Note: PACSystems CPUs always return the Long values for both extended and non-extended formats.

SVC_REQ 15 Example 1

When inputs %10250 and %I0251 are both on, the first
Move function places a zero (read Controller Fault
Table) into the parameter block for SVC_REQ 15. When
input %10250 is on and input %10251 is off, the Move
instruction instead places a one (read I/O Fault Table) in
the SVC_REQ parameter block. The parameter block is
located at location %R0600.

GFK-2950D November 2018

W_Inozsn V_I00ES

0 —

W_Inoaso V_I00E51

——— ———{ M

1 —

#ALK_OH S0 REQ

15 —|FHC

V_E00e00 —FEM

MOVE
INT |
1
IN O~ %_RO0G00
MOVE
INT |
1
IN O~ %_RO0G00
309

Chapter 6. Service Request Function

SVC_REQ 15 Example 2

The CPU is shut down when any fault occurs on an I/O module H#FSI_SCN HI':'HT‘-*E
except when the fault occurs on modules in rack 0, slot 9 and in v B
rack 1, slot 9. If faults occur on these two modules, the system f
remains running. The parameter for table type is set up on the L e I
. . #IO_FEES SYC REQ V_TooD0
first scan. The contact IO_PRES, when set, indicates that the 1/0 - (]
Fault Table contains an entry. The CPU sets the normally open L :
contact in the scan after the fault logic places a fault in the table. R
If faults are placed in the table in two consecutive scans, the
normally open contact is set for two consecutive scans. _E00600 — PEM
The example uses a parameter block located at %R0600. After v_T00001 ECIINT
the SVC_REQ function executes, the second, third, and fourth |
words of the parameter block identify the 1/O module that V_M00007
faulted: V_R00605 — IN1 —
High Byte Low Byte 103 — e
%R0600 1 V_To0no1 EQINT
%R0601 reference address memory type long/short L
¥_MO0007
%R0602 | reference address offset V_RMOE0Z —{IM1 o—— —
%R0603 slot number rack number
265 —|INZ
%R0604 | block (bus address) 1/O bus no. $I0_FRES V_MO00OT [GUCEEQ
%R0605 point address | 1 B
%R0606 | fault data 12 —{F¥C
In the program, the EQ_INT blocks compare the rack/slot address ¥ Booo01 — PR

in the table to hexadecimal constants. The internal coil %M0007
is turned on when the rack/slot where the fault occurred meets
the criteria specified above. If %M0007 is on, its normally closed
contact is off, preventing the shutdown. Conversely, if %M0007 is
off because the fault occurred on a different module, the
normally closed contact is on and the shutdown occurs.

310 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.17 SVC_REQ 16: Read Elapsed Time Clock

Use SVC_REQ 16 to read the system's elapsed time clock. The elapsed time clock measures the time in
seconds since the CPU was powered on. The parameter block has a length of three words used for
output only.

Output

Address Seconds from power on (low order)

Address+1 |Seconds from power on (high order)

Address+2 |100 microsecond (us) ticks

The first two words are the elapsed time in seconds. The last word is the number of 100 ps ticks in the
current second.

The resolution of the CPU's elapsed time clock is 100 microseconds (us). The overall accuracy of the
elapsed time clock is £0.01%. The accuracy of an individual sample of the elapsed time clock is
approximately 105 ps.

Warning

The SVC_REQ instruction is not protected against
operating system and user interrupts. The timing and
length of these interrupts are unpredictable. The clock
sample returned by SVC_REQ 16 can sometimes be much
more than 105 ps old by the time execution is returned
to the LD logic.

SVC_REQ 16 Example

The following logic is used in a block that is called infrequently. The screen shot was taken between
calls to the block. The logic displayed calculates the number of seconds that have elapsed since the last
time the block was called. It performs the final operation on rung 4 by subtracting the time obtained by
SVC_REQ 16 the last time the block was called (vetum) from the time currently obtained by SVC_REQ
16 (novum) and storing the calculated value in the variable named diff.

Onrung 2, SVC_REQ 16 returns three WORDs, stored in the 3-WORD array tempus. The first two
WORDs (16-bit values) are moved to a DINT (a 32-bit value). This move amounts to a rough data type
conversion that ignores the fact that the DINT type is actually a signed value. Despite that, the
subsequent calculations are correct until the time since power-on reaches approximately 50 years. The
DINT is converted to REAL to yield the number of whole seconds elapsed since power-on, stored in
variable sec. On rung 3, the third word returned by SVC_REQ 16, tempus|[2], is converted to REAL. This
is the number of 100 ps ticks. To obtain a fraction of a second, stored in the variable fractio, the value is
divided by 10,000. On rung 4, sec and fractio are added to express the exact number of seconds
elapsed since power-on, and this value is stored in the variable novum. On rung 1, the previous value of
novum was saved as vetum, the exact number of seconds elapsed since power-on the last time the
block was called. The last instruction on the fourth rung subtracts vetum from novum to yield the
number of seconds that have elapsed since the last time the block was called.

GFK-2950D November 2018 311

Chapter 6. Service Request Function

MOVE
EEAL
#
42TELE i HETELT
wowum —{ IN O weturn
SWC EEQ HMOVE DINTTO
WHORD EEAL
2
15054 2 42TE4.0
& —FHC terrpus[0] —IN [} IN O sec
15054
terrpus —{ PEM
MOVE OINT TO DIV EEAL
WaORD REAL -
3
2097 i 08097
terrpus[3] —IN] IN] IN1 O Eractio
10000 —{INZ
Ann SUE REAL
EEAL |
4
J42TELD HMATELE HMATELE A b
e — IN1 O mouurn o — IH1 O ditk
0097 MITELT
Eractio —{IN2 webrn —{ INZ

Note: Higher resolution (in nanoseconds) can be obtained by using SVC_REQ 50: Read Elapsed Time

Clock.

312 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt

Use SVC_REQ 17 to mask or unmask an interrupt from an input/output board. When an interrupt is
masked, the CPU does not execute the corresponding interrupt block when the input transitions and
causes an interrupt.

The parameter block is an input parameter block only; it has a length of three words.

Address 0 = unmask input
1 =mask input

Address+1 |memory type

Address+2 |reference (offset)

Memory type is a decimal number that resides in the low byte of word address + 1. It corresponds to
the memory type of the input:

70 (%l memory in bit mode

10 (%Al memory

12 [%AQ memory

Successful execution occurs unless:

= Some number other than 0 or 1 is entered as the requested operation.

= The memory type of the input/output to be masked or unmasked is not %l, %Al or %AQ memory.
= Thel/O board is not a supported input/output module.

= The reference address specified does not correspond to a valid interrupt trigger reference.

= The specified channel does not have its interrupt enabled in the configuration.

6.18.1 Masking/Unmasking Module Interrupts

During module configuration, interrupts from a module can be enabled or disabled. If a module's
interrupt is disabled, it cannot be used to trigger logic execution in the application program and it
cannot be unmasked. However, if an interrupt is enabled in the configuration, it can be dynamically
masked or unmasked by the application program during system operation.

The application program can mask and unmask interrupts that are enabled using Service Request
Function Block #17. To mask or unmask an interrupt from an open VME module, the application logic
should pass VME_INT_ID (17 decimal, 11H) as the memory type and the VME interrupt id as the offset
to SVC_REQ 17.

When the interrupt is not masked, the CPU processes the interrupt and schedules the associated
program logic for execution. When the interrupt is masked, the CPU processes the interrupt but does
not schedule the associated program logic for execution.

When the CPU transitions from STOP Mode to RUN Mode, the interrupt is unmasked.

For additional information on configuring and using VME module interrupts in a PACSystems RX7i
control system, refer to PACSystems RX7i User's Guide to Integration of VME Modules, GFK-2235.

GFK-2950D November 2018 313

Chapter 6. Service Request Function

SVC_REQ 17 Example 1

In this example, interrupts from input %100033 are masked. The following values are moved into the
parameter block, which starts at %P00347, on the first scan:

Address %P00347 | 1 | Interrupts #EST_SCH [MOVE MOVE
from input 1| CINT TN -
are masked. 1
} T—IN O V_F00348 33 —IN OF V_PO0349
Address + 1 | %P00348 | 70 | Input typeis - -
%l W_I00346 HMOVE SVCEEQ
o Y UINT -
Address + 2 | %P00349 | 33 | Offsetis 33. 1
1—{IN O V_PO0347 17 —FHC
W_FOiE47 —FEM
SVC_REQ 17 Example 2
When %T00001 transitions on, alarm HEST_SCN I-UIIE'H‘-;E I-UII'I'H‘{IE
interrupts from input %AI0006 are — B
masked. The parameter block at ! !
%R00100 is set up on the first scan. L L i £ O v_ER00
V_T00001 MOVE SWC REQ
i1} HINT -
1
1IN O v_Roownd 17 —{FHC
_E00nn —|FEM
314 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.19 SVC_REQ 18: Read 1/O Forced Status

Use SVC_REQ 18 to read the current status of forced values in the CPU's %Il and %Q memory areas.
Note: SVC_REQ 18 does not detect overrides in %G or %M memory types. Use %S0011 (#OVR_PRE)

to detect overrides in %l, %Q, %G, %M, and symbolic memory types.

The parameter block has a length of one word used for output only.

Output

Address [0 = No forced values are set

1 =Forced values are set

SVC_REQ 18 Example

SVC_REQ reads the status of I/0 forced values into
location %R1003. If the returned value in %R1003
is 1, there is a forced value, and EQ INT turns the
%T0001 coil ON.

GFK-2950D November 2018

_I000m
1.1

12—

V_R0003 —

SVCEEQ

FNC

PEM

1

W_R01003 —

EQINT

M 0

INZ

V_Tooo001

—

315

Chapter 6. Service Request Function

6.20 SVC_REQ 19: Set Run Enable/Disable

Use SVC_REQ 19 to permit the LD program to control the RUN mode of the CPU.

The parameter passed indicates which function to perform. The OK output is turned ON if the function
executes successfully. It is set OFF if the requested operation is not SET RUN DISABLE mode (1) or SET
RUN ENABLE mode (2).

The parameter block is an input parameter block only with this format:

Address |1 =SET RUN DISABLE mode
2 = SET RUN ENABLE mode

SVC_REQ 19 Example

When input %100157 transitions to on, the RUN DISABLE mode is set. When the SVC_REQ function
successfully executes, coil %Q00157 is turned on. When %Q00157 is on and register %R00099 is
greater than zero, the mode is changed to RUN ENABLE mode. When the SVC_REQ successfully
executes, coil %Q00157 is turned off.

v_I001S7 HMOWE svCREQ| V_0O00157
—— 4 OINT —{ g
1
1—{IN O v_Ronion 1a —{FHC

V_Eooug —{FEM

W_OQooisT 3T UINT
_| |— —
MOVE SYCREQ| V_O00158
¥ R00099 —IN1 0O UINT —{ R}
1
0 —INz 2 —IN O w_Ro0ion 13 —{FNC

V_Roowo —|FEM

316 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.21 SVC_REQ 20: Read Fault Tables

Use SVC_REQ 20 to retrieve the entire Controller or I/O Fault Table and return it to the LD program in

designated registers.

The first input parameter designates which table is to be read. A second input parameter (always zero

for the standard Read Fault Tables) is used by the extended format to read a designated fault entry or

to read a range of fault entries. The fault table data is placed in the parameter block following the input

parameters.

The OK output is turned on if the function executes successfully. It is off if the requested operation is

not Read Controller Fault Table (00h), Read 1/O Fault Table (01h), Read Extended Controller Fault Table

(80h), Read Extended I/O Fault Table (81h), Read I/O Fault Table with Remote Fault Record (41h), or

Read Extended I/O Fault Table with Remote Fault Record (C1h). The OK output is also turned off if there

is insufficient space in the specified memory reference to accommodate the requested fault data. If the

specified fault table is empty, the function sets the OK output on, but returns only the fault table

header information.

The parameter block is an input and output parameter block. The parameter block comes in two

formats:

= Non-Extended: Read Controller Fault Table (00h), Read I/O Fault Table (01h) or Read I/O Fault Table
with Remote Fault Record (41h)°

= Extended: Read Extended Controller Fault Table (80h), Read Extended 1/O Fault Table (81h) or Read
Extended 1/O Fault Table with Remote Fault Record (C1h)°.

©1/0 Fault Table with Remote Fault Record requires RX3i CPU firmware 9.40 or later.

GFK-2950D November 2018 317

Chapter 6. Service Request Function

6.21.1 Non-Extended Formats

Input Parameter Block Format

Amount of Retuned Data
Address + 0 [00h = Read Controller Fault Table 693 registers required for resulting output
01h = Read I/O Fault Table 693 registers required for resulting output
41h = Read I/O Fault Table with Remote Fault Record [757 registers required for resulting output
Address + 1 |Always 0
Non-Extended Output Parameter Block Format
Controller Fault Table Output Format add 1/O Fault Table Output Format
ress
High Byte Low Byte High Byte Low Byte
lZJ?]tied 00h = Controller Fault Table [Address+0 Unused 01h =1/O Fault Table
Unused Always zero (0) Address+1 Unused Always zero (0)
Unused Unused Address+2 Unused Unused
Address+3—
Unused Unused Address+14 Unused Unused
Minutes Seconds Address+15— Minutes Seconds
Address+17
Day of Month Hour Day of month |Hour
y (Time Since Last Clear, y
Year Month in BCD Format) Year Month
Number of faults since last clear Address+18 Number of faults since last clear
Number of faults in queue Address+19 Number of faults in queue
Number of faults read Address+20 Number of faults read
Start of fault data Address+21 Start of fault data
1/O Fault Table Output Format
Address
High Byte Low Byte
41h =1/O Fault Table
Address+0 Unused with Remote Fault
Record
Address+1 Starting index of faults to be read
Address+2 Number of faults to be read
Address+3—
Address+14 Unused Unused
Address+15— Minutes Seconds
Address+17
(Time Since Last Clear, Day of month |Hour
in BCD Format) Year Month
Address+18 Number of faults since last clear
Address+19 Number of faults in queue
318 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

Address+20

Number of faults read

Address+21

Start of fault data

For the non-extended formats, the returned data for each fault consists of 21 words (42 bytes) for 00h
and 01h and 23 words (46 bytes) for 41h. This request returns 16 Controller Fault Table entries or 32
I/O Fault Table entries, or the actual number of faults, if fewer. If the fault table read is empty, no data is

returned.

The following tables show the return format of a Controller Fault Table entry and an 1/O Fault Table

entry.

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 00h or 01h

Controller Fault Table (00h) Output Format 1/O Fault Table (01h) Output Format
High Byte Low Byte Address High Byte Low Byte
Unused Long/short Address+21 Memory type Long/Short7
Unused Unused Address+22 Offset
Slot Rack Address+23 Slot Rack
Task Address+24 Bus address I/O Bus Number (block)
Fault action Fault group Address+25 Point
Error code Address+26 Fault action Fault group
Address+27 Fault type Fault category
Fault extra data Address+28 Fault extra data |Fault description
:::::::;:_ Fault extra data
Minutes Seconds Address+39— |Minutes Seconds
Day of month Hour G‘::::ss::t’ Day of month Hour
Year Month in BCD Format) |Year Month
Start of next fault output parameter block Address+42 Start of next fault output parameter block

7 The Long/Short indicator in the low byte of Address + 21 specifies the amount of fault data present in the fault entry:

GFK-2950D

Fault Table | Long/Short Value | Fault Data Returned

Controller 00 8 bytes of fault extra data present in the fault entry
01 24 bytes of fault extra data

1/0 02 5 bytes of fault extra data
03 21 bytes of fault extra data

November 2018

319

Chapter 6. Service Request Function

Format for Parameter Setting 41h

I/O Fault Table with Remote Fault Record
Address (Ox41) Output Format

High Byte Low Byte
Address+21 Memory type Long/Short7
Address+22 Offset
Address+23 Slot Rack
Address+24 Remote Slot Remote Rack
Address+25 Remote Sub-Slot [Remote Device ID
Address+26 Bus address I/0 Bus Number (block)
Address+27 Point
Address+28 Fault action Fault group
Address+29 Fault type Fault category
Address+30 Fault extra data Fault description
:g:::::z;_ Fault extra data
Address+41— Minutes Seconds
G’?::Zi::sp, Day of month Hour
in BCD Format) |Year Month

Address+44

Start of next fault output parameter block

320 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.21.2 Extended Formats

Each extended format request can read a maximum of 64 faults, or the size of the fault table if it
contains fewer than 64 faults.

For extended formats (Read Extended Controller Fault Table (80h), Read Extended 1/O Fault Table (81h)
or Read Extended I/O Fault Table with Remote Fault Record (C1h)), the controller calculates the number
of entries being read. Be sure that sufficient register space is available to accommodate the number of
fault entries requested. If the amount of data requested exceeds the register space available, the CPU
returns a fault indicating that reference memory is out of range.

The total size of the fault table for the extended fault format is
Header Size + ((# fault entries) x (size of fault entry))

Input Parameter Block Format

Amount of Retuned Data

Address+0|80h = Read Extended Controller Fault Table 23 words (46 bytes) for each fault entry
81h = Read Extended I/O Fault Table 23 words (46 bytes) for each fault entry
C1h = Read Extended /O Fault Table with Remote Fault 25 words (50 bytes) for each fault entry
Record

Address+1|Starting index of faults to be read

Address+2|Number of faults to be read

GFK-2950D November 2018 321

Chapter 6. Service Request Function

Extended Format Output Parameter Block Format

Controller Fault Table Output Format

I/O Fault Table Output Format

322

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Address
High Byte Low Byte High Byte Low Byte
Unused ?S:;TEax;indEd Controller Address Unused E;Iljltzfaxgleended I/O
Starting index of faults to be read Address+1 Starting index of faults to be read
Number of faults to be read Address+2 Number of faults to be read
Unused Unused Address+3—Address+14 Unused Unused
Minutes Seconds Address+15—Address+17 Minutes Seconds
Day of Month |Hour (Time Since Last Clear, Day of month |Hour
Year Month in BCD Format) Year Month
Number of faults since last clear Address+18 Number of faults since last clear
Number of faults in queue Address+19 Number of faults in queue
Number of faults read Address+20 Number of faults read
Unused Address+21—Address+36 Unused
Start of fault data Address+37 Start of fault data
1/O Fault Table Output Format
Address
High Byte Low Byte
C1h = Extended 1/O
Address Unused ;Zl:rt):: ?:laeu\?,/clth
Record
Address+1 Starting index of faults to be read
Address+2 Number of faults to be read
Address+3—Address+14 Unused Unused
Address+15—Address+17 Minutes Seconds
(Time Since Last Clear, Day of month |Hour
in BCD Format) Vear Month
Address+18 Number of faults since last clear
Address+19 Number of faults in queue
Address+20 Number of faults read

Address+21—Address+36

Unused

Address+37

Start of fault data

GFK-2950D

Chapter 6. Service Request Function

Format of Returned Data for Fault Table Entries

Format for Parameter Setting 0x80h & 0x81h

Controller Fault Table (0x80) Output Format

1/O Fault Table (0x81) Output Format

Address

High Byte Low Byte High Byte Low Byte

Unused Long/Short Address+37 Reference address Long/Short Value

memory type
Unused Unused Address+38 |Reference address offset
Slot Rack Address+39 |[Slot Rack
Task Address+40 |(Bus address 1/0 bus number (block)
Fault action Fault group Address+41 point
Error code Address+42 |Fault action Fault group

Address+43 |Fault type Fault category

Fault extra data Address+44 (Fault extra data Fault description
Address+45—
Address+54 Fault extra data

Minutes Seconds Address+55—|Minutes Seconds

Day of month Hour Address+58 |pay of month Hour
(Time-stamp

Year Month in BCD Year Month

Milliseconds Format) Milliseconds
Not used Address+59 Not used
Start of next fault output parameter block Address+60 Start of next fault output parameter block

GFK-2950D

November 2018

323

Chapter 6. Service Request Function

Format for Parameter Setting 0xC1h

1/O Fault Table with Remote Fault Record

Address (0xC1) Output Format

High Byte Low Byte
Address+37 ;e;’s:s:ycsy;(idress Long/Short Value
Address+38 |Reference address offset
Address+39 |Slot Rack
Address+40 [Remote Slot Remote Rack
Address+41 |Remote Sub-Slot Remote Device ID
Address+42 |Bus address I/O bus number (block)
Address+43 point
Address+44 |Fault action Fault group
Address+45 |Fault type Fault category
Address+46 |Fault extra data Fault description
:g::::::;_ Fault extra data
Address+57—|Minutes Seconds
Address+60 |pay of month Hour
(Time-stamp
in BCD Year Month
Format) Milliseconds
Address+61 Not used
Address+62 Start of next fault output parameter block

324

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

SVC_REQ 20 Example 1: Non-Extended Format

When Read_PLC transitions on, a value of 0 is moved to the parameter block, which is located at
%R00500, and the Controller Fault Table is read. When Read_IO transitions on, a value of 1 is moved to
the parameter block and the I/O Fault Table is read. When the SVC_REQ function successfully executes,
coil OK is turned on.

Read_PLC MOWE UINT SWC REQ Ok
|| (5
1 2

1
o —lIH O — ROOS00 20 —{FHC

Read_|O MOWE UINT

| | ROOS00 — PR

1 —IN L — ROQS00

SVC_REQ 20 Example 2: Extended Format

When Read_PLC_Xt transitions on, the Extended Controller Fault Table is read. The parameter block

begins at %R00500. %R00500 contains the fault table type (Controller Extended); %R00501 contains
the starting fault to read, and %R00502 contains the number of faults to read starting with the fault

number in %R00501. When the SVC_REQ function successfully executes, coil OK is turned on.

Fiead_PLC_Ht WMOVE MOVE MOWVE
- WORD WORD WORD o)
11 Ry
1 1 1
a0 —IM Q — ROOS00 1 —IN 0 — ROOS0A 10 —IM Q — ROOS0Z
WG REQ Ok
ol &)
T+ pry
20 —FHC
ROOS00 —{FRM

GFK-2950D November 2018 325

Chapter 6. Service Request Function

6.22 SVC_REQ 21: User-Defined Fault Logging

Use SVC_REQ 21 to define a fault that can be displayed in the Controller Fault Table. The fault contains

binary information or an ASCIl message. The user-defined fault codes start at 0 hex.

The error code information for the fault must be within the range 0 to 2047 for an Application Msg: to
be displayed. If the error code is in the range 81 to 112 decimal, the CPU sets a fault bit of the same

number in %SA system memory. This allows up to 32 bits to be individually set.

Error Code Status Bit
Errors 0—80 No bit set
Errors 81—112 Sets %SA
Errors 113—2047 No bit set
Errors 2048—32,767 |Reserved

When EN is active, the fault data array referenced by IN is logged as a fault to the Controller Fault
Table. If EN is not enabled, the ok bit is cleared. If the error code is out of range, the ok bit is cleared and
the fault will not be logged as requested.

The parameter block is an input parameter block only with this format:

The input parameter data allows you to select an error code in the range 0 to 2047 and text

Error code
Parameter address

MSB LSB
Address+1 Text2 Textl
Address+2 Text4 Text3
Address+3 Text6 Text5
Address+4 Text8 Text7
Address+5 Text10 Text9
Address+6 Text12 Text11
Address+7 Textl4 Text13
Address+8 Text16 Text15
Address+9 Text18 Textl7
Address+10 Text20 Text19
Address+11 Text22 Text21
Address+12 Text24 Text23

information that will be placed in the fault extra data portion of a long controller fault. The controller

fault address, fault group, and fault action are filled in by the function block.

326

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

The fault text bytes 1 - 24 can be used to pass binary or ASCII data with the fault. If the first byte of the
fault text data is non-zero, the data will be an ASCIl message string. This message will then be
displayed in the fault description area of the fault table. If the message is less than 24 characters, the
ASCII string must be NULL byte-terminated. The programmer will display Application Msg: and the
ASCII data will be displayed as a message immediately following Application Msg.. If the error code is
between 1 and 2047, the error code number will be displayed immediately after Msg: in the
Application Msg: string. (If the error code is greater than 2047, the function is ignored and its output is
set to OFF.)

If the first byte of text is zero, then only Application Msg: will display in the fault description. The next 1-
23 bytes will be considered binary data for user data logging. This data is displayed in the Controller
Fault Table.

Note: When a user-defined fault is displayed in the Controller Fault Table, a value of -32768 (8000
hex) is added to the error code. For example, the error code 5 will be displayed as -32763.

SVC_REQ 21 Example

The value passed to IN1 is the fault error code. The value passed in, #EST_EXE ELEMOL V_000001
16x0057, represents an error code of 87 decimal and will appearas [| HOED {
part of the fault message. The values of the next inputs give the

ASCII codes for the text of the error message. For IN2, the input is 1640057 1N Q= %7 PO0001
2D45. The low byte, 45, decodes to the letter E and the high byte, 2D,

decodes to -. Continuing in this manner, the string continues with S 1642045 —|IN2

T O PO and N. The final character, 00, is the null character that

terminates the string. In summary, the decoding yields the string 1645453 1N

message E_STOP ON.
1E#504F —(IH4

TE4#4Fz0 —|INS
TEH#004E —|INE
1e#0000 —INT

W_I00050 [syc REOD
| — |

21 —|FHC

V_Fooool —|FER

GFK-2950D November 2018 327

Chapter 6. Service Request Function

6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts

Use SVC_REQ 22 to mask or unmask timed interrupts and to read the current mask. When the
interrupts are masked, the CPU does not execute any timed interrupt block timed program that is
associated with a timed interrupt. Timed interrupts are masked/unmasked as a group. They cannot be

individually masked or unmasked.

Successful execution occurs unless some number other than O or 1 is entered as the requested
operation or mask value.

The parameter block is an input and output parameter block.

To determine the current mask, use this format:

Address

0 = Read interrupt mask

The CPU returns this format:

Address

0 = Read interrupt mask

Address+1

0 =Timed interrupts are
unmasked

1 =Timed interrupts are masked

To change the current mask, use this format:

Address

1 = Mask/unmask interrupts

Address+1

1 =Mask timed interrupts

0 = Unmask timed interrupts

SVC_REQ 22 Example
When input %100055 transitions on, timed interrupts are masked.

_I00033
—— it

1=

MOVE
OINT

1
IN

]

328

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

MOVE
OINT
1
= V_R0i002 1—IN OF ¥_R0003 22
V_R0002 —

SWCEEQ

FHNC

PEM

GFK-2950D

Chapter 6. Service Request Function

6.24 SVC_REQ 23: Read Master Checksum

Use SVC_REQ 23 to read master checksums for the set of user program(s) and the configuration, and to
read the checksum for the block from which the service request is made.

There is no input parameter block for this service request. The output parameter block requires 15
words of memory.

Output

When a RUN Mode Store is active, the program checksums may not be valid until the store is complete.
To determine when checksums are valid, three flags (one each for Program Block Checksum, Master
Program Checksum, and Master Configuration Checksum) are provided at the beginning of the output
parameter block.

Address Description
Address Program Checksum Valid (0 = not valid, 1 = valid)
Address + 1 |Master Program Checksum Valid (0 = not valid, 1 = valid)
Address + 2 |Master Configuration Checksum Valid (0 = not valid, 1 = valid)
Address + 3 |Number of LD/SFC Blocks (including _MAIN)
Address + 4 |Size of User Program in Bytes (DWORD data type)
Address + 6 |Program Set Additive Checksum
Address + 7 |Program CRC Checksum (DWORD data type)
Address + 9 |Size of Configuration Data in Kbytes
Address + 10 |Configuration Additive Checksum
Address + 11 |Configuration CRC Checksum (DWORD data type)

high byte: always zero
Address + 13 Iofv byie: Curre)rlwtly Executing Block’s Additive Checksum
Address + 14 |Currently Executing Block's CRC Checksum

SVC_REQ 23 Example

When the timer using registers %P00013 V_MO00054 ITMESEC| V_MO0034

through %P00015 expires, the checksum 1 —

read is performed. The checksum data V_F000t3

returns in registers %P00016 through i A

%P00030. The master program checksum V-MO003E I SUCREQ NE DLNT

in registersh%F;OOOZZ and %POOOd23 (the H B S
program checksum is a DWORD data type -

and occupies two adjacent registers) is S E R e
compared with the last saved master pono —|pRne + ponos —|rmz

program checksum. If these are different, e -

coil %M00055 is latched on. The current T DWOED |

master program checksum is then saved in o 1

registers %P00031 and %P00032. ¥ pongzz | gk v pongar

GFK-2950D

November 2018

329

Chapter 6. Service Request Function

6.25 SVC_REQ 24: Reset Module

Use SVC_REQ 24 to reset a daughterboard or some modules. Modules that support SVC_REQ 24
include:

RX3i IC693BEM331, IC694BEM331, IC693APU300, IC694APU300, IC695ETM001, IC693ALG2222,

IC694ALG2222,1C695PNCO01

RX7i: Embedded Ethernet Interface module, IC697BEM731, IC698BEM731, IC697HSC700,
IC697ALG230, IC698ETM001

The SVC_REQ output is set ON unless one of the following conditions exists:

- Aninvalid number for rack and/or slot is entered.

- Thereis no module at the specified location.

- The module at the specified location does not support a runtime reset.
- The CPU was unable to reset the module at the specified location.

For this function, the parameter block has a length of 1 word. It is an input parameter block only.

Address|Module slot (low byte)
Module rack (high byte)

Rack 0, Slot 1 indicates that a reset is to be sent to the daughterboard.

Note: Itisimportant to invoke SVC_REQ #24 for a given module for only one sweep at a time. Each

time this function executes, the target module will be reset regardless of whether it has
finished starting up from a previous reset.

After sending a SVC_REQ #24 to a module, you must wait a minimum of 5 seconds before
sending another SVC_REQ #24 to the same module. This ensures that the module has time to

recover and complete its startup.

SVC_REQ 24 Example

100250

This example resets the module in Ihez00

rack0/slot 2. 1 |

In rung 1, when contact %100200 is 100250 b O E

closed, the positive transition coil sets 2 | | WORD L
%00250 to ON for one sweep. 1

The MOVE_WORD instruction in rung 2 2z —{IN o rooson

receives power flow and moves the
value 2 into %R00500.

The _SVC_REQ function in rung 3 then - oy
receives power flow and resets the . O REQ
module indicated by the rack/slot value L
in %R00500.

24 —FMHC

RoQs00 —(FRW

(F—

330 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C
Program Checksums

Use SVC_REQ 25 to enable or disable the inclusion of EXE in the background checksum calculation. The
default is to include the checksums.

This service request uses only an input parameter block.

Address |0 = Disable C applications inclusion in checksum calculation

1 = Enable C application inclusion in checksum calculation

The parameter block is unchanged after execution of the service request.

SVC_REQ 25 Example

When the coil TEST transitions from OFF to ON, SVC_REQ 25 executes to disable the inclusion of EXE
blocks in the background checksum calculation. When coil TEST transitions from ON to OFF, the
SVC_REQ executes to again include EXE blocks in the background checksum calculation.

TEST MOVE SVC EEQ
Y OINT -
1
0 —IN QO _R00is0 25 —FNC
TEST MOVE
1} UINT W_R001S0 —|PEM
1
1—IH O _R0iso

GFK-2950D November 2018 331

Chapter 6. Service Request Function

6.27 SVC_REQ 29: Read Elapsed Power Down Time

Use SVC_REQ 29 to read the amount of time elapsed between the last power-down and the most
recent power-up. If the watchdog timer expired before power-down, the CPU is not able to calculate
the power down elapsed time, so the time is set to O.

This service request cannot be accessed from a C block.
This function has an output parameter block only. The parameter block has a length of three words.

Address Power-down elapsed seconds (low order)

Address +1 |Power-down elapsed seconds (high order)

Address + 2 |100pS ticks

The first two words are the power-down elapsed time in seconds. The last word is the number of
100 ps ticks in the current second.

Note: Although this request responds with a resolution of 100 uS, the actual accuracy is 1 second.
The battery-backed clock, which is used when the controller is powered down, is accurate to
within 1 second.

SVC_REQ 29 Example

When input %l0251 is ON, the elapsed power-down time is placed into the parameter block that starts
at %R0050. The output coil (%Q0001) is turned on.

%0251 %Q,OOOl
|
— SVC_ \
REQ
CONST
00029 —| FNC
%R0050 —| pARM

332 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt

Use SVC_REQ 32 to suspend a set of I/O interrupts and cause occurrences of these interrupts to be
queued until these interrupts are resumed. The number of I/O interrupts that can be queued depends
on the I/O module’s capabilities. The CPU informs the I/O module that its interrupts are to be
suspended or resumed. The 1/O module’s default is resumed. The Suspend applies to all I/O interrupts
associated with the 1/0 module. Interrupts are suspended and resumed within a single scan.

SVC_REQ 32 uses only an input parameter block. Its length is three words.

Address 0 =resume interrupt
1 =suspend interrupt

Address + 1 |memory type

Address + 2 |reference (offset)

Successful execution occurs unless:

= Some number other than 0 or 1 is passed in as the first parameter.

= The memory type parameter is not 70 (%l memory).

= The I/O module associated with the specified address is not an appropriate module for this
operation.

= The reference address specified is not the first %l reference for the High Speed Counter.

» Communication between the CPU and this I/O module has failed. (The board is not present, or it
has experienced a fatal fault.)

Note: 1/O interrupts, unless suspended or masked, can interrupt the execution of a function block.
The most often used application of this Service Request is to prevent the effects of the
interrupts for diagnostic or other purposes.

SVC_REQ 32 Example

Interrupts from the high speed counter #Fs,r‘,m Mo M

module whose starting point reference - 1 1

address is %100065 will be suspended m—m ol v Foomz s ab v pooon:
while the CPU solves the logic of the el SToTES| V_T000
second rung. Without the Suspend, an INT {
interrupt from the HSC could occur i

during execution of the third rung and 1—I§ O v_Fooom 32 —{FHC

%T00006 could be set while %R000001

has a value other than 3,400. V_FO0001 —|PRM

(%A100001 is the first non-discrete input V_T00001 ["EQ INT

reference for the High Speed Counter.) L

MOVE V_TO00006
V_ATION DM O W
!
3400 —{INZ V_AIODDI—IN OF V_Eooo01
MOVE SUC REQ
INT L
i
o—IN OF v_poooot 32 —|FHC

i_Poooor —|FEM

GFK-2950D November 2018 333

Chapter 6. Service Request Function

6.29 SVC_REQ 45: Skip Next 1/0O Scan

Use the SVC_REQ function #45 to skip the next output and input scans. Any changes to the output
reference tables during the sweep in which the SVC_REQ #45 was executed will not be reflected on the
physical outputs of the corresponding modules. Any changes to the physical input data on the modules
will not be reflected in the corresponding input references during the sweep after the one in which the
SVC_REQ #45 was executed.

This function has no parameter block.

Note: This service request is provided for conversion of Series 90-30 applications. The Suspend I/O
(SUS_IO) function block, which is supported by all PACSystems firmware versions, should be
used in new applications.

Note: The DOIO Function Block is not affected by the use of SVC_REQ #45. It will still update the I/O
when used in the same logic program as the SVC_REQ #45.

SVC_REQ 45 Example

In the following LD example, when the Idle contact passes power flow, IDLE [sUCEEQ
the next Output and Input Scan are skipped. .

45 —FHC

Eooom —|FEM

334 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.30 SVC_REQ 50: Read Elapsed Time Clock

Use SVC_REQ 50 to read the system’s elapsed time clock. The elapsed time clock measures the time in
seconds since the CPU was powered on. The parameter block has a length of four words used for
output only.

Output

Address Seconds from power on (low order)

Address+1 |Seconds from power on (high order)

Address+2 |nanosecond ticks (low order)

Address+3 [nanosecond ticks (high order)

The first two words are the elapsed time in seconds. The second two words are the number of
nanoseconds elapsed in the current second.

The resolution of the CPU’s elapsed time clock is 100 ps. The overall accuracy of the elapsed time clock
is £0.01%. The accuracy of an individual sample of the elapsed time clock is approximately 105 ps.

Warning

The SVC_REQ instruction is not protected against
operating system and user interrupts. The timing and
length of these interrupts are unpredictable. The clock
sample returned by SVC_REQ 50 can sometimes be much
more than 105 ps old by the time execution is returned
to the LD logic.

GFK-2950D November 2018 335

Chapter 6. Service Request Function

SVC_REQ 50 Example

The following logic is used in a block that is called once in a while. The screen shot was taken between
calls to the block. The second rung of logic calculates the number of seconds that have elapsed since
the last time the block was called. The third rung calculates the number of nanoseconds to be added to,
or subtracted from, the number of seconds. The first rung saves the previous value of novum([0] and
novum[1] into vetum[0] and vetum[1] before the second rung of logic places the current time values in
novum[0] and novum[1].

#1

336

1—INZ

000000000 —|

INZ

MOSE SVCEEQ MOSE
DINT WORD
SO04E2 2 00465 4171 4 00462
roum[0] —{IN O weturm[0] S0 —FHC terripus[0] —{IN O wowara[0]
41716
terrpus — FPEM
S0E DINT S0E DINT
SO04E3 3 447260413 -454106E5
tom[0] —IH1 O sec roum[1] — IH1 O tamo
SO04E5 SEETI0TE
wetm[l] —IN2 wetn[1] —IN2
5T DINT
SOE DINT ADD
om0 DINT
-84 10EES 3 2 -84 10EES 51589335
nano —INZ zec — I O seck mamo — I O nanol

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

4

GFK-2950D

Chapter 6. Service Request Function

6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep

Use SVC_REQ 51 to read the time in nanoseconds since the start of the sweep. The data is unsigned
32-bit integer.

Output
The parameter block is an output parameter block only; it has a length of two words.

Address |time (nanoseconds) since start of scan - low order

Address+1 |time (nanoseconds) since start of scan - high order

SVC_REQ 51 Example

The elapsed time from the start of the scan is read into locations %R00200 and %R00201 if it is greater
than 10,020ns, internal coil %M0200 is turned on.

S REG GT DIMT
MO0Z00
51 —|FH< Ronzon —{IM1 ¥ M
Roozan —PRM 1020 —IN2

GFK-2950D November 2018 337

Chapter 6. Service Request Function

6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage

PACSystems controllers support a 64KB nonvolatile flash memory area, which can be accessed by the
logic-driven read/write service requests. Values are stored in the nonvolatile storage area using
SVC_REQ 57: Logic Driven Write to Nonvolatile Storage. These values are applied to the controller user
memory on power-up.

If you want only to write to nonvolatile storage and have the values restored on a power cycle, you may
not need to use SVC_REQ 56. However, a logic driven read from nonvolatile storage can be commanded
as needed. For example, you can use #FST_SCN with SVC_REQ 56 calls to force a reload on each STOP
Mode to RUN Mode transition.

SVC_REQ 56 specifies a read operation from nonvolatile storage when the PACSystems is running. You
can specify which reference address range to read and optionally a different destination memory
location in CPU memory in which to place the read data. Using different memory locations enables you
to set up a comparison between existing values in CPU memory with values in nonvolatile storage.

SVC_REQ 56 execution time will vary depending on the number of values stored in nonvolatile storage,
as it will find the most recent value for the requested reference address range.

You can read up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 56.
6.32.1 Discrete Memory

Discrete memory can be read as individual bits or as bytes. For more information, refer to Memory Type
Codes below.

If a discrete memory destination is forced, the forced value remains intact in CPU memory even though
the count in word 10 (address + 10) indicates that all the data was read and transferred.

If a memory location has an associated transition bit and SVC_REQ 56 causes a transition on that value,
the transition bit is set.

6.32.2 Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 56 until logic is written to nonvolatile
storage:

= RUN Mode Store (RMS), even if a second RMS reverts everything to the original state.
= Test-Edit session, even when you cancel your edits.
= Word-for-word change.

= Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded contents are
equal to the contents already on the nonvolatile storage. Setting bit 0 of input word 8 (address + 7)
to a value of 1 enables SVC_REQ 56 despite the above conditions.

6.32.3 Maximum of One Active Instruction

When SVC_REQ 56 is active, it does not support an interrupt that attempts to activate SVC_REQ 57 or
a second instance of SVC_REQ 56. If an attempt fails, an error indicating that another instance is active
will be returned.

6.32.4 ENO and Power Flow To The Right

If the status is Success or Partial Read (see address+9), on the SVC_REQ instruction, ENO is set to True
in FBD and ST, and power flow passes to the right in LD.

338 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.32.5 Parameter Block

Address+0 |Memory type. Refer to Memory Type Codes below.

Address+1 |The zero-based offset N to read from nonvolatile storage. Contains the complete offset for any

Address+2 |memory area except %W, which also requires the use of address + 2 for offsets greater
than 65,535.

" For %l, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-based
reference address. For example, to read from the one-based bit reference address %T33,
enter the byte offset 4: (33-1) /8= 4.

" For %W, %R, %Al, and %AQ memory, and for %l, %Q, %M, %T, and %G memory in bit mode,
N = Ra - 1. For example, to read from the one-based reference address %R200, enter the
zero-based reference offset 199; to read from %173 in bit mode, enter offset 72. For memory
in bit mode, the offset must be set on a byte boundary, that is, a number exactly divisible
by 8:0, 8, 16, 24, and so on.

Address+3 |Length. The number of items to read from nonvolatile storage beginning at the reference address
calculated from the offset defined at [address + 1 and address + 2]. The length can be one of the
following:

Description Valid range

The number of words (16-bit registers) to read 1 through 32 words
from %W, %R, %Al, or %AQ nonvolatile storage

The number of bytes to read from %l, %Q, %M, %T, | 1through 64 bytes
or %G in byte mode nonvolatile storage

The number of bits to read from %l, %Q, %M, %T, 1 through 512 bits in
or %G in bit mode nonvolatile storage increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set to zero.

Address + 4 | Destination memory. The CPU memory area to write the read data to. This does not need to be
the same memory area as specified at [address]. Writing to a different memory area enables you
to compare the values that were already in the CPU with the values read from nonvolatile
storage.

Address+5 |The zero-based offset N in CPU memory to start writing the read data to. Address + 5, the least

Address+6 |significant word, contains the complete offset for any memory area except %W, which also
requires the use of address + 6 for offsets greater than 65,535.

" For %l, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-based
reference address. For example, to write to the one-based bit reference address %T33, enter
the byte offset 4:(33-1) /8 =4.

" For %W, %R, %Al, and %AQ memory, and for %l, %Q, %M, %T, and %G memory in bit mode,
N = Ra - 1. For example, to write to the one-based reference address %R200, enter the zero-
based reference offset 199; to write to %173 in bit mode, enter offset 72.

Address+7 [® When bit Ois set to 1, storage disabled conditions are ignored. A read is allowed even if the

logic in RAM has changed since nonvolatile storage was read or written.

® Bits 1 through 15 must be set to zero; otherwise, the read fails.

Address+8 |Reserved. Must be set to zero; otherwise, the read fails.

Address+9 |Response status. The status read from nonvolatile storage. The low byte contains the major error
code; the high byte contains the minor error code.

For definitions, refer to Response Status Codes for SVC_REQ 56.

Address+10 | Response Count. The number of words, bytes, or bits copied.

GFK-2950D

November 2018 339

Chapter 6. Service Request Function

Memory Type Codes

Type Decimal Value Type Decimal Value
%R 8 %G (byte mode) | 56

%Al 10 %I (bit mode) 70

%AQ 12 %Q (bit mode) 72

%I (byte mode) | 16 %T (bit mode) 74

%Q (byte mode) | 18 %M (bit mode) | 76

%T (byte mode) | 20 %G (bit mode) 86

%M (byte mode) | 22 %W 196

Response Status Codes for SVC_REQ 56

Minor Major Description

00 01 Success. All values requested were found and copied.

01 01 Partial Read. All values found were copied, but some or all values were not in storage.
01 02 Insufficient Destination Memory. The Destination memory location is not large enough

to store the requested values.

02 02 Invalid Length. The length requested is larger than 64 bytes or less than 1 byte or the
number of bits is not an exact multiple of 8.

03 02 Invalid storage or destination reference address. A specified memory area is not %l,
%Q, %T, %M, %G, %R, %Al, %AQ, or %W, or the offset is out of range, or the offset is
not byte-aligned for discrete memory in bit mode.

04 02 Invalid request. Spare bits or spare words in parameter block are not set to zero.

01 03 Storage Busy. A SVC_REQ 57 or another SVC_REQ 56 instruction is active. For example,
an interrupt block is attempting to execute SVC_REQ 56 when the block it interrupted
was executing SVC_REQ 56.

01 04 Storage Disabled. The logic in RAM differs from the logic in nonvolatile storage. See
Storage disabled conditions.

02 04 Storage Closed. Either the storage has not been created or a previous corruption error
or unexpected read/write failure closed the storage.

01 05 Unexpected Read Failure. A command to the storage hardware failed unexpectedly.

02 05 Corrupted storage. A corrupted checksum or storage header caused a read to fail.

340 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

SVC_REQ 56 Example

The following LD logic reads ten continuous bytes written to nonvolatile storage from %G1—%G80 into
%G193—%G273. The value applied to IN1, 56, selects byte mode.

The parameter block starts at %R00040. The response words are returned to %R00049 and %R00050.

SetupParmBlk BLKMOV WORD MOVE WORD ResdlogicFlash
£8 1M1 @|— Roooap a0 —{IN 2— Roooar?
b N2
a I3
a i
56 HE
24 I8
a N
ResdlogicFlash SVC REQ nMooo10
56 FHNC
RO0040 —PRM

Parameter Block for SVC_REQ 56 Example

Address + Offset | Address | Input Value | Definition

Address+0 %R00040 | 56 Data type = %G (byte mode)
Address+1 %R00041 | O Address written from, low word
Address+2 %R00042 | O Address written from, high word
Address+3 %R00043 | 10 Length = 10 bytes

Address+4 %R00044 | 56 Data type to write to = %G (byte mode)
Address+5 %R00045 | 24 Address to write to, low word
Address+6 %R00046 | O Address to write to, high word
Address+7 %R00047 | O Storage disabled conditions are enforced
Address+8 %R00048 | O Reserved, must be set to 0

Address+9 %R00049 | NA Response status.

Address+10 %R00050 | NA Response count.

GFK-2950D November 2018 341

Chapter 6. Service Request Function

6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage

PACSystems controllers support a 65,500 byte nonvolatile flash memory area that can be accessed by
the logic-driven read/write service requests. Values are stored in the nonvolatile storage area using
SVC_REQ 57. These values are applied to the controller user memory on power up.

SVC_REQ 57 specifies a range of reference addresses to read from a running PACSystems CPU and
write to nonvolatile storage. This feature is intended to retain a limited set of values, such as set points
or tuning parameters that need to change when the PACSystems is running.

This feature uses 65,536 bytes of nonvolatile storage. But not all of this memory is available for the
actual data being written by the service request. Some of the memory is used internally by the
controller to maintain information about the data being stored.

Note: Nonvolatile storage is intended for storing values that do not change frequently. Once the
nonvolatile storage area fills up, a power cycle or STOP Mode Store is required to store more
values. The logic-driven write is not a replacement for battery backed RAM for values that
change frequently or during every sweep. (Refer to When nonvolatile storage is full below.)

6.33.1 Length of Data Written

SVC_REQ 57 scans the nonvolatile storage to find the most recent values stored for the specified range.
If it finds no values for the range or the most recent stored values are different, the new values are
written to nonvolatile storage.

SVC_REQ 57 reports the length of data written in word 8 (starting address + 7) of the parameter block.
The number of words written is calculated from the first word that changed to the end of the array. For
example, if you specify 8 words to be written, but only the values of words 3 and 4 are changed, the
SVC_REQ identifies the first mismatch at word 3 and writes the values of words 3 through 8 (a length of
6 words).

You can write up to 32 words (64 bytes) inclusively per invocation of SVC_REQ 57. Each invocation
requires 4 words of command data (8 bytes). A 1-byte write requires 9 bytes whereas a 64-byte write
requires 72 bytes. You can generally make the most efficient use of nonvolatile storage by transferring
data in 56-byte increments, since this will actually write 64 bytes to the device. Given the bookkeeping
overhead required by the Controller and possible fragmentation, at least 54,912 bytes and no more
than 64,000 bytes will be available for the reference data and the 8 bytes of command data for each
invocation. For additional information, refer to Fragmentation below.

6.33.2 Write Frequency

Multiple calls to SVC_REQ 57 in a single sweep may cause CPU watchdog timeouts. The number of calls
to SVC_REQ 57 that can be made requires consideration of many variables: the software watchdog
timeout value, how much data is being written, how long the sweep is, age of nonvolatile storage
(flash), etc. If the application attempts to write to flash too frequently, the CPU could experience a
watchdog timeout while waiting for a preceding write operation to complete.

The Logic Driven Read/Write to Flash service requests are not intended for high frequency use. We
recommend limiting the number of calls to SVC_REQ 57 to one call per sweep to avoid the potential of
for causing a watchdog timeout and the resulting transition to STOP-Halt mode.

342 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.33.3 Erase Cycles

The flash component on the PACSystems CPU is rated for 100K erase cycles. Erase cycles occur under
the following conditions:

= Write to flash is commanded from the programmer.
= Clear flash operation.
= Flash compaction after a power cycle when flash memory allotted for SVC_REQ 57 has become full.

6.33.4 Discrete Memory

Discrete memory can be written to as individual bits or as bytes. For more information, see Address.
Force and transition information is not written to nonvolatile storage.

6.33.5 Retentiveness

Writing values to nonvolatile storage for non-retentive memory such as %T does not make the memory
retentive. For example, all values stored to %T memory are set to zero on power-up or a STOP Mode to
RUN Mode transition. You can, however, read such values from storage after power-up or STOP Mode
to RUN Mode transition by using SVC_REQ 56.

6.33.6 Maximum of One Active Instruction

When SVC_REQ 57 is active, it does not support an interrupt that attempts to activate SVC_REQ 56 or
a second instance of SVC_REQ 57.

6.33.7 Storage Disabled Conditions

By default, the following write operations disable SVC_REQ 57 until logic is written to nonvolatile

storage:

= RUN Mode Store (RMS), even if a second RMS reverts everything to the original state

= Test-Edit session, even when you cancel your edits

= Word-for-word change

= Downloading to RAM only of a stopped PACSystems CPU, even if the downloaded contents are
equal to the contents already on the nonvolatile storage

Setting bit 0 of input word 4 (address + 4) to a value of 1 enables SVC_REQ 57 despite the above

conditions.

6.33.8 Error Checking

When writing to nonvolatile storage, error checking is provided to ensure that logic and the Hardware
Configuration (HWC) in nonvolatile memory match the logic and HWC in PACSystems RAM.

GFK-2950D November 2018 343

Chapter 6. Service Request Function

6.33.9 Fragmentation

Due to the nature of the media in PACSystems CPUs, writes may produce fragmentation of the
memory. That is, small portions of the memory may become unavailable, depending upon the sequence
of the writes and the size of each one. Data is stored on the device in 128 512-byte sections. Each
section uses 12 bytes of bookkeeping information, leaving a maximum of 64,000 bytes devoted to the
reference data and command data for each invocation. However, the data for a single invocation
cannot be split across sections. So, if there is insufficient space in the currently used section to contain
the new data, the unused portion of that section becomes lost.

Example: Suppose that the current operation is writing 64 bytes of reference data and 8 bytes of
command data (72 bytes total). If there are only 71 bytes remaining in the current section, the new
data will be written to a new section and the unused 71 bytes in the old section become unavailable.

6.33.10 When nonvolatile storage is full
When logic driven user nonvolatile storage is full, a fault is logged. Before you can use SVC_REQ 57 to
write again, use one of the following solutions:

To retain the most up-to-date data and continue writing with SVC_REQ 57 to nonvolatile
storage:

1. Stop the PACSystems.
2. Power cycle the PACSystems.

A power cycle when nonvolatile storage is full triggers a compaction of existing data. During
compaction, multiple writes of the same reference memory address are removed, which leaves only
the most recent data, and contiguous reference memory addresses are combined into the fewest
number of records necessary.

If compaction cannot take place, a second fault is logged and you need to use one of the following
two solutions.

To retain specific data from nonvolatile storage, clear nonvolatile storage, and then return the
data to nonvolatile storage:

1. While the controller is still running, use SVC_REQ 56 to read the desired values into PACSystems
memory.

2. Upload the current values from controller memory as initial values to your project.
3. Stop the controller.
4. Do one of the following:
Clear the flash memory, or
Write to flash. The flash is erased prior to writing, which frees up some space.
5. Download the initial values to the controller.
6. Start the controller.
7. Use SVC_REQ 57 to write the desired values from controller memory to nonvolatile storage.
To write to flash to erase everything:
1. Stop the Controller.
2. Write to flash. The flash is erased prior to writing, which frees up some space.

344 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

6.33.11 Equality

Because data in nonvolatile storage is not considered part of the project, writing to nonvolatile storage
does not impact equality between the CPU and Logic Developer.

6.33.12 Redundancy

Redundancy systems can benefit from the use of logic driven user nonvolatile storage as long as all of
the references saved to nonvolatile storage are included in the transfer lists. Each redundancy CPU
maintains its own separate logic driven user nonvolatile storage by means of SVC_REQ 57 during its
logic scan. If the values of reference addresses to be stored to user nonvolatile storage are
synchronized, the logic driven user nonvolatile storage data in each CPU is identical. If the values to be
stored are not synchronized, then each CPU’s user nonvolatile storage may be different.

6.33.13 ENO and Power Flow to the Right

If the status is Success or Partial Read, then on the SVC_REQ instruction, ENO is set to True in FBD and
ST, and power flow passes to the right in LD.

GFK-2950D November 2018 345

Chapter 6. Service Request Function

6.33.14 Parameter Block for SVC_REQ 57

Address+0

Memory type. Refer to Memory Type Codes above.

Address+1

The zero-based offset N to write to nonvolatile storage. Contains the complete offset for any

Address+2

memory area except %W, which also requires the use of address + 2 for offsets greater
than 65,535.

" For %l, %Q, %M, %T, and %G memory in byte mode, N = (Ra - 1) / 8, where Ra = one-based
reference address. For example, to read from the one-based bit reference address %133, enter
the byte offset 4: (33-1) /8 =4.

For %W, %R, %Al, and %AQ memory, and for %l, %Q, %M, %T, and %G memory in bit mode,

N = Ra - 1. For example, to read from the one-based reference address %R200, enter the zero-
based reference offset 199; to read from %I73 in bit mode, enter offset 72. For memory-in-bit
mode, the offset must be set on a byte boundary, that is, a number exactly divisible by 8:

0, 8, 16, 24, and so on.

Address+3

Length. The number of items to write to nonvolatile storage beginning at the reference address
calculated from the offset defined at [address + 1 and address + 2]. The length can be one of the
following:

Description Valid range

The number of words (16-bit registers) to read from
%W, %R, %Al, or %AQ nonvolatile storage

1 through 32 words

The number of bytes to read from %l, %Q, %M, %T,
or %G in byte mode nonvolatile storage

1 through 64 bytes

The number of bits to read from %l, %Q, %M, %T, or
%G in bit mode nonvolatile storage

1 through 512 bits in
increments of 8 bits

The value must reside in the low byte of address + 3. The high byte must be set to zero.

Address + 4

When bit O is set to 1, Storage Disabled Conditions are ignored. A write is allowed even if the
logic in RAM has changed since nonvolatile storage was read or written.

Bits 1 through 15 must be set to zero; otherwise, the write fails.

Address+5

Reserved. Value must be set to zero.

Address+6

Response status. The low byte contains the major error code; the high byte contains the minor
error code.

Address+7

Count of items written: Words, bytes or bits. Calculated from the first word that changed to the
end of the array.

Address+8

Address+9

The number of bytes available in nonvolatile storage.

Address+10

Address+11

Reserved.

346

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 6. Service Request Function

Response Status Codes for SVC_REQ 57

Minor | Major | Description

00 01 Success. All values requested were written.

01 01 Existing values found. All values requested are in storage, but one or more values were
already stored.

01 02 Insufficient source memory. Counting from the offset, not enough reference addresses
are left in the specified memory area.

02 02 Invalid length. The length requested was larger than 64 bytes or less than 1 byte or the
number of bits is not divisible by 8.

03 02 Invalid source reference address. The memory area specified is not supported, the
starting or ending offset is out of range, or the offset is not byte-aligned for discrete
memory areas.

04 02 Invalid request. Spare bits or spare words in the parameter block are not set to zero.

01 03 Storage busy. A SVC_REQ 56 or another SVC_REQ 57 instruction is active. For example, an
interrupt block is attempting to execute SVC_REQ 57 when the block it interrupted was
executing SVC_REQ 57.

01 04 Storage disabled. The logic in RAM differs from the logic stored in nonvolatile storage.
Refer to Storage Disabled Conditions above,

02 04 Storage closed. Either the storage has not been created or a previous corruption error or
unexpected read/write failure closed the storage.

01 05 Unexpected write failure. The command to the storage hardware failed unexpectedly.

02 05 Corrupted storage. The write failed due to a bad checksum or corrupted storage header
information.

01 06 Write failed. Storage is full.

GFK-2950D November 2018 347

Chapter 6. Service Request Function

SVC_REQ 57 Example
The following LD logic writes ten continuous bytes to nonvolatile storage, ranging from %G1 through

%G80. The value applied to IN1, 56, determines byte mode.

The parameter block starts at %R00050. The response words are returned to %R00056—%R00059.

SetupParmBlk

58

BLKMOW WORD

IN2

WriteLogicFlash

— ROOOED

WriteLogicFlash

RO0OED —

PRM

Parameter Block for SVC_REQ 57 Example

@

Address + Offset | Address Input Value
Address+0 %R00050 56 Data type = %G (byte mode)
Address+1 %R00051 | O Address written from, low word
Address+2 %R00052 0 Address written from, high word
Address+3 %R00053 10 Length = 10 bytes
Address+4 %R00054 0 Storage disabled conditions are enforced
Address+5 %R00055 0 Reserved, must be setto 0
Addressi6 | %R000SG | NA Code the high byte contina the minor ertor cotle |
Address+7 %R00057 NA Count of items written: Words, bytes or bits.
Address+8 %R00058 NA

The number of bytes available in nonvolatile storage.
Address+9 %R00059 NA
Address+10 %R00060 | NA
Address+11 %R00061 NA

348 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 6. Service Request Function

GFK-2950D November 2018 349

Chapter 7 PID Built-In Function Block

This chapter describes the PID (Proportional plus Integral plus Derivative) built-in function block, which
is used for closed-loop process control. The PID function compares feedback from a process variable
(PV) with a desired process set point (SP) and updates a control variable (CV) based on the error.

The PID function uses PID loop gains and other parameters stored in a 40-word reference array of 16-
bit integer words to solve the PID algorithm at the desired time interval.

PID IMD FID 152 FID_IkD FID_ISA
—] - — L 1 1
- 5P 0 = 5P CW
—sP oV —sP oV =1 P -
-] w{ F AR
—{PV ey
- P = LIP
—MAN —hdAN = O = DM
—ur —up
—CN —CH
Figure 14: PID in Ladder Diagram Figure 15: PID in Function Block Diagram

This chapter presents the following topics:

Operands of the PID Function

Reference Array for the PID Function

Operation of the PID Function

PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
Determining the Process Characteristics

Setting Tuning Loop Gains

PID Example

GFK-2950D November 2018 351

Chapter 7. PID Built-In Function Block

7.1 Operands of the PID Function

FID IND PID 154
e 1 o —sF oV
—Py —P
—bdasH —MAN
—ur —uF
—bN —DH
7.1.1 Operands for LD Version of PID Function Block
Parameter | Description Allowed Types |Allowed Operands |Optional
Instance Variable name of the PID Parameter | WORD R L P,W No
(?227) Block array, which contains user-configurable and symbolic
and internal parameters, described in
Reference Array for the PID Function. Uses
40 words that cannot be shared.
SP The control loop or process set point. Set INT, BOOL array |All exceptS, SA,SB, |No
using process variable counts, the PID of length 16 or |and SC
function adjusts the output control variable | more, Constant
so that the process variable matches the set
point (zero error).
PV Process Variable input from the process being | INT, BOOL array | All except S, SA, SB, |No
controlled. Often a %Al input. of length 16 or |and SC, and
more constant
MAN While Power Flow is received, the PID Power Flow NA No
function block is held in manual mode. If no
Power Flow is received the PID function block
is in Auto mode.
uUpP While Power Flow is received, the Manual Power Flow NA No
Command is increased by 1 each user
configured Sample Period.
DN While Power Flow is received, the Manual Power Flow NA No
Command is decreased by 1 each user
configured Sample Period.
cv The control variable output to the process. INT, BOOL array | All except %S and No
Often a %AQ output. of length 16 or | constant
more
352 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.1.2 Operands for FBD Version of PID Function Block
Control_Parameter Control_Parameter
PID_IMD PID_ISA
1 7]
T il - 5P CY
—ki = Py
= filAM o= B
= YF —up
- O - DOl
Parameter | Description Allowed Types Allowed Operands | Optional
Control Instance Variable name of the PID WORD R L P,W No
Structure Parameter Block array, which contains and symbolic
Variable user-configurable and internal
parameters, described in Reference
Array for the PID Function. Uses 40
words that cannot be shared.
Function Calculated by the FBD editor. Can be NA NA No
block solve |changed by the user.
order - FBD
version
SP The control loop or process set point. INT, BOOL array of | All except S, SA, SB, No
Set using process variable counts, the | length 16 or more, | and SC
PID function adjusts the output control | Constant
variable so that the process variable
matches the set point (zero error).
PV Process Variable input from the INT, BOOL array of | All except S, SA, SB, No
process being controlled. Often a %Al length 16 or more | SC and constant
input.
MAN When energized to 1 (through a BOOL, Power Flow | All No
contact), the PID function block is in
manual mode. If this input is 0, the PID
block is in automatic mode.
upP If energized along with MAN, increases | BOOL, Power Flow | All No
the control variable by 1 CV count per
solution of the PID function block.
DN If energized along with MAN, BOOL, Power Flow | All No
decreases the control variable by 1 CV
count per solution of the PID function
block.
Ccv The control variable output to the INT, BOOL array of | All except %S and No
process. Often a %AQ output. length 16 or more constant
GFK-2950D November 2018 353

Chapter 7. PID Built-In Function Block

7.2 Reference Array for the PID Function

This parameter block for the PID function occupies 40 words of memory, located at the starting
Instance Variable specified in the PID function block operands. Some of the words are configurable.
Other words are used by the CPU for internal PID storage and are normally not changed.

Every PID function call must use a different 40-word memory area, even if all the configurable
parameters are the same.

The configurable words of the reference array must be specified before executing the PID function.
Zeros can be used for most default values. Once suitable PID values have been chosen, they can be
defined as constants in BLKMOV functions so the program can set and change them as needed.

The LD version of the PID function does not pass power flow if there is an error in the configurable
parameters. The function can be monitored using a temporary coil while modifying data.

7.2.1 Scaling Input and Outputs
All parameters of the PID function are 16-bit integer words for compatibility with 16-bit analog process
variables. Some parameters must be defined in either PV counts or units or in CV counts or units.

The SP input must be scaled over the same range as the PV, because the PID function calculates error
by subtracting these two inputs.

The process PV and control CV counts do not have to use the same scaling. Either may be -32,000 or O
to 32,000 to match analog scaling, or from 0 to 10,000 to display variables as 0.00% to 100.00%. If the
process PV and control CV do not use the same scaling, scale factors are included in the PID gains.

354 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.2.2

Reference Array Parameters

Note: Machine Edition software allows you to modify the configurable parameters for a PID
instruction in real time in online programmer mode. To customize PID parameters, right click
the PID function and select Tuning.

Words Parameter/Description LOW.B't Range
Units
1 Loop Number Integer [0 to 255 (for
(Address+0) |Optional number of the PID block. It provides a common identification user display
in the CPU with the loop number defined by an operator interface only)
device.
2 Algorithm - Set by the CPU
(Address+1) |1 = ISA algorithm
2 = Independent algorithm
3 Sample Period 10ms. 0 (every sweep)
(Address+2) [The shortest time, in 10ms. Increments, between solutions of the PID to 655-7’_5
algorithm. For example, use a 10 for a 100ms. Sample period. Minimum (10.9 Min) At
time of 10ms is enforced by the block if the sweep<10ms) least 10ms.
4,5 Dead Band + PV Counts|Dead Band +: 0
(Address+3, [Pead Band - to 32767
Address+4) |Integral values defining the upper (+) and lower (-) Dead Band limits. If (nevelj
no Dead Band is required, these values must be 0. If the PID Error (SP - negative)
PV) or (PV - SP) is above the (-) value and below the (+) value, the PID Dead Band -: -
calculations are solved with an Error of 0. If non-zero, the (+) value must 32768t0 0
greater than 0 and the (-) value less than 0 or the PID block will not (never positive)
function.
Leave these at 0 until the PID loop gains are set up or tuned. A Dead
Band might be added to avoid small CV output changes due to
variations in error.
6 PID_IND: Proportional Gain (Kp) 0to 327.67%
(Address+5) [PID_ISA: Controller gain (Kc = Kp)
PID_IND: Change in the control variable in CV Counts for a 100 PV
Count change in the Error term. Entered as an integer representing a
fixed-point decimal ratio with two decimal places. Displayed as a ratio
of percentages with two decimal places.
For example, a Kp entered as 450 is displayed as 4.50 and resultsin a
Kp * Error /100 or 450 * Error / 100 contribution to the PID Output. %CV/%PV
PID_ISA: Same as PID_IND.
Kp is generally the first gain set when adjusting a PID loop.
GFK-2950D November 2018 355

Chapter 7. PID Built-In Function Block

Words

Parameter/Description

Low Bit
Units

Range

7
(Address+6)

PID_IND: Derivative Gain (Kd)
PID_ISA: Derivative Time (Td = Kd)

PID_IND: Change in the control variable in CV Counts if the Error or PV
changes 1 PV Count every 10ms. Entered as an integer representing a
fixed-point decimal time in seconds with two decimal places. The least
significant digit represents 0.01 second (10ms.) units. Displayed as
seconds with two decimal places.

For example, Kd entered as 120 is displayed as 1.20 Sec and results in a
Kd * £Error / delta time or 120 * 4 / 3 contribution to the PID Output if
Error changes by 4 PV Counts every 30ms. Kd can be used to speed up a
slow loop response, but is very sensitive to PV input noise. This noise
sensitivity can be reduced by using the derivative filter, which is
enabled by setting bit 5 of the Config Word .

PID_ISA: The ISA derivative time in seconds, Td, is entered and
displayed in the same way as Kd. Total derivative contribution to PID
Output is Kc * Td * AError / dt.

0.01 sec

0to 327.67 sec

8
(Address+7)

PID_IND: Integral Rate (Ki)
PID_ISA: Integral Rate (1/Ti = Ki)

PID_IND: Rate of change in the control variable in CV Counts per second
when the Erroris a constant 1 PV Count. Entered as an integer
representing a fixed-point decimal rate with three decimal places. The
least significant digit represents 0.001 counts per second, or 1 count
per 0.001 second. Displayed as Repeats/Sec with three decimal places.
For example, Ki entered as 1400 is displayed as 1.400 Repeats/Sec and
results in a Ki * Error * dt or 1400 * 20 * 50/1000 = 1,400 contribution to
PID Output for an Error of 20 PV Counts and a 50ms. CPU sweep time
(Sample Period of 0).

PID_ISA: The ISA Integral Time in seconds, Ti, must be inverted and
entered, as integral rate, as described for PID_IND. Total integral
contribution to PID Output is Kc * Ki * Error * dt.

Kiis usually the second gain set after Kp.

Repeats/0
.001 Sec

0to 32.767
repeats/sec

9
(Address+8)

CV Bias/Output Offset

Number of CV Counts added to the PID Output before the rate and
amplitude clamps. It can be used to set non-zero CV values when only
Kp Proportional gains are used, or for feed-forward control of this PID
loop output from another control loop.

CcVv
Counts

-32768 to
32767
(add to PID
output)

10,11

(Address+9.
Address+10)

CV Upper Clamp
CV Lower Clamp

Number of CV Counts that define the highest and lowest value that CV
is allowed to take. These values are required. The Upper Clamp must
have a more positive value than the Lower Clamp, or the PID block will
not work. These are usually used to define limits based on physical
limits for a CV output. They are also used to scale the Bar Graph display
for CV. The PID block has anti-reset-windup, controlled by bit 4 of the
Config Word, to modify the integral term value when a CV clamp is
reached.

Ccv
Counts

-32,768 to
32,767

(Word 10 must
be greater than
word 11.)

356

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 7. PID Built-In Function Block

Words

Parameter/Description

Low Bit
Units

Range

12
(Address+11)

Minimum Slew Time

Minimum number of seconds for the CV output to move from 0 to full
travel of 100% or 32,000 CV Counts. It is an inverse rate limit on how
fast the CV output can change.

If positive, CV cannot change more than 32,000 CV Counts times the
solution time interval (seconds) divided by Minimum Slew Time.

For example, if the Sample Period is 2.5 seconds and the Minimum Slew
Time is 500 seconds, CV cannot change more than 32,000 * 2.5 / 500 or
160 CV Counts per PID solution.

The integral term value is adjusted if the CV rate limit is exceeded.
When Minimum Slew Time is O, there is no CV rate limit. Set Minimum
Slew Time to O while tuning or adjusting PID loop gains.

Seconds /
Full Travel

0 (none) to
32,000 sec

to move full CV
travel

GFK-2950D

November 2018

357

Chapter 7. PID Built-In Function Block

13

Config Word

(Address+12)The low 6 bits of this word are used to modify default PID settings. The

other bits should be set to O.
Bit O: Error Term Mode.
When this bit has the default value of O, the error term is SP - PV.

If the Error=SP-PV is positive, the CV output will decrease.
If the Error=SP-PV is negative, the CV output will increase.

This is type of operation is known as reverse acting. A good example is
your home heating system.

When this bit is 1, the error term is PV - SP.

If the Error=PV-SP is positive, the CV output will increase.
If the Error= PV-SP is negative, the CV output will decrease.

This type of operation is known as direct acting. A good example is your
home cooling system.

Bit 1: Output Polarity.

When this bit is O, the CV output is the output of the PID calculation.
When it is set to 1, the CV output is the negated output of the PID
calculation. Setting this bit to 1 inverts the Output Polarity so that CV is
the negative of the PID output rather than the normal positive value.

Bit 2: Derivative Action on PV.

When this bit is O, the derivative action is applied to the error term.
When it is set to 1, the derivative action is applied to PV only.

Bit 3: Deadband action.

When the Deadband action bit is O, the actual error value is used for the
PID calculation.

When the Deadband action bit is 1, deadband action is chosen. If the
error value is within the deadband limits, the error used for the PID
calculation is forced to be zero. If, however, the error value is outside
the deadband limits, the magnitude of the error used for the PID
calculation is reduced by the deadband limit (|error| = |error -
deadband limit]).

Bit 4: Anti-reset windup action.

When this bit is 0, the anti-reset-windup action uses a reset (integral
term) back-calculation. When the output is clamped, the accumulated
integral term is replaced with whatever value is necessary to produce
the clamped output exactly.

When the bit is 1, the accumulated integral term is replaced with the
value of the integral term at the start of the calculation. In this way, the
pre-clamp integral value is retained as long as the output is clamped.
This option is not recommended for new applications. Refer to CV
Amplitude and Rate Limits below.

Bit 5: Enable derivative filtering.
When this bit is set to 0, no filtering is applied to the derivative term.

When set to 1, a first order filter is applied. This will limit the effects of
higher frequency process disturbances, such as measurement noise, on
the derivative term.

Low 6 bits
used

Boolean

358

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 7. PID Built-In Function Block

. e L Bi
Words Parameter/Description ow. it Range
Units
14 Manual Command cv Tracks CVin
(Address+13) Set to the current CV output while the PID block is in Automatic mode. [Counts |Auto or sets CV
When the block is switched to Manual mode, this value is used to set in Manual
the CV output and the internal value of the integral term within the
Upper and Lower Clamp and Slew Time limits.
15 Control Word l")’laifr:tained Boolean
. L . . y the CPU,
(Address+14)|If the Override bit (bit 0) is set to 1, the Control Word and the internal |,njess bit 0
SP, PV and CV parameters must be used for remote operation of the (Override)
PID block (see below). This allows a remote operator interface device, [is settol.
such as a computer, to take control away from the application program.
Caution
If you do not want to allow remote
operation of the PID block, make sure
the Control Word is set to 0. If the
low bit is 0, the next 4 bits can be
read to track the status of the PID
input contacts as long as the PID
Enable contact has power.
Control Word is a discrete data structure with the first five bit positions
defined in the following format:
Bit Word Function Status or
Value External Action if Override bit is set to 1:
. If 0, monitor block contacts below. If 1, set
0 1 Override
them externally.
1 > Manual If 1, block is in Manual mode. If other numbers
/Auto itis in Automatic mode.
> 4 Enable Should normally be 1. Otherwise block is neve
called.
3 8 upP If 1 and Manual (Bit 1) is 1, CV is incremented
/Raise every solution.
4 16 DN If 1 and Manual (Bit 1) is 1, CV is decremented
/Lower every solution.
16 Internal SP Setand) Non-
maintaine: -
(Address+15) [Tracks the SPinput. If Override = 1, must be set externally to solve the |, tlhe (I:pu‘ conflgur..s\ble,
PID algorithm using an alternate SP value. The original SP value is unless bit 0 unless.b|t 0
maintained until overwritten. (Override) of |(Override) of
Control Control Word
Word is set issetto 1
to 1. ’
17 Internal CV Set and . Non-
maintaine: .
(Address+16)|Tracks CV output. by the CPU. configurable.
GFK-2950D November 2018 359

Chapter 7. PID Built-In Function Block

_— Low Bi
Words Parameter/Description ow. it Range
Units
18 Internal PV Setand ; Non-
maintainel .
(Address+17)(Tracks PV input. Must be set externally if Override bit is set to 1. by the CPU, configurable,
unless bit 0 unless bit 0
(Override) of |(Override) of
Control |Control Word
Word is set is set to 1.
to 1.
19 Output Setand INon-
(Address+18) |A Signed word value representing the output of the function block rb';at'ﬂtea'cnpej configurable.
before the optional inversion. If the output polarity bit in the Config '
Word is set to 0, this value equals the CV output. If the output polarity
bit is set to 1, this value equals the negative of the CV output.
20 Derivative Term Storage
(Address+19)|Used internally for storage of intermediate values. Do not write to this
location.
21,22 Integral Term Storage
(Address+20. |Used internally for storage of intermediate values. Do not write to these
Address+21) |locations.
23 Slew Term Storage
(Address +22)|Used internally for storage of intermediate values. Do not write to this
location.
24-26 |Previous Solution Time Set and Non-
(Address+23 |Internal storage of time of last PID solution. Normally do not write to L@aﬁﬂiaé"pef configurable.
- these locations. Some special circumstances may justify writing to '
Address+25) [these locations.
Note: If you call the PID block in Automatic mode after a long delay,
you might want to use SVC_REQ #16 or SVC_REQ #51 to load
the current CPU elapsed time clock into Word 24 to update the
last PID solution time to avoid a step change of the integral
term.
27 Integral Remainder Storage Set and Non-
(Address+26) |Holds remainder from integral term scaling. bmyat'Etea(':”PeS configurable.
28,29 SP, PV Lower Range PV Counts|-32768 to
(Address+27,|SP, PV Upper Range 32767
Address+28) |Optional integer values in PV Counts that define high and low display
values for SP and PV. (Word 29 must be greater than word 28.)
30 Reserved N/A Non-

(Address+29) |Word 30 is reserved. Do not use this location. configurable.

31,32 |Previous Derivative Term Storage Setand Non-
(Address+30, [Used in calculations for derivative filter. Do not write to these locations. rbnat'ﬂtea('znpeg configurable.
Address+31) Y '

360

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 7. PID Built-In Function Block

Words Parameter/Description LOW.B't Range
Units
33-40 |Reserved N/A Non-
(Address+32 |Words 32-39 are reserved. Do not use these references. configurable
Address+39)

GFK-2950D

November 2018

361

Chapter 7. PID Built-In Function Block

7.3 Operation of the PID Function
7.3.1 Automatic Operation

When the PID function block is called, it compares the current CPU time with the last PID solution time
stored in the reference array. If the interval between the two times is equal to or greater than the
Sample Period (word 3 of the reference array) and also equal to or greater than 10 ms, the PID
algorithm is solved using this time interval. Both the last solution time and CV output are updated. In
Automatic mode, the output CV is copied to the Manual Command parameter (word 14 of the
reference array).

Note: If you call the PID block in Auto mode after a long delay, you may want to use SVC_REQ 16 or
SVC_REQ 51 to load the current CPU time into the stored Previous Solution Time (word 24 of the
reference array). This will update the last PID solution time and avoid a large step change of the
integral term. Another method to prevent the step change is to copy the PV value to the SP
before placing the loop into Auto.

7.3.2 Manual Operation

The PID function block is placed in Manual mode by providing power flow to both the Enable and
Manual input contacts. The output CV is set from the Manual Command parameter. If either the UP or
DN inputs have power flow, the Manual Command word is incremented (UP) or decremented (DN) by
one CV count every PID Sample Period. For faster manual changes of the output CV, it is also possible
to add or subtract any CV count value directly to/from the Manual Command word (word 14 of the
reference array).

The PID function block uses the CV Upper Clamp and CV Lower Clamp parameters to limit the CV
output. If a positive Minimum Slew Time (word 12 of the reference array) is defined, it is used to limit
the rate of change of the CV output. If either CV Clamp or the rate of change limit is exceeded, the value
of the integral (reset) term is adjusted so that CV is at the limit. The anti-reset-windup feature assures
that when the error term tries to drive CV above (or below) the clamps for a long period of time, the CV
output will move off the clamp immediately when the error term changes sufficiently.

This operation, with the Manual Command tracking CV in Automatic mode and setting CV in Manual
mode, provides a bump-less transfer from Automatic to Manual mode. The CV Upper and Lower
Clamps and the Minimum Slew Time always apply to the CV output in Manual mode and the integral
term is always updated. This assures that when a user rapidly changes the Manual Command value in
Manual mode, the CV output cannot change any faster than the slew rate limit set by the Minimum
Slew Time, and the CV cannot go above the CV Upper Clamp limit or below the CV Lower Clamp limit.

In order to assure a bump-less transfer from Manual back to Automatic mode, the user program should
copy the PV to the SP before switching back to Automatic mode. This allows the algorithm to update
the last sample period time and prepare to re-calculate CV based upon the new Auto Mode SP
commanded.

362 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.3.3 Time Interval for the PID Function

The start time of each CPU sweep is used as the current time when calculating the time interval
between solutions of the PID function. The times and time intervals have a resolution of 100 ps. When
an application uses multiple PID functions, all of them use the same time value.

The PID algorithm is solved when the current time is equal to or greater than the time of the last PID
solution plus the Sample Period or 10 ms; whichever is larger. If the Sample Period is set for execution
on every sweep (value = 0), the PID function is restricted to a minimum of 10 ms between solutions. If
the sweep time is less than 10 ms, the PID function waits until enough sweeps have occurred to
accumulate an elapsed time of at least 10 ms. For example, if the sweep time is 9 ms, the PID
function executes every other sweep, and the time interval between solutions is 18 ms. If a specific PID
function is executed more than once per sweep (by referencing the same reference array location in
multiple PID function blocks), the algorithm is solved only on the first call.

The longest possible interval between executions is 65,535 times 10 ms, or 10 minutes, 55.35 seconds.

GFK-2950D November 2018 363

Chapter 7. PID Built-In Function Block

7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain
Calculations

The PID function supports both the Independent Term (PID_IND) and ISA standard (PID_ISA) forms of
the PID algorithm. The Independent Term form takes its name from the fact that the coefficients for the
proportional, integral and derivative terms act independently. The ISA algorithm is named for the
Instrument Society of America (now the International Society for Measurement and Control), which
standardized and promoted it.

The two algorithms differ in how words 6 through 8 of the reference array are used and in how the PID
output (CV) is calculated.

The Independent term PID (PID_IND) algorithm calculates the output as:
PID Output = Kp * Error + Ki * Error * dt + Kd * Derivative + CV Bias

where Kp is the proportional gain, Ki is the integral rate, Kd is the derivative time, and dt is the time
interval since the last solution.

The ISA (PID_ISA) algorithm has different coefficients for the terms:
PID Output = Kc * (Error + Error * dt/Ti + Td * Derivative) + CV Bias

where Kc is the controller gain, Ti is the Integral time and Td is the Derivative time. The advantage of
PID_ISA is that adjusting Kc changes the contribution for the integral and derivative terms as well as
the proportional term, which can simplify loop tuning.

If you have the PID_ISA Kc, Ti and Td values, use the following equations to convert them to use as
PID_IND parameters:

Kp = K¢, Ki = Kc/Ti,and Kd = Kc * Td
The following diagram shows how the PID_IND algorithm works:

Proportional Term = BCV
Error Term Kp * Error as
SP Sign
+/-
Integral Term =
gzig Previous Integ. Term + SLl,eV\,’t — Upp(e::' /Lower | | Polarity
Ki * Error * ATime mi amp
_/+
py ~ Deriv Action Derivative Term =
\ A Vvalue A Value
i K e
A Time Kd ATime

Figure 16: PID_IND Diagram

The ISA Algorithm (PID_ISA) is similar except that its Kc gain coefficient is applied after the three terms
are summed, so that the integral gain is Kc / Ti and the derivative gain is Kc * Td.

Bits 0, 1 and 2 in the Config Word set the Error sign, Output Polarity and Derivative Action, respectively.

364 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.4.1 Derivative Term
The Derivative Term is Kd (word 7 of the reference array) multiplied by the time rate of change of the
Error term in the interval since the last PID solution.
Derivative = Kd * f&rror / dt = Kd * (Error - previous Error) / dt
where
dt = Current controller time - controller time at previous PID solution.

Two bits in the Config Word (word 13 of the reference array) affect the calculation of &rror: Error Term
Mode and Derivative Action. For additional information about the operation of these bits, refer to Config
Word above.

7.4.2 Error Term Mode

The sign of the Error term is determined by the value of a mode bit in the reference array for the PID
function.

In reverse acting mode, the change in the error term is:
ferror = (Error - previous Error) = SP - BV

where
BV = (PV - previous PV), and &P = (SP - previous SP).

However, in direct acting mode, the error term is (PV - SP), the sign of the change in the error term is
reversed:

ferror = (Error - previous Error) = = BV - 5P.

7.4.3 Derivative Action on PV Bit

By default, the change in the error term depends on changes in both SP and PV. If SP is constant,
5P =0, and SP has no effect on the derivative term. When SP changes, however, it can cause large
transient swings in the derivative term and hence the output. Loop stability can be improved by
eliminating the effect of SP changes on the derivative term.

To calculate the Derivative based only on the change in PV, set bit 2 of the Config Word to 1. This
modifies the equations above by assuming SP is constant (&P = 0).

7.4.4 Combined Operation of Error Term and Derivative Action Modes

Bit 0 of Config Word Bit 2 of Config Word
Error Term Value
Value | Error Term Mode Value | Derivative Action
0 Reverse Acting (default) | O 5P included 5P -0PV
1 Direct Acting 0 &P included BV -ASP
0 Reverse Acting (default) | 1 5P ignored -BV
1 Direct Acting 1 5P ignored &V

GFK-2950D November 2018 365

Chapter 7. PID Built-In Function Block

7.4.5 CV Bias Term

The CV Bias term (word 9 in the reference array) is an additive term separate from the PID inputs. It
may be useful if you are using only Proportional gain (Kp) and you want the CV to be a non-zero value
when the PV equals the SP and the Error is 0. In this case, set the CV Bias to the desired CV when the
PV is at the SP. CV Bias can also be used for feed forward control where another PID loop or control
algorithm is used to adjust the CV output of this PID loop.

If a non-zero Integral rate is used, the CV Bias will normally be 0 as the integral term acts as an
automatic bias or reset. Just start up in Manual mode and use the Manual Command word (word 14 of
the reference array) to set the desired CV, and then switch to Automatic mode. This will immediately
calculate the required value for the integral term.

7.4.6 CV Amplitude and Rate Limits

The PID block does not send the calculated Output directly to CV. Both PID algorithms can impose
amplitude and rate of change limits on the output Control Variable. If the Minimum Slew Time (word 12
of the reference array) is non-zero, the rate of change (slew rate) limit is determined by dividing the
maximum CV value (32,000) by the Minimum Slew Time. For example, if the Minimum Slew Time is 100
seconds, the rate limit will be 320 CV counts per second. If the solution interval was 50 ms, the new CV
output cannot change more than 320*50/1000 or 16 CV counts from the previous CV output.

The CV output is then compared to the CV Upper Clamp and CV Lower Clamp values (words 10 and 11
of the reference array). If CV is outside either limit, the CV output is clamped to the appropriate limit
value. When the CV output is modified to impose either slew rate or amplitude limits (or both) the
stored integral term would normally accumulate a large value over time. This phenomenon is known as
reset windup. Reset windup introduces errors in CV after the PID output no longer needs to be limited.
For example, windup would prevent the CV output from moving off a clamp value immediately.

There are two optional methods for preventing reset windup. If the Anti-reset-windup Action bit (bit 4)
of Config Word (word 13 of the reference array) is zero (the default), the integral term is adjusted at
each PID solution to match the error input and limited CV output exactly. When PV changes while CV is
clamped, or when CV is both rate and amplitude limited in a particular PID solution, this option assures
that a smooth transition will always occur after CV is no longer limited.

If the Anti-reset-windup Action bit of Config Word is set, then the integral term stored on the previous
PID solution is simply retained as long as CV is limited. This option was added to assure compatibility
with existing PID applications when the default action described above was introduced. This option is
not recommended for new applications.

Finally, the PID block checks the Output Polarity (bit 2 of the Config Word) and changes the sign of the
output if the bitis 1.

CV = - (Clamped PID Output) if Output Polarity bit set, or
CV= (Clamped PID Output) if Output Polarity bit cleared.

If the block is in Automatic mode, the final CV is placed in the Manual Command (word 14 of the
reference array). If the block is in Manual mode, the PID equation is skipped because CV is set by the
Manual Command, but the slew rate and amplitude limits are still checked. This assures that the
Manual Command cannot change the output above the CV Upper Clamp or below the CV Lower Clamp,
and the output cannot change faster than allowed by the Minimum Slew Time.

366 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.4.7 Sample Period and PID Function Block Scheduling

The PID function block is a digital implementation of an analog control function, so the dt sample time
in the PID Output equation is not the infinitesimally small sample time available with analog controls.
The majority of processes being controlled can be approximated as a gain with a first or second order
lag and (possibly) a pure time delay. The PID function block sets a CV output to the process and uses
the process feedback PV to determine an Error to adjust the next CV output. A key process parameter
is the total time constant, which is how fast the process can change PV when the CV is changed. As
discussed in Determining the Process Characteristics below, the total time constant, Tp+T,, for a first
order system is the time required for PV to reach 63% of its final value when CV is stepped. The PID
function block will not be able to control a process unless its Sample Period is well under half the total
time constant. Larger Sample Periods will make it unstable.

The Sample Period should be no bigger than the total time constant divided by 10 (or down to 5 worst
case). For example, if PV seems to reach about 2/3 of its final value in 2 seconds, the Sample Period
should be less than 0.2 seconds, or 0.4 seconds worst case. On the other hand, the Sample Period
should not be too small, such as less than the total time constant divided by 1000, or the Ki * Error * dt
term for the PID integral term will round down to 0. For example, a very slow process that takes 10
hours or 36,000 seconds to reach the 63% level should have a Sample Period of 40 seconds or longer.

Variations of the time interval between PID function solutions can have short-term effects on the CV
output. For example, if a step change to PV caused by measurement noise occurs between solutions,
the value of the derivative term will be inversely proportional to the time interval. The performance of
PID loops that are tuned for quick response may be improved when the solution interval is held
constant by configuring the CPU for constant sweep mode. Depending on the CPU model and the
application, constant sweep times of 10 ms, integer multiples of 10 ms, or exact divisors of 10 ms (1, 2
or 5 ms) will be possible. The Sample Period can then be set for a suitable multiple of 10 ms.

If many PID loops are used, allowing the application to solve all the loops on the same sweep may lead
to wide variations in CPU sweep time. If the loops have a common Sample Period that is at least equal
to the number of PID loops times the sweep time, a simple solution is to sequence one or more 1's
through an array of zero‘s and use these bits to enable power flow to individual PID function blocks. The
logic should assure that each PID function block is enabled no more often than its Sample Period.

GFK-2950D November 2018 367

Chapter 7. PID Built-In Function Block

7.5 Determining the Process Characteristics

The PID loop gains, Kp, Ki and Kd, are determined by the characteristics of the process being controlled.

Two key questions when setting up a PID loop are:

1. How bigis the change in PV when CV is changed by a fixed amount, or what is the open loop gain of
the process?

2. How fast does the system respond, or how quickly does PV change after the CV output is stepped?

Many processes can be approximated by a process gain, first or second order lag and a pure time delay.
In the frequency domain, the transfer function for a first order lag system with a pure time delay is:

PV (s) G(S) ke 1(14T,5)

CV(s)
Plotting the response to a step input at time to in the time domain provides an open-loop unit reaction
curve:

CV Unit Step Output to Process PV Unit Reaction Curve Input from Process

0.632K

The following process model parameters can be determined from the PV unit reaction curve:

K | Process open loop gain = final change in PV/change in CV at time to
(Note no subscript on K)

Tp | Process or pipeline time delay or dead time after to before the process output PV starts moving

T

First order Process time constant, time required after T, for PV to reach 63.2% of the final PV

s}

Usually the quickest way to measure these parameters is by putting the PID function block in Manual
mode, making a small step change in the CV output by changing the Manual Command (word 14 of the
reference array), and then plotting the PV response over time. For slow processes this can be done
manually, but for faster processes a chart recorder or computer graphic data-logging package will help.
The CV step size should be large enough to cause an observable change in PV, but not so large that it
disrupts the process being measured. A good step size may be from 2 to 10% of the difference between
the CV Upper and CV Lower Clamp values.

368 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.6 Setting Tuning Loop Gains

7.6.1 Basic Iterative Tuning Approach

Because PID parameters are dependent on the process being controlled, there are no predetermined
values that will work. However, a simple iterative process can be used to find acceptable values for Kp,
Ki, and Kd gains.

1.

Set all the reference array parameters to 0, then set the CV Upper and CV Lower Clamps to the
highest and lowest CV expected. Set the Sample Period to a value within the range T./10 to T./100,
where T is the estimated process time constant defined in Determining the Process
Characteristics.

Put the PID function block in Manual mode and set the Manual Command (word 14 in the reference
array) to different values to check if CV can be moved to Upper and Lower Clamp. Record the PV
value at some CV point and load it into SP.

Set a small gain, such as 100 * Maximum CV/Maximum PV, into Kp and turn off Manual mode. Step
SP by 2% to 10% of the Maximum PV range and observe PV response. Increase Kp if PV step
response is too slow or reduce Kp if PV overshoots and oscillates without reaching a steady value.

Once a Kp is found, start increasing Ki to get overshooting that dampens out to a steady value in
two to three cycles. This may require reducing Kp. Also try different SP step sizes and CV operating
points.

After suitable Kp and Ki gains are found, try adding Kd to get quicker responses to input changes,
providing it doesn't cause oscillations. Kd is often not needed and will not work with noisy PV.
Check gains over different SP operating points and add Dead Band and Minimum Slew Time if
needed. Some Reverse Acting processes may need setting of Config Word Error Term or Output
Polarity bits.

GFK-2950D November 2018 369

Chapter 7. PID Built-In Function Block

7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach

This approach provides good response to system disturbances with gains producing an amplitude ratio
of 1/4. The amplitude ratio is the ratio of the second peak over the first peak in the closed loop
response.
1. Determine the three process model parameters, K, T, and T. for use in estimating initial PID loop
gains.
2. Calculate the Reaction rate:
R=K/T.
3. For Proportional control only, calculate Kp as:
Kp=1/(R*Tp) = T/(K* Tp)
For Proportional and Integral control, use:
Kp = 0.9/(R * Tp) = 0.9 * Tc/(K * Tp) Ki = 0.3 * Kp/Tp
For Proportional, Integral and Derivative control, use:
Kp=G/(R*T,) where Gisfrom 1.2 to 2.0
Ki =0.5*Kp/T,
Kd=0.5*Kp*T,
4, Check that the Sample Period is in the range
(To + Tc)/10 to (T, + Tc)/1000

370 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

7.6.3 Ideal Tuning Method

The Ideal Tuning procedure provides the best response to SP changes that are delayed only by the T,
process delay or dead time.

1.

Determine the three process model parameters, K, Tp and Tc for use in estimating initial PID loop
gains.
Calculate Kp, Ki, and Kd as follows:

Kp=2*Tc/(3*K*Tp)

Ki =T

Kd = Ki/4 if Derivative term is used
Once initial gains are determined, convert them to integers.
Calculate the Process gain, K, as a change in input PV Counts divided by the resulting output step
change in CV Counts. (Not in process PV or CV engineering units.) Specify all times in seconds.

Once Kp, Ki and Kd are determined, Kp and Kd are multiplied by 100 while Ki is multiplied by 1000.
The resulting values are entered into the corresponding reference array word locations.

GFK-2950D November 2018 371

Chapter 7. PID Built-In Function Block

7.7 PID Example

The following PID example has a sample period of 100ms, a Kp gain of 4.00 and a Ki gain of 1.500. The
set point is stored in %R0001, the control variable is output in %AQ0002, and the process variable is
returned in %AI0003. CV Upper and CV Lower Clamps must be set, in this case to 20000 and 4000, and
an optional small Dead Band of +5 and -5 is included. The 40-word reference array starts in %R0100.
Normally, user parameters are set in the reference array, but %M0006 can be set to re-initialize the 14
words starting at %R0102 (word 3) from constants stored in logic (a useful technique).

The block can be switched to Manual mode with %M1 so that the Manual Command, %R113, can be
adjusted. Bits %M4 or %M5 can be used to increase or decrease %R113 and the PID CV by 1 every
100ms solution. For faster manual operation, bits %M2 and %M3 can be used to add or subtract the
value in %R2 to/from %R113 every CPU sweep. The %T1 output is on when the PID is OK.

7.7.1 Reference Array Initialization using %M00006

For details on the contents of the reference array, refer to Reference Array for the PID Function.

Word | Function Address | Value
3 Sample Period %R102 |10

4 + Dead Band %R103 |5

5 - Dead Band %R104 |5

6 Kp %R105 |400

7 Kd %R106 |0

8 Ki %R107 |1500
9 CV Bias %R108 |0

10 CV Upper Clamp %R109 |2000
11 CV Lower Clamp %R110 |400

12 Minimum Slew Time | %R111 |0
13 Config Word %R112 |0
14 Manual Command |%R113 |0
15 Control Word %R114 |0
16 Internal SP %R115 |0

372 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 7. PID Built-In Function Block

TOOCD

rAQ0D0E BLK CLR BLEMOY BLKMOY
1 | WORD INT NT L
25
ROO400 —IN 10 —{IN1 Q- ROo10z 20000 —{IN1 Q- RO0109
5 —INz go00 —{IM2
5 —INz o —{Inz
400 —|INg o —INg
0 —IN5 o —INs
1500 —IMG o —{Ing
0 —{IN7 o —{IN7
FID IND
2
ROOA00
ROOOOY —SP OV AQO0OZ
0003 —|FY
FADOODA
| | [EEAY
FADOODA
| up
FOO00S
{ | oH
r0000Z ADD INT
3 { =
RODA43 —{IN1 of roO413
ROOONZ —{IM2
rA0O00F SUB INT
4 | -
RODA13 —IMA of root13
ROOOOZ —INZ
Figure 17: PID Example Logic
GFK-2950D November 2018

373

Chapter 8 Structured Text (ST) Programming

The Structured Text (ST) programming language is an IEC 61131-3 textual programming language. This
chapter describes how structured text is implemented in PACSystems. For information on using the
structured text editor in the programming software, refer to the online help.

The block types Block, Parameterized Block, and Function Block (UDFB) can be programmed in ST. The
_MAIN program block can also be programmed in ST. For details on blocks, refer to Program
Organization in Chapter 2.

8.1 Language Overview
8.1.1 Statements

A structured text program consists of a series of statements, which are constructed from expressions
and language keywords. A statement directs the PACSystems controller to perform a specified action.
Statements provide variable assignments, conditional evaluations, iteration, and the ability to call built-
in functions. PACSystems supports those statements described in Statement Types.

8.1.2 Expressions

Expressions use operators to calculate values from variables and constants. An example of a simple
expression is (x + 5).

Composite expressions can be created by nesting simpler expressions, for example,
(a+b)*(c+d)-3.0*4.

GFK-2950D November 2018 375

Chapter 8. Structured Text (ST) Programming

8.1.3 Operators

The table below lists the operators that you can use within an expression. They are listed according to
their evaluation precedence, which determines the sequence in which they are executed within the
expression. The operator with the highest precedence is applied first, followed by the operator with the
next highest precedence. Operators of equal precedence are evaluated left to right. Operators in the
same group, for example + and -, have the same precedence.

Any address operators used in LD can be used on ST operands. Address operators have precedence
over the ST language operators. Address operators include indirect addressing (for example, @Var1),
array indexing (for example, Var1[3]), bit within word addressing (for example, Var1.X[3]), and structure
fields (for example, Var1.field1).

Precedence Operator |Operand Types Description
Group 1 (Highest) |(...) Parenthesized
expression

Group 2 - INT, DINT, REAL, LREAL Negation

NOT BOOL, BYTE, WORD, DWORD Boolean complement
Group 3 *x A INT, DINT, UINT, REAL, LREAL® Exponentiation® ™
Group 4 * INT, DINT, UINT, REAL, LREAL Multiplication9

/ INT, DINT, UINT, REAL, LREAL Division®**

MOD INT, DINT, UINT Modulus operation™
Group 5 + INT, DINT, UINT, REAL, LREAL Addition’

- INT, UINT, DINT, REAL, LREAL Subtraction’
Group 6 <, >, <=,>= | INT, DINT, UINT, REAL, LREAL, BYTE, WORD, Comparison

DWORD

Group 7 = ANY* Equality

<>, 1= ANY" Inequality
Group 8 AND, & BOOL, BYTE, WORD, DWORD Boolean AND
Group 9 XOR BOOL, BYTE, WORD, DWORD Boolean exclusive OR
Group 10 (Lowest) |OR BOOL, BYTE, WORD, DWORD Boolean OR

Some comparison and math operators have corresponding built-in functions. For instance, the ‘+'
operator is similar to the ADD_INT function. You can use either the language operator or the built-in
function. The built-in function has the advantage of returning an ENO status. For additional information
refer to Built-in Functions Supported for ST Calls.

Operand Types

Type casting is not supported. To convert a type, use one of the built-in conversion functions. Use of
built-in functions is described in Function Call.

For untyped operators (+, *, ..), the types of the operands must match.

& The base must be type REAL or LREAL. If the base is REAL, the power can be type INT, DINT, UINT, or REAL and the result is
type REAL. If the base is type LREAL, the power must be LREAL and the result will be LREAL

® Use of math operators can cause Overflow or underflow. Overflow results are truncated.
10f gither operand is positive or negative infinity, the result is undefined.
" The CPU flags a “divide-by-0” error as an application fault.

2 Operators that can take operands of type ANY can be used with any of the supported elementary data types. The supported
data types are: BOOL, INT, DINT, UINT, BYTE, WORD, DWORD, LREAL and REAL. STRING and TIME data types are not
supported

376 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.1.4 Structured Text Syntax

The syntax of the ST implementation for PACSystems follows the IEC 61131-3 standard.
» Structured Text statements must end in a semi-colon (;).
» Structured Text variables must be declared in the variable list for the target.
These symbols have the following functions.
:= assigns an expression to a variable
; required to designate the end of a statement

[1 used for array indexing where the array index is an integer. For example, this sets the third
element of an array to the value j+10: intarrayl[3]: = j + 10;

(* *) designates a comment. These comments can span multiple lines. For example, (*This
comment spans
multiple lines.*)

[l or ¢ designates a single line comment. For example,
c :=a+b; /[This is a single line comment.

C :=a+b; ‘This is a single line comment.

GFK-2950D November 2018 377

Chapter 8. Structured Text (ST) Programming

8.2 Statement Types

The Structured Text statements, which specify the actual program execution, consist of the following

types, which are described in more detail on the following pages.

the ST compiler.

Statement Type | Description Example
Assignment Sets an object to a specified value. A=1;B:=A;C:=A+B;
CASE Provides for the conditional execution of a set of CASE A OF
statements. 1,2:C:=3;
3: C:=4;
4.5:C:=5;
ELSE
C:=0;
END_CASE;
COMMENT Places a text explanation in the program. Ignored by (* This is a block comment *)

‘This is a line comment
// This is a line comment //

Function call

Calls a function for execution.

Fbinst(IN1:= 1, OUT1 => A);

RETURN Causes the program to return from a subroutine. The | RETURN,;
return statement provides an early exit from a block.
EXIT Terminates iterations before the terminal condition EXIT;
becomes TRUE (1).
IF Specifies that one or more statements be executed IF (A < B) THEN
conditionally. C:=4;
ELSIF (A =B) THEN
C:=5;
ELSE
C:=6
END_IF;
FOR..DO Executes a statement sequence repeatedly based on | FOR1:=1TO 100 BY 2 DO
the value of a control symbol. IF (Varl - 1) = 40 THEN
Key:=1;
EXIT;
END_IF;
END_FOR;
WHILE Indicates that a statement sequence be executed WHILE J <= 100 DO
repeatedly until a Boolean expression evaluates to Ji=J+2
FALSE (0). END_WHILE;
REPEAT Indicates that a statement sequence be executed REPEAT
repeatedly until a Boolean expression evaluates to Ji=J+2
TRUE (1). UNTIL J >=100
END_REPEAT;

ARG_PRESENT

Determines whether a parameter value was present
when the function block instance of the parameter
was invoked. For example, a parameter can be
optional (pass by value).

ARG_PRES (IN :=In1, Q:>0ut1,
ENO:>0ut2);

Empty Statement

378

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.1 Assignment Statement

The assignment statement replaces the value of a variable with the result of evaluating an expression
(of the same data type).

Notes:

»= Assignment statements can affect transition bits.

» Assignment statements take override bits into account.

Format

Variable := Expression;

Where:

Variable is a simple variable, array element, etc.

Expression is a single value, expression, or complex expression.

Examples

Boolean assignment statements:
VarBooll :=1;
VarBool2 := (val <= 75);

Array element assignment:
Array_1[13] := (RealA /RealB)* PI;

GFK-2950D November 2018 379

Chapter 8. Structured Text (ST) Programming

8.2.2

Function Call

The structured text function call executes a predefined algorithm that performs a mathematical, bit
string or other operation. The function call consists of the name of the function or block followed by
required input or output parameters.

The structured text logic can call blocks or the PACSystems built-in functions listed in the table below.
The call must be made in a single statement and cannot be part of a nested expression.

Calls to some functions, such as communications request (COMMREQ), require a command block or
parameter block. For these functions, an array is declared, initialized in logic, and then passed as a
parameter to the function.

Built-in Functions Supported for ST Calls

Note: Only the functions listed in the following table are supported in the current PACSystems
version. Other built-in functions are not supported.

Example: cos(IN := inReal, Q => outReal, ENO => outBool);

Category Functions More information
Advanced Math | ASIN, ATAN, ACOS, COS, SIN, TAN Chapter 4

LOG, LN, EXP, EXPT,

SQRT_INT, SQRT_DINT, SQRT_REAL
Math ABS_INT, ABS_DINT, ABS_REAL Chapter 4

SCALE_DINT, SCALE_INT, SCALE_UINT

Communication

PNIO_DEV_COMM

PACSystems RX3i & RSTi-EP

PROFINET I/O Controller
Manual, GFK-2571
Control DO_IO, MASK_IO_INTR, SCAN_SET_IO, SUS_IO, Chapter 4
SUS_IO_INTR, SVC_REQ, SWITCH_POS, F_TRIG, R_TRIG
Data BCD4_TO_INT, BCD4_TO_UINT, BCD4_TO_REAL Chapter 4
Conversion BCD8_TO_DINT, BCD8_TO_REAL
DINT_TO_BCDS, DINT_TO_DWORD, DINT_TO_INT,
DINT_TO_UINT, DINT_TO_REAL, DINT_TO_LREAL
DWORD_TO_DINT
INT_TO_BCD4, INT_TO_DINT, INT_TO_UINT, INT_TO_REAL,
INT_TO_WORD
UINT_TO_BCD4, UINT_TO_BCDS, UINT_TO_INT,
UINT_TO_DINT, UINT_TO_REAL, UINT_TO_WORD
REAL_TO_INT, REAL_TO_UINT, REAL_TO_DINT,
REAL_TO_LREAL
LREAL_TO_DINT, LREAL_TO_REAL
TRUNCL_INT, TRUNC_DINT
DEG_TO_RAD, RAD_TO_DEG
WORD_TO_INT, WORD_TO_UINT
Data Move ARRAY_SIZE, ARRAY_SIZE_DIM1, ARRAY_SIZE_DIM2, Chapter 4
COMMREQ, MOVE_DATA_EX, SIZE_OF
PACMotion The RX3i CPUs support 56 PLCopen compliant motion PACMotion Multi-Axis Motion
functions and function blocks. Controller User’s Manual,
GFK-2448
380 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

Calls to Standard Function Blocks

Standard function blocks are instructions that have instance data in the form of a structure variable.
(For more information on function blocks and their instance data, refer to Functions and Function
Blocks in Chapter 2.) Standard function blocks are called in the same way that a UDFB is called.

PACSystems controllers support three standard function blocks:

Pulse timer Generates output pulses of a given duration Refer to Timer Pulse in
(TP) Chapter 4

On-delay timer Delays setting an output ON for a fixed period afteran Refer to On Delay Timer
(TON) input is set ON. in Chapter 4

Off-delay timer Delays setting an output OFF for a fixed period afteran Refer to Off Delay Timer
(TOF) input goes OFF so that the output is held on for a given in Chapter 4
period longer than the input.

Format of Calls to Standard Timer Function Blocks

Notes: TOF, TON and TP have the same input and output parameters, except for the instance variable,
which must be the same type as the instruction.

Writing or forcing values to the instance data elements IN, PT, Q, ET, ENO or Tl may cause
erratic operation of the timer function block.

Instance data can be a variable or a parameter of the current UDFB or parameterized block.

Formal Convention

myTOF_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>
outBoolSuccess);

myTON_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>
outBoolSuccess);

myTP_Instance_Data(IN := inBool, PT := inDINT, ET => outDINT, Q => outBool, ENO =>
outBoolSuccess);

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses the formal
convention, the state of outBoolSuccess is set to 1 (call was successful) or O (call failed).

Informal Convention
myTOF_Instance_Data(inBool, inDINT, outDINT, outBool);
myTON_Instance_Data(inBool, inDINT, outDINT, outBool);
myTP_Instance_Data(inBool, inDINT, outDINT, outBool);

Note: When using the informal convention, the operands must be assigned in the order shown above
(thatis, IN, PT, ET, Q and ENO).

Block Types Supported for ST Calls

An ST block can call blocks of type Block, Parameterized Block, or user defined Function Block (UDFB) or
External Block (C block). For more information on block types, refer to Chapter 2.

GFK-2950D November 2018 381

Chapter 8. Structured Text (ST) Programming

Formal Calls vs. Informal Calls

PACSystems supports formal and informal calls in ST.

Formal Calls

Informal Calls

Input parameter assignments use the “=" notation
while output assignments use the ‘=>' notation.

Input and output parameters are listed in parentheses.

Optional parameters can be omitted.

Parameters cannot be omitted.

Parameters can be in any order.

Parameters must be in the correct order as follows:
Inputs
Instance location (if required)
Length parameter (if required)

Outputs, starting with the last output
parameter.

The ENO parameter is specified in a formal
function or block call.

All built-in functions and user-defined blocks have
an optional ENO output parameter indicating the

success of the function or block. Either ENO or YO

can be used as this output parameter name.

The ENO parameter is not specified in an informal
function or block call.

Format of Formal Function Call

FunctionName(IN1 := inparam1, IN2 := inparam2, OUT1 => outparam1, ENO => enoparam);

Format of Informal Function Call

FunctionName(inparam1, inparam2, outparam1);

Example
This code fragment shows the TAN function call.
TAN(AnyReal, Result);

382 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.3 RETURN Statement
The return statement provides an early exit from a block. For example, in the following lines of code the
third line will never execute. The variable a will have the value 4.
=4
RETURN;
:=5;

GFK-2950D November 2018 383

Chapter 8. Structured Text (ST) Programming

8.2.4 IF Statement

The IF construct offers conditional execution of a statement list. The condition is determined by result
of a Boolean expression. The IF construct includes two optional parts, ELSE and ELSIF, that provide
conditional execution of alternate statement list(s). One ELSE and any number of ELSIF sections are
allowed per IF construct.

Format

IF BooleanExpressionl THEN
StatementListl;

[ELSIF BooleanExpression2 THEN (*Optional*)
StatementList2;]

[ELSE (*Optional*)
StatementList3;]

END_IF;

Where:
BooleanExpression Any expression that resolves to a Boolean value.
StatementList Any set of structured text statements.

Note: Either ELSIF or ELSEIF can be used for the else if clause in an IF statement.

Operation
The following sequence of evaluation occurs if both optional parts are present:

m |f BooleanExpressionl is TRUE (1), StatementList1 is executed. Program execution continues with
the statement following the END_IF keyword.

m If BooleanExpressionl is FALSE (0) and BooleanExpression2 is TRUE (1), StatmentList2 is executed.
Program execution continues with the statement following the END_IF keyword.

m If both Boolean expressions are FALSE (0), StatmentList3 is executed. Program execution continues
with the statement following the END_IF keyword.

If an optional part is not present, program execution continues with the statement following the
END_IF keyword.

Example

The following code fragment puts text into the variable Status, depending on the value of 1/O point
input value.

IF InputO1 < 10.0 THEN

Status := Low_Limit_Warning;
ELSIF Input02 > 90.0 THEN

Status := Upper_Limit_Warning;
ELSE

Status := Limits_OK;
END_IF;

384 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.5 CASE Statement

The CASE OF construct offers conditional execution of statement lists. It uses the value of an ST
integer expression to determine whether to execute a statement list. The statement list to be executed
can be selected from multiple statement lists, depending on the value of the associated integer
expression.

Conditions can be expressed as a single value, a list of values, or a range of values. The single-value, list
of values, or range forms can be used by themselves or in combination. The optional ELSE keyword can
be used to execute a statement list when the associated value does not meet any of the specified
conditions.

You can have a maximum of 1024 cases in a single CASE ... OF construct. Additional cases can be
handled by adding the ELSE keyword to the construct and specifying a nested CASE ... OF construct or
an IF ... THEN construct after the ELSE.

The number of nested CASE ... OF constructs and the number of levels are limited by the memory in
your computer.

The number of constants and constant ranges in a single conditional statement is limited by the
memory in your computer.

Format
CASE Integer_Expression OF
Intl: (*Single Value?)
StatementList_1;
Int2,Int3,Int4: (*List of Values*)
StatementList_2;
Int5..Int6: (*Range of Values*)
StatementList_3;
[ELSE (*Optional*)
StatementList_Else;]
END_CASE;
Where:
Integer_Expression An ST expression that resolves to an integer (INT, DINT or UINT)
value.
Int A constant integer value.
StatementList_1 ... Structured Text statements.
StatementList_n
Operation

The Int values are compared to Integer_Expression. The statement list following the first Int value that
matches Integer_Expression is executed. If the optional ELSE keyword is used and no Int value matches
Integer_Expression, the statement list following ELSE is executed. Otherwise, no statement list is
executed.

Requirements for Conditional Statements

m All constants must be of type INT, DINT or UINT.
m Inrange declarations, the beginning value must be less than the ending value (reading from left to
right). For example, 10..3 and 5..5 are invalid.

GFK-2950D November 2018 385

Chapter 8. Structured Text (ST) Programming

m Overlapping values in different case conditions are not allowed. For example, 5..10 and 7 cannot be
specified as conditions in the same CASE ... OF construct.

Examples
The following code fragment assigns a value to the variable ColorVariable.

CASE ColorSelection OF
0: ColorVariable:= Red;
1: ColorVariable:= Yellow;
2,3,4: ColorVariable:= Green;
5..9: ColorVariable:= Blue;
ELSE ColorVariable:= Violet;
END_CASE;

The following code fragment uses a nested CASE...OF..END_CASE construct.

CASE ColorSelection OF
0: ColorVariable:= Red;
1: ColorVariable:= Yellow;
2,3,4: ColorVariable:= Green;
5..9: ColorVariable:= Blue;

ELSE
CASE ColorSelection OF
10: ColorVariable:= Violet;
ELSE ColorVariable:= Black;
END_CASE;
ColorError: 1;
END_CASE;

386 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.6 FOR ... DO Statements

The FOR loop repeatedly executes a statement list contained within the FOR ... DO ... END_FOR
construct. It is useful when the number of iterations can be predicted in advance, for example to
initialize an array. The number of iterations is determined by the value of a control variable which is
incremented (or decremented) from an initial value to a final value by the FOR statement.

By default, each iteration of the FOR statement changes the value of the control variable by 1. The
optional BY keyword can be used to specify an increment or decrement of the control variable by
specifying a (non-zero) positive or negative integer or an expression that resolves to an integer.

FOR loops can be nested to a maximum of ten levels.

Format

FOR Control_Variable := Start_Value TO End_Value [BY Step_Value] DO
Statement list;
END_FOR;

Where:
Control_Variable The control variable. Can be an INT, DINT or UINT variable or parameter.

Start_Value The starting value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

End_Value The ending value of the control variable. Must be an expression, variable, or
constant of the same data type as Int_Variable.

Step_Value (Optional) The increment or decrement value for each iteration of the loop.
Must be an expression, variable, or constant of the same data type as
Int_Variable. If Step_Value is not specified, the control variable is incremented
by 1.

Statement list Any list of Structured Text statements.

Operation

The values of Start_Value, End_Value and Step_Value are calculated at the beginning of the FOR loop.
On the first iteration, Control_Variable is set to Start_Value.

At the beginning of each iteration, the termination condition is tested. If it is satisfied, execution of the
loop is complete and the statements after the loop will proceed. If the termination condition is not
satisfied, the statements within the FOR..END_FOR construct are executed. At the end of each
iteration, the value of Control_Variable is incremented by Step_Value (or 1 if Step_Value is not
specified).

The termination condition of a FOR loop depends on the sign of the step value.

Step Value Termination Condition

>0 Control_Variable > End_Value
<0 Control Variable < End Value
0 None. A termination condition is never reached and the loop will repeat infinitely.

As with the other iterative statements (WHILE and REPEAT), loop execution can be prematurely halted
by an EXIT statement.

To avoid infinitely repeating or unpredictable loops, the following precautions are recommended:
* Do not allow the statement list logic within the FOR loop to modify the control variable.

GFK-2950D November 2018 387

Chapter 8. Structured Text (ST) Programming

* Do not use the control variable in logic outside the FOR loop.

Examples

The following code fragment initializes an array of 100 elements starting at %R1000 (given that R1000
is at %R1000) by assigning a value of 10 to all array elements.
FORR1000:=1TO 100DO
@R1000 := 10;
END_FOR;
The following code fragment assigns the values of an 1/O point to array elements over ten 1/O scans.
The last entry is put in the array element with the smallest index.
FORR1000:=10TO 1BY-1DO
@R1000 := Input01;
END_FOR;

388 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.7 WHILE Statement

The WHILE loop repeatedly executes (iterates) a statement list contained within the
WHILE..END_WHILE construct as long as a specified condition is TRUE (1). It checks the condition first,
then conditionally executes the statement list. This looping construct is useful when the statement list
does not necessarily need to be executed.

Format

WHILE <BooleanExpression> DO
<StatementList>;
END_WHILE;

Where:
BooleanExpression Any expression that resolves to a Boolean value.
StatementList Any set of Structured Text statements.

Operation

If BooleanExpression is FALSE (0), the loop is immediately exited; otherwise, if the BooleanExpression is
TRUE (1), the StatementList is executed and the loop repeated. The statement list may never execute,
since the Boolean expression is evaluated at the beginning of the loop.

Note: Itis possible to create an infinite loop that will cause the watchdog timer to expire. Avoid
infinite loops.

Example

The following code fragment increments J by a value of 2 as long as J is less than or equal to 100.

WHILE J <=100 DO
J:i=J+2;
END_WHILE;

GFK-2950D November 2018 389

Chapter 8. Structured Text (ST) Programming

8.2.8 REPEAT Statement

The REPEAT loop repeatedly executes (iterates) a statement list contained within the
REPEAT..END_REPEAT construct until an exit condition is satisfied. It executes the statement list first,
then checks for the exit condition. This looping construct is useful when the statement list needs to be
executed at least once.

Format

REPEAT

StatementList;

UNTIL BooleanExpression END_REPEAT;
Where:
BooleanExpression Any expression that resolves to a Boolean value.
StatementList Any set of Structured Text statements.
Operation

The StatementList is executed. If the BooleanExpression is FALSE (0), then the loop is repeated;

otherwise, if the BooleanExpression is TRUE (1), the loop is exited. The statement list executes at least

once, since the BooleanExpression is evaluated at the end of the loop.

Note: Itis possible to create an infinite loop that will cause the watchdog timer to expire. Avoid
infinite loops.

Example

The following code fragment reads values from an array until a value greater than 5 is found (or the
upper bound of the array is reached). Since at least one array value must be read, the REPEAT loop is
used. All variables in this example are of type DINT, UINT, or INT.

Index :=1;
REPEAT
Value:= @Index;

Index:=Index+1;
UNTIL Value > 5 OR Index >= UpperBound END_REPEAT;

390 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 8. Structured Text (ST) Programming

8.2.9 ARG_PRES Statement

The ARG_PRES function determines whether an input parameter value was present when the function
block instance of the parameter was invoked. This may be necessary if the parameter is optional (pass
by value).

This function must be called from a function block instance or a parameterized block.

Format
ARG_PRES (IN :=In1, Q:>0ut1, ENO:>0ut2);
Where:
In1 Must be an input parameter of the function block that contains the ARG_PRES

instruction. Cannot be an array element or structure element. An alias to a
parameter should resolve only to the parameter name.

Can be a BOOL, DINT, DWORD, INT, REAL, UINT, WORD variable, variable array head
name or variable array head name element [000]. Input or output parameter value
of a function block instance or a parameterized block

Out2z A BOOL variable. True if the parameter is present, otherwise false.

Note: ENO is an optional BOOL output parameter. If ENO is used in a statement that uses the formal
convention, the state of Out2 is set to 1 (call was successful) or O (call failed).
Example

The parameter TempVal is an input to the function block CheckTemp. In the following code fragment,
ARG_PRES is used to determine whether a value existed for the parameter TempVal when an instance
of CheckTemp was invoked. If TempVal had a value, the BOOL output Temp_Pres is set to 1.

ARG_PRES (TempVal, Temp_Pres);

GFK-2950D November 2018 391

Chapter 8. Structured Text (ST) Programming

8.2.10 Exit Statement

The EXIT statement is used to terminate and exit from a loop (FOR, WHILE, REPEAT) before it would
otherwise terminate. Program execution resumes with the statement following the loop terminator
(END_FOR, END_WHILE, END_REPEAT). An EXIT statement is typically used within an IF statement.
Format

EXIT;
Where:

ConditionForExiting ~ An expression that determines whether to terminate early.

Example

The following code fragment shows the operation of the EXIT statement. When the variable number
equals 10, the WHILE loop is exited and execution continues with the statement immediately following
END_WHILE.

while (1) do
a:=a+1;
IF (a=10) THEN
EXIT;
END_IF;
END_WHILE;

392 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9 Diagnostics

This chapter explains the PACSystems fault handling system, provides definitions of fault extra data,
and suggests corrective actions for faults.

Faults occur in the control system when certain failures or conditions happen that affect the operation
and performance of the system. Some conditions, such as the loss of an I/O module or rack, may impair
the ability of the PACSystems controller to control a machine or process. Other conditions, such as
when a new module comes online and becomes available for use, may be displayed to inform or alert
the user.

Any detected fault is recorded in the Controller Fault Table or the 1/O Fault Table, as applicable.
Information in this chapter is organized as follows:

* Fault Handling Overview

= Using the Fault Tables

» System Handling of Faults

= Controller Fault Descriptions and Corrective Actions

* |/O Fault Descriptions and Corrective Actions
» Diagnostic Logic Blocks (DLBs)

GFK-2950D November 2018 393

Chapter 9. Diagnostics

9.1 Fault Handling Overview
The PACSystems CPU detects three classes of faults:

Fault Class Examples

Internal Failures (Hardware) Non-responding modules

Failed battery

Failed Energy Pack (CPE302/CPE305/CPE310/CPE330
models)

Memory checksum errors

External I/O Failures (Hardware) Loss of rack or module
Addition of rack or module
Loss of Genius 1/O block

Operational Failures Communication failures
Configuration failures
Password access failures

9.1.1 System Response to Faults

Hardware failures require that either the system be shut down or the failure be tolerated. I/O failures
may be tolerated by the control system, but they may be intolerable by the application or the process

being controlled. Operational failures are normally tolerated.

Faults have three attributes:

Controller Fault Table

Fault Table Affected I/O Fault Table
Fault Action Fatal
Diagnostic

Informational

Configurability Configurable
Non-configurable

9.1.2 Fault Tables

The PACSystems CPU maintains two fault tables, the Controller Fault Table for internal CPU faults and
the 1/O Fault Table for faults generated by I/O devices (including 1/O controllers). For more information,

refer to Using the Fault Tables below.

394 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 9. Diagnostics

9.1.3 Fault Actions and Fault Action Configuration
Fatal faults cause the fault to be recorded in the appropriate table, diagnostic variables to be set, and
the system to be stopped. Only fatal faults cause the system to stop.

Diagnostic faults are recorded in the appropriate table, and any diagnostic variables are set.
Informational faults are only recorded in the appropriate table.

Fault Action |Response by CPU

Fatal Log fault in fault table.
Set fault references.
Go to STOP/Fault Mode.

Diagnostic Log fault in fault table.
Set fault references.

Informational |Log fault in fault table.

The hardware configuration can be used to specify the fault action of some fault groups. For these
groups, the fault action can be configured as either fatal or diagnostic. When a fatal or diagnostic fault
within a configurable group occurs, the CPU executes the configured fault action instead of the action
specified within the fault.

Note: The fault action displayed in the expanded fault details indicates the fault action specified by
the fault that was logged, but not necessarily the executed fault action. To determine what
action was executed for a particular fault in a configurable fault group, you must refer to the
hardware configuration settings.

Faults that are part of configurable fault groups:

Fault Action Displayed in

Fault Table Informational | Diagnostic Fatal
Diagnostic or Fatal. Dlagnos.tlc or Fatal:
Fault Action Executed Informational | Determined by action selected Determined by action

selected in Hardware

in Hardware Configuration. Configuration.

Faults that are part of non-configurable fault groups:

Fault Action Displayed in

Fault Table Informational | Diagnostic Fatal

Fault Action Executed Informational | Diagnostic Fatal

GFK-2950D November 2018 395

Chapter 9. Diagnostics

9.2 Using the Fault Tables

To display the fault tables in Logic Developer software,
1. Go online with the PACSystems.

2. Select the Project tab in the Navigator, right click the Target node and choose Diagnostics. The
Fault Table Viewer appears.

The Controller Fault Table and the I/O Fault Table display the following information:

Controller The current date and time of the CPU.

Time/Date

Last Cleared The date and time faults were last cleared from the fault table. This
information is maintained by the PACSystems controller.

Status Displays Updating while the programmer is reading the fault table.

Status is Online when update is complete.

Total Faults

The total number of faults since the table was last cleared.

Entries Overflowed

The number of entries lost because the fault table has overflowed since it was
cleared. Each fault table can contain up to 64 faults.

9.2.1

Controller Fault Table

The Controller Fault Table displays CPU faults such as password violations, configuration mismatches,
parity errors, and communications errors.

01-01

Controller -
2000 00:01:51

Status

Choose Fault Table

Date/Timea:

C o

& Controller

Fault Table
0i-01- i
2000 00:00:00 Vlewer

Last Clearad: Online

Print Fault Tables

Controller Fault Table (Displaying 2 of 2 faults, 0 Overflowed)

Lz Date/Time

[y Fault Description

Fault Extra Data
Format

o Eyte . Word
C oascn

Sort Order

. Leocation

- Ciescription
. Date/Time
« Mone
 asc

¥ pEsC

Clear Controller Fault
Table

LAN transceiver fault; OFF network until fixed

=1 =]

[l | W]
' '
[l | W]

Failed battery =signal

Figure 18: Controller Fault Table Display

The Controller Fault Table provides the following information for each fault:

Location
Description
Date/Time
Details

396

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

Identifies the location of the fault by rack.slot.

Corresponds to a fault group, which is identified in the fault Details.

The date and time the fault occurred based on the CPU clock.

To view detailed information, click the fault entry. Refer to Viewing Controller Fault
Details for more information.

GFK-2950D

Chapter 9. Diagnostics

Viewing Controller Fault Details

Note: The fault action displayed in the expanded fault details indicates the fault action specified by
the fault that was logged, but not necessarily the executed fault action. To determine what
action was executed for a particular fault in a configurable fault group, you must refer to the
hardware configuration settings.

To see controller fault details, click the fault entry. The detailed information box for the fault appears.
(To close this box, click the fault.)

0.1 |Failed battery signal |1-02-2000 19:06:59
b Error Code Group Action Task Num
u] 12 2iDiagnostic u}
Fault Extra Data: 020000000000 Q0000000 0000 0000 0000 00 00 000000 00 Qo o0

Figure 19: Detail Information for Controller Fault Entry
The detailed information for controller faults includes the following:
Error Code Further identifies the fault. Each fault group has its own set of error codes.

Group Group is the highest classification of a fault and identifies the general category
of the fault. The fault description text displayed by your programming software
is based on the fault group and the error codes.

Action Fatal, Diagnostic, or Informational. For definitions of these actions, refer to
Fault Actions and Fault Action Configuration.

Task Number Not used for most faults. When used, provides additional information for
Technical Support representatives.

Fault Extra Data Provides additional information for diagnostics by Technical Support engineers.
Explanations of this information are provided as appropriate for specific faults
in Controller Fault Descriptions and Corrective Actions below.

User-Defined Faults

User-defined faults can be logged in the Controller Fault Table. When a user-defined fault occurs, it is
displayed in the appropriate fault table as Application Msg (error_code): and may be followed by a
descriptive message up to 24 characters. The user can define all characters in the descriptive message.
Although the message must end with the null character, e.g., zero (0), the null character does not count
as one of the 24 characters. If the message contains more than 24 characters, only the first 24
characters are displayed.

Certain user-defined faults can be used to set a system status reference (%SA0081-%SA0112).

User-defined faults are created using SVC_REQ 21: User-Defined Fault Logging, which is described in
Chapter 6.

Note: When a user-defined fault is displayed in the Controller Fault table, a value of -32768 (8000
hex) is added to the error code. For example, the error code 5 will be displayed as -32763.

GFK-2950D November 2018 397

Chapter 9. Diagnostics

9.2.2

I/O Fault Table

The 1/O Fault Table displays 1/O faults such as circuit faults, address conflicts, forced circuits, I/O module
addition/loss faults and 1/O bus faults.
The fault table displays a maximum of 64 faults. When the fault table is full, it displays the earliest 32
faults (33—64) and the last 32 faults (1—32). When another fault is received, fault 32 is shoved out of
the table. In this way, the first 32 faults are preserved for the user to view.

PLC Date/Time: 09-22-2005 12:41:56 . Status
Choose Fault Table LastCleared: 09-13-2005 12:06:57 Fault Table Viewer Online
Cpec # o . . .
/ 1/0 Fault Table (Displaying 27 of 27 faults, 0 Overflowed)
Print Fault Tables CIRC | ¥ariable Ref. Fault .
o MNo. Name Address Category Jadle e Leita uins
Fault Extra Data | | | 5 nia Lz oF I 09-22-2005 03:27:38
Format ' Madule e

[[

Byte * Word 0.5 nfa |ait k’losds 'ljf o 09-22-2005 03:27:38
[SFY-T34 oou’e

Sort Order 0.6 nfa [ing Fos=]oiglt 09-22-2005 03:27:38

Module
[Lacation T
Loss of I/
€ Description 0.3 n/a Module 09-22-2005 03:24:51
[Cate/Tirme
f Loss of I/O . i

& nome 0.5 n/a ail Module 09-22-2005 03:24:51
C asc | ® pEsc 0.6 nfa [int r';,lc';dsul”: Ko 09-22-2005 03:24:51

Figure 20: 1/O Fault Table Display

The 1/O Fault Table provides the following information for each fault:

Location

Identifies the location of the fault by rack.slot location, and sometimes bus and

CIRC No.

Variable
Name

Ref. Address

Fault
Category
Fault Type

Date/Time

398

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

buss address.
When applicable, identifies the specific I/O point on the module.

If the fault is on a point that is mapped to an I/O variable, and the variable is set to
publish (either internal or external), the I/O Fault Table displays the variable name.
Unpublished I/O variables will not be displayed in this field.

If the fault is on a point that is mapped to a reference address, this field identifies
the I/O memory type and location (offset) that corresponds to the point
experiencing the fault. When a Genius device fault or local analog module fault
occurs, the reference address refers to the first point on the block where the fault
occurred.

Note: The Reference Address field displays 16 bits and %W memory has a 32-bit
range. Addresses in %W are displayed correctly for offsets in the 16-bit
range (<65,535). For %W offsets greater than 16 bits, the I/O Fault Table
displays a blank reference address.

Specifies a general classification of the fault.

Consists of subcategories under certain fault categories. Set to zero when not
applicable to the category.

The date and time the fault occurred based on the CPU clock.

GFK-2950D

Chapter 9. Diagnostics

Details To view detailed information, click the fault entry. Refer to Viewing I/O Fault
Details for more information.

Viewing 1/0O Fault Details
To see I/O fault details, click the fault entry. The detailed information box for the fault appears. (To close

this box, click the fault.)

Circuit Analo 8
0.3 1 % AaQ 00001 Fault Fault g 01-01-2000 00:02:27
e 1/0 Bus ACE#:SS ‘ Adpgrl'r;tss Group | Action ‘Category ‘ ;::g
[nia | nia & 1 | 10 | 2:Diagnostic r 1 BB
Fault Extra | 00
Data oo
Fault

Description

Input Open Wire

Figure 21: 1/0 Fault Table Fault Entry Detail Display

The detailed information for 1/O faults includes:

1/0 Bus

Bus Address
Point Address

Group

Action

Category
Fault Type

Fault Extra Data

Fault Description

GFK-2950D

When the module in the slot is a Genius Bus Controller (GBC), this number is
always one.

The serial bus address of the Genius device that reported or has the fault.

Identifies the point on the I/O device that has the fault when the faultis a
point-type fault.

Fault group is the highest classification of a fault. It identifies the general
category of the fault.

Fatal, Diagnostic, or Informational. For definitions of these actions, refer to
Fault Actions and Fault Action Configuration.

Identifies the category of the fault.

Identifies the fault type by number. Set to zero when not applicable to the
category.

Provides additional information for diagnostics by Technical Support
engineers. Explanations of this information are provided as appropriate for
specific faults in I/O Fault Descriptions and Corrective Actions.

Provides a specific fault code when the I/O fault category is a circuit fault
(discrete circuit fault, analog circuit fault, low-level analog fault) or module
fault. It is set to zero for other fault categories.

November 2018 399

Chapter 9. Diagnostics

9.3 System Handling of Faults

The system fault references listed below can be used to identify the specific type of fault that has
occurred. (A complete list of System Status References is provided in Chapter 3.)

System Fault Address Description

Reference

#ANY_FLT %SC0009 Any new fault in either table since the last power-up or clearing of the
fault tables

#SY_FLT %SC0010 Any new system fault in the Controller Fault Table since the last power-
up or clearing of the fault tables

#IO_FLT %SC0011 Any new fault in the 1/O Fault Table since the last power-up or clearing
of the fault tables

#SY_PRES %SC0012 Indicates that there is at least one entry in the Controller Fault Table

#|O_PRES %SC0013 Indicates that there is at least one entry in the 1/O Fault Table

#HRD_FLT %SC0014 Any hardware fault

#SFT_FLT %SC0015 Any software fault

On power-up, the system fault references are cleared. If a fault occurs, the positive contact transition of
any affected reference is turned on the sweep after the fault occurs. The system fault references
remain on until both fault tables are cleared or All Memory in the CPU is cleared.

400 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.3.1 System Fault References

When a system fault reference is set, additional fault references are also set. These other types of
faults are listed in Fault References for Configurable Faults below and Fault References for Non-
Configurable Faults in the section which follows.

Fault References for Configurable Faults

Fault

(Default Action) Address | Description May Also Be Set
#SBUS_ER %SA0032 |System bus error. All system bus error faults are |#HRD_FLT, #SY_PRES,
(diagnostic) logged as informational. #SY_FLT

#SFT_loC™ %SA0029 | Non-recoverable software errorin an 1/O #IO_FLT, #|O_PRES,
(diagnostic) Controller (I0C). #SFT_FLT
#LOS_RCK™ %SA0012 |Loss of rack (BRM failure, loss of power) or #SY_FLT, #SY_PRES,
(diagnostic) missing a configured rack. #IO_FLT, #IO_PRES

#LOS_lOC™ %SA0013 |Loss of I/O Controller or missing a configured #IO_FLT, #IO_PRES
(diagnostic) Bus Controller.

#LOS_IOM %SA0014 |Loss of I/O module (does not respond), or #|IO_FLT, #|O_PRES
(diagnostic) missing a configured 1/O module.

#LOS_SIO %SA0015 | Loss of intelligent module (does not respond), or | #SY_FLT, #SY_PRES
(diagnostic) missing a configured module.

#IOC_FLT %SA0022 | Non-fatal bus or I/O Controller error, more than |#IO_FLT, #/O_PRES
(diagnostic) 10 bus errors in 10 seconds. (Error rate is

configurable.)

#CFG_MM %SA0009 |Configuration mismatch. Wrong module type #SY_FLT, #SY_PRES
(fatal) detected. The CPU does not check the
configuration parameter settings for individual
modules such as Genius I/O blocks.

#OVR_TMP %SA0008 | CPU temperature has exceeded its normal #SY_FLT, #SY_PRES
(diagnostic) operating temperature.

Note: If the fault action for a fault logged to the fault table is informational, the configured action is
not used. For example, if the logged fault action for an SBUS_ERR is informational, but you
configure it as fatal, the action is still informational.

3 The #SFT_IOC software fault will have the same action as what you set for #LOS_lOC.

Y When a Loss of Rack or Addition of Rack fault is logged, individual loss or add faults for each module in that rack are usually
not generated.

!5 Even if the #LOS_IOC fault is configured as Fatal, the CPU will not go to STOP/FAULT unless both GBCs of an internal
redundant pair fail.

GFK-2950D November 2018 401

Chapter 9. Diagnostics

Fault References for Non-Configurable Faults

Fault Address |Description Result
#PS_FLT %SA0005 | Power supply fault Sets #SY_FLT, #SY_PRES
#HRD_CPU %SA0010 | CPU hardware fault (such as failed memory |Sets #SY_FLT, #SY_PRES, #HRD_FLT
(fatal) device or failed serial port).
#HRD_SIO %SA0027 | Non-fatal hardware fault on any module in | Sets #SY_FLT, #SY_PRES, #HRD_FLT
(diagnostic) the system, such as failure of a serial port
on a LAN interface module.
#PNIO_ %SA0030 | A diagnostic PROFINET alarm has been Sets #ANY_FLT, #|O_FLT, #|O_PRES
ALARM received and an 1/O fault has been logged in
group 28.
#SFT_SIO %SA0031 | Non-recoverable software errorin a LAN Sets #SY_FLT, #SY_PRES, #SFT_FLT
(diagnostic) interface module.
#PB_SUM %SA0001 |Program or block checksum failure during | Sets #SY_FLT, #SY_PRES
(fatal) power-up or in RUN Mode.
#LOW_BAT | %SA0011 |The low battery indication is not supported |Sets #SY_FLT, #SY_PRES
(diagnostic) for all CPU versions. For details, refer to
Battery Status (Group 18).
#OV_SWP %SA0002 | Constant sweep time exceeded. Sets #SY_FLT, #SY_PRES
(diagnostic)
#SY_FULL %SA0022 |Controller fault table full (64 entries). Sets #SY_FLT, #SY_PRES, #IO_FLT,
#IO_FULL 1/O Fault Table full (64 entries). #IO_PRES
(diagnostic)
#APL_FLT %SA0003 | Application fault. Sets #SY_FLT, #SY_PRES
(diagnostic)
#ADD_RCK" | %SA0017 |New rack added, extra rack, or previously Sets #SY_FLT, #SY_PRES
(diagnostic) faulted rack has returned.
#ADD_IOC %SA0018 |Extra IOC, previously faulted I/O Controller |Sets #IO_FLT, #|/0O_PRES
(diagnostic) is no longer faulted.
#ADD_IOM %SA0019 |Extra IO module, or previously faulted 1/O Sets #I0O_FLT, #/0_PRES
(diagnostic) module is no longer faulted.
#ADD_SIO %SA0020 | New intelligent module is added, or Sets #SY_FLT, #SY_PRES
(diagnostic) previously faulted module no longer
faulted.
#IOM_FLT %SA0023 | Point or channel on an I/O module; a partial | Sets #I0O_FLT, I#O_PRES
(diagnostic) failure of the module.
#NO_PROG | %SB0009 [No application program is present at CPU will not go to RUN Mode; it
(information) power-up. Should only occur the first time | continues executing STOP Mode
the PACSystems controller is powered up [sweep until a valid program is loaded.
or if the user memory containing the This can be a null program that does
program fails. nothing. Sets #SY_FLT and #SY_PRES.
402 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

Fault Address | Description Result
#BAD_RAM %SB0010 | Corrupted program memory at power-up. | Sets #SY_FLT and #SY_PRES.
(fatal) Program could not be read and/or did not
pass checksum tests.
#WIND_ER %SB0001 | Window completion error. Servicing of Sets #SY_FLT and #SY_PRES.
(information) Controller Communications or Logic
Window was skipped. Occurs in Constant
Sweep mode.
#BAD_PWD | %SB0011 |Change of privilege level request to a Sets #SY_FLT and #SY_PRES.
(information) protection level was denied; bad password.
#NUL_CFG %SB0012 |No configuration present upon transition to | Sets #SY_FLT and #SY_PRES.
(fatal) RUN Mode. Running without a configuration
is equivalent to suspending the 1/O scans.
#SFT_CPU %SB0013 | CPU software fault. A non-recoverable error | CPU immediately transitions to
(fatal) has been detected in the CPU. May be STOP/Halt Mode. The only activity
caused by Watchdog Timer expiring. permitted is communication with the
programmer. To be cleared, controller
power must be cycled. Sets SY_FLT,
SY_PRES, and SFT_FLT.
#STOR_ER %SB0014 |Download of data to CPU from the CPU will not transition to RUN Mode.
(fatal) programmer failed; some data in CPU may | This fault is not cleared at power-up,
be corrupted. intervention is required to correct it.
Sets SY_FLT and SY_PRES.
GFK-2950D November 2018 403

Chapter 9. Diagnostics

9.3.2 Using Fault Contacts

Fault (-[F]-) and no-fault (-[NF]-) contacts can be used to detect the presence of I/O faults in the system.
These contacts cannot be overridden. The following table shows the state of fault and no-fault
contacts.

Condition [F] [NF]
Fault Present ON OFF
Fault Absent OFF ON

An NF contact will be ON (F contact will be OFF) when the referenced 1/O point is not faulted, or the
referenced 1/O point does not exist in the hardware configuration.
Fault Locating References (Rack, Slot, Bus, Module)

The PACSystems CPU supports reserved fault names for each rack, slot, bus, and module. By
programming these names on the FAULT and NOFLT contact instructions, logic can be executed in
response to faults associated with configured racks and modules.

Fault Locating Reference Name Format

These fault names can only be programmed on the FAULT and NOFLT contacts. The reserved fault
names are always available. It is not necessary to enable a special option, such as point faults.

Fault Reference | Reserved Comment
Type Name
Rack #RACK_000r Where risrack numberOto 7.
Slot #SLOT_Orss Where ris rack number 0 to 7 and
ss is slot number 0 to 31.
Bus #BUS_Orssb Where risrack numberOto 7,
(Genius only) ss is slot number 0 to 31, and
b is the bus number (1 or 2).
Module #M_rssbmmm |Where risrack numberQto 7,
(Genius only) ss is slot number O to 31,

b is the bus number (1 or 2), and
mmm is the Bus Address number 000 to 255.

These fault names do not correspond to %SA, %SB, %SC, or to any other reference type. They are
mapped to a memory area that is not user-accessible. Only the name is displayed.

404 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

Fault Reference Name Examples:

SRACE_0001 $SLOT_0105 000001
| {F| | WE}

#RACK_0001 represents rack 1.

#SLOT_0105 represents rack 1, slot 5.

#BUS_02041 represents rack 2, slot 4, bus 1.

#M_2061028 represents rack 2, slot 6, bus 1, Genius module 28.

Note: When a slot level failure fault is reported to the fault tables, all bus and module fault locating
references associated with that slot are set (the FAULT contact passes power flow, and the
NOFLT contact does not pass power flow), regardless of what type of module it is. Conversely,
when a slot level reset fault is reported to the fault tables, all bus and module fault locating
references are cleared (the FAULT contact does not pass power flow, and the NOFLT contact
passes power flow).

Behavior of Fault Locating References

At power-up, all fault locating references are cleared in the CPU. When a fault is logged, the CPU
transitions the state of the affected reference(s). The state of the fault reference remains in the fault
state until one of the following actions occurs:

» Both the Controller and the I/O Fault Tables are cleared through your programming software either
by clearing each table individually or clearing the entire CPU memory.

= The associated device (rack, I/O module, or Genius device) is added back into the system.
Whenever an Addition of... faultis logged, the CPU initializes all fault references associated with
the device to the NoFlt state. These references remain in the NoFlt state until another fault
associated with the device is reported. (This could take several seconds for distributed 1/O faults,
especially if the bus controller has been reset.)

Note: These fault references are set for informational purposes only. They should not be used to
qualify 1/0 data. The Alarm Contacts (described in Using Alarm Contacts) may be used to qualify
I/O data. The CPU does not halt execution as a result of setting a fault locating reference to the
Fault state.

The fault references have a cascading effect. If there is a problem in the module located at rack 5, slot 6,
bus 1, module 29, the following fault references are set: RACK_05, SLOT_0506, BUS_05061, and
M_5061029. There will only be one entry in the fault table to describe the problem with the module.
The fault table does not show separate entries pertaining to the rack, slot, and bus in this case.

If an analog base module (IC697ALG230) is lost, the fault locating reference for that module is set. The
fault locating references for its expander modules (IC697ALG440 and ALG441) are not set as a result of
the loss. Therefore, any fault locating references to an expander module should also reference the base
module to verify that the module or its base have not been lost.

GFK-2950D November 2018 405

Chapter 9. Diagnostics

9.3.3 Using Point Faults

Point faults pertain to external I/O faults, although they are also set due to the failure of associated
higher-level internal hardware (for example, 10C failure or loss of a rack). To use point faults, they must
be enabled in Hardware Configuration on the Memory parameters tab of the CPU.

When enabled, a bit for each discrete 1/O point and a byte for each analog I/O channel are allocated in
CPU memory. The CPU memory used for point faults is included in the total reference table memory
size. The FAULT and NOFLT contacts, described in Using Alarm Contacts, provide access to the point
faults.

The full support of point fault contacts depends on the capability of the I/O module. Some Series 90-30
modules do not support point fault contacts. The point fault contacts for these modules remain all off,
unless a Loss of I/O Module occurs, in which case the RX3i CPU turns on all point fault contacts
associated with the lost module.

9.3.4 Using Alarm Contacts

High (-[HA]-) and low (-[LA]-) alarm contacts are used to represent the state of the analog input module
comparator function. To use alarm contacts, point faults must first be enabled in Hardware
Configuration on the Memory parameters tab of the CPU.

The following example logic uses both high and low alarm contacts.

| ATOOM AT000Z ol
| | B} JLal

Note: HA and LA contacts do not create an entry in a fault table.

406 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4 Controller Fault Descriptions and Corrective Actions

Each fault explanation contains a fault description and instructions to correct the fault. Many fault
descriptions have multiple causes. In these cases, the error code and additional fault information are
used to distinguish among fault conditions sharing the same fault description.

9.4.1 Controller Fault Groups
Group |Name Default Fault Action1® | Configurable

1 Loss of or Missing Rack Diagnostic Yes
4 Loss of or Missing Option Module Diagnostic Yes

5 Addition of, or Extra Rack N/A No
8 Reset of, Addition of, or Extra Option Module N/A No
11 |System Configuration Mismatch Fatal'’ Yes
12 |System Bus Error Fatal Yes
13 | CPU Hardware Failure N/A No
14 |Module Hardware Failure N/A No
16 | Option Module Software Failure N/A No
17 |Program or Block Checksum Failure Group N/A No
18 |Battery Status Group N/A No
19 |Constant Sweep Time Exceeded N/A No
20 |System Fault Table Full N/A No
21 |1/O Fault Table Full N/A No
22 |User Application Fault N/A No
24 | CPU Over Temperature Diagnostic Yes
128 |System Bus Failure N/A No
129 |No User Program on Power-up N/A No
130 |Corrupted User Program on Power-up N/A No
131 |Window Completion Failure N/A No
132 |Password Access Failure N/A No
134 | Null System Configuration for RUN Mode N/A No
135 |CPU System Software Failure N/A No
137 |Communications Failure During Store N/A No
140 |Non-critical CPU Software Event N/A No

18 The fault action indicated is not applicable if the fault is displayed as informational. Faults displayed as informational, always
behave as informational.

7 |f a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action will be Diagnostic regardless of
the fault configuration. For additional information, refer to Fault Parameters in PACSystems RX7i, RX3i and RSTi-EP CPU
Reference Manual, GFK-2222.

GFK-2950D November 2018

407

Chapter 9. Diagnostics

9.4.2 Loss of or Missing Rack (Group 1)

The fault group Loss of or Missing Rack occurs when the system cannot communicate with an
expansion rack because the BTM (Bus Transmitter Module) in the main rack failed, the BRM (Bus
Receiver Module) in the expansion rack failed, power failed in the expansion rack, or the expansion rack
was configured in the configuration file but did not respond during power-up.

Default action: Diagnostic. Configurable.

1, Rack Lost

The CPU generates this error when the main rack can no longer communicate with an expansion rack.
The error is generated for each expansion rack that exists in the system.

Correction

1) Power off the system. Verify that both the BTM and the BRM are seated properly in their respective
racks and that all cables are properly connected and seated.

2) Replace the cables.

3) Replace the BRM.

4) Replace the BTM.

2, Rack Not Responding

The CPU generates this error when the configuration file stored from the programmer indicates that a
particular expansion rack should be in the system but none responds for that rack number.

Correction

1) Check rack number jumper behind power supply—first on missing rack and then on all other
racks—for duplicated rack numbers.

2) Update the configuration file if a rack should not be present.

3) Add the rack to the hardware configuration if a rack should be present and one is not.

4) Power off the system. Verify that both the BTM and the BRM are seated properly in their respective
racks and that all cables are properly connected and seated.

5) Replace the cables.

6) Replace the BRM.

7) Replace the BTM.

8) Check for Termination Plug on last BRM.

408 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.3 Loss of or Missing Option Module (Group 4)

The fault group Loss of or Missing Option Module occurs when a LAN interface module, BTM, or BRM
fails to respond. The failure may occur at power-up or store of configuration if the module is missing or
during operation if the module fails to respond. This may also occur due to hot removal of an option
module.

Default action: Diagnostic. Configurable

3C hex/60 decimal, Module in Firmware Update Mode

The CPU generates this error when it finds a module in Firmware Update mode. Modules in this mode
will not communicate with the CPU.

Correction

1) Runthe firmware update utility for the module.

2) Reset the module with the push-button.

3) Power-cycle the entire system.

4) Power-cycle the rack containing the module.

63 hex/99 decimal, Module Hot Removed

The CPU logs this fault when it detects hot removal of an option module such as the LAN interface
module. No correction necessary

All Others, Module Failure During Configuration

The CPU generates this error when a module fails during power-up or configuration store.

Correction

1) Power off the system. Replace the module located in that rack and slot.

2) Ifthe board is located in an expansion rack, verify BTM/BRM cable connections are tight and the
modules are seated properly; verify the addressing of the expansion rack.

3) Replace the BTM.

4) Replace the BRM.

5) Replace the rack.

9.4.4 Addition of, or Extra Rack (Group 5)

This fault group occurs when a configured expansion rack with which the CPU could not communicate
comes online or is powered on, or an unconfigured rack is found.

Action: Non-configurable.

1, Extra Rack

Correction
1) Check rack jumper behind power supply for correct setting.
2) Update the configuration file to include the expansion rack.

Note: No correction necessary if rack was just powered on.

GFK-2950D November 2018 409

Chapter 9. Diagnostics

9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)

The fault group Reset of, Addition of, or Extra Option Module occurs when an option module (LAN
interface module, BTM, etc.) comes online, is reset, is hot inserted or a module is found in the rack but is
not configured.

Action: Non-configurable.

3, LAN Interface Restart Complete, Running Utility

The LAN Interface module has restarted and is running a utility program.

Correction
Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533).

7, Extra Option Module

Note: This faultis logged for an RX3i CPE310 that is configured as a CPU310, or a CPE330 configured
as a CPU320, because the RX3i system detects the embedded Ethernet module as an
unconfigured module.

Correction

1) Update the configuration file to include the module.

2) Remove the module from the system.

E Hex/14 Decimal, Option Module Hot inserted

The CPU logs this fault when it detects hot insertion of an option module such as the LAN interface
module. No correction necessary

Note: When configuration is cleared or stored, a reset fault is generated for every intelligent option
module physically present in the system.

410 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.6 System Configuration Mismatch (Group 11)

The fault group Configuration Mismatch occurs when the module occupying a slot is different from that
specified in the configuration file. When the GBC generates the mismatch because of a Genius block,
the second byte in the Fault Extra Data field contains the bus address of the mismatched block.
Default action: Fatal. Configurable.

Note: If a system configuration mismatch occurs when the CPU is in RUN Mode, the fault action will
be Diagnostic regardless of the fault configuration. See Fault Parameters in PACSystems RX7i,
RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

2, Genius 1/0 Block Model Number Mismatch

The CPU generates this fault when the configured and physical Genius I/O blocks have different model
numbers.

Correction

1) Replace the Genius I/O block with one corresponding to the configured module.

2) Update the configuration file.

Fault Extra Data for Genius 1/O Block Model Number Mismatch

Byte |Value

[0] FF (flag byte)

(1] Serial Bus address

[2] Installed module type (refer to Installed/Configured Module Types (Bytes 2 and 3 of Fault

Extra Data) below).

[3] Configured module type (refer to Installed/Configured Module Types (Bytes 2 and 3 of Fault
Extra Data) below).

Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)

Number ..
. . Description
Decimal | Hexadecimal
4 4 Genius Network Interface (GENI)
5 5 Phase B Hand Held Monitor
6 6 Phase B Series Six GBC with Diagnostics
7 7 Phase B Series Six GBC without Diagnostics
8 8 PLCM/Series Six
9 9 PLCM/Series 90-70
10 A Series 90-70 Single Channel Bus Controller
11 B Series 90-70 Dual Channel Bus Controller
12 C Series 90-10 Genius Communications Module
13 D Series 90-30 Genius Communications Module
32 20 High Speed Counter
69 45 Phase B 115Vac 8-point (2 amp) Grouped Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block
70 46 Phase B 115Vac/125Vdc 8-point Isolated Block without Failed Switch
71 47 Phase B 220Vac 8-point Grouped Block

GFK-2950D November 2018 411

Chapter 9. Diagnostics

Number .
. . Description
Decimal | Hexadecimal
72 48 Phase B 24-48Vdc 16-point Proximity Sink Block
72 48 Phase B 24Vdc 16-point Proximity Sink Block
73 49 Phase B 24-48Vdc 16-point Source Block
73 49 Phase B 24Vdc 16-point Proximity Source Block
74 4A Phase B 12-24Vdc 32-point Sink Block
75 4B Phase B 12-24Vdc 32-point Source Block
76 4C Phase B 12-24Vdc 32-point 5V Logic Block
77 4D Phase B 115Vac 16-point Quad State Input Block
78 4E Phase B 12-24Vdc 16-point Quad State Input Block
79 4F Phase B 115/230Vac 16-point Normally Open Relay Block
80 50 Phase B 115/230Vac 16-point Normally Closed Relay Block
81 51 Phase B 115Vac 16-point AC Input Block
82 52 Phase B 115Vac 8-point Low-Leakage Grouped Block
127 7E Genius Network Adapter (GENA). Refer to GENA Application ID Numbers
below.
131 83 Phase B 115Vac 4-input, 2-output Analog Block
132 84 Phase B 24Vdc 4-input, 2-output Analog Block
133 85 Phase B 220Vac 4-input, 2-output Analog Block
134 86 Phase B 115Vac Thermocouple Input Block
135 87 Phase B 24Vdc Thermocouple Input Block
136 88 Phase B 115Vac RTD Input Block
137 89 Phase B 24/48Vdc RTD Input Block
138 8A Phase B 115Vac Strain Gauge/mV Analog Input Block
139 8B Phase B 24Vdc Strain Gauge/mV Analog Input Block
140 8C Phase B 115Vac 4-input, 2-output Current Source Analog Block
141 8D Phase B 24Vdc 4-input, 2-output Current Source Analog Block

GENA Application ID Numbers

If the model number is 7F hex (Genius Network Adapter), the block may be one of the following. (The
GENA Application ID is shown for reference.)

Number

Decimal |Hexadecimal |Description

131 83 115Vac/230Vac/125Vdc Power Monitor Module
132 84 24/48Vdc Power Monitor Module
160 AO Genius Remote 90-70 Rack Controller

412 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

4,1/0 Type Mismatch

The CPU generates this fault when the physical and configured 1/O types of Genius grouped blocks are
different.

Correction

1) Remove the indicated Genius module and install the module indicated in the configuration file.
2) Update the Genius module descriptions in the configuration file to agree with what is physically
installed.

Fault Extra Data for I/O Type Mismatch

Byte | Value

[0] |FF

[1] Bus address

[2] Installed module’s 1/O type
[3] Configured module’s /O type

Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)

Value |Description

01 Input only
02 Output only
03 Combination

Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

Value
Decimal |Hexadecimal |Description
0 0 Discrete input
1 1 Discrete output
2 2 Analog input
3 3 Analog output
4 4 Discrete grouped
5 5 Analog grouped
20 14 Analog in, discrete in
21 15 Analog in, discrete out
24 18 Analog in, discrete grouped
30 1E Analog out, discrete in
31 1F Analog out, discrete out
34 22 Analog out, discrete grouped
50 32 Analog grouped, discrete in
51 33 Analog grouped, discrete out
54 36 Analog grouped, discrete grouped

GFK-2950D November 2018 413

Chapter 9. Diagnostics

8, Analog Expander Mismatch

The CPU generates this error when the configured and physical Analog Expander modules have
different model numbers.

Correction

1) Replace the Analog Expander module with one corresponding to configured module.
2) Update the configuration file.

9, Genius I/O Block Size Mismatch
The CPU generates this error when block configuration size does not match the configured size.

Correction
Reconfigure the block.

Fault Extra Data for Genius 1/O Block Size Mismatch

Byte |Value

[0 |FF

[1] Bus address

[2] Module’s broadcast data length

[3] Configured module’s broadcast data length

A hex/10 decimal, Unsupported Feature

Configured feature not supported by this revision of the module.

Correction

1) Update the module to a revision that supports the feature.
2) Change the module configuration.

Fault Extra Data for Unsupported Feature

Byte Value

[8] Contains a reason code indicating what feature is not supported.
0x5 - GBC revision too old
0x6 - Only supported in main rack

E hex/14 decimal, LAN Duplicate MAC Address

This LAN Interface module has the same MAC address as another device on the LAN. The module is off
the network.

Correction

1) Change the module’s MAC address.
2) Change the other device’s MAC address.

F hex/15 decimal, LAN Duplicate MAC Address Resolved

Previous duplicate MAC address has been resolved. The module is back on the network. This is an
informational message. No correction required.

414 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

10 hex/16 decimal, LAN MAC Address Mismatch
MAC address programmed by softswitch utility does not match configuration stored from software.

Correction
Change MAC address on softswitch utility or in software.

11 hex/17 decimal, LAN Softswitch/Modem mismatch

Configuration of LAN module does not match modem type or configuration programmed by softswitch
utility.

Correction

1) Correct configuration of modem type.
2) Consult LAN Interface manual for configuration setup.

13 hex/19 decimal, DCD Length Mismatch
Directed control data lengths do not match.

Correction
See Fault Extra Data.

Fault Extra Data for DCD Length Mismatch

Byte |Value

[0] FF

[1] Bus address

[2] Module’s directed data length

[3] Configured module’s directed data length

25 hex/37 decimal, Controller Reference Out-of-Range
A reference on either the trigger, disable, or I/O specification is out of the configured limits.

Correction
Modify the incorrect reference to be within range, or increase the configured size of the reference data.

26 hex/38 decimal, Bad Program Specification
The 1/O specification of a program is corrupted.
Correction

Contact Technical Support.

27 hex/39 decimal, Unresolved or Disabled Interrupt Reference

The CPU generates this error when an interrupt trigger reference is either out of range or disabled in
the 1/O module’s configuration.

Correction

1) Remove or correct the interrupt trigger reference.
2) Update the configuration file to enable this particular interrupt.

GFK-2950D November 2018 415

Chapter 9. Diagnostics

43 hex/67 decimal, Module Configuration Failure
Module configuration was not successfully accepted by the module.

Correction

Check fault table for other module-specific faults for possible reasons why the module did not accept
the configuration. Check that the configuration for the module is correct and valid.

4B hex/75 decimal, ECC jumper is disabled, but should be enabled

If the CPU redundancy feature is supported and required, the ECC jumper must be in the enabled
position.

Correction

Set the ECC jumper to the enabled position. (See the instructions provided with the Redundancy CPU
firmware upgrade kit).

4C hex/76 decimal, ECC jumper is enabled, but should be disabled

If the CPU firmware does not support redundancy, the ECC jumper must be in the disabled position.
Correction

Set the ECC jumper to the disabled position (jumper on one pin or removed entirely).

All Others, Module and Configuration do not Match

The CPU generates this fault when the module occupying a slot is not of the same type that the
configuration file indicates.

Correction

1) Replace the module in the slot with the type indicated in the configuration file.
2) Update the configuration file.

416 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.7 System Bus Error (Group 12)

The fault group System Bus Error occurs when the CPU encounters a bus error.
Default action: Diagnostic. Configurable.

4, Unrecognized VME Interrupt Source

The CPU generates this error when a module generates an interrupt not expected by the CPU
(unconfigured or unrecognized).

Correction

Ensure that all modules configured for interrupts have corresponding interrupt declarations in the
program logic.

GFK-2950D November 2018 417

Chapter 9. Diagnostics

9.4.8 CPU Hardware Failure (Group 13)
The fault group CPU Hardware occurs when the CPU detects a hardware failure, such as a RAM failure
or a communications port failure.

When a CPU Hardware failure occurs, the OK LED will flash on and off to indicate that the failure was
not serious enough to prevent Controller Communications to retrieve the fault information.

Action: Non-configurable.
6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
The battery-backed value of the time-of-day clock has been lost.

Correction

1) Replace the battery. Do not remove power from the main rack until replacement is complete. Reset
the time-of-day clock using your programming software.
2) Replace the module.

0AS8 hex/168 decimal, Critical Over-Temperature Failure
CPU’s critical operating temperature exceeded.

All Others

Correction
Replace the module.

Fault Extra Data for CPU Hardware Failure

For a RAM failure in the CPU (one of the faults reported as a CPU hardware failure), the address of the
failure is stored in the first four bytes of the field.

418 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.9 Module Hardware Failure (Group 14)

The fault group Module Hardware Failure occurs when the CPU detects a non-fatal hardware failure on
any module in the system, for example, a serial port failure on a LAN interface module. The fault action
for this group is Diagnostic.

Action: Non-configurable.
1A0 hex/416 decimal, Missing 12 Volt Power Supply
A power supply that supplies 12 volts is required to operate the LAN Interface module.

Correction

1) Install/replace a 100 watt power supply.
2) Connect an external VME power supply that supplies 12 volts.

1C2 - 1C6 hex (450 - 454 decimal), LAN Interface Hardware Failure

Refer to the LAN Interface manual, GFK-0868 or GFK-0869 (previously GFK-0533), for a description of
these errors.

All Others, Module Hardware Failure
A module hardware failure has been detected.

Correction
Replace the affected module.

GFK-2950D November 2018 419

Chapter 9. Diagnostics

9.4.10 Option Module Software Failure (Group 16)

The fault group Option Module Software Failure occurs when:

*= A non-recoverable software failure occurs on an intelligent option module.
* The module type is not a supported type.

» The Ethernet Interface logs an event in its Ethernet exception log.

Action: Non-configurable.

1, Unsupported Board Type
The board is not one of the supported types.

Correction

1) Upload the configuration file and verify that the software recognizes the board type in the file. If
there is an error, correct it, download the corrected configuration file, and retry.

2) Display the Controller Fault Table on the programmer. Contact Technical Support, giving them all
the information contained in the fault entry.

2,3, COMMREQ Frequency Too High

COMMREQs are being sent to a module faster than it can process them.

Correction

Change the application program to send COMMREQs to the module at a slower rate or check the
completion status of each COMMREQ before sending the next.

4, More Than One BTM in a Rack

There is more than one BTM present in the rack.

Correction
Remove one of the BTMs from the rack; there can only be one in a CPU rack.

>4, Option Module Software Failure

Software failure detected on an option module.

Correction

1) Reload software into the indicated module.
2) Replace the module.

>400, LAN System Software Fault

The Ethernet interface software has detected an unusual condition and recorded an event in its
exception log. The Fault Extra Data contains the corresponding event in the Ethernet exception log,
which can be viewed by the Ethernet Interface’s Station Manager function. The first two digits of Fault
Extra Data contain the Event type; the remaining data correspond to the four-digit values for Entry 2
through Entry 6. Some exceptions may also contain optional multi-byte SCode and other data.

Correction

For information on interpreting the fault extra data, refer to the PACSystems TCP/IP Ethernet
Communications Station Manager User Manual, GFK-2225, Appendix B.

420 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.11 Program or Block Checksum Failure (Group 17)

The fault group Program or Block Checksum Failure occurs when the CPU detects error conditions in
program or blocks. It also occurs during RUN Mode background checking. In all cases, the Fault Extra
Data field of the Controller Fault Table record contains the name of the program or block in which the
error occurred.

Action: Non-configurable.

All Error Codes, Program or Block Checksum Failure

The CPU generates this error when a program or block is corrupted.

Correction

1) Clear CPU memory and retry the store.

2) Examine C application for errors.

3) Display the Controller Fault Table on the programmer. Contact Technical Support, giving them all
the information contained in the fault entry.

Fault Extra Data for Program or Block Checksum Failure

The name of the offending program block is contained in the first eight bytes of the Fault Extra Data
field.

GFK-2950D November 2018 421

Chapter 9. Diagnostics

9.4.12 Battery Status (Group 18)

Faults in this group occur when the CPU detects a failed battery (or Energy Pack).

Action: Non-configurable.

0, Failed Battery

CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320
and NIUOO1

The battery in the CPU module has failed or is disconnected.

If the battery is disconnected, this fault is logged for all CPU types and all supported battery types.

Should a Smart Battery fail during operation, this fault is logged for all CPU types. When used with a

legacy (non-smart) battery, this indication is not reliable.

CPE302, CPE305 and CPE310

The Energy Pack has failed or is disconnected.

Correction

Replace the battery or Energy Pack. For instructions on replacing the battery, refer to the PACSystems
Battery and Energy Pack Manual, GFK-2741.

1, Low Battery - CPUs with Battery-Backed RAM

This fault is supported only by the CPU versions listed in the PACSystems Battery and Energy Pack
Manual, GFK-2741.

The CPU detects the low battery condition only while the CPU is powered up.

If a low battery condition occurs while the CPU is powered down, the CPU logs a Low Battery fault upon
power-up as soon as it detects the signal from the smart battery.

While the CPU is powered up, it is unlikely that a Low Battery fault will be detected because the current
drain on the battery is negligible. The exception is when a good battery is replaced with a low battery
while the CPU has power. In this case, a Low Battery fault would indicate that a good battery has been
accidentally replaced with a depleted battery.

The Controller fault table indicates the battery status. For details of LED operation of specific CPUs,
refer to PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222.

When a Failed Battery fault is logged, this fault is also logged.

Correction

Replace the battery. For instructions on replacing the battery, refer to the PACSystems Battery and
Energy Pack Manual, GFK-2741.

1, Low Battery - CPE302/CPE305/CPE310/CPE330 CPUs with Energy Pack
The Status LED and the Controller fault table indicate the Energy Pack status.

PLC_BAT LOW_BAT Energy Pack Status

(%S0014) (%SA0011)

0 0 Energy Pack connected and operational (may be charging)

1 1 Energy Pack not connected or has failed

0 1 Energy Pack is nearing its end-of-life and should be replaced.

422 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.13 Constant Sweep Time Exceeded (Group 19)

The fault group Constant Sweep Exceeded occurs when the CPU operates in Constant Sweep mode
and detects that the sweep has exceeded the constant sweep timer. In the fault extra data, the
DWORD at byte offset 8 contains the amount of time that the sweep went beyond the constant sweep
time (in microsecond units). Stored in Big Endian format.

Action: Non-configurable.
0, Constant Sweep

Correction
If Constant Sweep (0):

1) Increase constant sweep time.
2) Remove logic from application program.

Note: Errorcode 1is not used.

9.4.14 System Fault Table Full (Group 20)

The fault group System Fault Table Full occurs when the Controller Fault Table reaches its limit.
Action: Non-configurable.

0, System Fault Table Full

Correction
Clear the Controller Fault Table.

9.4.15 1/O Fault Table Full (Group 21)

The fault group 1/O Fault Table Full occurs when the I/O Fault Table reaches its maximum configured
limit. To avoid loss of additional faults, clear the earliest entry from the table.

Action: Non-configurable.
0, 1/0 Fault Table Full

Correction
Clear the I/O Fault Table.

GFK-2950D November 2018 423

Chapter 9. Diagnostics

9.4.16 User Application Fault® (Group 22)

The fault group Application Fault occurs when the CPU detects a fault in the user program.
Action: Non-configurable.

2, Software Watchdog Timer Expired

The CPU generates this error when the watchdog timer expires. The CPU stops executing the user
program and enters STOP/Halt Mode. To recover, cycle power to the CPU with battery disconnected.
Causes of timer expiration include: Looping, via jump, very long program, etc.

Correction

1) Determine what caused the expiration (logic execution, external event, etc.) and correct.

2) Use the system service function block to restart the watchdog timer.

7, Application Stack Overflow

Block call depth has exceeded the CPU capability.

Correction
Increase the program’s stack size or adjust application program to reduce nesting.

11 hex/17 decimal, Program Run Time Error
A run-time error occurred during execution of a program.

Correction
Correct the specific problem in the application.

22 hex/34 decimal, Unsupported Protocol
Hardware does not support configured protocol.

33 hex/51 decimal, Flash Read Failed

Possible causes:

1) Files not in flash. (May be caused by power cycle during flash write.)

2) Could not read from flash because OEM protection is enabled.

34 hex/52 decimal, Memory Reference Out of Range

A user logic memory reference, computed during logic execution, is out of range. Includes indirect
references, array element references, and potentially other types of references.

Correction

Correct logic or adjust memory size in hardware configuration.

35 hex/53 decimal, Divide by zero attempted in user logic.
User logic contained a divide by zero operation. (Applies to ST and FBD logic.)

Correction
Correct logic.

'8 Error Codes 1,4,5,6,8-15, 28, 29 and 49 are not used by PACs.

424 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

36 hex/54 decimal, Operand is not byte aligned.
A variable in user logic is not properly byte-aligned for the requested operation.

Correction

Correct logic or adjust memory size in hardware configuration.

39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted

The controller has not received a heartbeat signal from the programmer within the time specified by
the DLB Heartbeat setting in the Target properties.

Correction
Increase the DLB Heartbeat setting. For additional information, refer to Executing DLBs.

3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough
to accommodate this reference.

Parameterized blocks do not have their own %L data, but instead inherit the %L data of their calling
blocks. If %L references are used within a parameterized block and the block is called by _MAIN, %L
references are inherited from the %P references wherever encountered in the parameterized block (for
example, %L0005 = %P0005). For a discussion of the use of local data with parameterized blocks, refer
to Parameterized Blocks and Local Data in Chapter 2.

Correction

Determine which block called the parameterized subroutine block and increase the size of %L or %P
memory allocated to the calling block. (To do this, change the Extra Local Words setting in the block’s
Properties.)

The maximum size of %L or %P is 8192 words per block. If your application needs more space, consider
changing some %P or %L references to %R, %W, %Al, or %AQ. These changes require a recompilation
of the program block and a STOP Mode Store to the CPU.

It is possible, by using Online Editing in the programming software to cause a parameterized block to
use %L higher than allowed because of the way it inherits data. To correct this condition, delete the %L
variables from the logic and then remove the unused variables from the variable list. These changes
require a recompilation of the program block and a STOP Mode Store to the CPU.

GFK-2950D November 2018 425

Chapter 9. Diagnostics

9.4.17 CPU Over-Temperature (Group 24)
Default action: Diagnostic. Configurable.

1, Over-Temperature failure.

CPU’s normal operating temperature exceeded.

Correction
Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature.

9.4.18 Power Supply Fault (Group 25)
Action: Non-configurable.

1, Power supply failure.

Unknown power supply failure.

Correction

Replace power supply module.

2, Power supply overloaded

The load on the power supply has reached its rated maximum

Correction

Replace power supply with a higher capacity model or reconfigure system to reduce load on power
supply.

3, Power supply switched off

The switch on the power supply was moved to the OFF position.

4, Power-supply has exceeded normal operating temperature
The temperature of the power supply is a just a few degrees from causing it to turn off.

Correction
Turn off system to allow heat to disperse. Install a fan kit to regulate temperature.

9.4.19 No User Program on Power-Up (Group 129)

The fault group No User Program on Power-Up occurs when the CPU powers up with its memory
preserved but no user program exists in the CPU. The CPU detects the absence of a user program on
power-up; the controller stays in STOP Mode.

Action: Non-configurable.

Correction
Download an application program before attempting to go to RUN Mode.

426 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.20 Corrupted User Program on Power-Up (Group 130)

The fault group Corrupted User Program on Power-Up occurs when the CPU detects corrupted user
RAM. The CPU will remain in STOP Mode.

Action: Non-configurable.

1, Corrupted user RAM on power-up

The CPU generates this error when it detects corrupted user RAM on power-up.

Recommended Corrections, Listed in Order

1) Cycle power without battery or Energy Pack.

2) Examine any C applications for errors.

3) Replace the volatile memory backup battery on the CPU.
4) Replace the CPU.

7, User memory not preserved over power cycle

The CPU generates this error when it detects a battery failure that occurred while the controller was
powered down.

If this fault occurs on a power cycle when the battery was not detached or replaced, the battery has
failed and should be replaced.

Correction

Replace the battery on the CPU. For instructions on replacing the battery, refer to the PACSystems
Battery and Energy Pack Manual, GFK-2741.

9.4.21 Window Completion Failure (Group 131)

The fault group Window Completion Failure is generated by the pre-logic and end-of-sweep processing
software in the CPU. The fault extra data contains the name of the task that was executing when the
error occurred.

Action: Non-configurable.

0, Window Completion Failure

The CPU generates this error when it is operating in Constant Sweep mode and the constant sweep
time was exceeded before the programmer window had a chance to begin executing.

Correction

Increase the constant sweep timer value.

1, Logic Window Skipped

The logic window was skipped due to lack of time to execute.

Correction

1) Increase base cycle time.
2) Reduce Communications Window time.

GFK-2950D November 2018 427

Chapter 9. Diagnostics

9.4.22 Password Access Failure (Group 132)

The fault group Password Access Failure occurs when the CPU receives a request to change to a new
privilege level and the password included with the request is not valid for that level.

Action: Non-configurable.
0, Password Access Failure

Correction
Retry the request with the correct password.

9.4.23 Null System Configuration for RUN Mode (Group 134)

The fault group Null System Configuration for RUN Mode occurs when the CPU transitions from STOP
Mode to one of the RUN Modes and a configuration file is not present. The transition to Run is
permitted, but no 1/O scans occur.

Action: Informational. Non-configurable.
0, Null System Configuration for RUN Mode

Correction
Download a configuration file.

428 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.24 CPU System Software Failure (Group 135)

Faults in this group are generated by the operating software of the CPU. They occur at many different
points of system operation. When a fatal fault occurs, the CPU immediately transitions to STOP/Halt.
The only activity permitted when the CPU is in this mode is communications with the programmer. The
only method of clearing this condition is to cycle power on the controller with the battery
disconnected.

Action: Non-configurable.

5A hex/90 decimal, User Shut Down Requested

The CPU generates this informational alarm when SVC_REQ #13 (User Shut Down) executes in the
application program.

Correction

None required. Information-only alarm.

94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended

This fault is logged each time the redundancy state changes and the redundant CPUs contain
incompatible firmware.

Correction
Ensure that redundant CPUs have compatible firmware.

D8 hex/216 decimal, Processor Exception Trap

The processor has detected an error condition while executing an instruction. The CPU was placed into
STOP/Halt mode.

Correction
Disconnect the battery from the CPU and cycle power to clear the STOP/Halt condition.

DA hex/218 decimal, Critical Over-Temperature Failure
Critical operating temperature of CPU exceeded.

Correction
Turn off CPU to allow heat to disperse and install a fan kit to regulate temperature.

GFK-2950D November 2018 429

Chapter 9. Diagnostics

All Others, CPU Internal System Error

An internal system error has occurred that should not occur in a production system.

Correction

Display the Controller Fault Table on the programmer. Contact Technical Support and give them all the

information contained in the fault entry.

Error Fault Extra Data | Description
Value (First
Byte)
DEVICE_NOT_AVAILABLE CF Specific device is not available in the system.
BAD_DEVICE_DATA cC Data stored on device has been corrupted and is no longer
reliable. Or, Flash Memory has not been initialized.
DEVICE_RW_ERROR CB Error occurred during a read/write of the Flash Memory device.
FLASH_INCOMPAT_ERROR 8E Data in Flash Memory is incompatible with the CPU firmware
release due to the CPU firmware revision numbers, the
instruction groups supported, or the CPU model number.
ITEM_NOT_FOUND_ERROR 8D One or more specified items were not found in Flash Memory.

430 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.4.25 Communications Failure During Store (Group 137)

This fault group occurs during the store of programs or blocks and other data to the CPU. The stream of
commands and data for storing programs or blocks and data starts with a special start-of-sequence
command and terminates with an end-of-sequence command. This fault is logged if communications
with the programming device performing the store is interrupted or any other failure that terminates
the store occurs. As long as this fault is present in the system, the controller will not transition to RUN
Mode. This fault is not automatically cleared on power-up; you must specifically clear the condition.

Action: Non-configurable.
0, Communications Failure During Store
Correction

Clear the fault and retry the download of the program or configuration file.

1, Communications Lost During RUN Mode Store

Communications or power was lost during a RUN Mode Store. The new program or block was not
activated and was deleted.

Correction

Perform the RUN Mode Store again. This fault is diagnostic.

2, Communications Lost During Cleanup for RUN Mode Store

Communications was lost, or power was lost during the cleanup of old programs or blocks during a
RUN Mode Store. The new program or block is installed, and the remaining programs and blocks were
cleaned up.

Correction

None required. This fault is informational.

3, Power Lost During a RUN Mode Store
Power was lost in the middle of a RUN Mode Store.

Correction
Delete and restore the program. This error is fatal.

GFK-2950D November 2018 431

Chapter 9. Diagnostics

9.4.26 Non-Critical CPU Software Event (Group 140)

This group is used for recording conditions in the system that may provide valuable information to
Technical Support.

Default action: Non-configurable.

Error Code Description Correction
1-30 Events during power-up No corrective action is required unless this fault occurs
. . . with other specific faults. The fault may contain useful
31-50 Events on the serial port or in a serial |. . . .
information for Technical Support if other problems are
protocol
encountered.
51,52 Miscellaneous internal system events
53 Access control fault See details below.

54 and greater |Miscellaneous internal system events

No corrective action is required unless this fault occurs
with other specific faults. The fault may contain useful
information for Technical Support if other problems are
encountered.

Error code 53, Access Control Fault

If data access is prevented because of the Enhanced Security settings, the Controller logs a fault into
the fault table. This fault can be used to help diagnose access problems. To prevent overflowing the
fault table, only one fault is logged until the fault table is cleared.

Fault example

Location: 0.8 Date/Time: 07-07-2013 17:06:55.087

Group: 140 INFO_CPU_SOFTWR - CPU software event
Error Code: 53 Action:1 Task Num:3
Extra Data: 00 fa 02 a5 00 00 00 00 01 1e 06 00 00 00 00 00 00 00 01 00 00 00 00 00

Meaning of this example fault

A 1-bit READ request beginning at %S7 was rejected due to an access violation.

432

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

Interpreting the Fault Extra Data

Bytes 1-8: Ignored when decoding a security-related fault.
Byte 9: The operation during which the fault occurred.
= 01 (asinthe example): Read
= 02: Write
Byte 10: The hexadecimal value (HV) that specifies a CPU memory area.
Hexadecimal Memoru area
Value (HV) Y
08 %R (Register memory)
0A %Al (Analog input memory)
ocC %AQ (Analog output memory)
10 %l (Discrete input memory)
12 %Q (Discrete output memory)
14 %T (Discrete temporary status memory)
16 %M (Discrete momentary internal memory)
18 %SA (Discrete system memory A)
1A %SB (Discrete system memory B)
1C %SC (Discrete system memory C)
1E %S (Discrete system memory)
38 %G (Genius global memory)
C4 %W (Bulk Memory)

Bytes 11-18: 0-based bit offset of the memory area being accessed. The 8-byte value is encoded in
little endian format, meaning that the byte values are reversed. In the example, the
value is 0x0000000000000006, which is equal to 1-based bit offset 7.

Bytes 19-22: The length in bits of data requested. In the example, 1 bit was requested.
Bytes 23-24: Ignored when decoding a security-related fault.

GFK-2950D November 2018 433

Chapter 9. Diagnostics

9.5 I/O Fault Descriptions and Corrective Actions

The 1/O fault table reports the following data about faults:
= Fault Group

» Fault Action

= Fault category

= Fault type

= Fault description

All faults have a fault category, but a fault type and fault group may not be listed for every fault. To view
the detailed information pertaining to a fault, click the fault entry in the 1/O Fault Table.

Note: The model number mismatch and I/O type mismatch faults are reported in the controller fault
table under the System Configuration Mismatch group. They are not reported in the 1/O fault
table.

9.5.1 Fault Extra Data

An |/O fault table entry contains up to 21 bytes of I/O fault extra data that contains additional
information related to the fault. Not all entries contain I/O fault extra data.

9.5.2 1/O Fault Groups

Group Number |Group Name Default Fault Action™ Configurable
2 Loss of or Missing I0C Diagnostic Yes
3 Los§ of or Missing 1/0 module or network Diagnostic Ves

Device
6 Addition or Reset of, or Extra I0OC N/A No
7 Add.ition of or Extra 1/O module or network N/A No
Device
9 IOC or 1/O Bus Fault Diagnostic Yes
10 I/O Module Fault N/A No
15 IOC Software Failure Same As Group 2 *° Yes
16 Module Software Failure N/A No
28 PROFINET Alarms Diagnostic No
133 Genius Block Address Mismatch N/A No

!9 The fault action for the IOC Software Failure group 15 always matches the action used by the Loss of or Missing IOC group 2.
If the Loss of or Missing I0C group is configured, the I0C Software Failure group is also configured to take the same fault
action.

434 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.3

I/O Fault Categories

Category

Fault Type

Fault Description

Fault Extra Data

Circuit Fault (1)

GFK-2950D

Discrete Fault (1)

Loss of User Side Power
(01 hex)

Circuit Configuration

Short Circuit in User Wiring
(02 hex)

Circuit Configuration

Sustained Overcurrent
(04 hex)

Circuit Configuration

Low or No Current Flow
(08 hex)

Circuit Configuration

Switch Temperature Too High
(10 hex)

Circuit Configuration

Switch Failure (20 hex)

Circuit Configuration

Point Fault (83 hex)

Circuit Configuration

Output Fuse Blown (84 hex)

Circuit Configuration

Analog Fault (2)

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input Channel Under Range
(04 hex)

Circuit Configuration

Input Channel Over Range (08
hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Over Range or Open Wire
(18 hex)

Circuit Configuration

Output Channel Under Range
(20 hex)

Circuit Configuration

Output Channel Over Range
(40 hex)

Circuit Configuration

Expansion Channel Not
Responding
(80 hex)

Circuit Configuration

Invalid Data (81 hex)

Circuit Configuration

November 2018

435

Chapter 9. Diagnostics

Category

Fault Type
Low-Level Analog Fault (4)

Fault Description

Fault Extra Data

Input Channel Low Alarm
(01 hex)

Circuit Configuration

Input Channel High Alarm
(02 hex)

Circuit Configuration

Input Channel Under Range
(04 hex)

Circuit Configuration

Input Channel Over Range (08
hex)

Circuit Configuration

Input Channel Open Wire
(10 hex)

Circuit Configuration

Wiring Error (20 hex)

Circuit Configuration

Internal Fault (40 hex)

Circuit Configuration

Input Channel Shorted
(80 hex)

Circuit Configuration

Invalid Data (81 hex)

Circuit Configuration

GENA (Genius Network
Adapter) Fault (3)

GENA Circuit Fault (80 hex)

Byte 2:GENA Fault

Remote I/O
Scanner Fault

Remote I/O Scanner Circuit
Fault

Byte 1: Circuit Type
Byte 2: /O Type

Loss of Block (2) Not Specified (0) NA Block Configuration
A/D Communications Number of Input Circuits
Lost (1) Number of Output
Circuits
Addition of Block (3) NA NA Block Configuration
Number of Input Circuits
Number of Output
Circuits
I/O Bus Fault (6) Bus Fault (1) NA NA
Bus Outputs Disabled (2)
SBA Conflict (3)
Genius Module Fault (8) | Headend Fault (0) Configuration Memory Failure | NA
Ato D Comm. Fault (1) (08 hex)
User Scaling Error (5) Calibration Memory Failure
Store Fail (6) (20 hex)
Shared RAM Failure (40 hex)
Internal Circuit Fault (80 hex)
Watchdog Timeout (81 hex)
Output Fuse Blown (84 hex)
Addition of 10C (9) NA Extra Module (01 hex) NA

Reset Request (02 hex)

436

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual

GFK-2950D

Chapter 9. Diagnostics

Category Fault Type Fault Description Fault Extra Data
Loss of I0C (10) NA NA Timeout
Unexpected State
Unexpected Mail Status
VME Bus Error
IOC Software Fault (11) |NA NA NA
Forced Circuit (12) NA NA Block Configuration
Discrete/Analog
Indication*
Unforced Circuit (13) NA NA Block Configuration
Discrete/Analog
Indication*
Loss of I/O Module (14) |NA NA NA
Addition of /O Module | NA VME Module Reset Requested | NA
(15) (30 hex)
Extra I/O Module (16) NA NA NA
Extra Block (17) NA NA NA
IOC Hardware Failure NA NA NA
(18)
GBC stopped reporting | GBC detected high error NA NA
faults because too count on Genius Bus and
many faults have dropped off the bus for at
occurred (19) least 1.5 seconds. (1)
GBC Software Datagram queue full (1) NA
Exception (21) R/W request queue full (2)
Low priority mail rejected
(3)
Background message
received before CPU
completed initialization (4)
Genius software version
too old (5)
Excessive use of internal
GBC memory (6)
Block Switch (22) - NA NA Block Configuration
redundant Genius block Number of Input Circuits
switched bus Number of Output
Circuits
Rack/Slot address of
GBC from which block
was removed.
Block not active on NA NA NA
redundant bus (23)
Reset of I0C (27) NA NA NA

GFK-2950D

November 2018

437

Chapter 9. Diagnostics

Category

Fault Type

Fault Description

Fault Extra Data

PROFINET network
faults (33 and higher)

NA

Refer to PROFINET controller
documentation.

NA

438 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.4 Circuit Faults (Category 1)

Circuit faults apply to Genius 1/O modules and the IC697VRD008 RTD/Strain Bridge modules. Fault
extra data is available for all faults in this category. More than one condition may be presentin a
particular reporting of the fault.

Action: Diagnostic.
Fault Extra Data for Circuit Faults

Genius Bus Controller

Circuit fault entries use one or two bytes of the fault extra data area. If the GBC reports the fault, the
first byte is generated by the GBC and the second byte contains the circuit configuration and is
encoded as shown in the following table.

Value Description

(Byte 2)
1 Circuitis an input.
2 Circuitis an input.
3 Circuit is an output.

If the fault type is a GENA fault, the second byte contains the data that was reported from the GENA
module in Fault Byte 2 of its Report Fault message.
VRDOO1 RTD/Strain Bridge

Circuit fault entries; 13 bytes of the fault extra data area. The fault extra data is encoded as shown in
the following table.

Bytes |Description

1-10 |Used by technical support.

11 Line number

12 Module number

13 Used by technical support.

GFK-2950D November 2018 439

Chapter 9. Diagnostics

Fault Descriptions for Discrete Faults

1, Loss of User Side Power
The GBC generates this error when there is a power loss on the field wiring side of a Genius I/O block.

Correction

1) (Only valid for Isolated 1/O blocks.) Initiate Pulse Test COMREQ #1. Pulse test may be enabled or
disabled at I/O block.

2) Correct the power failure.

2, Short Circuit in User Wiring

The GBC generates this error when it detects a short circuit in the user wiring of a Genius block. A short

circuit is defined as a current level greater than 20 amps.

Correction

Fix the cause of the short circuit.

4, Sustained Overcurrent

The GBC generates this error when it detects a sustained current level greater than 2 amps in the user
wiIring.

Correction

Fix the cause of the over current.

8, Low or No Current Flow
The GBC generates this error when there is very low or no current flow in the user circuit.

Correction
Fix the cause of the condition.

10 hex, Switch Temperature Too High

The GBC generates this error when the Genius block reports a high temperature in the Genius Smart
Switch.

Correction

1) Ensure that the block is installed to provide adequate circulation.
2) Decrease the ambient temperature surrounding the block.
3) Install RC Snubbers on inductive loads.

20 hex, Switch Failure
The GBC generates this error when the Genius block reports a failure in the Genius Smart Switch.

Correction

1) Check for shunts across Genius output (pushbuttons).
2) Replace the Genius I/O block.

83 hex, Point Fault
The CPU generates this error when it detects a failure of a single I/O point on a Genius I/O module.

Correction
Replace the Genius I/O block.

440 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

84 hex, Output Fuse Blown
The CPU generates this error when it detects a blown fuse on a Genius I/O output block.

Correction

1) Determine and repair the cause of the fuse blowing; replace the fuse.
2) Replace the block.

Fault Descriptions for Analog Faults

1, Input Channel Low Alarm
The GBC generates this error when the Genius Analog module reports a low alarm on an input channel.

Correction
Correct the condition causing the low alarm.

2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm on an input
channel.

Correction
Correct the condition causing the high alarm.

4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range condition on an
input channel.

Correction

Correct the problem causing the condition.

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range condition on an
input channel.

Correction
Correct the problem causing the condition.

10 hex/16 decimal, Input Channel Open Wire

The GBC generates this error when a Genius Analog module detects an open wire condition on an input
channel.

Correction
Correct the problem causing the condition.

18 hex/24 decimal, Over Range or Open Wire
Inputs open or inputs off-scale.

Correction
Correct the problem causing the condition.

GFK-2950D November 2018 441

Chapter 9. Diagnostics

20 hex/32 decimal, Output Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range condition on an
output channel.

Correction
Correct the problem causing the condition.

40 hex/64 decimal, Output Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range condition on an
output channel.

Correction
Correct the problem causing the condition.

80 hex/128 decimal, Expansion Channel Not Responding

The CPU generates this error when data from an expansion channel on a multiplexed analog input
board is not responding.

Correction

1) Check wiring to the module.
2) Replace the module.

81 hex/129 decimal, Invalid Data
The GBC generates this error when it detects invalid data from a Genius Analog input block.

Correction
Correct the problem causing the condition.

Low-Level Analog Faults

1, Input Channel Low Alarm

The GBC generates this error when the Genius Analog module reports a low alarm on an input channel.
Correction

Correct the condition causing the low alarm.

2, Input Channel High Alarm

The GBC generates this error when the Genius Analog module reports a high alarm on an input
channel.

Correction
Correct the condition causing the high alarm.

4, Input Channel Under Range

The GBC generates this error when the Genius Analog module reports an under-range condition on an
input channel.

Correction
Correct the problem causing the condition.

442 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

8, Input Channel Over Range

The GBC generates this error when the Genius Analog module reports an over-range condition on an
input channel.

Correction
Correct the problem causing the condition.

10 hex, Input Channel Open Wire

The GBC generates this error when the Genius Analog module detects an open wire condition on an
input channel.

Correction

Correct the problem causing the condition.

20 hex/32 decimal, Wiring Error

The GBC generates this error when the Genius Analog module detects an improper RTD connection or
thermocouple reverse junction fault.

Correction

Correct the problem causing the condition.

40 hex/64 decimal, Internal Fault

The GBC generates this error when the Genius Analog module reports a cold junction sensor fault on a
thermocouple block or an internal error in an RTD block.

Correction

Correct the problem causing the condition.

80 hex/128 decimal, Input Channel Shorted

The GBC generates this error when it detects an input channel shorted on a Genius RTD or Strain
Gauge Block.

Correction

Correct the problem causing the condition.

81 hex/129 decimal, Invalid Data

The GBC generates this error when it detects invalid data from a Genius Analog input block.

Correction
Correct the problem causing the condition.

GENA Fault

The GENA Fault has no fault descriptions associated with it. GENA Fault Byte 2 is the first byte of the
fault extra data.

80 hex/128 decimal

The Genius 1/O operating software generates this error when it detects a failure in a GENA block
attached to the Genius I/O bus.

Correction
Replace the GENA block.

GFK-2950D November 2018 443

Chapter 9. Diagnostics

9.5.5 Loss of Block (Category 2)

The fault category Loss of Block applies to Genius devices.
Action: Diagnostic.

Loss of Block
The GBC generates this error when it is unable to communicate to the Genius device.

Correction

1) Verify power and wiring to the block.

2) Replace the block.

Loss of Block - A/D Communications Fault

The GBC generates this error when it detects a failure of A/D communications on a Genius device.

Correction

1) Verify power and serial bus wiring to the block.
2) Replace the block.

Fault Extra Data for Loss of Block

The Loss of Block fault provides four bytes of fault extra data. The second byte contains the block
configuration and is encoded as shown in the following table. The third byte specifies the number of
input circuits possibly used, and the fourth byte specifies the number of output circuits possibly used.

Block Configuration (Byte 2)

Value |Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

444 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.6 Addition of Block (Category 3)
The fault category Addition of Block applies only to Genius devices. There are no fault types or fault
descriptions associated with this category.

The Genius operating software generates this error when it detects that a Genius block that stopped
communicating with the controller starts communicating again.

Action: Diagnostic.
Correction

Informational only. None required.

Fault Extra Data for Addition of Block

The Addition of Block fault provides four bytes of fault extra data. The second byte contains the block
configuration and is encoded as shown in the following table. The third byte specifies the number of
input circuits possibly used, and the fourth byte specifies the number of output circuits possibly used.

Block Configuration (Byte 2)

Value |Description

1 Block is configured for inputs only.

2 Block is configured for outputs only.

3 Block is configured for inputs and outputs (grouped block).

GFK-2950D November 2018 445

Chapter 9. Diagnostics

9.5.7 1/O Bus Fault (Category 6)

The fault category 1/O Bus Faults has three fault types associated with it.
Default action: Diagnostic. Configurable.

Bus Fault

The GBC operating software generates this error when it detects a failure with a Genius I/O bus.
(Generated when Error Rate in the GBC configuration is exceeded—the default Error Rate is 10 errors in
a 10 second period).

Correction

1) Determine the reason for the bus failure and correct it.
2) Replace the GBC.

The Error Rate can be set higher than the default value if needed, but the bus should be examined
electrically—use an oscilloscope for waveform check.

Bus Outputs Disabled

The GBC operating software generates this error when it times out waiting for the CPU to perform an
output scan.

Correction

1) Reduce time between GBC output scans by assigning them to scan set 1.

2) Increase CPU software watchdog timer setting

3) Replace the CPU.

4) Display the controller fault table on the programmer. Contact Technical Support, giving them all the
information contained in the fault entry.

SBA Conflict

The GBC detected a conflict between its serial bus address and that of another device on the bus.

Correction

Adjust one of the conflicting serial bus addresses.

446 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.8 Module Fault (Category 8)

The fault category Module Fault has one fault type, headend fault, and eight fault descriptions. This
fault category does not provide fault extra data. The default fault action for this category is Diagnostic.

08 hex, Configuration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s EEPROM or NVRAM.
Correction

Replace the Genius block’s electronics module.

20 hex/32 decimal, Calibration Memory Failure

The GBC generates this error when it detects a failure in a Genius block’s calibration memory.
Correction

Replace the Genius block’s electronics module.

40 hex/64 decimal, Shared RAM Fault

The GBC generates this error when it detects an error in a Genius block’s shared RAM.
Correction

Replace the Genius block’s electronics module.

80 hex/128 decimal, Module Fault

An internal failure has been detected in a module.

Correction

Replace the affected module.

81 hex/129 decimal, Watchdog Timeout

The CPU generates this error when it detects that an input module watchdog timer has expired.
Correction

Replace the input module.

84 hex/132 decimal, Output Fuse Blown

The CPU generates this error when it detects a blown fuse on an output module.

Correction

1) Determine and repair the cause of the fuse blowing, and replace the fuse.
2) Replace the module.

GFK-2950D November 2018 447

Chapter 9. Diagnostics

9.5.9 Addition of IOC (Category 9)

The fault category Addition of I/O Controller has no fault types or fault descriptions associated with it.

The default fault action for this category is Diagnostic.

Addition of IOC

The CPU generates this error when an |OC that has been faulted returns to operation or when an IOC is

found in the system and the configuration file indicates that no I0C is to be in that slot or when an I0C

is hot inserted.

Correction

1) No action is necessary if the faulted module is in a remote rack and is returning due to a remote
rack power cycle.

2) Update the configuration file or remove the module.

01 hex, Extra Module

Module present, but not configured.

Correction
Update the configuration file or remove the module.

02 hex, Reset Request
Module added back after reset request. No corrective action is necessary.

9.5.10 Loss of or Missing 10 Controller (Category 10)

The fault category Loss of IOC has no fault types or fault descriptions associated with it.
Default action: Diagnostic. Configurable.
Note: This fault is always displayed as Fatal in the I/O Fault Table, regardless of its configured action.

The CPU generates this error when it cannot communicate with an 1/O Controller and an entry for the
IOC exists in the configuration file.

This fault is also logged when an 10C is hot removed (No corrective action necessary in this case).

Correction

1) Verify that the module in the slot/bus address is the correct module.

2) Review the configuration file and verify that it is correct.

3) Replace the module.

4) If fault is not resolved, display the controller fault table on the programmer. Contact Technical
Support, giving them all the information contained in the fault entry.

Fault Extra Data for Loss of or Missing I0C

Fault extra data for Loss of or Missing I0C provides additional information for diagnostics by Technical
Support.

448 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.11 10C (I/O Controller) Software Fault (Category 11)

The fault category 10C Software Fault applies to any type of I/O Controller.
Action: Fatal.

Datagram Queue Full, Read/Write Queue Full
Too many datagrams or read/write requests have been sent to the GBC.

Correction
Adjust the system to reduce the request rate to the GBC.

Response Lost
The GBC is unable to respond to a received datagram or read/write request.

Correction
Adjust the system to reduce the request rate to the GBC.

9.5.12 Forced and Unforced Circuit (Categories 12 and 13)

The fault categories Forced Circuit and Unforced Circuit report point conditions and therefore are not
technically faults. They have no fault types or fault descriptions. These reports occur when a Genius I/O

point was forced or unforced with the Hand-Held Monitor.
Action: Informational.

Fault Extra Data for Forced/Unforced Circuit
Three bytes of fault extra data are present when a circuit force is added or removed

Byte Number | Description Value |Description

1 Circuit Configuration 1 Circuit is an input.

Circuitis an input.

Circuit is an output.

2 Analog/Discrete Information Block is a discrete block.

Block is an analog block.

W | NP W

Block has both discrete and analog.

GFK-2950D November 2018

449

Chapter 9. Diagnostics

9.5.13 Loss of or Missing I/O Module (Category 14)

The fault category Loss of /O Module applies to discrete and analog I/O modules. There are no fault
types or fault descriptions associated with this category.

Default action: Diagnostic. Configurable.

The CPU generates this error when it detects that an I/O module is no longer responding to commands
from the CPU, or when the configuration file indicates an 1/O module is to occupy a slot and no module
exists in the slot. This fault is also logged when an 1/O module is hot removed (No corrective action
necessary in this case).

Correction

1) Replace the module.

2) Correct the configuration file.

3) Display the I/O fault table on the programmer. Contact Technical Support, giving them all the
information contained in the fault entry.

9.5.14 Addition of I/O Module (Category 15)

The fault category Addition of /O Module applies to discrete and analog I/O modules. There are no fault
types or fault descriptions associated with this category.

Action: Diagnostic.

Addition of 1/0 Module

The CPU generates this error when an I/O module that had been faulted returns to operation or is hot
inserted.

Correction

1) No action necessary if module was removed or replaced or if the remote rack was power cycled.
2) Update the configuration file or remove the module.

30 hex/48 decimal, VME Reset on Request

Reset of VME module was requested. No corrective action necessary.

9.5.15 Extra I/O Module (Category 16)

The fault category Extra I/O Module applies to discrete and analog I/O modules. There are no fault types
or fault descriptions associated with this category.

Action: Diagnostic.

The CPU generates this error when it detects an I/O module in a slot that the configuration file
indicates should be empty.

Correction

1) Remove the module. (It may be in the wrong slot.)
2) Update and restore the configuration file to include the extra module.

450 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.16 Extra Block (Category 17)

The fault category Extra Block applies only to Genius I/O devices. There are no fault types or fault
descriptions associated with this category.

Action: Diagnostic.

The GBC generates this error when it detects a Genius device on the bus at a serial bus address where
the configuration file does not have a block.

Correction

1) Remove or reconfigure the block. (It may be at the wrong serial bus address.)
2) Update and restore the configuration file to include the extra block.

9.5.17 10C Hardware Failure (Category 18)

The fault category I0C Hardware Failure has no fault types or fault descriptions.
Action: Diagnostic.

The Genius operating software generates this error when it detects a hardware failure in the bus
communication hardware or a baud rate mismatch.

Correction

1) Verify that the baud rate set in the configuration file for the GBC agrees with the baud rate
programmed in every block on the bus.

2) Change the configuration file and restore it, if necessary.

3) Replace the GBC.

4) Selectively remove each block from the bus until the offending block is isolated then replace it.

9.5.18 GBC Stopped Reporting Faults (Category 19)
GBC detected a high error count on the Genius I/O bus and dropped off the bus for at least 1.5 seconds.

Correction

Check for incorrect wiring, interference from other equipment, a loose connection, or a failed device on
the Genius bus.

GFK-2950D November 2018 451

Chapter 9. Diagnostics

9.5.19 GBC Software Exception (Category 21)

1, Incoming datagram queue full
Too many datagrams or read/write requests have been sent to the GBC.

Correction
Adjust the system to reduce the request rate to the GBC.

2, Read/write request queue full

The queue for Read/Write requests in the GBC is full. The requests may be from the Genius Bus or from
COMMREQs.

Correction
Adjust the system to reduce the request rate to the GBC.

3, Low priority mail queue from GBC to CPU full
The response to the CPU was lost.

4, Genius background message requiring CPU action received before CPU completed
initialization
Message was ignored.

5, GBC software version too old

Correction
Update GBC firmware.

6, Excessive use of internal GBC memory

Correction
Verify COMMREQ usage.

452 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.5.20 Block Switch (Category 22)

The Block Switch fault category has no fault types or fault descriptions.

Action: Diagnostic.

The GBC generates this error when a Genius block on redundant Genius buses switches from one bus
to another.

Correction

1) No action is required to keep the block operating.

2) The bus that the block switched from may need to be repaired.
a) Verify the bus wiring.
b) Replace the I/O controller.
c) Replace the Bus Switching Module (BSM).

Fault Extra Data for Block Switch

Byte Number | Description Value | Description

1 Circuit configuration 1 | Circuitisaninput.

Circuitis an input.

3 Circuit is an output.
2 Block configuration 1 Block is configured for inputs only.
2 Block is configured for outputs only.
3 Block is configured for inputs and outputs
(grouped block).
3 Number of input circuits used
4 Number of output circuits used

9.5.21 Reset of IOC (Category 27)

The fault category Reset of I/O Controller has no fault types or fault descriptions associated with it. The
default fault action for this category is Diagnostic.

The CPU generates this message when an 1/O Controller is reset. No corrective action necessary.

GFK-2950D November 2018 453

Chapter 9. Diagnostics

9.6 Diagnostic Logic Blocks (DLBs)

A Diagnostic Logic Block (DLB) is a block of Ladder Diagram logic that can be downloaded to the

controller for independent execution. These blocks are useful tools for interacting with an application

that is running in the PACSystems controller. DLBs may be used to:

= Collect information from a running application to analyze and diagnose problems

= Test modifications and corrections to a running application before actually incorporating them into
the application.

= Test the devices that will be controlled by the application.

DLBs are intended to accomplish a specific task that is temporary in nature, such as diagnosing the

source of a problem or testing tuning parameters. When you have finished using a DLB, it should be

removed from the host controller. At this point the application logic and its variable allocation return to

what it was before the DLB was downloaded.

You can also remove the DLBs from the Logic Developer target, at which point the target’s logic and

variable allocation will be identical to what they were before the DLBs were introduced.

Note that, although the DLB is removed from the controller, any changes the DLB made to the system

are not removed. For example, if the DLB logic changes a hardware parameter, the parameter does not

return to its previous value when the DLB is removed.

DLB logic can be executed with the controller in STOP 10 Enabled Mode, which allows debugging the

application without the main application program running.

Caution

Do not use a DLB as a permanent part of a production
application, because a DLB is stopped and deleted from
memory when Logic Developer loses its Programmer-
mode connection with the host controller. This could
happen if the programmer’s communications cable is
disconnected or if a second programmer connects
serially to the same RX3i and establishes a Programmer-
mode session.

Note: Redundancy CPUs do not support DLBs.

454 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.6.1 DLB Operation

DLBs are created as components of a specific Target and are =l-{g#l FMM3235
separate from the application logic block components - Target
associated with a target. 453 Data Watch Lists

They are written in LD programming language and support -] Dizgnostic Logic Blocks

many of the same features, such as View Lock, Edit Lock, etc. as -8 Active Blocks

other block types. E‘—' TESTDBK

A target can have a maximum of 128 DLBs in a given PME E—@@ o Profie
target. Each DLB can have associated published variable table _@ s :
(PVT) and cam profile (used with Motion applications) files. Each @1 LDBK?

DLB can use up to 128K bytes of memory. By Test?

A DLB can be copied and pasted like other blocks. Regardless of
where a DLB is pasted, normal conflict handling is applied. Figure 22: Diagnostic Logic Blocks
(DLBs) assigned to Target in MPE

An active DLB can be dragged to the Toolchest, to folders under the Active Blocks node, or to folders
under the Program Blocks node. Note that only active blocks can be dragged. Downloading, executing,
or modifying a DLB does not affect the equality of the main logic program.

Suspend 1/0 Function and DLBs

The Suspend 1/O (SUS_IO) function operates the same in a DLB as it does in application logic. Both
application logic and DLB logic execute in the CPU Sweep Logic window. Therefore, when a
SUSPEND_IO is executed by either the application or the DLB, outputs are held current during the
output scan that occurs immediately after the Logic window finishes its execution, and input
references will not be updated from inputs during the input scan that occurs immediately before the
Logic window is executed in the next CPU sweep.

Note that a SUSPEND_IO only affects normal I/O scans. It does not affect I/O scanning that is done as
the result of DO_IO or SCAN_SET_IO functions that execute in application or DLB logic. SUS_IO has the
same effect whether it is executed once in a sweep or multiple times in a sweep.

GFK-2950D November 2018 455

Chapter 9. Diagnostics

Restrictions on DLB Operation

Because DLBs are intended only for temporary use, there are more restrictions on their operation
compared to application logic blocks. All built-in functions and function blocks other than those listed
below can be used in DLB logic.

DLB logic may not call any logic block or be called by any logic block.

You cannot define parameters or scheduling for a DLB.

A DLB has no parameters other than the standard ENO output parameter. Since DLBs cannot be
called from other blocks, you can access its ENO parameter only by reading or writing it in the
DLB's logic.

You cannot use variables that have %L or %P addresses. As a consequence, the following features
that require %L or %P memory cannot be used in a DLB:

a. #FST_EXE system variable

b. The built-in timer function blocks, ONDTR, OFDT, and TMR

c. %L or %P variables.

Locally scoped variables must be symbolic. For additional information, refer to DLB Variables.
DLBs or their associated files cannot be loaded from the RX3i.

DLBs and their associated files cannot be downloaded to flash memory.

You cannot give an LD DLB the name _MAIN.

You cannot modify an active LD DLB while it is executing on the Controller.

You cannot perform a Test Edit (Online Edit Mode and Online Test Mode).

You cannot perform word-for-word changes on an active DLB.

DLB Variables

A DLB can have its own variables, which are local to the DLB and not accessible by any other block. All
DLB local variables are symbolic, retentive, and published.

Local variables should be used within DLBs whenever possible. If the system is already running and you
create new global variables in the DLB, the programming software will not download the DLB because

the

programmer’s memory map will no longer match the RX3i controller's memory map.

DLB logic can read and write the global variables of the application that resides in the same target as it
does. These variables may be mapped or symbolic.

To use functions that require the use of located variables, a DLB must use the global located variables
of the application that resides in the same target as the DLB. These functions include:

a. COMMREQ (location of the Status variable)
b. DO_IO
c. Some SVC_REQ functions

A DLB can create aliases to global located application variables or arrays of variables that were
specifically created and documented to serve as scratchpad memory for DLBs that need to use located
variables.

456

PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.6.2 Executing DLBs

DLB Properties
The properties for an active DLB include Execution Mode, which has the following possible values:

= Sweep (Default) - The DLB executes at a fixed point in the normal Controller sweep, until explicitly
stopped.

= Update Rate - Uses the Update Rate defined for the Target. The actual rate varies from a minimum
value equal to the Update Rate to a maximum value of Update Rate + 1 sweep. If the sweep takes
more time than the update rate, the DLB is executed as soon as the user logic program execution
completes in the current sweep.

= Scan Once - The DLB executes exactly one time when the user requests for DLB execution to start.
It then stops executing until it is manually instructed to run again.

Inspeckor
Block Properties

I ame teasureTimeB ebweenk xecutions

Dregcription

Language Ladder

Black Type Block.

Execution Mode Sweep ﬂ
|pdate Rate
Scan Once

Ingpector I

Figure 23: Properties of Diagnostic Logic Block (DLB)

Target Properties

The Target properties include DLB Heartbeat, which specifies, in milliseconds, the maximum time the
controller waits for a heartbeat signal from the programmer. If a heartbeat timeout occurs, the DLB will
be stopped and removed from the controller. This insures that DLB execution is stopped in the event of
a communications failure between the programmer and the controller.

With larger applications or a slower PC, some operations such as opening the Controller File Explorer
may cause the DLB Heartbeat to time out. If this happens, you may need to increase the DLB Heartbeat
interval.

The DLB Heartbeat must always be greater than the Update Rate setting for the Target.

inspe o o

Scheduling Mode Narmal "
Forze Compact PWT True
Enable Shared Varisbles | Falze
DLE Heartbeat [ms) |'|DD|:I
Phuyzical Part ETHERMET w

Inzpectar

Figure 24: DLB Heartbeat Setting

GFK-2950D November 2018 457

Chapter 9. Diagnostics

Right-click Online Operations for an Active DLB

Menu Enable Rules Description

Download | Disabled if block is already running on controller, target Downloads block to controller,
not in programmer mode, Config+Logic is not equal, or removing any other DLB that was
Access Level prevents write. already there.

Start Disabled if block is already running, target not in Downloads block to controller,
programmer mode, another block is executing on removing any other DLB that was
controller, HWC+Logic is not equal, or Access Level already there, and then starts
prevents write executing block.

Stop Disabled if block is not executing Stops execution of block.

Remove Disabled if block is not on controller, block is executing, Stops block, then removes it from
or not in programmer mode controller.

DLB Online Operations

Only a single DLB can be downloaded and executed on the controller at a time. To download an Active
DLB to the controller, you must have:

* Program logic and HWC equal to the controller (Logic EQ)
» Targetin programmer mode
= Sufficient privilege to write to the controller

Operation Minimum PACSystems RX3i Privilege Level Required
Storing DLBs in STOP Mode 3
Storing DLBs in RUN Mode 4

When a DLB is downloaded, you are given the option of storing initial values or clearing memory for
local variables. If another DLB is already downloaded on the controller it will be removed before the
selected DLB is downloaded.

When a DLB is downloaded to the controller, all variables locally scoped to the DLB are published from
the controller so that HMIs or other devices can view the data.

While a DLB is running, the active target is read-only; no changes are allowed to DLB or the application
logic. If the DLB has been downloaded to the controller but is not executing, changes are allowed but
the first change will remove the DLB from the controller. You will be prompted to confirm the change
before the DLB is removed. Uploading of the DLB is not supported.

Once a DLB is downloaded to the controller, it can be started if the main program is running on the
controller in STOP with I/O Enabled or RUN with 1/0 Enabled Mode.

458 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

Removing a DLB from the Controller

The following actions will cause the DLB to be removed from the controller. If the DLB is executing, it
will be stopped before being removed.

= Removing the DLB from the controller through the Online Operations menu.

= Programmer connection to controller is lost by going offline or a communication failure that causes
a DLB Heartbeat timeout

= Switching from programmer mode to monitor mode

= Downloading to controller (Config, Logic, Stored Values, etc.)

= Clearing the controller, other than fault tables and controller supplemental files
= Performing any Flash operation, other than Verify

= Uploading from controller (Config, Logic, Stored Values, etc.)

= Changing the DLB that is on the controller

If there is an executing DLB, and you transition from RUN Mode to STOP Mode, the executing DLB will
be stopped as well. The DLB will not be removed from the controller in this case.

If you initiate an upload, and there is a DLB on the controller, you will be prompted for confirmation and
notified that the DLB will be removed and that all active DLBs will be made inactive. If there are no
DLBs on the controller but there is at least one active DLB, you will be prompted for confirmation and
notified that all active DLBs will be made inactive. If you choose to abort the upload, no changes are
made. If you proceed, all DLBs are deactivated. If DLBs are de-activated, you will have to reactivate
them manually.

When a DLB is removed from the controller, any PMM data logger (DLOG) and event queue (ELOG) files
that were created by the DLB are also removed.

Basic Steps for Using a DLB in the Controller

1) Create an LD Block under the Active Blocks DLB Node in the Navigator.

You can accomplish this in several ways, such as by creating a new block under the Active Blocks
node, dragging a block from the Toolchest, or copying and pasting a block from another project.

2) Select DLB block properties, for example, Execution Mode, as desired.

3) If necessary, change the Target property, DLB Heartbeat. For larger projects, you may need to
increase DLB Heartbeat from its default value of 1000ms to avoid timing out while performing
some operations, such as opening the Controller File Explorer.

4) Go online to the Controller and go into Programmer Mode, Logic Equal.

5) Right click the DLB and select the Online Operations menu to download the DLB to the controller
and start its execution. (To download and start the DLB in one operation, select Online Operations
> Start.)

6) Monitor DLB execution.

GFK-2950D November 2018 459

Chapter 9. Diagnostics

Monitoring DLB Execution
There are several tools to monitor the execution of the DLB in the controller:
= DLB Local Symbolic variables monitored in Data Watch, LD Editor, or Data Monitor.

= DLBIcon shows the DLB state in the Navigator: Downloaded & to controller or Executing ﬁ

= A Proficy View application can monitor the execution of the DLB by using its Local Symbolic
Variables in Panels and Scripts.

The DLB block icon in the Navigator indicates its current state, as shown below:
Inactive DLB - B (block displayed in gray)
Active DLB Downloaded to Controller - & (plock displayed in blue)
Executing DLB - B (block displayed in green)

460 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

9.6.3 Diagnostic Logic Block (DLB) Example

In this example, a block of LD logic is downloaded to the controller and executed.

The basic steps for using a sample DLB in the controller are as follows:

1) Create an LD block named MonitorScan and place it in the Toolchest. For information on working
with the Toolchest, refer to the online help.
The logic in the DLB block measures Controller scan time. It calculates the Minimum (minTime),
Maximum (maxTime), and Average (avgTime) time between DLB block executions. When the DLB is
set to Sweep Mode, these values should be close to the Controller Sweep time.

Logic for the MonitorScan Block

[2ecz

1 Eff Capture a new time reading and convert it ints a real number.
Subtract the old tims from the naw tims, to gt the =lspsed time of the pravious swesp.
SVC REQ MCVE DINT TS
3 WORD REAL
18 —|FNC sveTime[0j —IN Q IN Q
sveTime —|PRM
MOVE UINT TO DIV REAL
2 WORD REAL -
oveTime[2] —IN o M Q 1M1 Q— fracfion
10000 —{IN2
ADD REAL SUB REAL MUL REAL
2oz —(IN1 QO newTime new Time —IN1 O elspsedTime elapeedTime —{IN1 Q
fraction —IlT\E oldTime —]IN2Z 300 —INE

GFK-2950D

November 2018

— elspzedTime

461

Chapter 9. Diagnostics

5| gl s it s
EQ REAL MO
- L REAL |
1
zsweepCnl —|IN1 Q 2.0 /I L= elspezedTime
0.0 —INZ

7 Update the min, max, and times

GT REAL LT REAL (ke
g — - REAL

1
1M1 Q elspeedTim 1M1 Q 114 QF— minTime
0.0 —INZ minTime —]IN2

ET REAL MOWE

g — REAL |
1
elspeedTime —{IN1 Q elspzedTime —{IN O maxTime
maxTime —|INZ
ADD REAL ADD REAL DIV REAL
10 -
slspeedTime —|IN1 QI cumulstiveTime sweepCni —IN1 L zwesplnf cumulstiveTime —{IN1 2 svgTime
cumuistiveTime —{IN2 1.0 —IlhE sweeptnt —|IN2

11 i"itislizs old time to or time
MOWE
12 REAL |
1
newTime —]IM O cidTime

462 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

Chapter 9. Diagnostics

2) Dragand drop the DLB Block from the Toolchest to the Active Blocks node in the Navigator.

MNavigator

=

=128l Demo

+- {0 Logic

£

EIQ scanTimes
&8 Data Watch Lists

EI_L;_‘| Diagnostic Logic Blocks
-5 Active Blocks

'@ MonitorScan

+ i Hardware Configuration

E
&
- gy Reference View Tables
=y supplemental Files

¥

Figure 25: Drag DLB from Toolchest and Drop in Active Blocks Node

3) Inthe DLB block properties, set the Execution Mode to Sweep.

LS
Block Properties
I amme kM anitorScan
Dezcription
Language Ladder
Block Type Block
Execution Maode Sweep j

|nspector I

Figure 26: Set DLB Execution Mode to Sweep (Properties Tab)

4) Go online to the Controller, and select Programmer Mode. Put the Controller in RUN Mode or STOP

Enabled Mode.

5) Select the DLB Online Operations > Start menu to download the DLB to the controller and start its

execution.

EQ ScanTimes
3 Data Watch Lists

i Eﬁ Active Blocks

E|_|;_‘| Diagnostic Logic Blacks

- Tl —
& Inactive Blo
Eﬁ'ﬁ Hardware Confi cut Cirl4¥
-0 Logic Copy Ctrl+C
[Reference View
w0y supplemental Fil - Rensms F2
Delete Del
Online Operations 3 Download
Check Block
Deactivate
Broperties Alt+Enter

Figure 27: Start DLB Execution

GFK-2950D November 2018

463

Chapter 9. Diagnostics

6) In the Initialize Symbolic Variables dialog box, select how new local symbolic variables will be
initialized and click OK.

Initialize symbolic variables

Choose how the memory allocated for new local symbolic variables will be
initizlized.

¢ Cleared [all values zet to zero}

' Set toinitial value of associated variable.

Figure 28: Initialize Local Symbolic Variables
7) Notice the change in the DLB Icon and the DLB status in the Status bar.
DLB Block Icon/Status Bar Once Started.

=28l Demo
[%@ ScanTimes

----- €2 Data Watch Lists

=)L Disgnostic Logic Blocks DLB Running

= &% Active Blocks
L

—Iﬂ Inactive Blocks

Eﬂ'ﬁ Hardware Configuration

I[} Logic

_|j Reference View Tables

-0 Supplemental Files

&1 || 5

% | Programmer, Stop Enabled, Config EQ, Logic EQ, Sweep= 0.0 ms, DLB[MonitorScan, Running] |
Figure 29: DLB Icon and Status Bar after Execution has Commenced

8) Open the DLB block and place the DLB variables in the Data Watch window to observe their

operation.
Data Watch oo

Varable Name Address Value

T':F MonitorScan.avgTime 11.06366

F MonitorScan.min Time 0.0
BEF MonitorScan maxTime 27105.38
F MonitorScan elapsed Time 78125

Figure 30: Data Watch for DLB Variables

464 PACSystems* RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D

GE Automation & Controls
Information Centers

Headquarters:
1-800-433-2682 or 1-434-978-5100

Global regional phone numbers

are available on our web site
www.geautomation-ip.com

Copyright ©2014-2018

General Electric Company. All Rights Reserved.

*Trademark of General Electric Company.

All other brands or names are property of their
respective holders.

Additional Resources

For more information, please
visit the GE's Automation &
Controls web site:

www.geautomation.com

GFK-2950D

file:///C:/Users/Public/Documents/GE%20Intelligent%20Platforms/Tech_Pubs/GFK-2950/www.geautomation.com
file:///C:/Users/Public/Documents/GE%20Intelligent%20Platforms/Tech_Pubs/GFK-2950/www.geautomation.com

	RX7i, RX3i and RSTi-EP CPU Programmer's Reference Manual GFK-2950D
	Table of Contents
	Table of Figures
	Chapter 1 Introduction
	1.1 Revisions in this Manual
	1.2 PACSystems Programming and Configuration
	1.3 Migrating Series 90 Applications to PACSystems
	1.4 PACSystems Documentation
	PACSystems Manuals
	RX3i Manuals
	RX7i Manuals
	Series 90 Manuals
	Distributed I/O Systems Manuals

	Chapter 2 Program Organization
	2.1 Structure of a PACSystems Application Program
	2.1.1 Blocks
	2.1.2 Functions and Function Blocks
	2.1.3 How Blocks Are Called
	2.1.4 Nested Calls
	2.1.5 Types of Blocks
	Program Blocks
	Program Blocks and Local Data
	Using Parameters with a Program Block

	Parameterized Blocks
	Parameterized Blocks and Local Data
	Using Parameters with a Parameterized Block

	User-Defined Function Blocks (UDFBs)
	Defining a UDFB
	Creating UDFB Instances
	Instance Data Structures
	UDFBs and Scope
	Using Parameters with UDFBs
	Using Internal Member Variables with UDFBs
	UDFB Logic
	UDFB Operation with Other Blocks

	External Blocks
	External Blocks and Local Data
	Initialization of C Variables
	Using Parameters with an External Block

	2.1.6 Local Data
	2.1.7 Parameter Passing Mechanisms
	2.1.8 Languages
	Ladder Diagram (LD)
	Function Block Diagram
	Structured Text

	2.2 Controlling Program Execution
	2.3 Interrupt-Driven Blocks
	2.3.1 Interrupt Handling
	2.3.2 Timed Interrupts
	2.3.3 I/O Interrupts
	2.3.4 Module Interrupts
	2.3.5 Interrupt Block Scheduling
	Normal Block Scheduling
	Preemptive Block Scheduling

	Chapter 3 Program Data
	3.1 Variables
	3.1.1 Mapped Variables
	3.1.2 Symbolic Variables
	Restrictions on the Use of Symbolic Variables

	3.1.3 I/O Variables
	Restrictions on the Use of I/O Variables
	I/O Variable Format
	Supported I/O Variable Types
	I/O Variable Examples

	3.1.4 Arrays
	3.1.5 Variable Indexes and Arrays
	Requirements and Support
	Where Array Elements with Variable Indexes are Not Supported:
	Ensuring that a Variable Index does not Exceed the Upper Boundary of an Array
	One-Dimensional Array
	Two-Dimensional Array

	3.2 Reference Memory
	3.2.1 Word (Register) References
	Indirect References
	Bit in Word References
	Restrictions
	Examples:

	3.2.2 Bit (Discrete) References

	3.3 User Reference Size and Default
	3.3.1 %G User References and CPU Memory Locations

	3.4 Genius Global Data
	3.5 Transitions and Overrides
	3.6 Retentiveness of Logic and Data
	3.7 Data Scope
	3.8 System Status References
	3.8.1 %S References
	3.8.2 %SA, %SB, and %SC References
	3.8.3 Fault References
	System Fault References
	Configurable Fault References
	Non-Configurable Faults

	3.9 How Program Functions Handle Numerical Data
	3.9.1 Data Types
	3.9.2 Floating Point Numbers
	Types of Floating Point Variables
	Internal Format of REAL Numbers
	Internal Format of LREAL Numbers
	Errors in Floating Point Numbers and Operations
	IEEE 754 Infinity Representations
	IEEE 754 Representations of NaN values:

	3.10 User Defined Types (UDTs)
	3.10.1 Working with UDTs
	3.10.2 UDT Properties
	3.10.3 UDT Limits
	3.10.4 RUN Mode Store of UDTs
	3.10.5 UDT Operational Notes
	Example

	3.11 Operands for Instructions
	3.12 Word-for-Word Changes
	3.12.1 Exception: Symbolic Variables

	Chapter 4 Ladder Diagram (LD) Programming
	4.1 Advanced Math Functions
	4.1.1 Exponential/Logarithmic Functions
	Operands of the Exponential/Logarithmic Functions

	4.1.2 Square Root
	Example
	Operands for the Square Root Function

	4.1.3 Trig Functions
	Operands of Trig Functions
	Example

	4.1.4 Inverse Trig – ASIN, ACOS, and ATAN
	Operands of Inverse Trig Functions

	4.2 Bit Operation Functions
	4.2.1 Data Lengths for the Bit Operation Functions
	4.2.2 Bit Position
	Operands of Bit Position
	Examples

	4.2.3 Bit Sequencer
	Memory Required for Bit Sequencer
	Operands for Bit Sequencer
	Example

	4.2.4 Bit Set, Bit Clear
	Operands for Bit Set, Bit Clear
	Example 1
	Example 2

	4.2.5 Bit Test
	Operands for Bit Test
	Example 1
	Example 2

	4.2.6 Logical AND, Logical OR, and Logical XOR
	Logical AND
	Logical OR
	Logical XOR
	Operands for Logical AND, OR, and XOR
	Example: Logical AND
	Example: Logical XOR

	4.2.7 Logical NOT
	Operands for Logical NOT
	Example

	4.2.8 Masked Compare
	Operands for Masked Compare Function
	Masked Compare Example 1
	Masked Compare Example 2

	4.2.9 Rotate Bits
	Operands for Rotate Bits
	Example

	4.2.10 Shift Bits
	Shift Left
	Shift Right
	Shift Left and Shift Right
	Operands for Shift Left, Shift Right, Shift Left and Shift Right
	Example

	4.3 Coils
	4.3.1 Coil Checking
	4.3.2 Graphical Representation of Coils
	Coil (Normally Open)
	Continuation Coil
	Negated Coil

	4.3.3 Set Coil, Reset Coil
	Example of Set Coil, Reset Coil

	4.3.4 Transition Coils
	POSCOIL and NEGCOIL
	Operands for POSCOIL and NEGCOIL
	Example for POSCOIL and NEGCOIL

	PTCOIL and NTCOIL
	Operands for PTCOIL and NTCOIL

	Examples Comparing PTCOIL and POSCOIL
	PTCOIL
	POSCOIL

	4.4 Contacts
	4.4.1 Continuation Contact
	4.4.2 Fault Contact
	Operands

	4.4.3 High and Low Alarm Contacts
	Operands

	4.4.4 No Fault Contact
	Operands

	4.4.5 Normally Closed and Normally Open Contacts
	Operands

	4.4.6 Transition Contacts
	POSCON and NEGCON
	Overrides
	Transition to RUN Mode
	Operands for POSCON and NEGCON
	POSCON and NEGCON Example 1
	POSCON and NEGCON Example 2

	PTCON and NTCON
	Operands for PTCON and NTCON
	Examples Comparing PTCON and POSCON
	PTCON
	POSCON
	Logic Example Using PTCON

	4.5 Control Functions
	4.5.1 Do I/O
	Do I/O for Inputs
	Do I/O for Outputs
	Operands
	Example - Do I/O for Inputs
	Example - Do I/O for Outputs

	4.5.2 Edge Detectors
	Operands
	Instance Data Structure

	F_TRIG Operation
	R_TRIG Operation
	Example

	4.5.3 Drum
	Using Drum in Parameterized Blocks
	Finding the Source Block
	Programming Drum in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks

	Recursion

	Using Drum in UDFBs
	Example

	Operands for Drum
	Control Block for the Drum Sequencer Function

	4.5.4 For Loop
	Operands
	For Loop Example 1
	For Loop Example 2

	4.5.5 Mask I/O Interrupt
	Operands
	Example

	4.5.6 Read Switch Position
	Operands

	4.5.7 Scan Set IO
	Operands for SCAN_SET_IO
	Example

	4.5.8 Suspend I/O
	Example

	4.5.9 Suspend or Resume I/O Interrupt
	Operands
	Example

	4.6 Conversion Functions
	4.6.1 Convert Angles
	Operands
	Example

	4.6.2 Convert UINT or INT to BCD4
	Operands
	Example - UINT to BDC4
	Example - INT to BCD4

	4.6.3 Convert DINT to BCD8
	Operands
	Example

	4.6.4 Convert BCD4, UINT, DINT, or REAL to INT
	BDC4, UINT, and DINT
	REAL
	Operands
	Example: BCD4 to INT
	Example: UINT to INT
	Example: DINT to INT

	4.6.5 Convert BCD4, INT, DINT, or REAL to UINT
	Operands
	Example: BCD4 to UINT
	Example: INT to UINT
	Example: DINT to UINT
	Example: REAL to UINT

	4.6.6 Convert BCD8, UINT, INT, REAL or LREAL to DINT
	BCD8, UINT, and INT
	REAL and LREAL
	Operands
	Example: UINT to DINT
	Example: BCD8 to DINT
	Example: INT to DINT
	Example: REAL to DINT

	4.6.7 Convert BCD4, BCD8, UINT, INT, DINT, and LREAL to REAL
	Operands
	Example: UINT to REAL
	Example: INT to REAL
	Example: LREAL to REAL

	4.6.8 Convert REAL to LREAL
	Operands
	Example

	4.6.9 Convert DINT to LREAL
	4.6.10 Truncate
	Operands
	Example

	4.7 Counters
	4.7.1 Data Required for Counter Function Blocks
	Word 3: Control Word Structure

	4.7.2 Down Counter
	Operands
	Example – Down Counter

	4.7.3 Up Counter
	Operands
	Example – Up Counter
	Example – Up Counter and Down Counter

	4.8 Data Move Functions
	4.8.1 Array Size
	Operands
	Example

	4.8.2 Array Size Dimension Function Blocks
	Array Size Dimension 1
	Operands

	Array Size Dimension 2
	Operands
	Example - FOR_LOOP that Iterates Through Dimension 1 of an Array

	4.8.3 Block Clear
	Operands
	Example

	4.8.4 Block Move
	Operands
	Example

	4.8.5 BUS_ Functions
	Rack, Slot, Subslot, Region, and Offset Parameters
	BUS Read
	Operands for BUS READ
	BUS_RD Status in the ST Output

	BUS Read Modify Write
	Operands for BUS_RMW
	BUS_RMW Status in the ST Output

	BUS Test and Set
	Operands for BUS Test and Set

	BUS Write
	Operands for Bus Write

	4.8.6 Communication Request (COMMREQ)
	Command Block
	Command Block Structure
	Status Pointer Memory Type

	Operands for COMMREQ
	COMMREQ Status Word
	COMMREQ Example 1
	COMMREQ Example 2

	4.8.7 Data Initialization
	Operands
	Example

	4.8.8 Data Initialize ASCII
	Operands
	Example

	4.8.9 Data Initialize Communications Request
	Operands
	Example

	4.8.10 Data Initialize DLAN
	Operands

	4.8.11 Move
	MOVE Operands
	MOVE_BOOL Example
	MOVE_WORD Example

	4.8.12 Move Data
	MOVE_DATA Operands

	4.8.13 Move Data Explicit
	MOVE_DATA_EX Operands
	Example

	4.8.14 Move From Flat
	Operation
	Copying arrays and array elements
	Example:

	Copying to specified array elements
	Example:

	MOVE_FROM_FLAT Operands
	Example

	4.8.15 Move to Flat
	Copying Arrays and Array Elements
	MOVE_TO_FLAT Operands
	Example

	4.8.16 Shift Register
	Operands for Shift Register
	Example

	4.8.17 Size Of
	Operands
	Example

	4.8.18 Swap
	Operands for Swap
	Example for Swap

	4.9 Data Table Functions
	4.9.1 Array Move
	Operands for Array Move
	Array Move Example 1
	Array Move Example 2
	Array Move Example 3

	4.9.2 Array Range
	Operands for Array Range
	Array Range Example 1
	Array Range Example 2

	4.9.3 FIFO Read
	Operands for FIFO Read
	Example for FIFO Read

	4.9.4 FIFO Write
	Operands for FIFO Write
	Example for FIFO Write

	4.9.5 LIFO Read
	Operands for LIFO Read
	Example for LIFO Read

	4.9.6 LIFO Write
	Operands for LIFO Write
	Example for LIFO Write

	4.9.7 Search
	Search Relationships:
	Operands for the Search Function
	Example for the Search Function

	4.9.8 Sort
	Operands
	Example

	4.9.9 Table Read
	Operands
	Table Read Example

	4.9.10 Table Write
	Operands
	Table Write Example

	4.10 Math Functions
	4.10.1 Overflow
	4.10.2 Absolute Value
	Operands
	Example

	4.10.3 Add
	Operands of the ADD Function
	Example1 for ADD
	Example2 for ADD

	4.10.4 Divide
	Operands for the DIV Function
	DIV_MIXED Operands
	DIV_MIXED Example

	4.10.5 Modulus
	Operands for Modulus Function

	4.10.6 Multiply
	Operands for Multiply
	Example – Scaling Analog Input Values

	4.10.7 Scale
	Operands
	Example

	4.10.8 Subtract
	Operands for Subtract

	4.11 Program Flow Functions
	4.11.1 Argument Present
	Operands for ARG_PRES
	Example for ARG_PRES

	4.11.2 Call
	Operands for Call
	Example 1 for Call
	Example 2 for Call
	Logic for AVG_4 Parameterized Block

	4.11.3 Comment
	4.11.4 JumpN
	Operands

	4.11.5 Master Control Relay/End Master Control Relay
	MCRN
	EndMCRN
	Operands for MCRN/ENDMCRN
	Example of MCRN/ENDMCRN

	4.11.6 Wires

	4.12 Relational Functions
	4.12.1 Compare
	Operands
	Example

	4.12.2 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	4.12.3 EQ_DATA
	Operands

	4.12.4 Range
	Operands
	Example

	4.13 Timers
	4.13.1 Timed Contacts
	4.13.2 Timer Function Blocks
	Built-In Timer Function Blocks
	Data Required for Built-in Timer Function Blocks
	Word 1: Current value (CV)
	Word 2: Preset value (PV)
	Word 3: Control word

	Using OFDT, ONDTR and TMR in Program Blocks not Called Every Sweep
	Timers that are Skipped by the Jump Instruction
	Using OFDT, ONDTR and TMR in Parameterized Blocks
	Finding the Source Block
	Programming OFDT, ONDTR and TMR in Parameterized Blocks
	Parameterized block called from one block
	Parameterized block called from multiple blocks
	Recursion

	Using OFDT, ONDTR and TMR in UDFBs
	Example

	Off Delay Timer
	Timing diagram
	Operands for OFDT
	Example for OFDT

	On Delay Stopwatch Timer
	Timing diagram
	Operands for On Delay Stopwatch Timer
	Example for On Delay Stopwatch Timer

	On Delay Timer
	Timing Diagram
	Operands for On Delay Timer
	Example for On Delay Timer

	4.13.3 Standard Timer Function Blocks
	Data Required for Standard Timer Function Blocks
	Resetting the Timer
	Operands
	Timer Off Delay
	Timing Diagram
	Example

	Timer On Delay
	Timing Diagram
	Example

	Timer Pulse
	Timing Diagram
	Example

	Chapter 5 Function Block Diagram (FBD)
	5.1 Note on Reentrancy
	5.2 Advanced Math Functions
	5.2.1 EXPT Function
	Operands of the EXPT Function

	5.3 Bit Operation Functions
	5.3.1 Logical AND, Logical OR, and Logical XOR
	Operands for AND, OR, and XOR
	Properties for AND, OR, and XOR

	5.3.2 Logical NOT
	Operands

	5.4 Comments
	5.4.1 Text Block

	5.5 Comparison Functions
	5.5.1 Equal, Not Equal, Greater or Equal, Greater Than, Less or Equal, Less Than
	Operands

	5.6 Control Functions
	5.7 Counters
	5.8 Data Move Functions
	5.8.1 Fan Out
	Operands

	5.8.2 Move Data
	MOV Operands

	5.9 Math Functions
	5.9.1 Overflow
	5.9.2 Add
	Operands of the ADD Function
	Properties for ADD

	5.9.3 Divide
	Operands for DIV_UINT, DIV_INT, DIV_DINT, and DIV_REAL

	5.9.4 Modulus
	Operands for Modulus Function

	5.9.5 Multiply
	Operands for Multiply
	Properties for Multiply

	5.9.6 Negate
	Operands

	5.9.7 Subtract
	Operands for Subtract
	Properties for Subtract

	5.10 Program Flow Functions
	5.11 Timers
	5.11.1 Built-in Timer Function Blocks
	5.11.2 Standard Timer Function Blocks

	5.12 Type Conversion Functions
	5.12.1 Convert WORD to INT
	Operands

	5.12.2 Convert WORD to UINT
	Operands

	5.12.3 Convert DWORD to DINT
	Operands

	5.12.4 Convert INT or UINT to WORD
	Operands

	5.12.5 Convert DINT to DWORD
	Operands

	Chapter 6 Service Request Function
	6.1 Operation of SVC_REQ Function
	6.1.1 Ladder Diagram
	Operands
	Example

	6.1.2 Function Block Diagram
	Operands

	6.2 SVC_REQ 1: Change/Read Constant Sweep Timer
	6.2.1 To disable Constant Sweep mode:
	6.2.2 To enable Constant Sweep mode and use the old timer value:
	6.2.3 To enable Constant Sweep mode and use a new timer value:
	6.2.4 To change the timer value without changing the selection for sweep mode state:
	6.2.5 To read the current timer state and value without changing either:
	Output
	SVC_REQ 1 Example

	6.3 SVC_REQ 2: Read Window Modes and Time Values
	Output
	Mode Values
	SVC_REQ 2 Example

	6.4 SVC_REQ 3: Change Controller Communications Window Mode
	6.4.1 To disable the controller communications window:
	6.4.2 To re-enable or change the controller communications window mode:
	SVC_REQ 3 Example

	6.5 SVC_REQ 4: Change Backplane Communications Window Mode and Timer Value
	6.5.1 To disable the Backplane Communications window:
	6.5.2 To enable the Backplane Communications window mode:
	SVC_REQ 4 Example

	6.6 SVC_REQ 5: Change Background Task Window Mode and Timer Value
	6.6.1 To disable the Background Task window:
	6.6.2 To enable the Background Task window mode:
	SVC_REQ 5 Example

	6.7 SVC_REQ 6: Change/Read Number of Words to Checksum
	6.7.1 To read the word count:
	6.7.2 To set a new word count:
	SVC_REQ 6 Example

	6.8 SVC_REQ 7: Read or Change the Time-of-Day Clock
	6.8.1 Parameter Block Formats
	BCD, 2-Digit Year
	BCD, 4-Digit Year
	POSIX
	Unpacked BCD (2-Digit Year)
	Unpacked BCD (4-Digit Year)
	Numeric, 2-Digit Year
	Numeric, 4-Digit Year
	Packed ASCII, 2-Digit Year
	Packed ASCII, 4-Digit Year
	SVC_REQ 7 Example

	6.9 SVC_REQ 8: Reset Watchdog Timer
	SVC_REQ 8 Example

	6.10 SVC_REQ 9: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 9 Example

	6.11 SVC_REQ 10: Read Target Name
	Output
	SVC_REQ 10 Example

	6.12 SVC_REQ 11: Read Controller ID
	Output
	SVC_REQ 11 Example

	6.13 SVC_REQ 12: Read Controller Run State
	Output
	SVC_REQ 12 Example

	6.14 SVC_REQ 13: Shut Down (STOP) CPU
	SVC_REQ 13 Example

	6.15 SVC_REQ 14: Clear Controller or I/O Fault Table
	SVC_REQ 14 Example

	6.16 SVC_REQ 15: Read Last-Logged Fault Table Entry
	Input Parameter Block
	Output Parameter Block
	Long/Short Value
	SVC_REQ 15 Example 1
	SVC_REQ 15 Example 2

	6.17 SVC_REQ 16: Read Elapsed Time Clock
	Output
	SVC_REQ 16 Example

	6.18 SVC_REQ 17: Mask/Unmask I/O Interrupt
	6.18.1 Masking/Unmasking Module Interrupts
	SVC_REQ 17 Example 1
	SVC_REQ 17 Example 2

	6.19 SVC_REQ 18: Read I/O Forced Status
	Output
	SVC_REQ 18 Example

	6.20 SVC_REQ 19: Set Run Enable/Disable
	SVC_REQ 19 Example

	6.21 SVC_REQ 20: Read Fault Tables
	6.21.1 Non-Extended Formats
	Input Parameter Block Format
	Non-Extended Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 00h or 01h
	Format for Parameter Setting 41h

	6.21.2 Extended Formats
	Input Parameter Block Format
	Extended Format Output Parameter Block Format
	Format of Returned Data for Fault Table Entries
	Format for Parameter Setting 0x80h & 0x81h
	Format for Parameter Setting 0xC1h
	SVC_REQ 20 Example 1: Non-Extended Format
	SVC_REQ 20 Example 2: Extended Format

	6.22 SVC_REQ 21: User-Defined Fault Logging
	SVC_REQ 21 Example

	6.23 SVC_REQ 22: Mask/Unmask Timed Interrupts
	SVC_REQ 22 Example

	6.24 SVC_REQ 23: Read Master Checksum
	Output
	SVC_REQ 23 Example

	6.25 SVC_REQ 24: Reset Module
	SVC_REQ 24 Example

	6.26 SVC_REQ 25: Disable/Enable EXE Block and Standalone C Program Checksums
	SVC_REQ 25 Example

	6.27 SVC_REQ 29: Read Elapsed Power Down Time
	SVC_REQ 29 Example

	6.28 SVC_REQ 32: Suspend/Resume I/O Interrupt
	SVC_REQ 32 Example

	6.29 SVC_REQ 45: Skip Next I/O Scan
	SVC_REQ 45 Example

	6.30 SVC_REQ 50: Read Elapsed Time Clock
	Output
	SVC_REQ 50 Example

	6.31 SVC_REQ 51: Read Sweep Time from Beginning of Sweep
	Output
	SVC_REQ 51 Example

	6.32 SVC_REQ 56: Logic Driven Read of Nonvolatile Storage
	6.32.1 Discrete Memory
	6.32.2 Storage Disabled Conditions
	6.32.3 Maximum of One Active Instruction
	6.32.4 ENO and Power Flow To The Right
	6.32.5 Parameter Block
	Memory Type Codes
	Response Status Codes for SVC_REQ 56
	SVC_REQ 56 Example
	Parameter Block for SVC_REQ 56 Example

	6.33 SVC_REQ 57: Logic Driven Write to Nonvolatile Storage
	6.33.1 Length of Data Written
	6.33.2 Write Frequency
	6.33.3 Erase Cycles
	6.33.4 Discrete Memory
	6.33.5 Retentiveness
	6.33.6 Maximum of One Active Instruction
	6.33.7 Storage Disabled Conditions
	6.33.8 Error Checking
	6.33.9 Fragmentation
	6.33.10 When nonvolatile storage is full
	6.33.11 Equality
	6.33.12 Redundancy
	6.33.13 ENO and Power Flow to the Right
	6.33.14 Parameter Block for SVC_REQ 57
	Response Status Codes for SVC_REQ 57
	SVC_REQ 57 Example
	Parameter Block for SVC_REQ 57 Example

	Chapter 7 PID Built-In Function Block
	7.1 Operands of the PID Function
	7.1.1 Operands for LD Version of PID Function Block
	7.1.2 Operands for FBD Version of PID Function Block

	1.1
	7.2 Reference Array for the PID Function
	7.2.1 Scaling Input and Outputs
	7.2.2 Reference Array Parameters

	7.3 Operation of the PID Function
	7.3.1 Automatic Operation
	7.3.2 Manual Operation
	7.3.3 Time Interval for the PID Function

	7.4 PID Algorithm Selection (PIDISA or PIDIND) and Gain Calculations
	7.4.1 Derivative Term
	7.4.2 Error Term Mode
	7.4.3 Derivative Action on PV Bit
	7.4.4 Combined Operation of Error Term and Derivative Action Modes
	7.4.5 CV Bias Term
	7.4.6 CV Amplitude and Rate Limits
	7.4.7 Sample Period and PID Function Block Scheduling

	7.5 Determining the Process Characteristics
	7.6 Setting Tuning Loop Gains
	7.6.1 Basic Iterative Tuning Approach
	7.6.2 Setting Loop Gains Using the Ziegler and Nichols Tuning Approach
	7.6.3 Ideal Tuning Method

	7.7 PID Example
	7.7.1 Reference Array Initialization using %M00006

	Chapter 8 Structured Text (ST) Programming
	8.1 Language Overview
	8.1.1 Statements
	8.1.2 Expressions
	8.1.3 Operators
	Operand Types

	8.1.4 Structured Text Syntax

	8.2 Statement Types
	8.2.1 Assignment Statement
	Format
	Examples

	8.2.2 Function Call
	Built-in Functions Supported for ST Calls
	Calls to Standard Function Blocks
	Format of Calls to Standard Timer Function Blocks
	Formal Convention
	Informal Convention

	Block Types Supported for ST Calls
	Formal Calls vs. Informal Calls
	Format of Formal Function Call
	Format of Informal Function Call
	Example

	8.2.3 RETURN Statement
	8.2.4 IF Statement
	Format
	Operation
	Example

	8.2.5 CASE Statement
	Format
	Operation
	Requirements for Conditional Statements
	Examples

	8.2.6 FOR … DO Statements
	Format
	Operation
	Examples

	8.2.7 WHILE Statement
	Format
	Operation
	Example

	8.2.8 REPEAT Statement
	Format
	Operation
	Example

	8.2.9 ARG_PRES Statement
	Format
	Example

	8.2.10 Exit Statement
	Format
	Example

	Chapter 9 Diagnostics
	9.1 Fault Handling Overview
	9.1.1 System Response to Faults
	9.1.2 Fault Tables
	9.1.3 Fault Actions and Fault Action Configuration
	Faults that are part of configurable fault groups:
	Faults that are part of non-configurable fault groups:

	9.2 Using the Fault Tables
	9.2.1 Controller Fault Table
	Viewing Controller Fault Details
	User-Defined Faults

	9.2.2 I/O Fault Table
	Viewing I/O Fault Details

	9.3 System Handling of Faults
	9.3.1 System Fault References
	Fault References for Configurable Faults
	Fault References for Non-Configurable Faults

	9.3.2 Using Fault Contacts
	Fault Locating References (Rack, Slot, Bus, Module)
	Fault Locating Reference Name Format
	Fault Reference Name Examples:

	Behavior of Fault Locating References

	9.3.3 Using Point Faults
	9.3.4 Using Alarm Contacts

	9.4 Controller Fault Descriptions and Corrective Actions
	9.4.1 Controller Fault Groups
	9.4.2 Loss of or Missing Rack (Group 1)
	1, Rack Lost
	Correction

	2, Rack Not Responding
	Correction

	9.4.3 Loss of or Missing Option Module (Group 4)
	3C hex/60 decimal, Module in Firmware Update Mode
	Correction

	63 hex/99 decimal, Module Hot Removed
	All Others, Module Failure During Configuration
	Correction

	9.4.4 Addition of, or Extra Rack (Group 5)
	1, Extra Rack
	Correction

	9.4.5 Reset of, Addition of, or Extra Option Module (Group 8)
	3, LAN Interface Restart Complete, Running Utility
	Correction

	7, Extra Option Module
	Correction

	E Hex/14 Decimal, Option Module Hot inserted

	9.4.6 System Configuration Mismatch (Group 11)
	2, Genius I/O Block Model Number Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Model Number Mismatch
	Installed/Configured Module Types (Bytes 2 and 3 of Fault Extra Data)
	GENA Application ID Numbers

	4, I/O Type Mismatch
	Correction
	Fault Extra Data for I/O Type Mismatch
	Genius Installed Module I/O Types (Byte 2 of Fault Extra Data)
	Genius Configured Module I/O Types (Byte 3 of Fault Extra Data)

	8, Analog Expander Mismatch
	Correction

	9, Genius I/O Block Size Mismatch
	Correction
	Fault Extra Data for Genius I/O Block Size Mismatch

	A hex/10 decimal, Unsupported Feature
	Correction
	Fault Extra Data for Unsupported Feature

	E hex/14 decimal, LAN Duplicate MAC Address
	Correction

	F hex/15 decimal, LAN Duplicate MAC Address Resolved
	10 hex/16 decimal, LAN MAC Address Mismatch
	Correction

	11 hex/17 decimal, LAN Softswitch/Modem mismatch
	Correction

	13 hex/19 decimal, DCD Length Mismatch
	Correction
	Fault Extra Data for DCD Length Mismatch

	25 hex/37 decimal, Controller Reference Out-of-Range
	Correction

	26 hex/38 decimal, Bad Program Specification
	Correction

	27 hex/39 decimal, Unresolved or Disabled Interrupt Reference
	Correction

	43 hex/67 decimal, Module Configuration Failure
	Correction

	4B hex/75 decimal, ECC jumper is disabled, but should be enabled
	Correction

	4C hex/76 decimal, ECC jumper is enabled, but should be disabled
	Correction

	All Others, Module and Configuration do not Match
	Correction

	9.4.7 System Bus Error (Group 12)
	4, Unrecognized VME Interrupt Source
	Correction

	9.4.8 CPU Hardware Failure (Group 13)
	6E hex/110 decimal, Time-of-Day Clock not Battery-Backed
	Correction

	0A8 hex/168 decimal, Critical Over-Temperature Failure
	All Others
	Correction
	Fault Extra Data for CPU Hardware Failure

	9.4.9 Module Hardware Failure (Group 14)
	1A0 hex/416 decimal, Missing 12 Volt Power Supply
	Correction

	1C2 - 1C6 hex (450 – 454 decimal), LAN Interface Hardware Failure
	All Others, Module Hardware Failure
	Correction

	9.4.10 Option Module Software Failure (Group 16)
	1, Unsupported Board Type
	Correction

	2, 3, COMMREQ Frequency Too High
	Correction

	4, More Than One BTM in a Rack
	Correction

	>4, Option Module Software Failure
	Correction

	>400, LAN System Software Fault
	Correction

	9.4.11 Program or Block Checksum Failure (Group 17)
	All Error Codes, Program or Block Checksum Failure
	Correction
	Fault Extra Data for Program or Block Checksum Failure

	9.4.12 Battery Status (Group 18)
	0, Failed Battery
	CPUs with battery-backed RAM, including RX7i CPUs, and RX3i CPU310, CPU315, CPU/CRU320 and NIU001
	CPE302, CPE305 and CPE310
	Correction

	1, Low Battery – CPUs with Battery-Backed RAM
	Correction

	1, Low Battery – CPE302/CPE305/CPE310/CPE330 CPUs with Energy Pack

	9.4.13 Constant Sweep Time Exceeded (Group 19)
	0, Constant Sweep
	Correction

	9.4.14 System Fault Table Full (Group 20)
	0, System Fault Table Full
	Correction

	9.4.15 I/O Fault Table Full (Group 21)
	0, I/O Fault Table Full
	Correction

	9.4.16 User Application Fault (Group 22)
	2, Software Watchdog Timer Expired
	Correction

	7, Application Stack Overflow
	Correction

	11 hex/17 decimal, Program Run Time Error
	Correction

	22 hex/34 decimal, Unsupported Protocol
	33 hex/51 decimal, Flash Read Failed
	34 hex/52 decimal, Memory Reference Out of Range
	Correction

	35 hex/53 decimal, Divide by zero attempted in user logic.
	Correction

	36 hex/54 decimal, Operand is not byte aligned.
	Correction

	39 hex/57 decimal, DLB heartbeat not received, All DLBs stopped and deleted
	Correction

	3B hex /59 decimal, PSB called by a block whose %L or %P memory is not large enough to accommodate this reference.
	Correction

	9.4.17 CPU Over-Temperature (Group 24)
	1, Over-Temperature failure.
	Correction

	9.4.18 Power Supply Fault (Group 25)
	1, Power supply failure.
	Correction

	2, Power supply overloaded
	Correction

	3, Power supply switched off
	4, Power-supply has exceeded normal operating temperature
	Correction

	9.4.19 No User Program on Power-Up (Group 129)
	Correction

	9.4.20 Corrupted User Program on Power-Up (Group 130)
	1, Corrupted user RAM on power-up
	Recommended Corrections, Listed in Order

	7, User memory not preserved over power cycle
	Correction

	9.4.21 Window Completion Failure (Group 131)
	0, Window Completion Failure
	Correction

	1, Logic Window Skipped
	Correction

	9.4.22 Password Access Failure (Group 132)
	0, Password Access Failure
	Correction

	9.4.23 Null System Configuration for RUN Mode (Group 134)
	0, Null System Configuration for RUN Mode
	Correction

	9.4.24 CPU System Software Failure (Group 135)
	5A hex/90 decimal, User Shut Down Requested
	Correction

	94 hex/148 decimal, Units Contain Mismatched Firmware, Update Recommended
	Correction

	D8 hex/216 decimal, Processor Exception Trap
	Correction

	DA hex/218 decimal, Critical Over-Temperature Failure
	Correction

	All Others, CPU Internal System Error
	Correction

	9.4.25 Communications Failure During Store (Group 137)
	0, Communications Failure During Store
	Correction

	1, Communications Lost During RUN Mode Store
	Correction

	2, Communications Lost During Cleanup for RUN Mode Store
	Correction

	3, Power Lost During a RUN Mode Store
	Correction

	9.4.26 Non-Critical CPU Software Event (Group 140)
	Error code 53, Access Control Fault
	Fault example
	Meaning of this example fault
	Interpreting the Fault Extra Data

	9.5 I/O Fault Descriptions and Corrective Actions
	9.5.1 Fault Extra Data
	9.5.2 I/O Fault Groups
	9.5.3 I/O Fault Categories
	9.5.4 Circuit Faults (Category 1)
	Fault Extra Data for Circuit Faults
	Genius Bus Controller
	VRD001 RTD/Strain Bridge

	Fault Descriptions for Discrete Faults
	1, Loss of User Side Power
	Correction

	2, Short Circuit in User Wiring
	Correction

	4, Sustained Overcurrent
	Correction

	8, Low or No Current Flow
	Correction

	10 hex, Switch Temperature Too High
	Correction

	20 hex, Switch Failure
	Correction

	83 hex, Point Fault
	Correction

	84 hex, Output Fuse Blown
	Correction

	Fault Descriptions for Analog Faults
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex/16 decimal, Input Channel Open Wire
	Correction

	18 hex/24 decimal, Over Range or Open Wire
	Correction

	20 hex/32 decimal, Output Channel Under Range
	Correction

	40 hex/64 decimal, Output Channel Over Range
	Correction

	80 hex/128 decimal, Expansion Channel Not Responding
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	Low-Level Analog Faults
	1, Input Channel Low Alarm
	Correction

	2, Input Channel High Alarm
	Correction

	4, Input Channel Under Range
	Correction

	8, Input Channel Over Range
	Correction

	10 hex, Input Channel Open Wire
	Correction

	20 hex/32 decimal, Wiring Error
	Correction

	40 hex/64 decimal, Internal Fault
	Correction

	80 hex/128 decimal, Input Channel Shorted
	Correction

	81 hex/129 decimal, Invalid Data
	Correction

	GENA Fault
	80 hex/128 decimal
	Correction

	9.5.5 Loss of Block (Category 2)
	Loss of Block
	Correction

	Loss of Block - A/D Communications Fault
	Correction
	Fault Extra Data for Loss of Block
	Block Configuration (Byte 2)

	9.5.6 Addition of Block (Category 3)
	Correction
	Fault Extra Data for Addition of Block
	Block Configuration (Byte 2)

	9.5.7 I/O Bus Fault (Category 6)
	Bus Fault
	Correction

	Bus Outputs Disabled
	Correction

	SBA Conflict
	Correction

	9.5.8 Module Fault (Category 8)
	08 hex, Configuration Memory Failure
	Correction

	20 hex/32 decimal, Calibration Memory Failure
	Correction

	40 hex/64 decimal, Shared RAM Fault
	Correction

	80 hex/128 decimal, Module Fault
	Correction

	81 hex/129 decimal, Watchdog Timeout
	Correction

	84 hex/132 decimal, Output Fuse Blown
	Correction

	9.5.9 Addition of IOC (Category 9)
	Addition of IOC
	Correction

	01 hex, Extra Module
	Correction

	02 hex, Reset Request

	9.5.10 Loss of or Missing IO Controller (Category 10)
	Correction
	Fault Extra Data for Loss of or Missing IOC

	9.5.11 IOC (I/O Controller) Software Fault (Category 11)
	Datagram Queue Full, Read/Write Queue Full
	Correction

	Response Lost
	Correction

	9.5.12 Forced and Unforced Circuit (Categories 12 and 13)
	Fault Extra Data for Forced/Unforced Circuit

	9.5.13 Loss of or Missing I/O Module (Category 14)
	Correction

	9.5.14 Addition of I/O Module (Category 15)
	Addition of I/O Module
	Correction

	30 hex/48 decimal, VME Reset on Request

	9.5.15 Extra I/O Module (Category 16)
	Correction

	9.5.16 Extra Block (Category 17)
	Correction

	9.5.17 IOC Hardware Failure (Category 18)
	Correction

	9.5.18 GBC Stopped Reporting Faults (Category 19)
	Correction

	9.5.19 GBC Software Exception (Category 21)
	1, Incoming datagram queue full
	Correction

	2, Read/write request queue full
	Correction

	3, Low priority mail queue from GBC to CPU full
	4, Genius background message requiring CPU action received before CPU completed initialization
	5, GBC software version too old
	Correction

	6, Excessive use of internal GBC memory
	Correction

	9.5.20 Block Switch (Category 22)
	Correction
	Fault Extra Data for Block Switch

	9.5.21 Reset of IOC (Category 27)

	9.6 Diagnostic Logic Blocks (DLBs)
	9.6.1 DLB Operation
	Suspend I/O Function and DLBs
	Restrictions on DLB Operation
	DLB Variables

	9.6.2 Executing DLBs
	DLB Properties
	Target Properties
	Right-click Online Operations for an Active DLB

	DLB Online Operations
	Removing a DLB from the Controller
	Basic Steps for Using a DLB in the Controller
	Monitoring DLB Execution

	9.6.3 Diagnostic Logic Block (DLB) Example
	Logic for the MonitorScan Block
	DLB Block Icon/Status Bar Once Started.

