USER MANUAL
GFK-1742F
Jan 2020

PACSystems™ RX3i & Series 90-30

DSM314 MOTION CONTROLLER
USER MANUAL

&

EMERSON.

User Manual Contents
GFK-1742F Jan 2020

Contents

Chapter 1: Product OVerview..........cccceerireeeenneneccssscccnnnnnncennnnes 1

1.1 Features of the Motion Mate DSM3T4......ccceerierierieiieeieereeere st 2
1.1.T High PerfOrManceccueecveeeieiieeieeieee ettt ae e saae e s 2
11,2 EQSY TO USE ottt e e e e e e 2
LI T YT Y 1 L= 1 ISR 3
1.2 Section T: Motion System OVerVIEW..........eieiiiiieiiiiiieee e ee e 4
1.2.1 DSM314 Operation with a Host Controller..........ccceevvveeeceeeeceeeiieecieeeeen 4
1.3 Section 2: Overview of DSM314 Operationccceecueercreeeiieeecieeesieesreeeceeeeseeeens 9
1.3.1 Standard Mode OPerationccceeeeeeieerieerieereeneeneeseeeeeeseeeseeesssesseeens 10
1.4 Section 3: a Series Servos (Digital MOde)cccveevieereerienieeieeeeeesee e 12
1.4.1 « Series Integrated Digital Amplifier (SVU) ...coovevvereenvienieeieeseeseeeiene 13
1.5 Section 4: B Series Servos (Digital MOdE)cccueevueerienieeieeieeeereesee e 14
1.5.1 B Series Digital AMPlIfierscceeeeerieeiieeiieeeeereesee e 15
1.6 Section 5: SL Series Servos (Analog Velocity Mode)c.eecveeeveecieeneeneenienieennenn 16

Chapter2: System OVervieW.......ccccceeeeereennencccnrennncccessanncnnees 17

D7 B U 1o T Tad g Ve I a TSI V2 <) o S 18
2.1.1 Unpacking the DSM3T4.....cccviiieeieeieeseeeiee ettt s aeeeees 18
2.1.2 Unpacking the Digital Servo Amplifierccceeeveeecieeeieeeeeee e 18
2.1.3 Unpacking the MOTOTccveeeeeiieeiie ettt 18
2.2 Assembling the Motion Mate DSM314 SyStem.....ccceeeeeeerieeeceieenieeeieeeceee e 19
2.2.7 General GUIAEIINES ...c..eoieiiereieieieeteieee ettt 19
2.2.2 Motion Mate DSM314 CONNECLIONScovveeremiiiiiiiiieeiiecneecreceee e 19
2.2.3 Connecting the aSeries SVU Digital Servo Amplifierccovevvvieecveennenn. 20
2.2.4 Connecting the B Series SVU Digital Servo Amplifier.......cccoeevveervvercvennnen. 28
2.2.5 Installing and Wiring the DSM314 for Analog Mode........ccccecevirienienncnne. 36
2.2.6 Grounding the Motion Mate DSM314 Motion System.......ccceevveevervvennnens 37
2.3 Turning on the Motion Mate DSM3 T4ccveeiieiieiieieeree e e ere e eseeseee e 38
2.4 Connecting the Programmer to the Host Controllercceeeeeevieeciieeeciieeee. 39
2.5 Machine Edition Configurationcccccueeeiieeiieeeie e 40
2.6 Storing Your Configuration to the Host CONtrollercccecveeveevieeieeneesieeiens 44
2.7 ALAIITIS ¢ttt ettt ettt ettt et b ettt a et e besat et e bt et e seeaeenee 46
2.8 Configuration SEINGS ..ccc.eevieriieiieeieetee ettt 46
2.9 GELING HEIP iioeiieieeeeee ettt st e e re e e sre e nne e 46

Contents i

User Manual Contents
GFK-1742F Jan 2020

Chapter 3: Installing and Wiring the DSM314........................47

3.1 Hardware DesCriPLiON.....ccuievierieeiieerieerteeie et ettt sie et see e e e e seesaaesnneens 47
3.7.7 LED INAICALOTS cueeeieieieeeieie ettt ettt 48
3.1.2 The DSM COMM (Serial Communications) CONNECtOr........cccveecveeveeeenne 49
T8 T T 1 @ I @ T 1= o) SR 49
3.1.4 Shield Ground CONNECLIONeeieeieieieeiceie ettt 50
3.2 Installing the DSM3 T4 MOdUIE.....ccueeiieeciecieeieeeee ettt 51
3.3 1/OWIiring and CONNECLIONS....ccveeiveerieeereeereereereeteeseeeseeesseessseeseesseesseessaessnenns 54
3.3.7 1O GrCUIL TYPES.cueeeuteteeiteienueetente ettt ettt sbe et ee et besaeenesbesaeens 54
3.3.2 Terminal BOArdScucouerierienieeieieet ettt 55
3.3.3 Digital Servo Axis Terminal Board - [C693ACC335.....cccvveeieeieeieeieeeeennes 56
3.3.4 Auxiliary Terminal Board - [C693ACC336cccuvieveieeeeeeeeiee e e 61
3.3.5 CAbBIES et e 64

Chapter4: Configurationccccceieeiiiiineennenecciiiiccenninneeeenes 93

4.1 Connecting the Programmer to the Host Controllercccoevvevvenvenceenieennnen. 93
V20 N (¥ Tal ¢ Y (oY @] T[] =Y o 1SS 94
v S [Ta (U PN @] a4 e U] =Y o) IS 97
4.3.1 Setting the Configuration Parameterscccceeveereereereesiieesieeneeseesnens 98
4.3.2 SETEINGS. e ettt e st e e s b e e s eaee 99
4.3.3 Serial Communications Port Configuration Data.........cccceeeeevveervervennnen. 104
4.3.4 CONLrOl (CTL) BILS veeeveeeereeeiieeereeeeiee e iteeeetee e e eeteeeereeeaeeeeaaeeereeeeareean 105
4.3.5 OULPUEL BITS..uetiiiiiiieeettee ettt ettt et e s e e 106
4.3.6 Axis Configuration Data........ccceeeverrieereeniesieeie e eieesee e seeeseeeeeeeees 107
4.3.7 TUNING DAL wetiiiiiiieeeeieeeeeee ettt e e 122
4.3.8 Computing Data Limit Variablesccceeeeieecieeeceeeeee e 128
4.3.9 Advanced Tab Dataccoccerierieiieeieeieete ettt 129
4.3.10Power Consumption Dataccocceiiiiiiiiiiiieeeeee e 130

Chapter5: DSM314 to Host Controller Interface.................. 131

5.1 Section T: 1 STAtUS BItS ...eeeeeeiiiiiiiiieeeee et 131
5.2 Section 2: %Al StAatUS WOTS ...c..veeeuiieeiieeiie ettt 136
5.3 Section 3: %Q Discrete COMMaNAS......eceiiieeeiereeieeeeeeeeeieeeeeeeeeeeeesareeeeeeeeeeeans 139
5.4 Section4: %AQ Immediate COMMANAScoevvviiieiieeieeiereeceeieee e 145

Chapter6: Non-Programmed Motion..........ccccceeeeeeeeeerrrnnees. 163
6.1 DSM3T4AHOME CYCl@uuuriieiieiieeee ettt et e rae e ae e 163

Contents i

User Manual
GFK-1742F

Contents

6.2
6.3
6.4
6.5
6.6
6.7

Contents

Jan 2020

6.1.7 Home SWitch MOdecoiiiiieieeeee e 163
6.1.2 Move+ and Move— MOMESccoeueeiererieieeieeie et 166
10gging With the DSM3 T4eiueiiceiecece ettt ees 167
Move at Velocity COMMAaNd......cc.ecvieviieiieeriereecee e ee et sre e 168
Force Servo Velocity Command (DIGITAL Servos; Analog Torque Mode).......... 169
Force Analog Output Command (ANALOG Velocity Interface Servos) 169
Position Increment COMMANASccueeuierierieiere ettt 170
Other CONSIAEratioNSc.eevveeriierierieete et et e et et eseeseeseestessseessaesaeesanenns 170

Chapter7: Programmed Motionccccceveeeeeneeeecciscccennnnnnees 171

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Single-Axis Motion Programs and SUbBroUtines..........cceeveeeceeeeieesiee e 171
Multi-Axis Motion Programs and SUbroutingscccceeeeveeeceeecieescieeeeeeen 172
Motion Program CommMand TYPESccueevueereereerieeieeiieenieesteeseesseeseesseeseennes 172
Program Blocks and Motion Command Processingcccceevveeveeveecieecveenneenne 174
Prerequisites for Programmed Motioncecveeeciieecie e 174
Conditions That Stop @ Motion Programcceeveereerienieniiesnieenieeseeseesnenns 175
MOtION Program BasiCs ..ceeeii ettt 175
7.7.1 Motion Language Syntax and COMMANdS........ccceveeeereereeeesireeesneeneeeenns 176
7.7.2 Motion Program COmMMandSceeeeueereieesiieeesieeeceeeeeeesreeesseeeseeeenns 178
7.7.3 Program and Subrouting StruCtUrecccveeeieeeieeeeceeeceee e ecie e 187
7.7.4 Command Usage EXamPIEScccveeiieeiieriierieeneeseeeee e esieeseeesieesnesnneens 190
7.7.5 Types of Programmed Move CommMands.......ccceeeververvieeneeseeseesieeneens 192
7.7.6 Other Programmed Motion Considerations.........ccecveevveereeseeseesiveneens 208
7.7.7 Feedhold withthe DSM3T4ouiiiiiiiieeee e 210
7.7.8 Feedrate OVEITIAEcc.eetererieierieeieiee ettt 211
7.7.9 Multi-axis Programmingccceecveeeueeseeseeneeseeseeseesssesssesssessessssesssenns 212
7.7.10Parameters (P0-P255) in the DSM3T14........oeeiieeieeeeeeeeeee e 213
7.7.11Calculating Acceleration, Velocity and Position Valuesc..ccccecenene. 215
7.7.12Motion Editor Error and Warning MesSagesc.ceveevveereeseeeseesveeneenns 218

Chapter8: Follower Motionccccceeiiiinnnnnnnneccsissccnnnnnneneess 223

8.1
8.2

8.3

8.4

IMASTET SOUCES ...eeeeeerieeeeitie ettt ettt e ettt e st e s et e e et e e et e e s s neeee e areeas 223
External Master INPULSoccuieecieeeiee ettt tre ettt e e e saaee s 224
8.2.1 Example 1: Following Axis 3 Actual Position Master Inputccccveeuenne 224
Internal Master Axis Command GENerators..........ccceeeereereeienierieneeseeseeseeeneas 224
8.3.1 Example 2: Following an Internal Master commandc.cccceevvvervennnnns 225
ABRALIO...cciiiiiiiii e 225
i

User Manual
GFK-1742F

Contents

8.5

8.6

8.7
8.8
8.9
8.10

Contents

Jan 2020
8.4.1 Example 3: Sample A:B RAtiOS.....ccverieeiieieeiieieesee e e eve e see s 226
[VZ= oY1 YA @ = T o313 Ve [P 227
8.5.1 Example 5: Velocity Clampingcccceeeveeiersieeriieiereesee e 227
Unidirectional Operationc.ecveecieeieesiesieeie et et seesre e ere e e e e sene e 228
8.6.1 Example 9: Unidirectional Operationceecevereenienenneeneneeseeneeenes 228
Enabling the Follower with External INPULccevievinieiienirieeeceeeeceeeeee 228
Disabling the Follower with External INPUtc.cevveeieeiieceeeeceee e 229
Follower Disable Action Configured for Incremental Positionc.cccveveene.. 229
Follower Axis Acceleration Ramp CONrOl........ccevceerieriieinieenieeieeie e 229
8.10.1Follower Mode Command Source and Connection Options 233

Chapter9: Combined Follower and Commanded Motion....239

9.1
9.2
9.3

Example 1: Follower Motion Combined with |0gcccvveeiieeciiiiieeieeeeee 239
Follower Motion Combined with Motion Programscc.cceeveeveecveecieesreenneenne 240
Example 2: Follower Motion Combined with Motion Program..........c.ccccveueeee. 244

Chapter 10: Introduction to Local Logic Programming.......... 246

10188 I o Yoz oY [Tl /e e [10 010 11 e SRR 246
10.2 When to Use Local Logic Versus Ladder LOGiC......c.eevveeieerreenieenienieeieeveeneeenees 249
10.3 Getting Started with Local Logic and Motion Programmingccceeveeeveeueenne 249
10.3. TREQUITEMENTS eeiiiiiiiiiiieeee ettt e e e ettt e e e e e e e aereeeeeeas 249
10.3.2Creating a Local Logic Programceccueeeeieeiiieecie et 250
10.4 Local Logic Variable Table.....cuieeeieeeeeeeeee et 251
10.5 Connecting the Local Logic Editor to the DSM........ccceeviieecieeeiieeiee e 253
10.6 Building a Local LOgiC Programcoceevueereeneeriienieesieesseeseeseessessseesseesseennes 254
10.6.1Creating a Local Logic Programcoceeeuienienieeieeeieesieeseesee st 254
10.6.2Checking Local LOGIC SYNTAX .euverviriieeieeniieeieeieeveeveeeeeseeeseesneesneeeees 257
10.6.3Setting up Hardware Configuration for Local LOgiCcccovverververvennen. 258
10.7 Downloading a Local Logic Programcocceevierieriieniieeneeseeeieeie e evee e 262
10.8 Executing Your Local Logic Programcoocevierieniieeiienniieseeeeeie e 264
10.9 Using the Motion Program Editor.........coceerierieniieniieeieeneeteeeee e 265
10.9.1Creating @a Motion Programeeeeeeeiiieiiiiieieeeee e 265
10.9.2Setting Motion Program Parameters in Hardware Configuration 271
10.70 Executing YOUur Motion Program ..ccccieeeeeeeeeeiiieieeieeeeee et 274

Chapter 11: Local Logic Tutorialcccceeerrrrrnnnnnneecsscccnninnnnness 275

11.1
11.2

Y <] 1] LN 275
(@00 3 [=] 1 £ 276
iv

User Manual
GFK-1742F

Contents

11.3
11.4

11.5
11.6

Contents
Jan 2020
VaTADIES .ttt 276
(0] 1<] =1 o) 5P O P PSP PPPPIOPPPRPTOPPPPPPRIR 277
11.4.1 Arithmetic OPEratorscevvevcierrieeieeieeete ettt see s 277
11.4.2Relational OPEratorscccveeieecierrieeeerieeee ettt st 278
11.4.3Bitwise Logical OPeratorscccecueevieerieenienienieeieeeesieesieesee e see e 279
Local Logic [Host Controller | Motion Program Communicationc.ccc...... 280
Local Logic Programming EXamples........cc.eecereeieninieiienceesie et 280
11.6.1Torque Limiting Program EXamplecccveevveeeieeciieceereeneeeee e 280
11.6.2Gain Scheduler Program EXample......cccvecveeieeieecieeieereeseesee e eve e 282
11.6.3Programmable Limit Switch Program EXamplecccccceeeieerieeeceeeennenn. 282
11.6.4Trigger Output Based Upon Position Program Examplecccecveennen. 283
11.6.5Windowing Strobes Program EXample..........cccveecieercieeeiieenieeeeeeeennn 285

Chapter 12: Local Logic Language SyntaX......ccccceeeeeeeeeeeeeeeees. 286

12.1

12.2
12.3
12.4

12.5

12.6

SYNEACHIC EI@MENES ..veiieeiieeieeitestteete ettt sttt e eesteesreesaeesnne e 286
12. 1. TNUMETIC CONSTANES....eiiiiiiiiiiiieiecce e 286
12.1.2L0Cal LOGIC VariabIesc.eiviiriieiieieeieeeieeie ettt 287
12.7.3L0Cal LOGIC STateMENES....ceveveeieeieeieeieeseeeeeere e et esaeesaeeseeeenneeneeneees 288
1271 AWhITESPACE ...eveeeveereeieesieesiteeteeteeste et et e s e st e e se e seeseesseesseesnnesnseensees 289
12.1.5COMMENTS cuviiiiiiiiiieete ettt 290
12.T.6PRAGMA DIF€CHIVE.....eeeieiieieeiteieeit ettt sttt ettt ettt 291
12.1.7Local Logic Keywords and OPeratorsccceeveerveerveerveeseeseeseesnsesnnens 291
Enabling and Disabling LOCal LOGIC.....c.ccvueireereirieeieeiecrieeciee e 292
Local Logic Outputs/COMMANGS......cccveerueereereerieeieerieesieesteesaeeseeseesseesseenees 292
Local Logic Arithmetic Operators........ccceeccueeeceeeeciieeieecieeecee et vee e 293
T2, 4. TOPEIALOT F ittt ettt e e e e et e e e e e e e sanneeeeeeas 294
12,4, 20PEIATON - ittt e e e ettt e e e e e eaeeee s 294
L B 1 @ 07! - | o S 295
12.4.40pPerator MOD ..ottt e e e e e e e 295
12.4.5FUNCHON ABS ..ottt 296
Local Logic Bitwise Logical Operators........ccueeceeeecueeeerieeiieeecreeeeieeeveeeveeeseven 296
12.5.10perator BWANDuuiiiiiieie ettt et e e e e ee e 297
12.5.20perator BWORceeeiiiiieeeee ettt ettt 297
12.5.30perator BWXOR ...ccoiiiiiieiiieeeeete ettt 298
12.5.40pPerator BWINOT ...coiiiieeeeee ettt 298
COMPAriSON OPEIALOFSueeeiiieeeieeeiiiitteeeeeeeeriirteeeeesesssirrteeeeeessssaneneeeeeessnnns 299
v

User Manual
GFK-1742F

Contents

12.7

12.8

Contents

Jan 2020

LOCal LOGIC RUNEIME EITOTS...cuveeeieeeieeieeieeseesieeeteereesieesteesreesraesasesnsesnseenseenes 300
12.7.TOVETTIOW SEATUS ...ttt ettt 300
LOCAl LOGIC EFTOTr MESSAGES .uvveereeereeiieieenieenieestesteeieesseesseesssesasesnsesseenseennes 301
12.8.1Local Logic Build Error MESSAges.......eeveerueerierieeieeeeeieenieeseeseesneseens 301
12.8.2L0Cal LOGIC SYNTAX EFTOTS .ouvveviieeiiieieeieesiiesie st ete et eee st see e e 302
12.8.3L0Cal LOGIC PArSE EFTOTS ...eevveiieeiieeieeieeieesieesteeieeseesseesseesaeesneesseeneeas 302
12.8.4L0cal Logic Parse WarningS.......cecveerueerreereesiesieeenieenseenseenseeseessesssesssens 305
12.8.5Local Logic Download Error MeSSagescc.eeeeeenuereeneeneeneensenienienens 305
12.8.6L0cal LOgic RUNEIME EITOTS ...eeuveeieeieeieeniienieneeeieeieeieenieeseeseeseeeeees 307

Chapter 13: Local Logic Variables.........cccccceeeeeerrennneccerenneee... 308

13.1
13.2

13.3
13.4
13.5

Local Logic Variable TYPEScccuvieeceieeieeeeee ettt 308
Local Logic System Variablescceeecviieiieecieeeeeeee et 309
13.2.1First_Local_Logic_Sweep Variable........cccceevuerrieciinciieeeneenieeee e 309
13.2.20verflow Variable.......co.ooeiiiiiieee e 309
13.2.3System_Halt Variableccoooveriiiiieieieeeeeeeeteceee e 310
Double Precision 64 Bit REGISTEIS......cccviiriieecieeeiie ettt eee e 310
Local Logic User Data Tablecccueevieiieieeiereesieeieeie ettt 311
Digital Outputs [CTLVariablesc..eecvieeiieeieeeee et 312

Chapter 14: Local Logic Configuration.......cccccceveeeeeeciicceeeennes 319

14.1
14.2
14.3
14.4
14.5

CTL Bit CONfIGURAtION....eitieieeiieciiecteeie et et eeese et esree e esesseeeseeesseesneeens 319
CTLDits CTLOT-CTL32 ueeeuieeieeieesteesireeeeeeaeeseesseesseesseesseesseesssesssesssesssessseessenns 320
CTLO1-CTL24 Bit Configuration Selectionscceecueeevieeeceeecieeeiee e 321
FBSA Function and CTL Bit ASSIgNMENtS......eeecveeeeiieeieecieeeee e e eee e 322
Faceplate Output Bit CONfigUrationccccceveeereeriienieereeseeeee e 322

Chapter 15: Using the Electronic CAM Feature 324

15.1
15.2
15.3

Electronic CAM OVEIVIEW.........coeuiieiieieeieeite sttt ettt ettt st 324
Basic Cam Shapes/Definitioncccveecieeiiieeie e 326
CAM SYNEAX ettt e e e e e e e e s e et e e e e e e e 327
T5.3. T CAM TYPES ettt ettt e e e e ettt e e e e e s e sbe e e e e e s e s s anraaaeeeas 327
15.3.2Interpolation and SMOOthING ...cccveevieeiieeieeiecceeceeeee e 330
15.3.3Interaction of Motion Programs with CAMcccevievveneeneeseeeieens 332
15.3.4CAM COMMANG...cutiiiriiiieeteeteee ettt ettt et e st sbeeeesbesaeens 333
15.3.5CAM-LOAD COMMANG..c.utiiiirierieeiieesieesiesreereesseesseesseesseesseesssessessses 334
15.3.6 CAM-PHASE COMMANG ...eevviiiiieeieeieeeeeceere et ee e sree e eaeeeees 335

vi

User Manual Contents

GFK-1742F Jan 2020
15.3.7CAM and MOVE INStIUCLIONSceuveeeeierieeiieie ettt 335
15.3.8Time-Based CAM MOLION ...c..eeutereieiieieieeteie ettt 336
15.3.9CAM Scaling Editor and Hardware Configurationccceeevevveeveevennnen. 336
15.3.10 Synchronization of CAM Motion with External Eventsc.ccuc...... 340
15.3.11 CAM-Specific DSM Error COdescuummimmiieieeieeieeieenieeseeeneene e 341
15.4 Electronic Cam Programming BasiCS......ccuevvuervuervueeiieeiieeseeseeseeereeveeveesveees 343
15.4. TREQUIFEMENTS eeiiiiieteee ettt et e e e e e eeeeas 343
15.4.2Introduction to Electronic Cam Programmingccccceevevvenvesvesvveenens 343

Appendix A: Error Reporting.......ccccceiiiieeeeeneeecsssscccnnnnncenssneeeess 364

A-T DSM3TAEITOr COUES ..uuviiiiiieiieeeiee ettt et et eete e et e e aeeeteeeeaveeseveeeesaeesreeenns 364
A-1.T Module Status Code WOrd..........ceevueriiriienienieeieeee et 364
A-1.2 AXiS Error Code WOTAScocuereieiienieeierieeiteiesiteie ettt 364
A-1.3 Error Code FOMMAL......ooueeiirierieieeieetesieet ettt 365
A-1.4 Response Methodscccuerieiiirieriiiieecieeeee e 365
A-1.5 System ErTOr COUES ..uviiuiiriierierieeieesieeetestesreereesteesaeesseesseesneesnsesnsens 384
A-2 DSM Digital Servo Alarms (BO—BE)c.cecvereerierierieriieenieeseeseesresveeveeseeenens 384
A-3 Troubleshooting Digital SErvO AlarMS........cccueeeecieeriieerieeeee et e e 386
A-4 LED INAICALOTS ..ottt ettt et 389

Appendix B: DSM314 Communications Request Instructions .. 391

B-1 Communications Request OVEIVIEWceeeiuieereiireeieiiieeeerieeeeesieeeeesieeeeeas 391
B-1.1 Structure of the Communications Request........ccceeecrieeeiieecieeeceeeenee. 392
B-1.2 Monitoring the Status Wordcoccueeecieeeciiecie et 394
B-1.3 Operation of the Communications Request.........ccceeeeveeeeieeecieeeceeeeennenn. 395
B-2 The COMM REQ Ladder INSErUCHION ..vvvvveeieiieceeeeeeeeeee ettt e 396
B-3 The User Data Table (UDT) COMM REQ.....ccuuteeuieeiieeiieeeciee et eeeeeee e 398
B-3.1 User Data Table COMM REQ Features and Usage Information................. 398
B-3.2 The UDT COMM REQ Command BIOCK.........covvuveieeecrieeieeieeeeeeieeeceieen. 399
B-3.3 User Data Table COMM REQ EXamplecccovverieiiiinniienienieeieeeeeeene 401
B-3.4 User Data Table COMM REQ EXampleccocveriieiiiirniienienieeieeieeeene 403
B-4 The Parameter Load COMM REQ......uuuuiiiiiiiiiieeeeieeeee et e eeeeivaeeeeeee e 404
B-4.1 The Command BIOCKcccueruieieiiirieieeeteeete et 404
B-4.2 DSM Parameter Load COMM REQ EXampleccevverveeienieeieeieeeeene 407
B-5 COMM REQ Ladder LogiC EXaMPIE ..cveervverierieeieeieesieete et 409

Appendix C: Position Feedback Devicesccccccccceccrrenneeee.. 414

Contents vii

User Manual Contents

GFK-1742F Jan 2020
C-1 Digital Serial ENCOAEr MOAESecvveeieeieeieecieecteeie ettt seeesvresre e 414
C-2 Incremental Encoder Mode ConsiderationsS.......coeeen. 414
C-3 Absolute Encoder Mode Considerations........ccceuvevveeeeeeieeiieeeeeeeeeeeeeeeneeeeeeeeenans 415

C-3.1 Absolute Encoder - First Time Use or Use After Loss of Encoder Battery Power 415

C-3.2 Absolute Encoder Mode - Position Initializationcccceeeeeeeeieeeneen. 415
C-3.3 Absolute Encoder Mode - DSM314 POWET-UP ...cceevveeveevieesieesieesresienns 416
C-3.4 Incremental Quadrature ENCOAEroouvviiivueiiiieieiei et 417

Appendix D: Tuning Digital and Analog Servo Systems418

D-1 Start-Up and Tuning Information for Digital Servo Systems........cccccevevvervennnen. 418
D-1.1 Validating Home Switch, Over Travel Inputs and Motor direction 418
D-1.2 Tuning a Digital SEMVO DFiVe.......cccvereereerieeieeieenieesiee st ere e 421
D-2 Start-Up and Tuning Information for Analog Servo Systems.........ccccceceeveenuennee. 431
D-2.1 Analog Mode Velocity Interface System Startup Procedures.................. 431
D-2.2 Analog Mode Torque Interface System Startup Procedures 433
D-3 System Troubleshooting Hints (Analog Mode).........cccueevveeciienieenieeneenieseeenens 448

Appendix E: Local Logic Execution Time.......cccceeeernnnnnnneeeennnse. 450

E-1 Local Logic Execution TimMing Data.......ccceeeueeeeciieeciieeceeeecee e e 450
R o = 11 o1 1 TSRS 450
e T = 01 o1 [TSRS 451

Appendix F: Updating Firmware in the DSM314......................458

F-1 Windows Update (for Windows 95/NT/98/2000).......cceeeeeeercrierirreenireereeennes 459
L D [0 1 U oo - | <SSR 459
F-3 Restarting an Interrupted Firmware Upgrade........ccceecveevveeieerieerieeneeneeeeeenens 460

Appendix G: Strobe Accuracy Calculations...........cccceeeeeeennneee... 461

L@ BN o =1 Fo o 1Yo o =TSSRt 461
(@ A b 1o | 1Y o Yo LTSRS 461

Appendix H: Using VersaPro with the DSM314 466

[R I 1= [T) 3 Y« PSS 466

H-1.7 Starting VersaPro ...c.coeeeuueiiiiieiieeeteeee ettt 466
H-2 Starting the Configuration ProCESSccueeecvieeeiieeiie ettt 469
H-3 Configuring the DSM3 T4oioiiiieeecee ettt s 471
H-4 Connecting to and Storing Your Configuration to the PLC........cccccevcvevveevennen. 474
H-5 Creating @ MOtiON PrOgram ...ccoioeuiiiiiiieee ittt e ee e e e e e 476

Contents viii

User Manual
GFK-1742F

Contents

H-6

H-7

Contents

Jan 2020
H-5.1 Accessing the Motion Editor SCreen........ccvevveecieecieeceeceeee e 476
H-5.2 Saving your Motion Programccceeeeeeieiiieeeeeeee et 478
H-5.3 Storing your Motion Programs and Subroutines to the PLC.................... 478
H-5.4 Printing a Hardcopy of your Motion Programs and Subroutines 478
Creating a Local LOgiC Program......ccuccveeieecieerieerieesee e ereeveeseeseeesreessnesnneens 480
H-6.1 Checking Local LOgiC SYNTaXcecueeueerierieeieriieiieee ettt 484
H-6.2 Viewing the Local Logic Variable Tablecceovevieniecieeiececeeee 485
Creating @ Cam BIOCK....ccvieieeeeeeceeeee e 487
ix

GFK-1742F Jan 2020

Warnings And Caution Notes as Used in this Publication

Warning notices are used in this publication to emphasize that hazardous voltages,

currents, temperatures, or other conditions that could cause personal injury to exist

in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to
Warning equipment, a Warning notice is used.

Caution notices are used where equipment might be damaged if care is not taken.

Caution

Notes: Notes merely call attention to information that is especially significant to understanding and operating
the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every
possible contingency to be met during installation, operation, and maintenance. The information is supplied
for informational purposes only, and Emerson makes no warranty as to the accuracy of the information
included herein. Changes, modifications, and/or improvements to equipment and specifications are made
periodically and these changes may or may not be reflected herein. It is understood that Emerson may make
changes, modifications, orimprovements to the equipment referenced herein or to the document itself at any
time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of
any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability
or fitness for particular purpose.

User Manual Chapter 1
GFK-1742F Jan 2020

Chapter 1: Product Overview

The Motion Mate DSM314 is a high performance, easy-to-use, multi-axis motion control
module that is highly integrated with the PACSystems RX3i and Series 90-30 host controller
logic solving and communications functions.

The two versions of the DSM314, IC693DSM314 and IC694DSM314 are functionally
identical.

Figure 1

The DSM314 supports two primary control loop configurations:
e Standard Mode (Follower Control Loop Disabled)

¢ Follower Mode (Follower Control Loop Enabled)

Product Overview 1

User Manual
GFK-1742F

Chapter 1
Jan 2020

Servo Types Supported

Digital —a Series and B Series digital servo amplifiers and motors. These products are
documented in Servo Product Specifications Guide, GFH-001.

Analog - SL Series analog servos and third-party analog velocity command interface
and analog torque command interface servos are supported. The SL Series servos
are documented in the SL Series Servo User’s Manual, GFK-1581.

1.1 Features of the Motion Mate DSM314
1.1.1 High Performance

Digital Signal Processor (DSP) control of servos
Block Processing time under 5 milliseconds
Velocity Feed forward and Position Error Integrator to enhance tracking accuracy
High resolution of programming units
— Position: -536,870,912...+536,870,911 User Units
- Velocity: 1... 8,388,607 User Units/sec
- Acceleration: 1... 1,073,741,823 User Units/sec/sec

1.1.2 Easy to Use

Product Overview

Simple and powerful motion program instruction set

Simple 1 to 4-axis motion programs. Multi-axis programs using Axes 1 and 2 may
utilize a synchronized block start.

Non-volatile storage for 10 programs and 40 subroutines created with the
programming software.

Compatible with Series 90-30 CPUs equipped with firmware version 10.0 or later
(does not work with CPUs 311 - 341 and 351) and PACSystems RX3i CPUs (version
2.8 or later).

Single point of connection for all programming and configuration tasks, including
motion program creation (Motion Programs 1 - 10) and Local Logic programming.
All programming and configuration are loaded through the host controller’s
programming communications port. In turn, the CPU loads all configuration,
motion programs, and Local Logic programs to the DSM314 across the host
controller backplane.

User scaling of programming units (User Units) in both Standard and Follower
modes.

DSM314 firmware, stored in flash memory, is updated via the front panel COMM
port. Firmware update kits provide firmware and Loader software on floppy disk.
Firmware is also available for download on the Emerson web site
(https://www.emerson.com/Industrial-Automation-Controls/support).

https://www.emerson.com/Industrial-Automation-Controls/support

User Manual Chapter 1
GFK-1742F Jan 2020

e Recipe programming using command parameters as operands for Acceleration,
Velocity, Move, and Dwell Commands

e Automatic Data Transfer between host controller tables and DSM314 without user
programming

e Ease of /O connection with factory cables and terminal blocks

o Electronic CAM capability, starting with Firmware Release (Version) 2.0

1.1.3 Versatile I/O

e Control of o Series and B Series Digital servos, SL-Series servos, or third-party servos
with analog velocity command or analog torque command interface.

e Home and overtravel switch inputs for each Servo Axis

e Two Position Capture Strobe Inputs for each axis can capture axis and/or master
position with an accuracy of +/-2 counts plus 10 microseconds of variance.

e 5v,24vand analog I/O for use by the host controller
e Incremental Quadrature Encoder input on each axis for Encoder/Analog mode
e Quadrature Encoder input for Follower Master axis

e 13-bit Analog Output can be controlled by the host controller or used as Digital
Servo Tuning monitor

¢ High speed digital output (four each 24V and four each 5V) via on-board Local Logic
control

Product Overview 3

User Manual
GFK-1742F

1.2

1.2.1

Product Overview

Chapter 1

Jan 2020

Section 1: Motion System Overview

The DSM314 is an intelligent, fully programmable, motion control option module for the
Series 90-30 and PACSystems RX3i control systems. The DSM314 allows a user to combine
high performance motion control and Local Logic capabilities with logic solving functions in
one integrated system. The figure below illustrates the hardware and software used to set
up and operate a servo system. This section briefly discusses each system element to
provide an overall understanding of system operation.

Figure 2: Hardware and Software Used to Configure, Program, and Operate a
DSM314 Servo System

« Operator []
Bo Interfaces O
o I TTTTT1]

Ik

Encoder 1
—| ’71 17 Mchine 2
O

Machine 1

a

Amp. 1 F o)
| P 4@»

J
S

coOn
=Zwo

Configuration and 0 Encoder 2
Programming Software: Ce—
-Configuration A
-Motion Programming [! @
-Local Logic Programming Encoder 3
-CAM Profiles (Follower Master)

DSM314 Operation with a Host Controller

The DSM314 and host controller (either PACSystems RX3i or Series 90-30 PLC) operate
together as one integrated motion control package. The DSM314 communicates with the
host controller through the backplane interface. Every host controller sweep, data such as
Commanded Velocity and Actual Position within the DSM314 is transferred to the host
controller in %l and %Al data. Also, every host controller sweep, %Q and %AQ data is
transferred from the host controller to the DSM314. The %Q and %AQ data is used to control
the DSM314. %Q bits perform functions such as initiating motion, aborting motion, and
clearing strobe flags. %AQ commands perform functions such as initializing position and
loading parameter registers.

Besides the use of %I, %Al, %Q, and %AQ addresses, an additional way to send parameters
from the host controller to the DSM314 is with the COMM_REQ ladder program instruction.
Details about using the COMM_REQ instruction with the DSM can be found in Appendix B,
DSM314 COMM_REQ Instructions

User Manual
GFK-1742F

Product Overview

Chapter 1
Jan 2020

Host Controller Data Latency and DSM314 Latencies

The DSM314 is an intelligent module operating asynchronously to the CPU module. Data is
exchanged between the CPU and the DSM314 automatically. For information about the
operation of the CPU sweep refer to the following:

e Series 90-30 PLC CPU Instruction Set Reference Manual, GFK-0467M or later
. PACSystems CPU Reference Manual, GFK-2222

Host Controller to DSM Data Transfers

e Host controller-based functions may retrieve DSM status (%! and %Al) information
from the DSM data memory asynchronously. The DSM internally refreshes all status
data except Actual Velocity at the position loop rate (once every 0.5 to 2ms). Actual
Velocity is updated in the DSM data memory every 128 milliseconds. The DSM
performs averaging to generate an accurate Actual Velocity reading; therefore, the
Actual Velocity reading is not intended for high-speed control purposes.

e The host controller requires approximately 2-4 milliseconds back-plane overhead
when reading data (%l and %Al) from and writing data (%Q and %AQ) to DSM internal
memory if the DSM is in the CPU rack. The host controller normally reads input data
from and writes output data to the DSM once per host controller sweep. In the worst
case, the DSM internal data update (which takes 0.5 to 2ms to occur) occurs just
after the host controller scan’s input update. In this case, the host controller does
not read DSM data again until its next scan and any changes in DSM data will be
available in the host controller either 4-6ms later or approximately one host
controller sweep later, whichever is larger.

e The configuration software automatically selects the lengths of %Al and %AQ data
based upon the number of axes configured. A host controller CPU requires time to
read and write the data across the backplane with the DSM314. The following
manuals document the host controller sweep impact:

— Series 90-30 PLC Instruction Set Reference Manual, GFK-0467M or later.
— PACSystems CPU Reference Manual, GFK-22228B or later.

Also refer to the Important Product Information sheet that comes packaged with
the DSM module.

e Host controller commands to the DSM (%Q, %AQ) are output to the DSM at the end
of the logic solving sweep. The DSM processes the commands within 4 milliseconds
after receipt.

Motion Program/CTL Faceplate Inputs

e Delays associated with motion program control or branching via faceplate CTL
inputs are equal to a position loop update time interval (0.5 to 2ms) plus the input
filter delay (5ms typical for 24 volt CTL inputs or 10 ps for 5 volt CTL inputs). See
tables 1, 2, and 3 for position loop update times.

User Manual Chapter 1
GFK-1742F Jan 2020

Local Logic

e Delays associated with Local Logic data updates are based upon the position loop
update time interval (see “DSM314 Servo Loop Update Times”) and are not related
to the host controller scan. Therefore, Local Logic programs can utilize rapidly
changing DSM internal data that cannot be utilized by the host controller CPU due
to the host controller to DSM data transfer time and the host controller’s longer scan
time.

DSM314 Servo Loop Update Times

When controlling a digital AC servo, the DSM314 uses the loop update times shown in Table
1.

Table 1: Digital Servo Loop Update Times

Motor Current [Torque Loop: 250 microseconds
Motor Velocity Loop: 1 millisecond
Motor Position Loop: 2 milliseconds

When controlling an Analog servo, the DSM314 without Local Logic uses the loop update
times shown in Table 2.

Table 2: Analog Servo Loop Update Times without Local Logic

1-Axis Position Loop without Local Logic: 0.5 milliseconds
2-Axes Position Loop without Local Logic: 1 millisecond
3-4 Axes Position Loop without Local Logic: 2 milliseconds

When controlling an Analog servo, the DSM314 with Local Logic uses the following loop
update times shown in Table 3. The loop update rates with Local Logic are longer since Axis
#4 time slot is used to calculate the Local Logic function.

Table 3: Analog Servo Loop Update Times with Local Logic

1 Axis Position Loop with Local Logic: 1 millisecond

2 -3 Axes Position Loop with Local Logic: 2 milliseconds

Analog Torque mode includes a velocity regulator in addition to the position regulators. For
an axis in Analog Torque mode, the velocity requlator is run every 0.5 milliseconds.

Product Overview 6

User Manual Chapter 1
GFK-1742F Jan 2020

DSM314 Position Strobes

Each axis connector on the DSM314 faceplate has two Position Strobe inputs. A rising edge
pulse on a Strobe input causes the axis Actual Position to be captured. The position capture
resolution is +/- 2 counts with an additional 10 microseconds of variance for the strobe input
filter delay. The actual error seen is dependent upon servo acceleration and strobe input
filtering/sampling. Consult Appendix G for the exact formulas used to calculate strobe
accuracy.

The strobe data is updated within one position loop update interval (0.5 - 2 ms) in the
associated Strobe Position %Al data register. The Strobe Position data is also stored in a DSM
Parameter Register that can be used as an operand for Motion Program PMOVE and CMOVE
commands and in Local Logic. The Strobe Position data update to the host controller is
dependent on the host controller sweep time and may take longer than 2 ms.

In Digital mode, these strobes are 5V single-ended|/differential inputs (IN1-IN2).

In Analog mode, these strobes are only 5V single-ended (105-106). In Analog mode only,
these strobe inputs are pulled high (as seen in the host controller %I Strobe status bits) if not
physically connected to a device.

DSM314 Scan Time Contribution

The tables below list the time that the DSM314 adds to host controller scan time. The scan
time contribution is related to (1) the number of DSM314 axes configured, and (2) the type
of rack (main, expansion, or remote) the DSM314 is mounted in.

DSM314 Scan Time Contribution (in Milliseconds)

No. of Axes | 90-30 CPU364 Rack 90-30CPU374 Rack RX3i CPU310 Rack

Configured [zp5in [Expansion |Remote |Main | Expansion | Remote| Main | Expansion | Remote

1 1.9 2.9 7.9 1.3 2.3 6.9 1.8 2.3 6.9

2 2.5 3.8 11.0 1.9 3.1 10.0 2.5 3.2 10.0

3 3.1 4.7 14.2 2.4 3.9 13.0 3.1 4.2 13.1

4 3.6 5.6 17.3 2.9 4.8 16.0 3.8 5.1 16.2
Note:

1. Beaware that the DSM314’s internal Local Logic engine has a maximum scan time of 2ms that is
independent of the host controller scan. This allows the user the flexibility to control time critical
motion tasks within the Local Logic program. See the applicable chapters in this manual for details
on Local Logic programming.

2. (90-30 Feature only) For applications where the above additions to scan rates will affect machine
operation, you may need to use the “suspend I/O,” “DOIO,” and “SNAP” features to transfer
necessary data to and from the DSM314 selectively. These features let you avoid transferring all
the %1, %Q, %Al, %AQ data every scan, if you do not require it that frequently, which reduces the
scan time contribution amount.

Product Overview 7

User Manual Chapter 1
GFK-1742F Jan 2020

Software

The DSM314 requires one of the following configuration/programming software packages:

e Machine Edition Logic Developer - PLC, version 4.5 or later for RX3i

e Machine Edition Logic Developer - PLC, version 2.1 or later, or VersaPro, version 1.1
or later for Series 90-30

The programming/configuration software package is used for the following tasks. The
information created by these tasks is sent to the DSM314 over the host controller backplane
each time the host controller is powered up.

e Configuration. Allows user to select module settings and default operational
parameters.

e Motion program creation. Up to 10 motion programs and 40 subroutines are
allowed.

e Local Logic program creation. A Local Logic program runs synchronously with the
motion program but is independent of the host controller’s CPU scan. This allows
the DSM314 to interact quickly with motion I/O signals on its faceplate connectors.
This internal response time to motion 1/O signals is much faster than would be
possible if the logic for these signals was handled in the main ladder program
running in the host controller. This is due to (1) the delay in communicating the
signals across the backplane and (2) the longer host controller sweep time.

e CAM profile creation. A CAM profile specifies the response of a follower servo to a
master position index. CAM profiles are referenced by name in the associated
motion program.

Note: The CAM editor is fully integrated with Logic Developer — PLC.

Operator Interfaces

Operator interfaces provide a way for the operator to control and monitor the servo system
through a control panel or CRT display. These interfaces communicate with the host
controller through discrete /O modules or an intelligent serial communications or network
communications module.

Operator data is automatically transferred between the host controller and the DSM314
through %I, %Al, %Q, and %AQ references that are specified when the module is configured.
This automatic transfer of data provides a flexible and simple interface to a variety of
operator interfaces that can interface to the host controller.

Product Overview 8

User Manual Chapter 1
GFK-1742F Jan 2020

Servo Drive and Machine Interfaces

The servo drive and machine interface are made through a 36-pin connector for each axis.
This interface carries the signals that control axis position such as the Pulse Width
Modulated (PWM) signals to the amplifier, Digital Serial Encoder Feedback signals or Analog
Servo Command and Quadrature Encoder Feedback. Also provided are Home Switch and
Axis Overtravel inputs as well as general-purpose host controller inputs and outputs.

Standard cables that connect directly to custom DIN rail or Panel mounted terminal blocks
simplify user wiring and are available from Emerson. The terminal blocks provide screw
terminal connection points for field wiring to the DSM314 module. For more information
concerning the cables and terminal blocks used with the DSM314 module, refer to chapter
3.

1.3 Section 2: Overview of DSM314 Operation

Each DSM314 axis may be operated with the Follower Control Loop enabled or disabled:
Standard Mode (Follower Control Loop Axis Configuration = Disabled)

¢ In Digital Standard mode, the module provides closed loop position, velocity, and
torque control for up to two o or B Series servomotors on Axis 1 and Axis 2.

Axis 3 can be used as an Analog Velocity command interface servo axis or an Aux
master axis.

e In Analog Standard mode, the module provides closed loop position control for up
to four servomotors. Also, based upon the axis configuration, the DSM provides
velocity loop control for Analog Torque mode. When the DSM is used with analog
velocity interface servos, velocity and torque control loops are closed in the servo
amplifier, while the DSM closes the position loop. When the DSM is used with analog
torque interface servos, the torque control loop is closed in the servo amplifier, while
the DSM closes the velocity and position loops.

e Forboth digital and analog applications, user programming units can be adjusted by
configuring the ratio of User Units and Counts configuration parameters. Jog, Move
at Velocity and Execute Motion Program commands allow Standard mode to be
used in a wide variety of positioning applications.

Follower Mode (Follower Control Loop Axis Configuration = Enabled)

o In Digital Follower mode, the module provides closed loop position, velocity, and
torque control for up to two a or B Series servomotors on Axis 1 and Axis 2. Axis 3
can be used as an Analog Velocity Command Interface servo axis or an Aux master
axis.

e In Analog Follower mode, the module provides closed loop position control for up
to four servomotors (one or two of the four available axes may instead be used as an
Aux master axis). Additionally, based on the axis configuration, the module provides
velocity loop control for Analog Torque mode. When the DSM is used with analog
velocity interface servos, velocity and torque control loops are closed in the servo
amplifier, while the DSM closes the position loop. When the DSM is used with analog

Product Overview 9

User Manual
GFK-1742F

1.3.1

Product Overview

Chapter 1
Jan 2020

torque interface servos, the torque control loop is closed in the servo amplifier, while
the DSM closes the position and velocity loops.

e In both digital and analog applications, the module provides the same features as
Standard mode including configurable User Units to Counts ratio.

e Inaddition, a Master Axis position input can be configured. Each Follower axis tracks
the Master Axis input at a programmable (A:B) ratio. Motion caused by Jog, Move at
Velocity and Execute Motion Program commands can be combined with follower
motion generated by the master axis.

e Follower options include:

- Master Axis source configurable as Actual or Commanded Position from any
other axis

— Master Source Select %Q bit switches between two Master Axis sources

- Acceleration Ramp to smoothly accelerate a slave axis until its position and
velocity synchronize to the master

- Separate enable and disable follower trigger sources

Note that Winder mode is not supported in the DSM314. It is supported in the DSM302.

Standard Mode Operation

Figure 3 is a simplified diagram of the Standard mode Position Loop. An internal motion
Command Generator provides Commanded Position and Commanded Velocity to the
Position Loop. The Position Loop subtracts Actual Position (Position Feedback) from
Commanded Position to produce a Position Error. The Position Error value is multiplied by a
Position Loop Gain constant to produce the Servo Velocity Command. To reduce Position
Error while the servo is moving, Commanded Velocity from the Command Generator is
summed as a Velocity Feedforward term into the Servo Velocity Command output.

The following items are included in the data reported by the DSM314 to the host controller:

Commanded Velocity- the instantaneous velocity generated by the DSM314’s internal path
generator.

Commanded Position- the instantaneous position generated by the DSM314’s internal path
generator.

Actual Velocity- the velocity of the axis indicated by the feedback.
Actual Position- the position of the axis indicated by the feedback.
Position Error- the difference between the Commanded Position and the Actual Position.

The DSM314 allows a Position Loop Time Constant (in units of 0.1 millisecond) and a
Velocity Feedforward (in units of 0.01 percent) to be programmed. The Position Loop Time
Constant sets the Position Loop Gain and determines the response speed of the closed
Position Loop. The Velocity Feedforward percentage determines the amount of
Commanded Velocity that is summed into the Servo Velocity Command.

10

User Manual
GFK-1742F

Product Overview

Chapter 1
Jan 2020

Figure 3: Simplified Standard Mode Position Loop with Velocity Feedforward (Analog
Velocity Interface)

MOTION MOVE
PROGRAMS AT VEL

VT

COMMAND | CMD VELOCITY (VELOCITY FEEDFORWARD)

GENERATOR
CMD POS
POSITION * PQOS LOOP
GAIN
POSITION

FEEDBACK
O) ENCODER

Follower Mode Operation

Figure 4 is a simplified diagram of the Follower mode Position Loop. It is like the Standard
mode Position Loop (see previous page) with the addition of a Master Axis input. The Master
Axis input is an additional command source producing a Master Axis Position and Master
Axis Velocity. Master Axis Position is summed with Commanded Position from the axis
Command Generator. Master Axis Velocity is summed with the Commanded Velocity
(Velocity Feedforward) output of the axis Command Generator. Therefore, the
servomotor’s position and velocity are determined by the sum of the Command Generator
output and Master Axis input. The Command Generator and Master Axis input can operate
simultaneously or independently to create Servo Axis motion.

The DSM314 allows several sources for the Master Axis input:

e Axis 1 Commanded Position
e Axis 1 Actual Position (Axis 1 Encoder)
e Axis 2 Commanded Position
e Axis 2 Actual Position (Axis 2 Encoder)
e Axis 3 Commanded Position
e Axis 3 Actual Position (Axis 3 Encoder)
e Axis4 Commanded Position
e Axis 4 Actual Position (Axis 4 Encoder)

The ratio at which a Servo Axis follows the Master Axis is programmable as the ratio of two
integer numbers. For example, a Servo Axis can be programmed to move 125 Position
Feedback units for every 25 Master Axis Position units. Each time the Master Axis Position
changed by 1 position unit; the Servo Axis would move (125 | 25) = 5 Position Feedback
units.

11

User Manual

GFK-1742F

1.4

Product Overview

Chapter 1
Jan 2020

Figure 4: Simplified Follower Mode Position Loop with Master Axis Input (Analog

Velocity Interface)
MASTER
O) axs
ENCODER

MOTION ~ MOVE
PROGRAM ATVEL MASTER Mﬁ}'SER
AXIS
J0G POSITION POSITION VELOCITY
i > TO
VELOCITY
COMMAND | cMD VELOCITY | (Feed
GENERATOR -

CMD v+ POS
ERROR

POSITION +i :

-

POS LOOP

GAIN AMPLIFIER

MOTOR

POSITION s

FEEDBACK

@ ENCODER

Section 3: o Series Servos (Digital Mode)
The Digital o Series Servo features include:

¢ World-leading reliability

¢ Low maintenance, no component drift, no commutator brushes

e All parameters digitally set; no re-tuning required

e Absolute encoder eliminates re-homing (requires optional battery kit)
e Anoptional motor brake is available

e Optional IP67 environmental rating is also available for most motors

¢ High resolution 64K count per revolution encoder feedback (incremental or
absolute)

The Servo motors, proven on over three million axes installed worldwide, offer the highest
reliability and performance. The latest technologies such as high-speed serial encoders and
high efficiency Integrated Power Modules (IPMs), further enhance customer benefits.

The servo system is unique in that all the control loops - current, velocity and position - are
closed in the motion controller. This approach reduces setup time and delivers significant
throughput advantages even in the most challenging applications.

The servo drives are less costly to integrate and maintain. Control circuits are unaffected by
temperature changes. There are no personality modules. The servos have a broad
application range, that is, a wide load inertia range, flexible acc/dec and position feedback
configurations, etc.

Extensive customization features are available to optimize performance and overcome
machine limitations. IPM based servo amplifiers require 60% less panel space than
conventionally switched amplifiers and produce 30% less heat.

12

User Manual
GFK-1742F

1.4.1

Product Overview

Chapter 1
Jan 2020

a Series Integrated Digital Amplifier (SVU)

The o Series Integrated Servo Amplifiers (SVU) packages the amplifier with an integral
power supply in a stand-alone unit. This unit is the same physical size and footprint as the
previous “C” Series of Servo Amplifiers.

The Integrated o Series SVU Amplifiers use the same connections as the “C” Series Amps
except that the Emergency Stop circuit uses the internal 24v supply, thus there is no longer
arequirement for a 100v power supply.

The heat sinks on the SVU design mount through the panel to keep heat outside the
enclosure.

Since the o SVU Amplifiers do not provide regeneration to line capability, discharge resistors
may be required. These are available in several sizes.

SVU style o Series Servo Amplifiers are available in five sizes, with peak current limit ratings
from 12A to 130A. (Note: Only the 80A and 130A models are currently offered by NA.)

Cables to connect the SVU Amps to the DSM314 and to the motors are available in various
lengths.

Refer to publication GFH-001, Servo Product Specification Guide for more information
about the o Series servo products.

o Series Servo Motors

The o Series of servomotors incorporate design improvements to provide the best
performance possible. Ratings up to 56 Nm are offered. These motors are up to 15% shorter
and lighter than the previous S Series of servomotors. New insulation on the windings and
an overall sealant coating help protect the motor from the environment.

The standard encoder supplied with the motor is a 64K absolute unit. Holding brakes (90
Vdc) and IP67 sealants are options. The o Series servomotors are approved to conform to
international standards for CE (EMC and Low Voltage), IEC and UL/CUL. The following table
indicates a sample of the a Series motors available (some al, aC, aHV, and oM also
available).

For more information refer to Chapter 4 of this manual, “Configuring the DSM314,” under
the section labeled “Motor Type.” See also, the following publications:

e GFH-001, Servo Products Specification Guide
e GFZ-65142E, o Series AC Motor Descriptions Manual

13

User Manual
GFK-1742F

1.5

Product Overview

Chapter 1
Jan 2020
Table 4: Selected o Series Servo Motor Models
o Model Number |Torque Nm Output KW Max. Speed (RPM)
ol 1 0.3 3000
o2 2 0.4 2000
o2 2 0.5 3000
o3 3 0.9 3000
ab 6 1.0 2000
ab 6 1.4 3000
al2 12 2.1 2000
al2 12 2.8 3000
a2 22 3.8 2000
a2 22 4.4 3000
a30 30 3.3 1200
30 30 4.5 2000
o30 30 4.8 3000
40 38 5.9 2000
o40/Fan 56 7.3 2000

Section 4: [Series Servos (Digital Mode)
The Digital B Series Servo features include:

¢ World leading reliability

e Low maintenance, no component drift, no commutator brushes

o All parameters digitally set; no re-tuning required

e Absolute encoder eliminates re-homing (optional battery kit required)

e Optional motor brake

¢ Highresolution (32K - Beta) (64K — Beta M) count per revolution encoder

The B Series Servos offer the highest reliability and performance. The latest technologies,
such as high-speed serial encoders and high efficiency Integrated Power Modules, further
enhance the performance of the servo system. Designed with the motion control market in
mind, the B Series Servo Drives is ideally suited for the packaging, material handling,
converting, and metal fabrication industries.

The servo system is unique in that all the control loops - current, velocity, and position - are
closed in the motion controller. This approach reduces setup time and delivers significant
throughput advantages even in the most challenging applications.

The servo drives are less costly to integrate and maintain. Control circuits are unaffected by
temperature changes. There are no personality modules. The servos have a broad
application range including a wide load inertia range, flexible acceleration/deceleration and
position feedback configurations. Extensive software customization features are available
to optimize performance and overcome machine limitations.

14

User Manual
GFK-1742F

1.5.1

Product Overview

Chapter 1
Jan 2020

B Series Digital Amplifiers

The B Series servo amplifier integrates a power supply with the switching circuitry.
Therefore, can provide a compact amplifier that is 60% smaller than conventional models.
In fact, the B Series amplifier has the same height and depth as the RX3i and Series 90-30
modules. This allows efficient panel layout when using the DSM314 motion controller.

The amplifier is designed to conform to international standards.

Emerson offers three communication interfaces for the p Series amplifiers: pulse width
modulated (PWM), Servo Serial Bus (FSSB), and 1/O Link Interface. Only the pulse width
modulated (PWM) interface may be used with the DSM314 module. The PWM interface
utilizes the standard servo communication protocol. Position feedback is communicated
serially between the DSM controller and the motor mounted serial encoder.

B Series Servo Motors

The B Series Servomotors are built on the superior technology of the o Series servos. They
incorporate several design innovations that provide the best possible combination of high
performance, low cost, and compact size. Ratings of 0.5 to 12 Nm are offered.

These motors are up to 15% shorter and lighter than comparable servos. New insulation on
the windings and an overall sealant coating help protect the motor from the environment.

The B Series motors conform to international standards (IEC). The motor protection level is
IP65 (IP67 may be made available through special order).

A (32K - Beta) (64 K - Beta M) absolute encoder is standard with each B Series servo. An
optional 90 Vdc holding brake is also available with each model.

For more information, refer to Chapter 4 of this manual, “Configuring the DSM314,” under
the section labeled “Motor Type.” See also, the following publications:

e GFH-001, Servo Products Specification Guide
o GFZ-65232E, B Series AC Motor Descriptions Manual

Table 5: Selected B Series Servo Motor Models

B Model Number | Torque' Nm Output KW Max. Speed RPM
p0.5 0.5 0.2 3000
BMO.5 0.65 0.2 5000
B1 1 0.3 3000
M1 1.2 0.4 5000
B2 2 0.5 3000
B3 3 0.5 3000
B6 6 0.9 2000
aCl12 12 1.4 2000

' Indicates continuous, 100% duty cycle

Note: The aC12 motor is listed with the 8 motors due to similar attributes and amplifier series.

15

User Manual
GFK-1742F

1.6

Product Overview

Chapter 1
Jan 2020

Section 5: SL Series Servos (Analog Velocity
Mode)

The DSM314 supports all models of the SL Series Servos. For details on the SL Series Servo
amplifiers, motors, and accessories, please see the SL Series Servo User’s Manual, GFK-
1581.

16

User Manual
GFK-1742F

Chapter 2
Jan 2020

Chapter 2: System Overview

System Overview

A typical DSM314 motion system includes the DSM314 motion controller, a logic controller
(Series 90-30 PLC or PACSystems RX3i), motor(s), servo amplifier(s), /O, and the Human
Machine Interface (HMI).

The DSM314 control system consists of two parts: the servo control and the machine
control.

The servo control translates motion commands into signals that are sent to the servo
amplifier. It also runs the Local Logic and Motion programs. The servo amplifier receives the
control signals from the servo control and amplifies them to the required power level of the
motor. The DSM314 provides the servo control.

The machine control/host control (PACSystems RX3i or Series 90-30 PLC) houses the
DSM314 module and I/O modules. The machine control executes user defined control logic
(but not Local Logic). The machine control and the servo control (DSM314) exchange data
over the backplane.

Figure 5: Typical Two-Axis Motion Mate DSM314 Digital Motion Control System

SNP (RS-232)

RS-232 to
RS-485
Converter Y
Series
90-30 only

Logic Controller

=wo

4 —

PWM, Serial Encoder, & PWM, Serial]

Diagnostic Signals Encoder. & Programmer
Diagnostic Signals
Power
to Motor
Digital Digital
Servo Servo
Amplifier Amplifier
Encoder Encoder
A Feedback Encoder A Feedback Encoder
1 1
pm—tm—a ——t-—
4 ALY s ~
| Encoder Battery | | Encoder Battery |
| Pack (Optional)) | Pack (Optional) |
N o ' N e o i
Axis 1 Axis 2

17

User Manual
GFK-1742F

2.1

2.1.1

2.1.2

2.1.3

System Overview

Chapter 2
Jan 2020

Unpacking the System

The DSM314, Digital Servo Amplifiers, and Motors are packed separately. This section
describes how to unpack the hardware and perform a preliminary check on the
components.

Unpacking the DSM314

Carefully unpack the DSM314 and host controller system components. Verify that you have
received all the items listed on the bill of material. Keep all documentation and shipping
papers that accompanied the DSM314 motion system.

Unpacking the Digital Servo Amplifier

There are two digital amplifier and servo subsystem packages shipped for use with the
DSM314, the o Series or the Series.

The digital servo amplifier is shipped in a double-layered box. Remove the top layer of
packing material to uncover the amplifier. Next, carefully remove the inner box from the
outer layer. Then lift the amplifier out of the inner box. Retain any loose parts or gasket
materials packed with the amplifier. Visually inspect the amplifier for damage during
shipment.

Note: Do not change any pre-configured jumpers or switches on the amplifier at this time.

Unpacking the Motor

Motors are packed two different ways, depending on their size. The largest motors are
shipped on wooden pallets and are covered with cardboard. Most motors, however, are
packed in cardboard boxes.

1. Unpacking Instructions:

— For those motors packed in boxes, open the box from the top. The motors are
packed in two pieces of form-fitted material. Carefully lift the top piece from
the box. This should allow sufficient clearance for removing the motor.

- Ifthe motoris attached to a pallet, remove the cardboard covering. This allows
access to the bolts holding the motor to the pallet. Remove the bolts to free
the motor from the pallet.

2. Inspect the motor for damage.

3. Confirm that the motor shaft turns by hand.

Note: Ifthe motor was ordered with the optional holding brake, the shaft will not turn until the brake is
energized.

Next step...... Assembling the Motion Mate DSM314 System

18

User Manual
GFK-1742F

2.2
2.2.1

2.2.2

System Overview

Chapter 2
Jan 2020

Assembling the Motion Mate DSM314 System

General Guidelines

e Always make sure that the connectors lock into the sockets. The connectors are
designed to fit only one way. Do not force them.

e Do not overlook the importance of properly grounding the DSM314 system
components, including the DSM314 faceplate shield ground wire. Grounding
information is included in this section.

All user connections, except for the grounding tab, are located on the front of the DSM314
module. The grounding tab is located on the bottom of the module. Refer to the figure
below.

For instructions about installation of the DSM314 when IEC and other standards must be
observed, see Installation Requirements for Conformance to Standards, GFK-1179.

Motion Mate DSM314 Connections

Figure 6 provides an overview of the faceplate and labels on the DSM314 module. For
additional information and a complete connection diagram, please refer to chapter 3,
Installing and Wiring the Motion Mate DSM314.

Figure 6: Face Plate Connections on the Motion Mate DSM314 Motion Control System

COMM
Status LEDs STAT(D) oMM 6-pin RJ-11 connector.
STAT ok|o e Provides RS-232
OK CFGIC) connection for firmware
CFG N3] [O]ENT upgrades
EN4|O) O
EN1 - EN4 CZA
0= 0O=—=D
/\
Connector C > Connector A
Servo Axis 3 < Servo Axis 1
=% =n
S &
Teoe @
0= =
/‘1
Connector D X Connector B
D B
Motion Mate DSM314

‘i&
Grounding Tab

19

User Manual
GFK-1742F

2.2.3

System Overview

Chapter 2
Jan 2020

Connecting the aSeries SVU Digital Servo Amplifier

Skip to the next section if you are connecting a B Series amplifier.

The o Series Digital Servo Amplifier does not require tuning adjustment during initial startup
or when a component is replaced. It also does not need adjustment when environmental
conditions change.

To connect the o Series Digital Servo Amplifier, follow the steps outlined below.

1. Connect the o Series Servo Amplifier to the DSM314.

A. Before connecting the servo command cable, make sure the DSM314 faceplate
shield ground wire is connected. This wire is shipped with the DSM314 module
and must be connected from the % inch blade terminal on the bottom of the
module to a suitable panel earth ground.

B. The servo command cable contains the pulse width modulated (PWM) output
signal from the DSM, the serial data from the motor encoder, and diagnostic
signals from the amplifier. The signals carried in this cable are at data
communications voltage levels and should be routed away from other
conductors, especially high current conductors.

C. Locate the servo command cable IC800CBL001 (1 meter) or IC800CBL002 (3
meter). Insert the mating end of this cable into the connector |S1B, located on
the Servo Amplifier bottom (see Figure 2-4).

D. Ifyou are not using the IC693ACC335 axis terminal board to break out user I/O
such as overtravel or home limit inputs, insert the other end of the cable into the
connector labeled A, for axis 1, or B for axis 2, on the front of the DSM314. If you
are using the terminal board, insert the other end of the cable into the terminal
block connector marked SERVO. Next locate the terminal board connection
cable IC693CBL324 (1 meter) or IC693CBL325 (3 meter). Insert one end of this
cable into the terminal board connector marked DSM. Insert the other end of the
cable into the connector labeled A, for servo axis 1, or B for servo axis 2, on the
front of the DSM314 module.

Note: Refer to “l/O Connections” in chapter 3 for information concerning the user I/O available for
IC693ACC335 terminal block connections.

20

User Manual Chapter 2
GFK-1742F Jan 2020

2. Check SVU Amplifier Channel Switch Settings

Confirm that the Channel Switches (DIP switches), located behind the SVU amplifier
door, are set as shown in the following tables. Note that the OFF position is to the left,
and the ON position is to the right. Note also, that the switches are numbered from
bottom to top (Switch 1 is the bottom switch). For example, in Figure 7, Switches 1, 3,
and 4 are shown ON, and switch 2 is shown OFF.

Figure 7: SVU Amplifier Channel Switches

OFF ON

00
000

Table 6: SVU Amplifier Channel Switch Settings

Amplifier SVU1-80

Regenerative Discharge Unit SW1 |SW2 |Sw3 (Sw4
Built-in (100 W) ON OFF ON ON
Separate ZA06B-6089-H500 (200 W) | ON OFF ON OFF
Separate ZA06B-6089-H713 (800 W) | ON OFF OFF OFF

Amplifier SVU1-130

Regenerative Discharge Unit SW1 |Sw2 (Sw3 |Sw4
Built-in (400 W) ON OFF ON ON
Separate ZA06B-6089-H711 (800 W) | ON OFF ON OFF

(To connect additional amplifiers, repeat steps B, C and D above for each additional
amplifier.)

System Overview 21

User Manual Chapter 2
GFK-1742F Jan 2020

Figure 8: Connecting the o Series Digital Servo Amplifier to the Motion Mate

DSM314
o I W
5 ICE93ACCIIS
s} Axlg Teminal Soang
D
s}
[s]
0
ol
4 o AD SERVD WIT
L senis
ICB0OCELO0 1002 o
Servo Command - Hinged Cover
abla (K1)
ICES3CELI2425 rl |
Ll Tarminal Board STATIS
H connection Cable
Motor Power Cable —
e A= Connscts to Terminals =
= B Behind Hinged Cover :
Sanve Amplifisr
(o] Fromt View
128 2| ICE00CELOE1IIET0ES o —
EE EP Mobor Power
Cabia (F4)
J¥viB
:I CFIA-IMPE-0140-A2
Mofor Encodsr
= = Motor Cabla {K2) "
)
] Sarvo Amplifiar
Bottom View
With Terminal Board
I W
AL SERWD LWIT
f scnics
- Hingad Cover
Motor Power Cable E o e
ICB00CELOC1N02 Connscts to Terminals STATUS
Serve Command Behind Hinged Covar
™l cabie x1)
i
Sanve Amplifiar

_-.\Cb._l Front View

ICB00CBLOET NE2MES

Diu

=N

&

Z MOor Power
Cabis (K4]

&

CF3A-ZMPE-0140-4F
Motor Encoder Cabls
[K2)

L]

o Mator
'%E‘ Jad
Lidofion bioge Dahizia |
O Sarvo Amplifiar
= Bottom View

Without Terminal Board

System Overview 22

User Manual
GFK-1742F

System Overview

3.

Chapter 2
Jan 2020

Connect the Motor Power Cable to the a Series Digital Servo Amplifier.

A.

The motor size ordered for your system determines the K4 motor power cable
you will use if you ordered prefabricated cables with your system. The following
table lists the prefabricated cables commonly specified for each group of motors.
A complete listing of o Series servomotor power cables available through
Emerson can be found in the Servo Product Specifications Guide, GFH-001.

Table 7: Prefabricated o Servo Motor Power Cable (K4) Part Number Examples

Motor Type |Severe Duty Cable Cable Description Cable Length
Catalog Number

a.3/3000 IC800CBLO61 Elbow MS Connector 14 Meters

6/3000

a12/3000 IC800CBL062 Elbow MS Connector 14 Meters

«22/2000

o30/1200

a30/3000 IC800CBLO63 Elbow MS Connector 14 Meters

a40/2000

B. One end of this cable has four wires labeled U, V, W, and GND that connect to
screw terminals 9—12 on the servo amplifier. Connect these four wires to the
terminal strip as shown in Figure 9.

C. Attach the other end of the cable to the motor after first removing the plastic

caps protecting the motor’s connector. Note that this cable is keyed and can only
be properly attached to one of the motor’s connection points.

(Repeat this procedure as needed for any other axes in the system.)

For the most current information on the motor power cables or wiring custom motor

power cables please refer to the latest version of the o Series Servo Motor Description
Manual, GFZ-65142E.

23

User Manual Chapter 2
GFK-1742F Jan 2020

Figure 9: Connecting the Motor to the o Series Servo Amplifier Terminal Strip

/o
@]
AC Servo 141715
Amplifier 15
= 1®|4
o 161®/8]5
Series 171@l6
Status 18|@ 117
19®Isls
] U
®9 v
@10 W
211 G
JS1 B_____ . ®]12
_\\oj_l_li"— Terminal Of
Servo Amp

A =Phase U
@ B = Phase V

- C = Phase W
‘»V' @ © D = Ground

oty e

Motor

Power

System Overview 24

User Manual

Chapter 2
GFK-1742F Jan 2020
4. Connect the Motor Encoder to the a Series Digital Servo Amplifier.

A. Remove the protective plastic cap from the encoder connector on the motor,
and locate the K2 feedback cable CF3A-2MPB-0140-AZ. The cable is configured
so that it can only be attached to one connection on the motor.

B. Plug the opposite end into the connection labeled |F1 on the bottom of the o
Series servo amplifier (see Figure 10).

Repeat this procedure for all axes in the system.
Figure 10: Connecting the a Series Motor Encoder
_ -
© Servo Amplifier
JA4 JF1 JS1B
AC SERVO UNIT
o, SERES
Bl STATUS_

L_Yf)‘j_d
IC800CBL021
Motor Encoder
Cable (K2)

— [
Motor
Table 8: Prefabricated o Servo Motor Encoder Cable (K2) for a3 to 040 Models
Motor Models | Severe Duty Cable | Cable Length
o3 to a40 CF3A-2MPB-0140-AZ 14 meters
Note: Details on « cables can be found in the a Series AC Servo Motor Descriptions Manual, GFZ-
65142E, and in the aand B Series Product Specifications Guide, GFH-001.
System Overview

25

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

5. Connect 220-Volt AC 3 Phase Power to the a Series Digital Amplifier

An AC line filter will reduce the effect of harmonic noise to the power supply; its use is
recommended. Two or more amplifiers may be connected to one AC line filter if its power
capacity has not been exceeded. Figure 11 shows how to connect the amplifier to the line

filter.

Figure 11: Connecting the Servo Amplifier to the Line Filter and Power Source

13
14
15
16
17
18
19

EIEIEEEIEE)

EEEEREEEEEEE

1 Ground Lug
< @

Line Filter

o Series Amplifier
Connection Strip

To
Power
Saurce

Note: » 220-Volt-AC-three phase-powers-required.

Note: You must supply the cable for both the connections between the line filter and the servo amplifier,
and the connection between the line filter and the power source. Use four-conductor, 600V, 60°C
(140°F), UL or CSA approved cable between the line filter and the servo amplifier.

The gauge of wire used for connecting the line filter to the power source must be sized, based on
the circuit breaker between the power source and the line filter and the number of servos
connected to the line filter.

If a separate isolation transformer is used to supply AC power to the amplifiers, a line filter is not

required.

26

User Manual Chapter 2
GFK-1742F Jan 2020

6. Connect the Machine Emergency Stop to the a Series Digital Servo Amplifier

Pin 3 of connector CX4, located on the bottom of the a Series (SVU) amplifier, supplies +24
volts DC for the E-STOP circuit. Route this through the machine E-STOP circuit so that there
is +24 volts DCto pin 2 when notin E-STOP. If no E-STOP switch is used this connection must
be made with a wire jumper.

Note: You must supply the cable for this connection. Keyed connector plugs marked as connector X and
terminal connector pins are included with the amplifier package. You must install this connection
as a switch or jumper for the amplifier to operate.

ACAUTION

Do not apply any external voltage to this connector.

Figure 12: Connecting Emergency Stop to the o Series Servo Amplifier

Front Face
%i\

JV1B
FB{\Z
_

JS1B 3
2
JF1
JA4
(Botom view) ~ ©X3 CX4

Normally Closed
Machine E-STOP Device(s)
+24V

* ESP

cx4
Of First
o Series
(SVU)
Amplifier

o]]

CX4
Of Second
o Series
(SVU)
Amplifier

o] «]

Upto 6
o Series SVU AMPs
can be connected
in series

For more information, refer to the o Series Servo Amplifier (SVU) Descriptions Manual, GFZ-
65192EN.

System Overview 27

User Manual
GFK-1742F

2.2.4

System Overview

Chapter 2
Jan 2020

Connecting the B Series SVU Digital Servo Amplifier

The B Series Digital Servo Amplifier does not contain any user adjustments. To connect the
B Series Servo Amplifier, follow the steps outlined below. Refer to the previous section for a.
Series Amplifiers.

1. Connect the B Series Digital Servo Amplifier to the DSM314

A.

Before connecting the servo command cable, make sure the DSM314 faceplate
shield ground wire is connected. This wire is shipped with the DSM314 module
and must be connected from the % inch blade terminal on the bottom of the
module to a suitable panel earth ground.

The servo command cable contains the pulse width modulated (PWM) output
signal of the motion controller, the serial data from the motor encoder, and
diagnostic signals from the amplifier. The signals carried in this cable are at data
communications voltage levels and should be routed away from other high
current conductors.

Locate the servo command cable IC800CBL0O01 (1 meter) or IC800CBL002 (3
meter). Insert the mating end of this cable into the connector |S1B, located on
the front of the Servo Amplifier (see Figure 13).

This step depends on whether you are using a terminal board:

- Ifyou are not using the IC693ACC335 axis terminal board to break out user
/O, such as overtravel or home limit inputs, insert the other end of the cable
into the connector labeled A, for servo axis 1, or B for servo axis 2, on the
front of the DSM314.

- Ifyou are using the IC693ACC335 axis terminal board, insert the other end
of the cable into the terminal board connector marked SERVO. Next locate
the servo command cable IC693CBL324 (1 meter) or IC693CBL325 (3
meter). Insert one end of this cable into the terminal block connector
marked DSM. Insert the other end of the cable into the connector labeled A,
for servo axis 1, or B for servo axis 2, on the front of the DSM314.

To connect additional amplifiers, repeat steps B - D above for each additional amplifier.

28

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

Figure 13: B Series Servo Amplifier Connections

ENZ Cer
EM4 -

=%¥n

prar (L]
oK

o= i)

o o I

ICE83CELE2AMRRE

o
H |

]
=0
e
)
o
| Wiodion Mabe QoM

=1

cogooooog]

Xucc 0000

)

ICE8IACTIE

Axlg Terminal Boand
DEN 15 4%al

L

Tarminal Boand
Connaation Cable

ICEDDCELDFAGE
Earvo Command
Cable (K1)

ICEDDCE LS
Eervo Command
Cable [K1]

With Terminal Board

Servo Amplifier

=0 o)
pEries Ampifier
Front Face WView]

Motor
Power

Without Terminal Board

geeres Ampifier
[Front Face View]

/ \

L Motor
ha
Enc: r_|_| L 3
;| o

For more information, refer to the connection section of the Servo Product Specification

Guide, GFH-001.

29

User Manual

GFK-1742F

System Overview

2. Connect the Motor Power Cable (K4) to the B Series Digital Servo Amplifier

ACAUTION

Chapter 2
Jan 2020

Make connections to the CX-11 connector carefully. This connector is not keyed. Double-

check your connections before applying power. Incorrect connections could result in

equipment malfunction or damage. Amplifier versions later than revision G have keyed

connectors.

A. Thesize of the motor ordered for your system determines the motor power cable

(K4) you must use. You can choose to purchase prefabricated cables or to build
custom cables. Refer to the B Series Control Motor Descriptions Manual, GFZ-
65232EN, for information about custom cables or installation for conformance

to CE mark. The amplifier end of the prefabricated motor power cable is
constructed to connect to terminal block CX11-3 on the amplifier.

Table 9: K4 Cable - Series Motor Cable Examples

Servo Motor Type K-4 Motor Cable Part Number | Cable Description
$0.5/3000 IC800CBLO67 14 Meter

£ 1/3000, 5 2/3000, p 3/3000, and | IC800CBLO6S 14 Meter

B 6/2000

o C12/2000 CF3A-2MPB-0140-AZ 14 Meter

M 0.5/5000 CP8B-1WPB-0140-AZ 14 Meter

M 1/5000 CP8B-1WPB-0140-AZ 14 Meter

Figure 14: Connecting the B Series Digital Servo Amplifier Terminal Strip

Transformer

200/240VAC | 1 @
1or 3 Phase
pge "Ses Notes below Lo—s = CX11-1 o Motion Centroller
L% ™~ H—o—"0 > - 1
| Lo___
Lo LT | L o > Machine
T D D D ey B b -2 E-STOP PB
LS—*X—A—'-LL— 4 o0 Cx11-2 ; == 3 and NCmenlads
- 3 ™
1
PE d Breaker Cx11-3 ! Ir----.- 3 rQ-i—I
-
ke o
i I
= Arrest:
Power fresier H " :—-' 8
~ .
! 1
[
24VDC Power Supply e Pl RN
{24VDC +10% -10%) @ i : 1 CX5X
- 1
_____ B g O
H Series -4 CX5Y
&> To [eround Lug ! Ampiifier - Lo
cx114 v
|—|:|j @ on next amplifier !
- 1 (D)
PE Customer's ! : %’:ﬁgﬁr
cxi116 Famn i Pack
_Ground___
E Motor Encoder
. | & &> =
Dl..char‘?qe Resistor 30VDC Power Supply - O [T @
Built-in Thermastat (only for motors with]_E
brake option} G B series Motor

“Notes:
Line filter and lightning surge absorber can be used in place of a transformer when 200-240 volts AC is
available to the cabinet
2. For single—phase operation, AC line phase L3 is not connected. Refer to the Servo System Specifications
the Servo Product Specification Guide, GFH-001 for output current de-rating.

1.

30

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

Attach the other end of the motor power cable to the motor, after first removing
the plastic cap protecting the motor’s connector. Note that this cable is keyed
and can only be properly attached to one of the motor’s connection points.

Motor power cables purchased from Emerson include a 1-meter, single
conductor wire with a CX11-3 connector on one end and a ring terminal on the
other. This cable provides grounding connections for the frame of the motor and
should always be connected. Custom cable builders should always include this
cable. See the previous connection diagram for proper connection to the
amplifier.

(Repeat this procedure as needed for the other axis in the system.)

For more information, please refer to the Servo Product Specification Guide,
GFH-001.

3. Connect the Motor Encoder Cable (K2) to the B Series Digital Servo Amplifier

The motor size ordered for your system determines the K4 motor power cable you will use
if you ordered prefabricated cables with your system. Please refer to the table below to
determine the correct encoder cable catalog number.

D.

G.

Remove the protective plastic cap from the connector on the motor, and locate
the encoder cable K2, (see table 10). This cable has two distinct connectors.

Plug the end of the cable with the D-shell style connector into the connection
labeled JF1 on the servo amplifier (see Figure 13).

The other end of the cable is configured so that it can only be attached to one
connection on the motor encoder (red end cap).

(Repeat this procedure for all axes in the system.)

Table 10: K2 Cable - B Series Encoder Cable Examples

Motor Type K2 Encoder Cable Part Number | Cable Description
$0.5/3000 IC800CBL022 14 Meter

B1/3000, B2/3000, B3/3000, and |IC800CBLO23 14 Meter

B6/2000

aC12/2000 CF3A-2MPB-0140-AZ 14 Meter

M 0.5/5000 CFBA-OWPB-0140-AZ 14 Meter

BM 1/5000 CFBA-OWPB-0140-AZ 14 Meter

31

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

4. Connect the 220 VAC Power Cable (K3) to the B Series Digital Amplifier

The AC power cable is a user-supplied cable that connects to CX11-1 on the face of the B
Series amplifier. The connector for the amplifier end of this cable is part of kit ZAO6B-6093-
K305 supplied with each amplifier package. See the Servo Product Specification Guide, GFH-
001, for more detailed information.

An AC line filter will reduce the harmonic noise effect to the power supply; its use is
recommended. A line filter is not needed if an isolation transformer or separate power
transformer is used. Two or more amplifiers may be connected to one AC line filter or
transformer if its power capacity is not exceeded. Figure 15 shows how to connect the
amplifier to the line filter.

Figure 15: Connecting the B Series Servo Amplifier to the Line Filter and Power Source

CX11-1
L1 To
Power
L2 Source
L3

@ \ Line Filter

Ey
p Series Amplifier Ground Lug
Connection Strip

Note: You must supply the cable for the connection between the line filter and the power source. Use 4-
conductor, 600V, 60°C (140°F), UL or CSA approved cable between the line filter and the servo
amplifier. The gauge of wire used for connecting the line filter to the power source must be sized,
based on the size of the circuit breaker between the power source and the line filter and the
number of servos connected to the line filter. The power connectors and terminals are supplied as
part of the amplifier package.

32

User Manual Chapter 2
GFK-1742F Jan 2020

5. Connect the Machine Emergency Stop to the B Series Digital Servo Amplifier

Figure 16: Connecting the E-STOP to the B Series Servo Amplifier

E-STOP

)])
B Series Amplifier
(Front Face View)
o lo 24 20 JX5
Normally Closed JBOf First
i ; | B Series
Machine E-STOP Device(s
*) 17 Amplifier
20 JX5
Of Second
——1 B Series
17 Amplifier

Up to & Amplifiers JX5 Connector

can be connected .
in series Part of Kit - ZAD2B-0120-K301

Note: You must supply the cable for this connection package. The [X5 connector and connector cover is
included with the amplifier as part number ZA02B-0120-K301. If no E-STOP circuit is required, this
connection must be made with a wire jumper or the amplifier will not enable.

Connector |X5 Pin 20 supplies +24V DC for the E-STOP circuit. Wire Pin 20 through a
normally closed contact or switch so there is +24V DC to JX5 Pin 17 when not in E- STOP.
Emerson uses two brands of connectors for the |X5 connector. See figure 2-13 for proper
connection to each type.

ACAUTION

Do not apply any external voltage to this connection.

System Overview 33

User Manual
GFK-1742F

System Overview

Chapter 2

Jan 2020
HIROSE 20 Pin PCR Type Connector Pin Configuration
Figure 17
Pins as viewed from
1® 3® 59 ad 9® connection side
2® 49 6® g® 10®
1 13® 15® 179 19® O NC Contact
A for E-Stop
1% 14® 16@ 18® 20 r circuit
HONDA 20 Pin PCR Type Connector Pin Configuration
Figure 18: 20-Pin PCR Connector Pin-Out
Pins as viewed from
] [® [
2 4 6 8 10® connector side
1® i 5@ 7@ 9®
12® 4@ 16® 18® 20h
NC Contact
® ® ® I—
1 13 15@® 17 19 (P for E-Stop
circuit

6. Connect 24V DC Cable (K12) to the B Series Digital Servo Amplifier

A connector for the external 24 VDC supply is included with the amplifier package as a part
of kit ZA06B-6093-K305 and should be connected to CX11-4. The other end of the cable
must be connected to a 24VDC source capable of supplying at least 450 milliamps of current
for each B Series amplifier. The Emerson IC690PWR024 power supply is recommended. Do
not apply power at this time.

7. Connect Cable K8 - Jumper or External Regeneration Resistor to the B Series Digital
Servo Amplifier

Without External Regeneration Resistor (Using a Jumper)

If you do not have an external regeneration resistor, you must leave the connections on
CX11-2 (DCP and DCC) open. However, you must jumper the CX11-6 (TH1 and TH2)
terminals, shown in the figure below. (This jumper completes the circuit that would
otherwise be completed by the normally closed thermal over-temperature switch in the
external regeneration resistor unit.) If you do not have this jumper installed, the amplifier
will not function. The jumper and its connector are included as a part of the connector kit
ZA06B-6093-K305 that is shipped with each amplifier package.

34

User Manual
GFK-1742F

Chapter 2
Jan 2020

Figure 19: Installing a Jumper when an External Regeneration Resistor is not Used

B Amplifier

CX11-2 (DCP)
CX11-2 (DCC)
CX11-6 (TH1)
CX11-6 (TH2)

No Connection

No Connection

Jumper

With External Regeneration Resistor

If you have an external regeneration resistor, observe that it has four wires. The two smaller
wires (K8) connect to the resistor’s internal, normally closed, over-temperature switch. This
switch will open and shut down the amplifier if the resistor gets too hot. The two larger wires
(K7) connect to the resistor. All connectors needed to connect this resistor unit to the

amplifier are provided in the amplifier package.

Connect the two over-temperature switch wires (K8) to CX11-6 terminals TH1 and TH2.

(These connections are not polarity sensitive.)

Connect the two resistor wires (K7) to CX11-2, terminals DCP and DCC. (These connections

are not polarity sensitive.)

Figure 20: Connecting the External Regeneration Resistor

B Amplifier

CX11-2 (DCP)
CX11-2 (DCC)
CX11-6 (TH1)
CX11-6 (TH2)

|
K7 I
)

K7

External Regeneration

Resistor

30 ohm
100 watt

NC Over-
Temperature
Switch

CX11-2 (DCCE

K8

-2

CX11-6 (TH1)

CX11-6 (TH2)———]
2

K7

Q

CX11

(DCP)

/.

External Regeneration
Resistor

System Overview

35

User Manual Chapter 2
GFK-1742F Jan 2020
Figure 21: ZA06B-6093-H401 20-Watt Regenerative Resistor
4—— 65(256) —Pp
}4— 57 (2.24) —
A
150 O 4
— (591) Dpop
To e’ ZA06B-6093-H401
CX11-2 ~ DCC (20 Watt unit) 52 60
| | 2.05)2.36)
S TH1 2-@4.5(0.177)
CXTIC')I-B L= \@b
1 & v
100
€ (394 P
P Ja i
| H : ! |
A A
7 10 Max
(.276) (.394)
2.2.5 Installing and Wiring the DSM314 for Analog Mode

Important Analog Servo Considerations:

The Analog Servo Velocity Command or Analog Torque mode output is a single-
ended signal on pin 6 of the Auxiliary Terminal Board. This signal is referenced to Ov
of the DSM module and host controller. This signal should be connected to the
velocity command or torque command input of the servo amplifier.

Note:

It is important to correctly configure the DSM for either Analog Torque mode or Analog Velocity
mode. Which mode you select depends on the type of servo amplifier in use.

System Overview

The DSM314 provides a low current (30 ma) solid state relay output on pin 15 of the
Auxiliary Terminal Board for connection to a servo amplifier enable input.

In analog mode, the DSM314 requires a Drive Ready input (IN_4 signal) on pin 5 of
the Auxiliary Terminal Board. This signal must be switched to Ov when the amplifier
is ready to control the servo. The DSM starts checking the Drive Ready input one
second after the Drive Enable relay turns on in response to the Enable Drive %Q bit.
If the servo amplifier does not provide a suitable output, the IN_4 input to the
DSM314 can be connected to Ov or the function can be disabled in the module
configuration. For details, refer to chapter 4.

Quadrature encoder feedback is used in analog mode. Encoder wiring connections
are detailed in figures 49 through 53.

Figures 49 through 53 are generic analog wiring diagrams for the DSM.

For details about interfacing the DSM314 to the SL Servo products, refer to the
manual, SL Series Servo User’s Manual, GFK-1581.

36

User Manual
GFK-1742F

2.2.6

System Overview

Chapter 2
Jan 2020

Grounding the Motion Mate DSM314 Motion System

The DSM314 System must be properly grounded. Many problems occur simply because this
practice is not followed. To properly ground your Motion Mate DSM314 system, you should
follow these guidelines:

The grounding resistance of the system ground should be 100 ohms or less (class 3
grounding).

The DSM314 faceplate shield ground wire (shipped with the module) must be
connected from the % inch blade terminal at the bottom of the module to a panel
frame ground.

If an axis terminal board is used, two shield (“S”) connections are provided and one
of these must be connected to a panel frame ground.

The system ground cable must have sufficient cross-sectional area to safely carry the
accidental current flow into the system ground when an accident such as a short
circuit occurs. Typically, it must have at minimum the cross-sectional area of the AC
power cable. Figure 22 illustrates the grounding systems.

The amplifier ground connections, power earth (PE) connections, and motor frame
ground connections should always be wired to conform to local electrical wiring
regulations. When installing in conformance to CE Mark directives, a grounding bar
and clamp(s) (ordered separately) is required for the terminal block to amplifier
cable.

Refer to Chapter 3, Installing and Wiring the DSM314, 1/O Cable Grounding section, for
more details.

Figure 22: Motion Mate DSM314 System Grounding Connections

) Machine
Motor Power Servo Series 90°30
Magnetics Amplifiers PLC Operator's
Unit Rack Panel
I
Power ' 4
Magnetics ' /
Cabinet I /7
X /
\ I 7
1 7
\ -
Distribution Board
[
—— FrameGround
_— SystemGround == =

37

User Manual
GFK-1742F

2.3

System Overview

Chapter 2
Jan 2020

Table 11: Grounding Systems

Grounding System | Description

Frame Ground System | The frame ground system is used for safety and to suppress external and

internal noises. In a frame ground system, the frames, cases of the units,
panels, and shields for the interface cables between the units are connected.

System Ground The system ground system is used to connect the frame ground systems
System

connected between devices or units with the ground.

This completes the steps required to assemble the Motion Mate DSM314 system.

Turning on the Motion Mate DSM314

Before turning on the power, you should:

Confirm that the supplied cables are properly attached to the appropriate
connectors.

Confirm that all wiring to the power sources is correct.
Make sure that the motors are properly secured.

Check that all components are properly grounded, including the DSM314 faceplate
shield.

If you are using more than one motor, confirm that the servo amplifier connections
and the feedback cables are not crossed between motors.

There is a specific sequence for turning on power to the DSM314 Control System. In the
order listed, perform these steps:

1.

Turn on the 220V AC power to the Digital servos. Verify that the charged LED
indicator on the amplifieris on.

For B Series Digital amplifiers turn on the 24V DC source. Verify that the amplifier
Power indicator is on.

Switch on the power to the host controller. Check that the PWR LED on the Power
Supply is illuminated.

Using the correct communication cable, connect a personal computer with the
configuration/programming software to the host controller. (For Series 90-30, you
can also use a Handheld Programmer — HHP.) For more information, please refer to
the appropriate hardware installation manual.

Place the host controller in the STOP/Disabled mode.

If using an optional motor mounted holding brake, apply applicable power (90 VDC
for . and B Series motors, and 24 VDC for S-Series and MTR Series motors) to the
brake leads to disengage the holding brake.

38

User Manual
GFK-1742F

2.4

System Overview

Chapter 2
Jan 2020

Connecting the Programmer to the Host
Controller

All DSM314 programming is done through the configuration/programming software
interface, yielding a single point of programming for the module. For more information,
please refer to the Series 90-30 PLC Installation and Hardware Manual (GFK-0356 or later)
or the PACSystems RX3i System Manual (GFK-2314 or later). The programming
environment has several communications options. One communications option is to
connect the programmer directly to the host controller SNP port, as shown in the following
figure. Consult the software documentation for additional communications methods.

The DSM314 Controller is configured using the following programming software:
RX3i Machine Edition version 4.5 or later

Series 90-30 Machine Edition version 2.1 or later VersaPro version 2.1 or later

Note: The DSM314 also has a serial port on the module faceplate. This serial port is used only for
updating the DSM314 firmware.

Figure 23: DSM Programmer Connection Diagram

Configuration, Motion Programming,
and Local Logic Programming

SNP l

(RS-485)

PLC

Tt 1

AL —

Personal Computer
Running
Configuration/Programming
Software

39

User Manual
GFK-1742F

2.5 Machine Edition Configuration

This section describes configuration using Machine Edition software. For VersaPro software,

refer to Appendix H.

1. Start the Machine Edition Logic Developer — PLC software. The Machine Edition

dialog box appears.

Figure 24

CIMPLICITY Machine Edition

— Create a new project using

@— " Empty project

———

.@ ' Machine Edition template

A\ ——

é " Dpen an existing project

Project | Location

Show: © Fecent Projects € Al Projects

[~ Don't show this dialog box on startup

0K

Cancel

2. Under Create a New Project, choose Machine Edition Template and click OK. The

New Project dialog box appears.

3. Type a name for Project Name. In the Project Template dropdown list, select Series

90-30 PLC or PACSystems RX3i. Click OK.

System Overview

Chapter 2

User Manual
GFK-1742F

Chapter 2
Jan 2020
Figure 25
>

Project Name: |DSM_Example

Project Template:

Project Location: |y Compuler

@

El

Set az default I

A project with one
with default settings.

PACSystems RX3i

o]

= @ Sample Targetl:
=& Target1 Data Watch Lists:

'ﬁ Daka Wakch Lists Hardware

|- fifif} Hardware Configuration Configuration:

= I Logic Logic Program
l—J---‘EE Pragram Elocks Blocks:

. —EI— _MAIN Reference Wiew
#-_ g Reference View Tables Tables:
= [Supplemental Files supplemental
Files:

Cancel

PACSystems R¥3i target preconfigured

PACSystermns RX3i
Ernpty

Default PACSystems
RR3i

Contains empty
_MAIN LD Block
Contains Default
RWTs

Contains ermpty

folders

|»

Your project appears in the Navigator window as shown in the following figure.

Figure 26

EI-- DSM_Example

- & Targetl

488 Data Watch Lists
Egﬁﬁ Hardware Configuration
R ([[|Rack 0 (ICE95CHS012)
E:[} Logic
T:E Program Blocks
Eﬁj Reference Yiew Tables
- [#-_r Default Tables
=@y Supplemental Files
-y AP Files
- _ Y Documentation Files

4.

System Overview

Expand # the Main Rack node, which contains the default power supply and CPU.

41

User Manual Chapter 2
GFK-1742F Jan 2020

Figure 27

E-- DSM_Example
- % Targetl
488 Data Watch Lists
=1 il Hardware Configuration
=R (] Fack 0 (ICE9SCHS012)
M Slot 0 {ICE9SPSAD40)
' Slat 1 (Used With Slot 0)
E| Slot 2 (ICe9SCPUS10)
Slat 3 (Used With Slot 2)
Slot 4 ()
Slat 5 ()
Slot & ()
Slat 7 ()
Slot &)
Slat 9 ()
Slot 10 ()
Slot 11 ()
Slot 12 ()

5. Ifnecessary, replace the power supply and/or CPU with the models that will be used
in your application. To replace a module, right click and choose Replace Module.

6. AddaDSM314 to the rack configuration.

Note: Because an IC694DSM314 module and an IC693DSM314 module have the same functionality, a
Series 90-30 PLC supports them in the same way. If you install an IC694DSM314 in a Series 90-30
PLC, however, you cannot select it in Logic Developer - PLC. You must select an IC693DSM314
module and configure it as if it were an IC694DSM3 14.

A. Right click an empty slot and choose Add Module. The Module Catalog dialog
box appears.

B. Select the Motion tab, choose the DSM314 and click OK.

System Overview

42

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

Figure 28

Central Processing Unit |

Discrete [nput I Discrete Dutput I Discrete Mixed] Analog Inputl Analog Elulpull
Analog Mized | Communications | Bus Controller Motion | 3rd Party | Power Supplies I
Catalog Number |Descriptim

I

Cancel
ICEI3APU300 High Speed Counter Module
ICE944PU300 High Speed Counter Module
| ICE93DSM314 Motion Mate DS 314
ICE34DSM314 Mation Mate DSM314
ICE93D 5324 tation Mate D5 324
ICE94D 5324 Mation Mate DSk 324

This operation adds the DSM314 to the rack and displays the DSM314
configuration screens that allow you to customize the DSM314 to your
particular application. Refer to chapter 4 for details concerning the DSM314
configuration settings.

You should complete the configuration of your host controller to include the Power Supply,
Rack, CPU and additional modules to match the target system. Consult the software user’s
manual, and on-line help as needed.

Important

The completed configuration must be stored to the host controller. See “Storing Your
Configuration to the Host Controller” on page 44 for instructions on how to do this. For
additional details, consult the software user’s manual, and on-line help.

43

User Manual
GFK-1742F

2.6

System Overview

Chapter 2
Jan 2020

Storing Your Configuration to the Host
Controller

To perform the download operation, first make sure that the communications port is
properly configured. To access communications setup in Machine Edition software, right
click the target you want to connect to in the Navigator window and choose Properties. In
the Inspector window, select the Physical Port through which you want to connect. (For
information on downloading using VersaPro, see Appendix H.)

Figure 29: Communications Setup

{5
=1 (28 DEM314 Example =
= AX3i
153 Data Watch Lists
flip Hardwaie Configuration
=1 Logic
- -8 Program Blocks
=@ Motion Program
3P CAM Profiles
£P CtM Blocks

a 3 Local Legie |L|ﬂ
0. U EM. Ee. [Bv. 21

|
Target
Harme Fx43i
Tupe PL
Description
Documentation &ddiess
Family FACSystems Rx3i
FLC T arget Mame DSM 31 4E xample
Update Rate [mz] 250
Sweep Time Ims) Cffline
FLC Slatus Dffline
Scheduiing Mode MNormal
Flysical Pot COM1 -
[H&dditional Configuralion LOMI
COM3
COmM4
Inspectar I <¢dd/Remave COM Poits »

44

User Manual
GFK-1742F

System Overview

Chapter 2
Jan 2020

After configuring the communications port, the local logic program can be downloaded
(stored) to the Host Controller CPU. To store the current folder to the Host Controller,
choose Target from the Menu Bar and Go Online with “<Target>” from the submenu. Once
connected, choose Target from the Menu Bar and Download “<Target>" to PLC from the
submenu. The store operation begins the folder transfer process from the programmer to
the Host Controller CPU. When you initiate the store operation, a dialog box is presented
that allows you to choose what to store to the Host Controller. To store the hardware
configuration, select Hardware configuration and Motion.

Note:

Local Logic and Motion programs are transferred with the Hardware Configuration.

Figure 30: Machine Edition Download Dialog Box

Download ko PLC X|

‘Download to RaM 0K

[Logic

[Initial/Forced values

LCancel

I ‘white ALL items to flash memony

Machine Edition will indicate any errors or that it has successfully downloaded the program
in the Feedback Zone window.

Note:

A host controller status error of “System Configuration Mismatch” with the same rack/slot
location as a DSM3 14 indicates that there is a parameter configured and sent to the DSM314 that
has been rejected by the DSM314. Carefully check each parameter of your DSM314 configuration
with the configuration settings in this manual for the discrepancy. Correct the discrepancy, clear
the host controller Fault, and re-Store the configuration. Check that the error has been corrected.
See the next section, Enabling Run Mode on the PLC, for instructions on viewing and clearing PLC
faults.

The DSM314 can detect many typical configuration errors. These are returned as error codes of
the form Dxxx (hex) in the Module Status Code %Al word or Axis Error Code %Al words. These errors
do not cause a host controller status of “System Configuration Mismatch”. Refer to Appendix A
for a description of these errors. Correct any configuration errors and restore the configuration
with the host controller in Stop mode.

45

User Manual
GFK-1742F

2.7

2.8

2.9

System Overview

Chapter 2
Jan 2020

Alarms

The first step in correcting a problem is to determine if any alarms have occurred. Host
controller alarms or errors may be viewed in the PLC fault table. Servo and motion
subsystem alarms may be viewed in the DSM314 Module Status Code %Al word or one of
the Axis Error Code %Al words. Consult Chapter 5 for additional information on error
reporting through the %Al data.

For more information on DSM314 alarms, please refer Appendix A, “Error Codes,” which
contains a list of alarm codes and descriptions

For more information on diagnostics, see Appendix D, “Tuning a Digital or Analog Servo
System.”

Configuration Settings
If your system powers up with alarms, it may be due to an incorrect configuration setting.

The configuration must be stored to the host controller CPU and the host controller must
be in Run/Output Enabled mode.

If you cannot move an axis or execute a jog, check to see that all conditions necessary to
perform these operations are met. Refer to the appropriate sections in this manual.

Getting Help

For additional information, see https://www.emerson.com/Industrial-Automation-
Controls/support

e Save the paperwork that came with your system.

The Important Product Information sheet will contain the latest information on this
product, some of which may not be included in this manual.

e Backup yourladder logic folder.

Important

Do this frequently while developing your application.

46

https://www.emerson.com/Industrial-Automation-Controls/support
https://www.emerson.com/Industrial-Automation-Controls/support

User Manual Chapter 3
GFK-1742F Jan 2020

Chapter 3: Installing and Wiring the
DSM314

3.1 Hardware Description

This section identifies the module’s major hardware features. The module’s faceplate
provides seven status LEDs, one communications port R]-11 connector and four user I/O
connectors (36 pin). A grounding tab on the bottom of the module provides a convenient
way to connect the module’s faceplate shield to a panel ground.

Figure 31: DSM314 Module

COMM
Status LEDs O coum 6-pin RJ-11 connector.
Stat e O B Provides RS-232
OK CFG (O connection for firmware
CEG ™. O O update
EN1 - EN4 O Oee
=] [=0
—
Connector C Connector A
Servo Axis 3 Servo Axis 1
—— -
0—0 [—Dn
D =]
0=
= p—
Connector D Connector B
Servo Axis 4 Servo Axis 2
=
Motion Mate DSM314

i
Grounding Tab on

Bottom of Module

Installing and Wiring the DSM314 47

User Manual
GFK-1742F

3.1.1

Chapter 3
Jan 2020

LED Indicators

There are seven LED status indicators on the DSM314 module, described below:

STAT Normally ON. FLASHES to provide an indication of operational errors. Flashes slow
(four times/second) for Status-Only errors. Flashes fast (eight times/second) for
errors that cause the servo to stop.

ON: When the LED is steady ON, the DSM314 is functioning properly.
Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result
of a hardware or software malfunction that prevents the module from
powering up.

Flashing: ~ When the LED is FLASHING, an error condition is being signaled.
Constant Rate, CFG LED ON:

The LED flashes slow (four times/second) for Status Only errors and fast (eight
times/second) for errors that cause the servo to stop. The Module Error Present %l status bit
will be ON. An error code (hex format) will be placed in the Module Status Code %Al word or
one of the Axis Error Code %Al words.

Constant Rate, CFG LED Flashing:

If the STAT and CFG LEDs both flash together at a constant rate, the DSM314 module is in
boot mode waiting for a new firmware download. If the STAT and CFG LEDs both flash
alternately at a constant rate, the DSM314 firmware has detected a software watchdog
timeout due to a hardware or software malfunction.

Irreqular Rate, CFG LED OFF:

If this occurs immediately at power-up, then a hardware or software malfunction has been
detected. The module will blink the STAT LED to display two error numbers separated by a
brief delay. The numbers are determined by counting the blinks in both sequences. Record
the numbers and contact Emerson for information on

correcting the problem.
OK The OK LED indicates the current status of the DSM314 module.

ON: When the LED is steady ON, the DSM314 is functioning properly.
Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result of a
hardware or software malfunction that prevents the module from
powering up.

CFG This LED is ON when a module configuration has been received from the host
controller.

EN1T When this LED is ON, the Axis 1 Drive Enable relay output is active.
EN2 When this LED is ON, the Axis 2 Drive Enable relay output is active.

Installing and Wiring the DSM314

48

User Manual
GFK-1742F

3.1.2

Chapter 3
Jan 2020

EN3 When this LED is ON, the Axis 3 Drive Enable relay output is active.
EN4 When this LED is ON, the Axis 4 Drive Enable relay output is active.

The DSM COMM (Serial Communications) Connector

The module’s front panel contains a single R]-11 connector for serial communications,
labeled “COMM?”. It is used to download firmware updates to the DSM module from a
personal computer running the PC Loader or Win Loader utility software. (See Appendix F
for details.)

This serial COMM port connects to the personal computer’s serial port and uses the SNP
protocol and the RS-232 serial communications standard. The baud rate is configurable
from 300 to 19,200 baud. The COMM port is configured using the configuration software.

A 1-meter cable, IC693CBL316, is available from Emerson to connect the COMM port to a
personal computer. This cable uses a 9-pin female D-shell connector for the computer side
and an RJ-11 connector for the DSM314. If a longer cable is used, the maximum
recommended length is 50 feet.

Table 12: DSM314 COMM Port Pin Assignments

RJ-11 Pin Number 9-Pin (female) Number [Signal Name |Description

1 7 CTS Clear to Send

2 2 TXD Transmit Data

3 5 ov Signal Ground

4 5 ov Signal Ground

5 3 RXD Receive Data

6 8 RTS Request to Send

3.1.3

Note: Pin 1is at the bottom of the connector when viewed from the front of the module.

1/O Connectors

The DSM314 is a two-axis digital servo/one axis analog velocity interface or four axis analog
servo (Torque Mode and/or Velocity Mode) controller with four 36-pin I/O connectors
labeled A, B, C, and D. The connectors are assigned as follows:

Table 13: Axis /O Connector Assignments

Connector |Axis Axis Type |1/O Usage
Number
A 1 Servo Axis Closed Loop Digital or Analog Servo Control
2 Servo Axis Closed Loop Digital or Analog Servo Control or
Aux Axis Position Feedback and auxiliary analog [digital I/O
C 3 Servo Axis Closed Loop Analog Servo Control or Position
Aux Axis Feedback and auxiliary analog | digital I/O
D 4 Servo Axis Closed Loop Analog Servo Control or Position
Aux Axis Feedback and auxiliary analog | digital /O

Installing and Wiring the DSM314 49

User Manual
GFK-1742F

3.1.4

Chapter 3
Jan 2020

All four connectors provide similar analog and digital I/O circuits. Only Axis 1 and Axis 2 can
be configured to control digital servos. If digital servos are used, both Axis 1 and Axis 2 must
be configured for Digital Servo mode. When Axis 1 and Axis 2 are configured for digital
servos, Axis 3 can be used for Analog Velocity Interface Servo or Aux Axis control. Axis 4 is
not available for Analog Velocity Interface Servo, Torque Interface Servo or Aux Axis control
when Axis 1 and 2 are configured for digital servos.

When Axis 1 is configured for Analog Servo control (Torque Interface or Velocity Interface),
Axis 2 - Axis 4 are also available for Analog Servo (Torque Interface or Velocity Interface) or
Aux Axis control. Aux Axis functions include position input for Follower Master axes and
internal (virtual master) command generation.

Any of these four connectors used in a system typically is cabled to an appropriate Terminal
Board with cable IC693CBL324 (1 meter) or IC693CBL325 (3 meters). Three different
terminal boards provide screw terminals for connecting to external devices. The terminal
boards are described later in the “Terminal Board” section of this chapter.

Shield Ground Connection

The DSM314 faceplate shield must be connected to frame ground. This connection from
the DSM314 to frame ground can be made using the green ground wire (part number
44A735970-001R01) provided with the module. This wire has a stab-on connector on one
end for connection to a % inch terminal on the bottom of the DSM314 module and a
terminal on the other end for connection to a grounded enclosure.

Figure 32: Connecting the Shield Ground

i1 1

BOTTOM VIEW USE 1#6
SELF TAPPING SCREW
STAB-ON OF DSM MODULE (NB6GP14006B6)

CONMNECTOR

MOUNT ON
GROUNDED
ENCLOSURE

f

44AT355T0-001R01

Installing and Wiring the DSM314

50

User Manual
GFK-1742F

Chapter 3
Jan 2020

3.2 Installing the DSM314 Module

The DSM324i can operate in the main rack, expansion rack, or remote baseplate of any
supported Host Controller (PACSystems Rx3i, firmware release 2.8 or later or Series 90-30
PLC, firmware release 10.0 or later). The configuration files created by the configuration

software must match the physical configuration of the modules.

For general Series 90-30 installation and environment considerations, refer to the Series 90-
30 PLC Installation and Hardware Manual, GFK-0356.

For general PACSystems RX3i installation and environment considerations, refer to the
PACSystems RX3i System Manual, GFK-2314 or later.

To install the DSM314 on the baseplate, follow these steps:

1.

8.
9.

Use the configuration software or the Hand-Held Programmer (Series 90-30 only) to
stop the host controller. This prevents the local application program, if any, from
initiating any command that may affect the module operation on subsequent
power- up.

Power down the host controller system.

Align the module with the desired base slot and connector. Tilt the module upward
so that the top rear hook of the module engages the slot on the baseplate top edge.

Swing the module down until the connectors mate and the lock-lever on the bottom
of the module snaps into place engaging the baseplate notch.

Connect the faceplate shield wire from the v inch blade terminal on the bottom of
the module to a suitable panel earth ground.

Refer to Figures 3-10 through 3-23 and Tables 3-7 through 3-14 for 1/O wiring
requirements.

Power up the host controller rack. The Status LED of the Motion Mate DSM314 will
turn ON when the controller has passed its power-up diagnostics.

Repeat this procedure for each DSM314 module in your host controller system.

Configure the DSM314 module(s) as described in Chapter 4.

The following table lists the DSM314 module current draw and defines the number of
modules that can be installed in a particular host controller system.

The number of modules in a system may be restricted by:

Host controller rack power supply capacity

Host controller 1/O Table space. The DSM module requires the use of %I, %Q, %Al,
and %AQ memory in the host controller’s I/O Table, with the %I and %Q type usually
being the most restrictive of the four. %Al is also restrictive on CPUs that do not
support configurable %AQ memory (such as the 350 CPU). The amount of available
memory varies with the model of host controller CPU to be used.

Host controller Configuration data storage capacity

Available CPU memory

Installing and Wiring the DSM314

51

User Manual
GFK-1742F

The absolute limits for each host controller type must not be exceeded because in some

Chapter 3
Jan 2020

cases they are based on I/O Table and Configuration data capacity.

The practical number of axes must consider I/O use and sweep time of the entire system.

Table 14: Maximum Number of DSM314 Modules per Host Controller System by Rack

and Power Supply Types

Power Supply Voltage:
Power Supply Current Draw by DSM:

Available +5V Current/Module to supply
external encoder, if used:

5VDC from host controller backplane

800 mA plus encoder supply current (see next
item).

500 mA (if used, must be added to module +5V
current draw)

PACSystems RX3i
Main Rack
Model 310 CPUs:

5 DSM314 modules in CPU baseplate per PWR 040

Up to 12 DSM314s with two multifunctional DC
power supplies
(PSD140) in a 16-slot rack

PACSystems RX3i

Expansion/Remote Racks

(5 and 10-slot expansion or remote
baseplates - 8 total baseplates per system)

2 DSM314 modules in remote baseplate with
PWR321/322/328

3 DSM314 modules in expansion baseplate with
PWR321/322/328

6 DSM314 modules in expansion/remote
baseplate with PWR330/331/332

PACSystems RX3i Maximum

61 total DSM314 modules per PACSystems RX3i
system.

(60 maximums if an Ethernet module,
IC695ETMO001, is required.)

Series 90-30

Model 350, 352, 360, 363, 364, 366, 367, 374

CPUs:
(5 and 10-slot CPU (main) baseplates, 5
and 10-slot expansion or remote
baseplates - 8 total baseplates per
system)

2 DSM314 modules in CPU baseplate with
PWR321/322/328

5 DSM314 modules in CPU baseplate with
PW330/331/332

3 DSM314 modules in expansion/remote
baseplate with PWR321/322/328

6 DSM314 modules in remote baseplate with
PWR330/331/332

7 DSM314 modules in expansion baseplate with
PWR330/331/332

20 total DSM314 modules per Series 90-30
system with PWR321/322/328*

20 total DSM314 modules per Series 90-30
system with PWR330/331/332*

Installing and Wiring the DSM314

The maximum number of modules supported in a system may be reduced by other
modules in the system, such as APM and GBC modules. It may also be further reduced
by having datagrams set up that read the reference or fault tables. If the configuration
and user program is stored at the same time, the presence of either C blocks within

52

User Manual
GFK-1742F

Chapter 3
Jan 2020

the LD program, or a Clogic program may also affect the number of DSM314 modules
that can be included in a system. If the store fails, it may be possible to store the
configuration to the system by first storing the logic program, and then storing the
configuration on a separate store request.
The numbers listed in the above table are the theoretical maximums. However, an
important factor in determining the module mix in any baseplate is that the total power
consumption of all modules must not exceed the total load capacity of the power supply. It
is possible that a module mix would not allow the maximum number of DSM314s to be
installed in a baseplate due to power supply limitations. The configuration software has a
power supply usage display that can be used to check this.

This calculation can also be done manually as explained in:

e PACSystems RX3i System Manual, GFK-2314, which also lists load requirement
specifications for PACSystems RX3i modules.

e Series 90-30 PLC Installation Manual, GFK-0356P or later, which also lists load
requirement specifications for Series 90-30 modules.

The available power supplies are:

PACSystems RX3i Power Supplies
e IC695PSA040 - AC/DC Power Supply - allows 30 watts (6000 ma) for +5 VDC
o IC695PSD040 - 24 VDC input Power Supply - allows 30 watts (6000 ma) for +5 VDC
e 1C695PSD140 - AC/DC Multifunctional Power Supply - allows 30 watts (6000 mA)

for +5VDC

o IC695PSA140 - 24VDC input Multifunctional Power Supply - allows 30 watts (6000
mA) for +5 VDC

e 1C694PWR321 - AC/DC Serial Expansion Power Supply - allows 15 watts (3000 mA)
for +5VDC

e 1C694PWR330 - High Capacity AC/DC Serial Expansion Power Supply - allows 30
watts (6000 mA) for +5 VDC

o IC694PWR331 - High Capacity 24 VDC Serial Expansion Power Supply - allows 30
watts (6000 mA) for +5 VDC

Standard Series 90-30 Power Supplies

e IC693PWR321 - Standard AC/DC Power Supply - allows 15 watts (3000 mA) for +5
VDC

o IC693PWR322 - 24/48 VDC input Power Supply - allows 15 watts (3000 mA) for +5
VDC

e IC693PWR328 - 48 VDCinput Power Supply - allows 15 watts (3000 mA) for +5 VDC

Installing and Wiring the DSM314

53

User Manual
GFK-1742F

Chapter 3
Jan 2020

High Capacity Series 90-30 Power Supplies

IC693PWR330 - High Capacity AC/DC Power Supply - allows 30 watts (6000 mA) for
+5VDC

IC693PWR331 - High Capacity 24 VDC input Power Supply - allows 30 watts (6000
mA) for +5 VDC

IC693PWR332 - High Capacity 12 VDC input Power Supply - allows 30 watts (6000
mA) for +5 VDC

Note:

If you are installing the ground plate on a painted surface, the paint must be removed where the
ground plate is to be mounted to ensure a good ground connection between the plate and
mounting surface.

Note:

Refer to GFK-0867B, (Emerson Product Agency Approvals, Standards, General Specifications), or
later version for product standards and general specifications.

Installation instructions in this manual are provided for installations that do not require special
procedures for noisy or hazardous environments. For installations that must conform to more
stringent requirements (such as CE Mark), see GFK-1179, Installation Requirements for
Conformance to Standards.

3.3 I/O Wiring and Connections
3.3.1 /O Circuit Types

Each of the module’s four connectors (Connector A, B, C, and D) provide the following types
of 1/O circuits:

Three differential | single ended 5v inputs (IN1-IN3)
5 VDC Encoder Power (P5V)

One single ended 5v input (IN4)

Four single ended 5v input [output circuits (I05-108)
Three 24v inputs (IN9-INT1)

One 24v, 125 mA solid state relay output (OUT1)
Two differential 5v line driver outputs (OUT2-OUT3)
One 24v, 30 mA solid state relay output (OUT4)

Two differential +/- 10v Analog Inputs (AIN1-AIN2)
One single ended +/- 10v Analog Output (AOUT1)

Not all of these I/O circuits are available for user connections. Some of the circuits are used
to control the digital servo amplifier. Refer to Tables 3-11 through 3-14 for additional
information.

Installing and Wiring the DSM314

54

User Manual
GFK-1742F

3.3.2

Chapter 3
Jan 2020

Terminal Boards

Axis Terminal Board, Catalog No. IC693ACC335 - Used in digital mode only. It
connects DSM connector A or B to a o or B Digital Servo amplifier. It also provides
screw terminal connections for I/O devices. This terminal board contains two 36 pin
connectors. One connects to the DSM via cable IC693CBL324/325, and the other
connects to the Digital Servo amplifier via the servo command cables IC800CBL0O
/ 002. See Figures 40, 46, 47, and 48.

Note:

For Digital Servo applications that do not require use of the DSM’s A or B connector I/O signals,
the DSM connector can be cabled directly to the digital servo amplifier. Refer to Section 3, “I/O
Wiring and Connections,” later in this chapter for additional information.

Auxiliary Terminal Board, Catalog No. IC693ACC336 - This terminal board contains
a single 36 pin connector that connects to the DSM314 module. This board has two
basic applications (see Figures 40 and 41):

1. For Analog servos, it connects to DSM Connector A, B, C or D to provide screw
terminals for wiring to a third-party Analog servo amplifier and I/O devices. See
Figures 49 through 53.

2. For Auxiliary axes, it connects to DSM Connector B, C, or D to provide screw
terminals for wiring to external devices such as Strobe sensors, Home switches,
and Overtravel Limit switches. Note: See Figure 53.

SL-Series Servo to APM/DSM Terminal Board, Catalog IC800SLT001 - Used to
connect DSM connector A, B, C or D to a SL-Series analog velocity interface servo
amplifier, as well as provide screw terminals for wiring to I/O devices. It contains two
connectors. One connects to the DSM module, and the other to the SL-Series Servo
amplifier. For additional information, please see the SL-Series Servo User’s Manual,
GFK-1581.

Table 15: DSM Terminal Board Quick Selection Table

DSM Application DSM DSM Axis Terminal Board
Connector |Mode Required

Connect to a-Series or B-Series digital servo | Aor B Digital IC693ACC335

and /0.

Connect directly to a-Series or B-Series AorB Digital None

digital servo. No I/O connections needed.

Connect to third party analog servo and 1/0.| A, B, Cor D Analog IC693ACC336

Connect to SL-Series analog servo and 1/0. |A,B,CorD Analog Velocity |I1C800SLT001

Interface

Connect to Auxiliary Axis I/O on DSM B,CorD Analog or Aux IC693ACC336

connector B, C or D or S2K Series analog

servo and I/O.

Installing and Wiring the DSM314

55

User Manual

Chapter 3

GFK-1742F Jan 2020
Figure 33: Axis and Auxiliary Terminal Board Assemblies
_. 5| [“]
oH >
71 O
O0a
o e °
15 O
2 4| ©
Tl o
| O 2 C
0 = 5
6 0 | lg
HY Lo
I lo 200
6 O 7 O o
s o H .-‘jj #O0H 4
1| O 5 £1OMa
3|0 H > 1l O H
2 C T | \.j ?3 o I (\'
To i@ 2| 0 H ('.i
- e — o
ol O H T HINON =
[[oH 2 ploH >
{;:r—o 19'()—2
1/0 u)
£ Q FLL 170
ICE693ACC335 ICB93ACC336
Servo AxisTerminal Auxiliary Terminal
Note: Eachterminal board is shipped with DIN Rail mounting feet. Instructions for converting a terminal

board to panel-mount are included in this chapter.

3.3.3 Digital Servo Axis Terminal Board - IC693ACC335

Descr

iption

The IC693ACC335 Digital Servo Axis Terminal Board is used to connect the DSM314 to
Digital Servo Amplifiers. The board contains two 36-pin connectors, labeled DSM and
SERVO. A cable IC693CBL324 (1 meter) or IC693CBL325 (3 meters) connects from DSM
connector (PL2) to the DSM314 faceplate connector A or B. A Servo Command Cable
IC800CBL0O01 (1 meter) or IC800CBL002 (3 meters) connects from the SERVO connector
(PL3) to the |[S1B connector on a o, Series or B Series Digital Servo Amplifier.

Eighteen screw terminals are provided on the Digital Servo Axis Terminal Board for

connections to user devices. These terminals have the following assignments:

Installing and Wiring the DSM314

56

User Manual

GFK-1742F

Chapter 3
Jan 2020
Table 16: IC693ACC335 Digital Axis Terminal Board Pin Assignments
Axis Terminal DSM314 | Circuit Circuit Type [Servo Axis 1,2 Signal Maximum
Board I]O Screw | Faceplate [Identifier Circuit Function | Name (Axis | Voltage
Terminal Pin 1 listed) *
1 1 INT Single ended | Strobe Input 1 (+) INTP_A 5VDC
9 19 [differential 5v | Strobe Input 1 (-) INTM_A
2 2 IN2 inputs Strobe Input2 (+) | IN2P_A 5VDC
10 20 Strobe Input 2 (-) IN2M_A
3 4 P5V 5v Power 5v Power P5V_A 5VDC
11 22 ov Ov Ov 0V_A 5VDC
6 16 IN9 24v optically | Overtravel (+) IN9_A 30VDC
14 34 INT0 isolated inputs "5 e rtravel () INTO_A 30VDC
7 17 INT1 Home Switch INTT_A 30VDC
15 35 INCOM 24v Input 24v Input Common | INCOM_A 30VDC
Common
8 18 OUT1 24v,125mA Host controller24v [OUTTP_A 30VDC
16 36 DCSSR output | Output (+) OUTTM_A
Host controller 24v
Output (-)
5 14 OuT3 Differential 5v | Host controller 5v OUT3P_A 5VDC
13 32 output Output (+) OUT3M_A
Host controller 5v
Output (-)
4 6 AOUT +/-10v Analog | Host controller AOUT_A 5VDC
Out Analog Out
12 24 ACOM Analog Out Analog Out Com ACOM_A 5VDC
Com
S (2 pins) SHIELD Cable Shield Cable Shield SHIELD_A 5VDC

*

For signal names pertaining to servo axis 2, change all “_A” to “_B".

Six 130V MOVs are installed between selected /O points and the shield (frame ground) for
noise suppression. The I/O terminal points so connected are 6, 7, 8, 14, 15, and 16. The I/O

terminals support a wire gauge of 14-28 AWG. Maximum screw torque that may be applied
is 5 inch-pounds.

Note:

Two of the screw terminals are labeled S for Shield. A short earth ground wire should be connected

from one of the S terminals directly to a panel earth ground. The cable shields for any shielded

cables from user devices should connect to either of the S terminals.

Installing and Wiring the DSM314

57

User Manual Chapter 3
GFK-1742F Jan 2020
Mounting Dimensions
Figure 34: IC693ACC335 Digital Axis Terminal Board Mounting Dimensions
303" (77mm) ———»|
'y
I
90 (8 o
15 O o o
| B
Height MO o 2.68"
Above Panel HO o (68mm)
2.05" (52mm) fg 4o
— 2 O
1 O H
— 1| O
49 o
190,
v
DIN-Rail Mount
303" (TTmm)————»
076" —m -
(19.4mm) 3
i A
| ' -
g © O
1ol 2 |2
w 8 O
Height 4 © _5 O 2 ga"
13 1 i
54" (39mm) Ho O 318"
Ho A 8 (80.7mm)
do o el Bl 362"
105775 DSM SERVO (92mm)
r
0.368" (9.3mm) Counterbore Dia. i@) ________ v
0.176" (4.5 mm) Thru. Dia. Y
Panel Mount
Installing and Wiring the DSM314 58

User Manual
GFK-1742F

Chapter 3
Jan 2020

Converting From DIN-Rail Mounting to Panel Mounting

The following parts are used in either the DIN-rail or Panel mount assembly options. The axis
terminal board is shipped configured for DIN-rail mounting. The instructions in this section

guide you in converting the board to its panel mounting optional configuration.

The following table and drawings describe the various plastic parts that make up the axis
terminal board assembly and shows a side view of the board configured for DIN-rail

mounting

Table 17: Axis Terminal Board Assembly Components

Plastic Component Part | Description |Quantity |Mounting Styles Used With
Number

UMK-BE 45 Base Element 1 DIN, Panel

UMK-SE 11.25-1 Side Element 2 DIN, Panel

UMK-FE Foot Element 2 DIN

UMK-BF* Mounting Ear 2 Panel

*

Parts shipped with axis terminal board for optional panel mounting

Figure 35: Digital Servo Axis Terminal Board Assembly Drawings

(77.0)

Lf 3.0 ——‘

Rl 1".4245) “l |“
==

]

UMEK-SE 11.25-1

—
§
{
}
&

| 051
(155)

" 1 f,:lg'\\
E %
O:
[—
=Y
@
— =
(&
N é
o ¥ Q.ri/’
|-—1 77 —-1
(45.0) 0.31 REF =
(7.9
(e |
—] D UMK-BE 45 3
Un B
102 - 18
(25.9) 4—| |""(4IEJ
@ ITZ
(18.3)

_I o
o r“
0
~@l
= oo
y
41 rkn_?a
(19.8) L_ 072
—
(183)
UMK-FE

Installing and Wiring the DSM314

59

User Manual Chapter 3
GFK-1742F Jan 2020

Figure 36: Digital Servo Axis Terminal Board Assembly Side View

The following procedure should be used to convert the Digital Servo axis terminal board to
its panel mounting form. Remember to save all removed parts for possible later conversion
back to DIN-rail mounting.

1. Carefully remove one UMK-SE 11.25-1 side element from the UMK-BE 45 base
element. If a screwdriver or other device is used, exercise extreme caution to avoid
damaging either the plastic parts or the circuit board.

2. Slide the UMK-FE foot element off the base element. Save this part for possible
future use in converting the terminal board back to its DIN-rail mounting
configuration.

3. Snap the side element, removed in step 1 above, back into the base element.

4. Insert one UMK-BF mounting ear into the appropriate two holes in the side element.
Note that the mounting ear has a recessed hole for later inserting a (user supplied)
mounting screw. The recessed hole should face upwards to accommodate the
mounting screw.

5. Repeat steps 1-4 above for the other side of the terminal board.

Installing and Wiring the DSM314 60

User Manual
GFK-1742F

3.34

Chapter 3
Jan 2020

Auxiliary Terminal Board - IC693ACC336

Description and Mounting Dimensions

The IC693ACC336 Auxiliary Terminal Board is used to connect the DSM314 to Analog Servo
Axes and auxiliary devices such as Incremental Quadrature Encoders, Strobe detectors and
external switches. The board contains one 36 pin connector, labeled DSM. A cable
IC693CBL324 (1 meter) or IC693CBL325 (3 meters) connects from the DSM connector (PL2)
to the DSM314 faceplate.

Thirty-eight screw terminals are provided on the Auxiliary Terminal Board for connections
to user devices. These screw terminals have the same pin labels as the 36-pin DSM314
faceplate connector. For detailed connection information, refer to “Analog Servo Axis 1-4
Circuit and Pin Assignments “on page 71.

The maximum voltage that should be applied to I/O terminals 16-18 and 34-36 is 30 VDC.
The maximum voltage for any other input terminal is 5 VDC.

Six 130V MOVs are installed between selected I/O points and the shield (frame ground) for
noise suppression. The 1/O terminal points so connected are 16, 17, 18, 34, 35, and 36.

The I/O terminals support a wire gauge of 14-28 AWG. Maximum screw torque that may be
appliedis 5 inch-pounds.

Note: Two of the screw terminals are labeled S for Shield. A short earth ground wire should be connected
from one of the S terminals directly to a panel earth ground. The cable shields for any shielded
cables from user devices should connect to either of the S terminals.

Figure 37:1C693ACC336 Terminal Board Mounting Dimensions

B —_
" 09" T
«—18" (45mm) —»] 225mm) _---/%’3%—-—-—-—-—:—--
. 1%
r
oM g ok ©
7 O -l o
Q- A 5| O .
p D) = @]
:_;) E o ; 8 O
1o Mo - o
omo L oHoO
: ERe; 495" H o
o H : L
AbHe'%“t | oMo (125mm) Height ET RS -
ove Pane 15 Above Panel | 4 O 1l .
195" o] 1o 165" 7 O 5 (130mm)
(48mm) °ng (42mm) 405 5
©ldo oo 56"
Z o 10 o (141mm)
O r 3 O
oo bl o 14 @
DIN-Rail Mount R o] Panel Mount 8 ;J 5| ©
“ e © E~ Lo
O H 0| O H "
1ol ol o
o) ~ 2l
CrRT o . 0.368" (9.3mm) ELO 0
Counterbore Dia. AN v
: o SR
0.176" (4.5 mm) Thru. Dia. - 7 v

Installing and Wiring the DSM314

61

User Manual Chapter 3
GFK-1742F Jan 2020

Converting From DIN-Rail Mounting to Panel Mounting

The following parts are used in either the DIN-rail or Panel mount assembly options. The
auxiliary terminal board is shipped configured for DIN-rail mounting. The instructions in this
section guide you in converting the board to its panel mounting optional configuration.

The following table and drawings describe the various plastic parts that make up the
auxiliary terminal board assembly and shows a side view of the board configured for DIN-
rail mounting.

Table 18: Auxiliary Terminal Board Components

Phoenix Contact Part Number Description Quantity
UM45 Profil 105.25 PCB Carrier 1

UM 45-SEFE with 2 screws Side element with Foot 2

UMK 45-SES with 2 screws™ Side Element 2
UMK-BF* Mounting Ear 2

* Parts shipped with auxiliary terminal board for optional panel mounting

Figure 38: Auxiliary Terminal Board Assembly Drawings

UM 45 Profil

05254025 —] IF:;?]
E%ﬁ“mfj

UM 45 SEFE UM 45 SES
s b
19 o
| Mk | UMK_BF] V—,r T
1.02 18 @ 9)
(25.9) (4.6)
- .

_ 2= _ 2=

Installing and Wiring the DSM314 62

User Manual Chapter 3
GFK-1742F Jan 2020

Figure 39: Auxiliary Terminal Board Assembly Side View

The following procedure should be used if you wish to mount the auxiliary terminal board
directly to a panel instead of on a DIN-rail. Remember to save all removed parts for possible
later conversion back to DIN-rail mounting.

1. Using a small bladed Phillips screwdriver, carefully remove the two screws holding
one UM-45 SEFE side element with foot to the UM 45 profile PCB carrier. Save this
part for possible future use in converting the terminal board back to its DIN-rail
mounting configuration.

2. Attach one UMK 45-SES side element to the PCB carrier in place of the side removed
in step 1 above, again using the two screws. Be careful to not over tighten the
screws.

3. Insert one UMK-BF mounting ear into the appropriate two holes in the side element.
Note that the mounting ear has a recessed hole for later inserting a (user supplied)
mounting screw. The recessed hole should face upwards to accommodate the
mounting screw.

4. Repeat steps 1-3 above for the other side of the terminal board.

Installing and Wiring the DSM314 63

User Manual
GFK-1742F

3.3.5 Cables

Five cables are available for the DSM314:

Table 19: Cables for the DSM314

Chapter 3
Jan 2020

Cable Description Length |Application
IC693CBL316 | Station Manager Cable 1 meter [DSM314 Comm for firmware upgrade
IC693CBL324 | Terminal Board Connection |1 meter | DSM314 to Servo Axis Terminal Board or
Cable Aux Terminal Board
IC693CBL325 | Terminal Board Connection | 3 meters [DSM314 to Servo Axis Terminal Board or
Cable Aux Terminal Board
IC800CBLO01 | Digital Servo Command Cable| 1 meter | Digital Servo Axis Terminal Board or DSM
to Digital Servo Amp
IC800CBL002 | Digital Servo Command Cable| 3 meters | Digital Servo Axis Terminal Board or DSM
to Digital Servo Amp

Custom Terminal Board and Servo cables are available in longer lengths by contacting your

Emerson distributor. The maximum recommended cable length for the DSM connector to
the a.and B Series servo amplifier is 50 meters.

The cables use special shielding and construction to ensure reliable servo operation. We
recommend that users do not attempt any field modifications of the cables or connectors.

Note: If a Digital Servo Axis does not use any of the devices that normally connect to the IC693ACC335
Digital Servo Terminal Board screw terminals, the Terminal Board and Terminal Board Cable
1C693(CBL324/325 are not needed. Instead, the Digital Servo Command Cable IC800CBL001/002
can be connected directly from the Digital Servo Amplifier to the DSM314 faceplate A or B
connector. When this is done, the OT Limit Sw configuration parameter must be set to Disabled
in the configuration software or the DSM will not operate.

Installing and Wiring the DSM314

64

User Manual Chapter 3
GFK-1742F Jan 2020

The figure below illustrates the Digital Servo Axis terminal board and cables associated with
the DSM314.

Figure 40: DSM314 Digital Servo Terminal Boards and Connectors

_IC6I3ACC336 ICB93ACC335
Auxiliary Terminal Board* Servo AxisTerminal Board
R
g g User /0
5 0 H I =7
Ho [O To PC-based EEE S o)
W o Firware Update d0HG —
g oo Utility HoH g i
do B0 2o H
101345 Comm Cable Holl©
E 8 Ele IC693CBL316 oo
1<l] r =P e
Analog Servo, s 0 [° . = ECHal..
Encoder and 5 o [0 sTat(() Jo L
User 110 H |40 o O Eey RN
1 g o) cra () L= 0
il ol O
Hoflg =20 Q= Digital
; 8 nfps e () (Ooenz Servo
Mo de Analog) l_f,_ 8 Axis 1
Ho o | Servo — =
doBQo Axis 3 PO //
o o ° hx' - ~
[eLiijo -——A— HE AT — Terminal Board to
or Aux H Servo Cables:
IC693ACC336 Axis 3 = Dg:'ar‘g éig};‘g?' ICB00CBLOO1(1M)
- . " fan i} -
Auxiliary Terminal Board > IC693CBLA24 (1M) ICB00CBLO02(3M)
o IC693CBL325 (3M)
o
Ho o L:fgf Digital
Hold° - Servo
Ho 409 / ~ Axis 2
Fop o) LL)
do ko ~
— = — 1] o
dof° o[° @]
L HolB© Sl =1
User 110 < 5o d0° o fl© il
4O || | O 4
2 O H i 2| o H Iy
W oo o i H o~ O)
O35 - O o Y
R P EE=R~ TO
3 o [, User /O o @ = SERVO
e Ais] L2 = -l o M=
EO“O DSM .,O_ODL 6I“L2
; oHg Lo GET
;8 10
o 0/ek2 IC693ACC335
- / Servo Axis Terminal Board
*In this configuration, one of the two Auxiliary Terminal Boards can be used to connect an analog axis and
the other used for additional /O, or both can be used for /O if required.

Installing and Wiring the DSM314

65

User Manual
GFK-1742F

The figure below illustrates the Analog Servo terminal boards and cables associated with the

DSM314.

Chapter 3
Jan 2020

Figure 41: DSM314 Terminal Boards and Connectors for S2K or Third-Party Analog

Servos

ICE93ACC336 ICBI3ACC336
Auxiliary Terminal Board Auxiliary Terminal Board
" O 1]
ma—al CR® S Ol
=9 R O of
40 H g O o[
Rem g
€ O H O | =
Ao B © o O |4
=l o H O |4
FCE g O ol
HC o Comm Cable < 7 g 0ol
E 9 Ho IC693CBL316 oH oM
Analog Servo, SR o oA Analog Servo,
2o ol 2 E) Encoder and
Encoder and <E ko statQ ol 25 User /O
User /O H- ko o O H Ol
B O H O o
- 1o crs (O o O |8
#OHo = off ©f
.-O:O EN3 () EN1 ::};
SRR ene (O ENZ OF 54
B O H Cr—N/7"A (S =
Ho [4° Analog || |-2| (2| 7| | Analeg | 47> fo)
5o g Servo — = i}f_""? /] o 98
H o o Axis 3 is ol "
do o s 3 | LA E
Cables HLOMmTi70 s - - Cables
supplied by AUX S”pﬁgz‘r’ by
User IC693ACC336 Axis 3 B IC693ACC336
Auxiliary Terminal Board [.] 'T Auxiliary Terminal Board
e Analog | D = o 18| Analog o/ T,
CEER» Servo (]l m¥s Senvo O o
50 Axis 4 =il Axis 2 O ol
ERols ~] C. MoK
= o P E— N [
H o A or or ol O
: ,-J‘ & Aux Aux o O[5
=5 F Auxis 4 || - Axis 2 oM
Analog Servo, Ho P =) - ol OF Analog Servo,
Encoder and { m O | — oM E—‘ I / Encoder and
User /O mi okl ©F User O
= O mReaL
5 O 1 DSM to Terminal CF oK
B O Board Cables: 9) H o
¥ 00 IC693CBL324 (1M) CH ok
B O 1C693CBL325 (3M) g Fl ol
H O 5 Fl -~ [l
| ol m O |3
EReN= g =
sl o H Fl o &
5o [ol -
s " o E
ElO s O Flr—
Note: See GFK-1581 for SL Servos and GFK-1866 for S2K servos.

Installing and Wiring the DSM314

66

User Manual
GFK-1742F

Chapter 3
Jan 2020

1/0 Cable Grounding

Properly routing signal cables, amplifier power cables and motor power cables along with
installation of proper Class 3 grounding will insure reliable operation. Typically, Class 3
grounding specifies a ground conductor of a minimum wire diameter larger than the power
input wire diameter, connected via a maximum 100-ohm resistance to an earth ground.
Consult local electrical codes and install in conformance to local regulations.

The specifications for completing the o. and B Series Digital Servo amplifier installation and
wiring, including amplifier grounding are completely described in the manual GFH- 001,
Servo Product Specification Guide.

When routing signal lines, amplifier input power line and motor power line, the signal lines
must be separated from the power lines. The following table indicates how to separate the
cables.

Table 20: Separation of signal lines

Group | Signal Action
A Amplifier input power Separate a minimum 10cm from group “B” signals by
Motor Power bundling separately or use electromagnetic shielding

Master Control Contactor (MCC) (grounded steel plate). Use noise protector for MCC.

drive coil. The MCC switches
amplifier input power.

B DSM to Axis Terminal cable Axis| Separate a minimum 10cm from group “A” signals by
terminal cable to amplifier DSM| bundling separately or use electromagnetic shielding
to Aux Terminal cable Encoder|(grounded steel plate). Use all required individual cable

feedback cable shield grounds and grounding bar connections.

DSM to o or B Series Digital Servo Amplifier — Signal Cable Grounding

The signal cables used with the DSM314 contain shields that must be properly grounded to
ensure reliable operation. The illustration below shows cable grounding recommendations
for typical installations. The following points should be considered:

1. The DSM314 faceplate ground wire must be connected to a reliable panel ground.

2. The Digital Servo Axis Terminal Block and Auxiliary Terminal Block each provide two
screw terminals labeled S. A short ground wire must be connected from one of the
S terminals to a reliable panel ground.

The o and B Series Digital Servo amplifier encoder feedback cable always requires an ZA99L -
0035-0001 Cable Shield Grounding Clamp and one of the 11 available slots on a
Z744B295864-001 Grounding Bar at the amplifier end of the cable. This clamp arrangement
serves as a mechanical strain relief and as cable shield ground. The outer insulation of the
Digital servo amplifier cable must be removed to expose the cable shield in the contact area
of the clamp.

Installing and Wiring the DSM314

67

User Manual
GFK-1742F

Chapter 3
Jan 2020
Figure 42: Detail of Cable Grounding Clamp ZA99L-0035-0001

T T I [lil| l;
.l !

! .II 40 (1.57)

Cable Grounding 80 (tgr 15)
Bar |

Cable
Grounding
Clamp

Figure 43: Z44B295864-001 Grounding Bar, Side View Dimensions

1 .33 1 .85 -
REF.

S =

AV
b o Y

latf—— 2,63 —
REF,

(0 4]

54

Figure 44: Z44B295864-001 Grounding Bar Dimensions, Rear View Showing
Mounting Holes

Installing and Wiring the DSM314

68

User Manual Chapter 3
GFK-1742F Jan 2020

3. For installations that must meet IEC electrical noise immunity standards, a Cable
Shield Grounding Clamp ZA99L-0035-0001 and one of the 11 available slots on the
Grounding Bar Z44B295864-001 must also be used at the Digital Servo Axis
Terminal Block end of the servo amplifier cable IC800CBL001/002. If the Digital
servo amplifier cable is connected directly to the DSM314 faceplate (no Digital Servo
Axis Terminal Block used) the Grounding Clamp and Bar are not required at the
faceplate end of the cable.

For additional information, refer to Installation Requirements for Conformance to
Standards, GFK-1179.

Figure 45: DSM314 1|0 Cable Grounding

DSM 314

90-30 CPU 360 MDL Al O MDL A
T o

GAPACITY

= 00
S o
e/ Grounding Bar Z44B295864-001 and

Grounding Clamp ZA99L-0035-0001
(Required for CE Mark Installation)

Faceplate Shield Ground Wir
(Always Required)

DSM314 to Axis Terminal

Block Shielded Cable .

Switch Signals ~ Terminal Terminal Block to Servo Amp Z448295864-001
Block Shielded Cable Grounding Clamp

ZA99L-0035-0001

Ground Wire to "S" Terminal 1 (Always Required)

(Always Required)

Figure 3-15. DSM314 |/0 Cable Grounding

1/0 Circuit Identifiers and Signal Names

I/O circuit identifiers provide a consistent method of naming the I/O circuits. For example,
IN1 refers to the first of three differential [single ended 5v inputs for each axis.

Signal names are assigned to the circuit identifiers for each axis. The signal name consists of
the circuit identifier followed by a suffix A-D to identify the axis connector. Differential
circuits also have suffixes P (positive) and M (minus) to identify the (+) and (-) signal for each
differential pair.

Example: OUT2isthe circuitidentifier for the first differential 5v output on each connector.
The signal names associated with circuit OUT2 are:

Table 21: Signal Names Associated with OUT2

Axis: Axis 1 Axis 2 Axis 3 Axis 4
Connector: A B @ D

(+) Output Signal: OUT2P_A OUT2P_B OUT2P_C OUT2P_D
(-) Output Signal: OUT2M_A OUT2M_B OUT2M_C OUT2M_D

Installing and Wiring the DSM314 69

User Manual
GFK-1742F

1/0 Circuit Function and Pin Assignments

The next three tables list the I/O circuit functional assignments as well as the connector and
terminal board pin assignments for each axis connector. Although each connector has the

Chapter 3
Jan 2020

same |/O circuits, the functional assignment of the I/O circuits is axis dependent:

Table 22: Connector Axis Assignment and Function

Connector | Axis Number [Axis Type | 1/O Usage

A 1 Servo Axis | Closed Loop Digital | Analog Servo Control and user
1/O

B 2 Servo Axis | Closed Loop Digital [Analog Servo Control or
Aucxiliary analog and digital /O

C 3 Servo Axis | Closed Loop Analog Servo Control or Auxiliary analog
and digital I/O

D 4 Servo Axis | Closed Loop Analog Servo Control or Auxiliary analog
and digital IO

Digital Servo Axis 1, 2 Circuit and Pin Assignments

This table identifies all circuits and pin assignments for Digital Servo Axis 1 and Digital Servo
Axis 2. The shaded areas indicate signals that are cabled to the servo amplifier and are not
available for user connections.

Table 23: Circuit and Pin Assignments for Digital Servo Axis 1 and Digital Servo Axis 2

Circuit Circuit Type | Analog Servo | Axis 1 Signal | Axis 2 Signal | Faceplate | Axis Term
Identifier Axis 1, 2 Circuit | Name Name Pin Board
Function Terminal
IN1 Single ended | | Strobe Input 1 (+) | INTP_A INTP_B 1 1
differential 5v [Strobe Input 1(-) | INTM_A INTM_B 19 9
IN2 inputs Strobe Input 2 (+) | IN2P_A IN2P_B 2 2
Strobe Input 2 (-) | IN2M_A IN2M_B 20 10
IN3 SerEncoder Data | IN3P_A IN3P_B 3
(+) IN3M_A IN3M_B 21
Ser Encoder Data (-
)
P5V 5v Power 5v Power P5V_A P5V_B 4 3
oV Ov Ov OV_A 0vV_B 22,23 11
IN4 Single ended | Servo Ready Input | IN4_A IN4_B 5
5vin
105 Single ended | Servo PWM | I05_A 105_B 9
Svinputs / Alarm
106 outputs Servo PWM | 106_A 106_B 10
Alarm
107 Servo PWM | 107_A 107_B 11
Alarm
108 Servo ENBL [Alarm | IO8_A 108_B 12
ov Ov Ov OV_A 0vV_B 27-30

Installing and Wiring the DSM314

70

User Manual
GFK-1742F

Chapter 3
Jan 2020
Circuit Circuit Type | Analog Servo | Axis 1 Signal | Axis 2 Signal | Faceplate | Axis Term
Identifier Axis 1, 2 Circuit | Name Name Pin Board
Function Terminal
IN9 24v optically | Overtravel (+) IN9_A IN9_B 16 6
INT0 isolated inputs [5yertravel (-) INTO_A INT0_B 34 14
IN11 Home Switch INT1_A INT1_B 17 7
INCOM 24v Input 24v Input INCOM_A INCOM_B 35 15
Common Common
ouT1 24v,125mA | Host controller 24v| OUT1P_A OUT1P_B 18 8
DCSSR output | Output (+) OUTIM_A OUT1M_B 36 16
Host controller 24v
Output (-)
OouT2 Differential 5v | Ser Encoder Req OUT2P_A OUT2P_B 13
outputs (+) OUT2M_A OUT2M_B 31
Ser Encoder Req (-)
OuT3 Host controller 5v | OUT3P_A OUT3P_B 14 5
Output (+) OUT3M_A OUT3M_B 32 13
Host controller 5v
Output (-)
ENBL 24v,30 mA Servo MCON (+) ENBL1_A ENBL1_B 15
SSRoutput ServoMCONOv | ENBL2_A ENBL2_B 33
AINT Differential +/- | IR Phase Current [AINTP_A AINTP_B 7
10v Analog (+) AINTM_A AINTM_B 25
Inputs IR Phase Current (-
)
AIN2 IS Phase Current AIN2P_A AIN2P_B 8
(+) AIN2M_A AIN2M_B 26
IS Phase Current (-)
AOUT1 +[-10v Analog | Host controller AOUT_A AOUT_B 6 4
Out Analog Out
ACOM Analog Out Analog Out Com ACOM_A ACOM_B 24 12
com
SHIELD Cable Shield Cable Shield SHIELD_A SHIELD_B S

Analog Servo Axis 1-4 Circuit and Pin Assignments

This table identifies all circuits and pin assignments for Analog Servo Axis 1 - Analog Servo

Axis 4. The shaded areas indicate signals that are unused and not available for user
connections.

Table 24: Circuit and Pin Assignments for Analog Servo Axis 1 - Analog Servo Axis 4

Installing and Wiring the DSM314

Circuit |[Circuit |AnalogServo |Axis1 Axis2 |Axis3 Axis4 | Faceplate [Aux
Identifier| Type Axis 1-4 Circuit | Signal Signal | Signal Signal (Pin Term
Function Name Name |Name Name Board
Terminal
IN1 Single EncoderChanA [INTP_A INTP_B | INTP_C INTP_D |1 1
ended/ |(+)EncoderChan [INTM_A [INTM_B [INTM_C |[INTM_D |19 19
A()

71

User Manual Chapter 3
GFK-1742F Jan 2020
Circuit |[Circuit |AnalogServo |Axis1 Axis2 [Axis3 Axis4 | Faceplate [Aux
Identifier| Type Axis 1-4 Circuit | Signal Signal | Signal Signal | Pin Term
Function Name Name |Name Name Board
Terminal
IN2 differential[Encoder ChanB [IN2P_A [IN2P_B |IN2P_C |IN2P_D |2 2
Svinputs | (+)EncoderChan [IN2M_A [IN2M_B |IN2M_C [IN2M_D |20 20
B(-)
IN3 Encoder Marker IN3P_A IN3P_B | IN3P_C IN3P_D |3 3
(+) Encoder IN3M_A | IN3M_B |IN3M_C |IN3M_D |21 21
Marker (-)
P5Vv 5vPower | 5vEncoder Power | P5V_A P5V_B P5V_C P5V_D 4 4
ov Ov Ov OV_A 0vV_B ov_C 0v_D 22,23 22,23
IN4 Single Servo Ready Input | IN4_A IN4_B IN4_C IN4_D 5 5
ended 5v
in
105 Single Strobe 1 Input IO5_A 105_B 105_C I05_D 9 9
106 ended /5" Strobe 2 Input 106_A I06_B | 106_C I06_.D |10 10
inputs
107 outputs Not Used I07_A 107_B 107_C 107_D 11 11
108 Not Used 108_A 108_B 108_C 108_D 12 12
ov Ov Ov 0V_A 0V_B ov_C ov_D 27-30 27-30
IN9 24v Overtravel (+) IN9_A IN9_B IN9_C IN9_D 16 16
INT0 OPTCE"LY Overtravel (-) INTO_A |INT0_B |IN10_C |IN10_D |34 34
isolate
IN11 inputs Home Switch INT1_A INT1_B [IN11_C IN11_D |17 17
INCOM 24v Input | 24v Input INCOM_A [INCOM_ [INCOM_C [INCOM_ |35 35
Common | Common B D
OouT1 24v,125 | PLC 24v Output OUT1P_A | OUT1P_ | OUT1P_C |OUTIP_ |18 18
mA DC (+) PLC 24v OUTIM_A | B OUTIM_C |D 36 36
SSR Output () OUTIM_ OUTIM_
output B D
ouT2 Differentia | Not Used OUT2P_A | OUT2P_ | OUT2P_C |OUT2P_ |13 13
[5v Not Used OUT2M_A | B out2m_c |D 31 31
outputs OuUT2M_ OouT2M_
B D
ouT3 PLC 5v Output (+) | OUT3P_A [OUT3P_ | OUT3P_C [OUT3P_ |14 14
PLC 5v Output(-) | OUT3M_A |B OUT3M_C |D 32 32
OUT3M_ OUT3M_
B D
ENBL 24v, 30 Servo Enable (+) ENBLT_A [ENBL1_B|ENBL1_C [ENBL1_D| 15 15
mASSR | ServoEnable(-) [ENBL2_A [ENBL2_B|ENBL2_C |[ENBL2_D|33 33
output
AIN1 Differentia | PLC Analog In(+) |AINTP_A [AIN1P_B | AINTP_C |[AIN1P_D |7 7
| +/-10v PLC AnalogIn(-) |AINTM_A |AINTM_B|AINTM_C |AINTM_ |25 25
Analog D
AIN2 Inputs PLC AnalogIn(+) [AIN2P_A [AIN2P_B | AIN2P_C [AIN2P_D |8 8
PLC AnalogIn(-) |AIN2M_A | AIN2M_B| AIN2M_C | AIN2M_ |26 26
D
Installing and Wiring the DSM314 72

User Manual Chapter 3
GFK-1742F Jan 2020
Circuit |[Circuit |AnalogServo |Axis1 Axis2 [Axis3 Axis4 | Faceplate [Aux
Identifier| Type Axis 1-4 Circuit | Signal Signal | Signal Signal | Pin Term
Function Name Name [Name Name Board
Terminal
AOUT1 +[-10v Servo Vel Cmd (+) | AOUT_A [AOUT_B | AOUT_C |[AOUT_D |6 6
Analog or Servo Torque
Out cmd (+)
ACOM Analog Servo Vel Cmd ACOM_A | ACOM_B | ACOM_C |[ACOM_D|24 24
OutCom [Com orServo
Torque Com
SHIELD Cable Cable Shield SHIELD_A | SHIELD_ [SHIELD_C | SHIELD_ S
Shield B D
Installing and Wiring the DSM314 73

User Manual Chapter 3
GFK-1742F Jan 2020
Aux Axis 2-4 Circuit and Pin Assignments
This table identifies all circuits and pin assignments for Aux Axis 2 - Aux Axis 4. The shaded
areas indicate signals that are unused and not available for user connections.
Table 25: Circuit and Pin Assignments for Aux Axis 3 (Connector C)
Circuit Circuit Type Aux Axis 2-4 Axis 2 Axis 3 Axis 4 Faceplate | Aux Term
Identifier Circuit Function | Signal Signal Signal Pin Board
Name Name Name Terminal
IN1 Single ended | Encoder Chan A (+)| IN1P_B INTP_C INTP_D 1 1
differential 5vinputs [Encoder ChanA(-) [N1 M_B INTM_C INTM_D 19 19
IN2 Encoder Chan B (+) | IN2P_B IN2P_C IN2P_D 2 2
EncoderChanB(-) [|Nom B [IN2M_C |IN2M_D |20 20
IN3 Encoder Marker (+)| IN3P_B IN3P_C IN3P_D 3 3
Encoder Marker (-) IN3M_B IN3M_C IN3M_D 21 21
P5V 5v from PLC 5v Encoder Power | P5V_B P5V_C P5V_D 4 4
ov Ov Ov 0vV_B ov_cC 0v_D 22,23 22,23
IN4 Single ended 5vin PLC 5v Input IN4_B IN4_C IN4_D 5 5
105 Single ended 5v inputs | Strobe 1 Input I05_B 105_C I05_D 9 9
106 [outputs Strobe 2 Input 106_8B 106_C 106_D 10 10
107 Not Used I07_B 107_C l07_D 11 11
108 Not Used 108_B 108_C 108_D 12 12
ov Ov Ov 0vV_B ov_cC 0v_D 27-30 27-30
IN9 24v optically isolated | PLC 24v Input IN9_B IN9_C IN9_D 16 16
IN10 inputs PLC 24v Input IN10_B IN10_C IN10_D 34 34
IN11 Home Switch IN11_B IN11_C IN11_D 17 17
INCOM 24v Input Common 24v Input INCOM_B |INCOM_C |INCOM_D |35 35
Common
OUT1 24v,125mA PLC 24v Output (+)| OUT1P_B | OUTIP_C [OUTIP_D |18 18
DC SSR output PLC 24v Output(-) | OUTIM_B | OUTIM_C [OUTIM_D |36 36
ouT2 Differential 5v outputs [Not Used OUT2P_B | OUT2P_C |OUT2P_D |13 13
Not Used OUT2M_B | OUT2M_C | OUT2M_D |31 31
ouT3 PLC 5v Output (+) |OUT3P_B |OUT3P_C |OUT3P_D |14 14
PLC5vOutput(-) |OUT3M_B |OUT3M_C |OUT3M_D |32 32
ENBL 24v,30 mA ON when Force ENBL1_B |ENBL1_C |ENBL1_D [15 15
SSR output Analog Output ENBL2_B |ENBL2_C |ENBL2_D |33 33
%AQ Cmd is active
AIN1 Differential +/- 10v PLCAnalogIn(+) |AINTP_B [AINTP_C [AINTP_D |7 7
Analog Inputs PLCAnalogin(-) |AINTM_B |AINIM_C |AINIM_D |25 25
AIN2 PLCAnalogIn(+) |AIN2P_B |AIN2P_C |AIN2P_D |8 8
PLCAnalogin(-) |AIN2M_B |AIN2M_C |AIN2M_D |26 26
AOUT1 +/-10vAnalogOut [PLCAnalogOut [AOUT_B [AOUT_C [AOUT_D |6 6
ACOM Analog Out com Analog OutCom |[ACOM_B |ACOM_C [ACOM_D |24 24
SHIELD Cable Shield Cable Shield SHIELD_B | SHIELD_C | SHIELD_D S

Installing and Wiring the DSM314

74

User Manual

Chapter 3

GFK-1742F Jan 2020
1/0 Connection Diagrams
The following diagrams illustrate typical user connections to the DSM314.
Figure 46: Digital Servo Axis-1 Connections
DSM Axis TB . . .
Pin# Terminal M——— Terminals on ICG93ACC335 Axis Terminal Board
1 1 INIP_A (STROBE1+) -
INTM_A (STROBE1-) >< I >< DIFFERENTIA.L
19 9 |L t DRIVER
|
IN2P_A (STROBE2+ I ,
2 2 =) — 5V
INZM_A (STROBE2-) I SINGLE ENDED
20 0 [T DRIVER
]
PEV_A (5V)
4 3
OV_A (V) %l BIT
22 " INPUT |\ DEFAULT CFG)
+0T: CTLO1
SHIELD_A
5 = aT: CTLO2
HOME: CTLO3
NEGATIVE STROBE: CTLO4 POSITIVE
OVEEL'T?“EL HOME OVERTRAVEL
SWITCH SWITCH? e z Z j LIMIT SWITCH
O----0-———¢4 Lo —— —
IN1D_A (-OT) + »
34 14 A sulnm
IN11_A (HOME)
17 7
ING_A (+OT)
16 6
INCOM_A
35 15 |
24VDC
OUTIP_A {SSROUT +) .
18 & 524
OUTIM_A {SSROUT-) 125 MA - | voe
6 16 \ LOAD T
WAA
OUT3P_A :’
1 2 [pd DIFFERENTIAJ_
OUT3M_A
2 13 t OUTPUT
SHIELD_A
S
AOUT_A ,
6 4 com A [> < : OUT anALOG
o 12 L { QUTPUT
(F{EFERENCED TOOV)
* Mote: See Chapter 6 for home switch information
Installing and Wiring the DSM314 75

User Manual Chapter 3
GFK-1742F Jan 2020
Figure 47: Digital Servo Axis-2 Connections
DSM Axis TB) .)
Pin # Terminal Terminals on IC693ACC335 Axis Terminal Board
IN1P_B (STROBE1 -
1 . _B {) r BV
INTM_B (STROBE1-) >< [DIFFERENTIAL
19] - DRIVER
[
5 , IN2P_B (STROBE2+) : : &V
IN2M_B (STROBEZ2-) Lo SINGLE ENDED
20 10 | DRIVER
: | ov
B) PEV_B (5V) \
Sl BIT
ov_B (Ov INPUT
22 11 B V) {DEFAULT CFG)
+0T: CTLOS
s SHIELD_B 0T CTLOG
HOME: CTLO7
NEGATIVE STROBET: CTLDa POSITIVE
OVEELT:VEL HOME OVERTRAVEL
SWITCH® LIMIT SWITCH
SWITCH))
O-—-—--0-————=% < = ———1]
IN10_B (-OT} ¢)
34 14 —H—
IN11_B (HOME)
17 7
INg_B {+OT)
16 6
INCOM_B l
35 15 .
24 VDC
OUT1P_B (SSROUT +) +
18 8 5-24
OUTIM_B { SSR OUT-) 125 MA - | voc
QUT3P_B Iy
14 >] : T DIFFERENTIAL
OUT3M_B
12 13 | = I\ -1| ouTPUT
SHIELD_B
S
AQUT_B ‘|
6 4 i OUT ANALOG
ACOM_B pd
o4 o | | . { OUTPUT
-~ {REFERENCED TOOV)
*Note: See Chapter 6 for home switch information
Installing and Wiring the DSM314 76

User Manual Chapter 3
GFK-1742F Jan 2020
Figure 48: o and B Series Digital Servo Command Cable (IC800CBL001/002)
Connections
DSM Axis TB lg pins on IC693ACC335 Axis Servo
Pin # Conn PL3 Terminal Board PL3 Connector Amp Conn
IN3P_A P ENCD+
3 3 - 15
INIM_A | >< ENCD-
21 21 — 16
|
IN4_A by *SRDY
5 5 — g
ovV_A >< b >< ov
23 23 : | 19
I05_A | “PWMA
g] — 3
OV_A >< | >< ov
27 27 1 4
|
|
106_A P *PWMC
10 10 — 5
OvV_A >< | >< ov
28 28 — 6
|
I07_A by *PWME
11 11 — 7
ovV_A >< | >< ov
29 29 = | : 8
|
108_A | *ENBL
12 12 — 13
Ov_A >< | >< ov
30 30 . 14
|
OUTZP_A : | ENCR+
13 13 : 17
DUTEM_A>< b >< ENCR-
31 31 : : 18
ENBL1_A | *MCON
15 15 : : 10
ENBLE_A>< [>< ov
33 33 ; : 20
|
AINTP_A P IR+
7 7 — 1
AINTM_A >< | >< IR-
25 25 — 2
|
AINZP_A - IS5+
8 8 — 11
AIN2M_A >< b >< IS-
26 26 . 12
L
_ _ SHIELD_A T
Shield Shield
* Denotes a negated signal
Installing and Wiring the DSM314 77

User Manual
GFK-1742F

Chapter 3
Jan 2020

Figure 49: Analog Servo Axis-1 Connections

DsM
Pin #

24

3

23

25

26

AuxTB

Terminal
8

24
i5
e

16
35

3
26

MWOTES: " Denctes a negated signal
** See Chapter @ for home switch information

M—— |CEOIACCIZE Aux. Term. DRIVE
ACUT_A i
T N CMD (+)
ACOM_A L
T " cmo
ENBL1_A L
, EMABLE
EMBL2_A >< Iy
+ | o
N4 A P
— ROY"
] >< ! | ENCODER FREQUENCT:
! r oV 250 KHZ / CHANMEL (1 MHZ COUNT RATE)
SHIELD—A ‘-: WITH DIFFERENTIAL INFUT
wEA@OM A s e T s oo
T
INTM_A. [QUAD A-) >< ! >< .
I ; GUADRATURE TOLERANCE:
|N2P_.I\ |:QU.|9|D H+} : | 2 50 DEGREEE +i- 45 DEGREES
T
mow s @uansy > > g \
T _] INCREMENTAL
. I QUADRATURE
| .
IN3P_A (MARKER+) . MER+ "“-"' EMCODER
NaMA MaRkER) X 1| MKE-
Ir \ NOTE
FEV A (45 I FOR SINGLE ENDED
| PEVA BV Lo £V ENCODER. DO NOT
av_A (OV) >< ! oV CONNECT A-, B~ MKR-
l'_r
NEGATIVE OVERTRAVEL ~ HOME POSITIVE OVERTRAVEL
LIMIT SWITCH SWITCH Cm LIMIT SWITCH
O----O0--——¢ : y-——14
IN1D_A (-OT)
= I o |_| —
IN11_A [HOME)
IND_A +0T)
INCOM_A
24VDC %l BIT
INPUT | ipepaulT cra)
OUTIP_A { SSROUT +) + #0T: CTL
— 524 -O0T CTLOZ
OUTIM_A {SSROUT-) Loan - voe HOME: CTLD3
(o e STROBE1: CTLD4
QUT3P_A
5 e DIFFEF-'.ENTLC'.L
OUTZM_A sl
) I
I05_A (STROBE1+ ! -
ov_A (V) | 1|_>< SINGLE ENDED
= = DRIVER
105 _A [STROBEZ+) P | v
| T
oV _A {OV) >< P SINGLE ENDED
T DRIVER
SHIELD A £
| AINTP_A (AIN1+) e+ .
) T AMALOG
AMIM_A (AINT-) P Ly L INPUT
AINZP_A (AINZ+) b .
. T ANALOG
AINIM_A [AIND-} >< b > < z _INPUT

Installing and Wiring the DSM314

78

User Manual
GFK-1742F

Chapter 3
Jan 2020

Figure 50: Analog Servo Axis-2 Connections

NOTES: * Denotes a negated signal_
** See Chapter @ for home switch information

Faceplate | AuxTB lg ransaccass Au Tem. Board DRIVE
Pin# Terminal
AQUT B T
] a8 ><: CMD (+)
ACOM_B >< -
24 24 ! oMo) AXIS 2 MOTOR
15 15 AL P ENABLE
EMBLZ B >< ><: O
33 33 v
IN4_B \
5 5 ¢ RDY™ -
ov_B (V) X >< - ENCODER FREQUENCY:
23 3 SHELD B T 250 KHZ | CHANNEL {1 MHZ COUNT RATE)
=3 = — ‘t 'WITH DIFFERENTIAL INFUT
INIF B (QUAD A+) !L A 150 KHZ { CHANMEL {600 KHZ COUNT RATE)
1 1 — = T 1 WITH SINGLE ENDED INPUT
. INIM_B (QUAD A-) >< | ! >< A
18 12 T GUADRATURE TOLERANCE:
5 , INZF_B (QUAD B+)] | 50 DEGREES +i- 45 DEGREES
INZM_B (QUAD B-) I \
20 20 1 1 INCREMENTAL
) I QUADRATURE
. . INZP_B (MARKER+) : i MKR+ / ENCODER
IN3M_B (MARKER- >< I .
vl 21 B ' : : MR
- . | FOR SINGLE EMDED
{ I
4 4 POV_B V] [+EV ENCODER, DO NOT
B (V) >< [>< . CONNECT A-, B-, MKR-
22 2 — L
NEGATIVE OVERTRAVEL ~ HOME POSITIVE OVERTRAVEL
LIMIT SWITCH SWITCH™ ' i) LIMIT SWITCH
I
IN10_B (-OT)
34 7l
IN11_B [HOME)
17 17
ING_B [+OT)
16 16
INCOM_B
35 a5 *
24 VDG W Bm
INFUT |\ pEFALLT CF5)
OUTIP_B [SSROUT +) + 0T CTLES
18 18 pr—— g4 | [OT L8
OUTIM_B { 55R OUT-) -| voe | [HOME: CTLOV
e % 598] STROBET: CTLE
ouTaF_B -
1 " - |r 7 >< : * DIFFEE\I;NTIAL
OUTaM_B >-<
12 2 = } : - QUTPUT
I
o . I05_B (STROBE1+) L
VB (V) o >< aINGLE ENDED
7 7 = - 1 T DRIVER
1055 (STROBEZ4) Pl
10 10 —
VB @) >-< |l EINGLE ENDED
28 28 — DRIVER
P SHIELD B T
AINIP_B (AINT+) fI‘-.
! ’ AINIM_E [AIN1-) R >< 7T anaLoG
25 5 = o g - INPUT
) I
AINZF_B (AIN2+) I
g E] = ! +
T ANALOG
AINZM_B (AINZ- | >C:
26 25 ! ! | _ INPUT

Installing and Wiring the DSM314

79

User Manual
GFK-1742F

Chapter 3
Jan 2020

Figure 51: Analog Servo Axis-3 Connections

Faceplate
Pin #
G
24
15
33
5

23

20

2

13
3

14
a2

ar

0
23

Parx TB
Terminal

L]

A

— ICEO3ACCA36 Aux Term. Boa
AOUT_C -

-

ACOM_C ><

ENBL1_C

INd C

V.G o) ><

i
|
1
I
|
EMELZ_C -y :
I
!
|
t

SHIELD G b

INIP_C {QUAD A+) .

INTM_C {QUAD A-) >‘<

DRIVE
CMD (+}
CMD ()
EMAELE
oV
ROV

As
A-

INZP_C (QUAD B+)

INZM_C (QUAD B-j ><

INZF_C (MARKER+)

IN3M_C (MARKER-) ><

XX X X XXX

AXIS 3 MOTOR

ENCODER FREQUENCY:
250 KHZ § CHANNEL (1 MHZ COUNT RATE)
WITH DIFFERENTIAL INPUT
150 KHE § CHANNEL (500 KHE COUNT RATE)
WITH SINGLE ENDED INPUT

CUADRATURE TOLERAMNCE:
90 DEGREES +- 45 DEGREES

\ INCREMENTAL

QUADRATURE

O

ENCODER

NOTE

FOR SINGLE ENMDED

NOTES: " Denotes a negated signal.

** See Chapter & for home switch information

| PEV.C (V) +5V ENCODER, DO HOT
VG (V) >.< o COMMECT A-, B-, MKR-
NEGATIVE OVERTRAVEL ~_HOME POSITIVE OWERTRAVEL
LIMIT SWITCH SWITCH i j E) LIMIT SWITCH
O-———O————gat -0
IN1D_C {-OT) L —
A
IN11_C (HOME) |"
IN2_C (+0T)
INCOM_C l
1 L]
24VDC TIET
INFUT | \DEFAULT cFa)
OUTIP_C (SSROUT #) + +OT: CTLD13
A 54 | [-OT CTLO14
OUTIM_C [S5R OUT-) LoD - | yoeo | [ROME CTLO15
STROBET CTLo18
oUT?#_C . \| . a
AUTIM © >< I DIFFERENTIAL
= ' : >C: _ OUTPUT
105_C (STROBE1:) : I sy
v C oo Lo SINGLE EMDED
— : : DRIVER
I08_C (STROBEZ+) | -
- 8
WG v >< r SINGLE ENDED
= o, DRIVER
SHIELD_C £
AINIP_C [AIN1+) ™ .
[ANALOG
AINIM_C [AINT-) >< X NEUT
- -
AINZP_C {AINZ#) ! .
) ANALOG
AINZM_C (AINZ-) | } o . INPUT

Installing and Wiring the DSM314

80

User Manual
GFK-1742F

Chapter 3
Jan 2020

Figure 52: Analog Servo Axis-4 Connections

MOTES: " Denctes a negated signal.
** See Chapter 8 for home switch mformation

Faceplate | AuxTE |
Pin# Terminal M— |CE93ACCI3B Aux. Term. Board DRIVE
AOUT_D "
8] | CMD [}
2 o ACOM_D >< | oMD (4 - AXIS 4 MOTOR
- . ENBL1_D [EMBLE
ENBLZ_D >< ! ><: O
3 22 ! av —
IN4_D | -
5 5 = l ROY" —
ov_D (0V) >< I ><: o EMCODER FREQUENCY:
z) = " 250 WHE { CHAMNEL {1 MHZ COUNT RATE)
s SHIELD_D b WITH DIFFERENTIAL INFUT
IN1P_D [QGUAD A+ - A 150 KHZ | CHANNEL (600 KHZ COUNT RATE)
1 1 - I i + WITH SINGLE ENMDED INPUT
~ ~ INTM_D {QUAD A-) > X A
e 1@ e QUADRATURE TOLERANCE:
5 , INZF_D (QUAD B+) : | o 90 DEGREES +- 45 DEGREES
| -
INZM_D {QUAD B-) >< Ly >< B \
bei] 0 - — O | INCREMENTAL
I QUADRATURE
. s INZP_D' {MARKER+) ! | MKRs+ - ENCODER
|
IN3M_D (MARKER-) >< I >< MKR- /
bl 2 . : -— NOTE
I .
e | FOR SINGLE ENDED
4 4 | FEVD V) [+EV ENCODER. DO NOT
WD o) >< : | >< W COMNECT A-, B-, MKR-
2 bl :
MEGATIVE OVERTRAVEL ~ HOME POSITIVE OVERTRAVEL
LIMIT SWITCH SWITCH™ |: y 7 LIMIT SWITCH
-———0----Z s———1O
IN1D_D {-OT) A —
e e — —H—
IN11_D (HOME)
17 17
INE_D (+0T)
16 16
INCOM_D
5 5
29VDC
- - OUTIF_D | S3R OUT +) s
524
OUTIM_D [SSROUT-) 125 Ma oo
38 ® LOAD
OUT3F_D A
b " - |r ‘i e * DIFFE;\‘EINTIAL
o o OUT3M_D 1 J| sy
s . 105_0 {STROBE1+) | : sy
oV D oV B >< SINGLE ENDED
7 7 = DRIVER
. |1 "'\._h_'
I08_D (STROBE24) Lol -
10 10 T W
v D (V) >< L ><_ SINGLE ENDED
25 25 — DRIVER
3 SHIELD D T
; . AINTP_D (AINI+) ,1 .
f ‘ >
T AMALOG
AINTM_D {AIN1- >< I >C:
25 25 LD) : . _INPUT
AINZP D (AIN2+) ;!
: : AINZM_D (AIN2-) | T ANALOG
[AIN2-
25 25 D | _, o - INPUT

Installing and Wiring the DSM314

81

User Manual
GFK-1742F

Installing and Wiring the DSM314

Chapter 3
Jan 2020
Figure 53: Aux Axis Connections (Axis 3 Shown)
&— Terminals on ICEZ3ACCIZE Aux. Terminal
DSM | AxTB | goad .
Pin# Terminal
= —— | 105_C (STROBE1+) -
9 g - (- 1 Ay
W.C (Ov) < SINGLE ENDED
27 27 ——— : ' DRIVER
106 _C (STROBE2: !
' ' o } e N X_L(SINGLE ENDED
o C
28 28 £)] DRIVER
N4 C | -{
5 5 = 5y
[
o C e SINGLE ENDED
23 23 LC () e : DRIVER
SHIELD © ‘g
- _
INO_C
16 16 = — 24V INPUT p——
IN10_C
_ " DEFALLT CF
i 34 A * 24V INFUT NG CTLiZ |
C IN1T CTLi%
17 17 Lo 2DER 2 . [FIONE: CILIS
INCOM_C = STROBET.| CTLIG
35 35
18 18 | QUTIF_C [S5R OUT +) .
" 125 WA 5-24
36 35 | OUTIM_C (53R OUT-) - VOC
OUTIP_C ” e
14 14 | T >C'+ ay
OUT3M C pd
. . K -r - DIFFEHELNI_'II_'I.-!-.L
R SHIELD_C
. AINIP_C (AIM1+) fa o4
) T ANALOG
AINIM_C [AINT- >< [
2 2 AINZP_C (AINZ#) 1 o+
AINZM G (AIN2- >-< D Loe
26 % | o o -
SHIELD C
5
AQUT C Pt
B ACOM © >< o OUT apal oG OUTPUT
24 24 - Lo ooy (Referenced to Dv)
" 5 |ENBLLC Lt
EMABLE RELAY
[
33 33 ENBLE C >< — (AC/DC Solid State
s Relay)
4 ; INIP_C QUAD A+] = \ A
i
- - NG (QUAD A _>< i >< A INCREMENTAL
| QUADRATURE
. - INZF_C (QUAD B=) I B+ ENCODER
. . INZM_C (@UAD B-) >< : >< & = -\\
i
IN3F_C (MARKER+] | MER= e O Il
| XK
- - INEM_C (MASRKER-] : MER- -
PSV_C (+EW) I =5
& 4 I
G (o) | . NOTE
= 2 >< + ><' oV FOR 2INGLE ENDED
| .r'l ENCODER, DO NOT
5 SHELD_C] COMMECT A-, B-, MER-
ENCODER FREGUENCY:
250 KHZ § CHANKEL (1 MHZ COUNT RATE) WITH DIFFERENTIAL INPUT
150 KHZ i CHANMEL (600 KHZ COUNT RATE) WITH SINGLE ENDED INFUT
EUADSATURE TOLERANCE:
S0 DEGREER +F 45 DEGREES
" Mote: See Chapter & for home switch infiomnation
82

User Manual Chapter 3
GFK-1742F Jan 2020

1/0 Specifications
The specifications and simplified schematics for the module’s 1/O circuits are provided on
the following pages. The I/O circuits described are as follows:

o Differential/Single Ended 5v Inputs (INT, IN2, IN3)

o Single Ended 5v Sink Input (IN4)

e Optically Isolated 24v Source/Sink Inputs (IN9, IN10, IN11, INCOM)
e Single Ended 5v Inputs/Outputs (105, 106, 107, 108)

e 5vDifferential Outputs (OUT2, OUT3)

e 24vDC Optically Isolated Output (OUT1)

e Optically Isolated Enable Relay Output (OUT4)

o Differential +/- 10v Analog Inputs (AIN1, AIN2)

¢ Single Ended +/- 10v Analog Outputs (AOUT1, ACOM)

e +5vPower (P5V, 0V)

Differential / Single Ended 5v Inputs

Circuit | Digital Servo Axis | Analog Servo Axis 1-4 | Signal Name Faceplate |Auxiliary |Servo
Identifier| 1, 2 Circuit and Aux Axis 2-4 Circuit | (X=A, B, C, or D | Pin Terminal | Terminal
Function Function Connector) Board Board
INT Strobe Input 1 (+) Encoder Chan. A (+) INTP_X 1 1 1
Strobe Input 1 (-) Encoder Chan. A (-) INTM_X 19 19 9
IN2 Strobe Input 2 (+) Encoder Chan. B (+) Encoder | IN2P_X 2 2 2
Strobe Input 2 (-) Chan.B (-) IN2M_X 20 20 10
IN3 Ser Encoder Data (+) | Encoder Marker (+) Encoder | IN3P_X 3 3 N/C
Ser Encoder Data (') Marker (-) |N3M_X 21 21 N/C
I/O Type: Differential / Single Ended 5v Inputs
Circuit Type: Source Input (9.4K ohm pull-down to 0v)
Input Impedance (+) or (-) Input: 9.4K ohms common mode to Ov 18.8K ohms
differential
Maximum Input Voltage: +[- 15 v common mode +/- 20 v differential
Logic 0 Threshold: +0.8 v max single ended +0.4 v max differential
Logic 1 Threshold: +2.0 v min single ended +1.5 v min differential
Input Filtering: 0.5 microsecond typical
Quadrature Encoder Frequency: 250 KHz/channel (1 MHz count rate) max with

differential inputs 150 KHz/channel (600 KHz count
rate) max with single ended inputs Quadrature
Tolerance: 90 degrees +/- 45 degrees

Installing and Wiring the DSM314 83

User Manual
GFK-1742F

Minimum Pulse Width: 3 microseconds Position
Capture Accuracy: +/- 2 counts with an additional 10
microseconds of variance

Strobe Response:

Note: Use (+) Input for single ended mode and leave (-) input floating. Use faceplate Ov pins for

common mode reference or single ended signal return. Inputs can be driven by 5v TTL or CMOS

logic.
4700
IN+ —AAAN—@— M.'\“'-H
LINE ™
4700 RCVR _~
IN - —AAN, S //
4700 < < 4700
oV +0.75V

Single Ended 5v Sink Input

Circuit Servo Axis 1-4 | Aux Axis 2-4 Signal Name | Faceplate |Auxiliary [Servo
Identifier | Circuit Function | Circuit Function | (X=A, B, C, or | Pin Terminal | Terminal
D Connector) Board Board
IN4 Servo Ready Input | Faceplate 5v IN4_X 5 5 N/C
Input

I/O Type: Single Ended 5v Sink Input

Circuit Type: Sink Input (4.7K ohm pull-up to internal +5v) Input

Impedance: 4.7K ohms to +5v

Maximum Input Voltage: +/-10.0v

Logic 0 Threshold: +0.8 v max

Logic 1 Threshold: +2.0 v min

Input Filtering: 1.0 microseconds (typical) hardware filter + position

loop sampling rate (0.5, 1.0 or 2.0 milliseconds).

Note: This input must be pulled to Ov to turn on.
+hv
47005
15000 _
| N ";l.-va".l ""H.H
LINE
RCVR -~
+1.0V T

Optically Isolated 24v Source [Sink Inputs

Installing and Wiring the DSM314

Chapter 3
Jan 2020

84

User Manual
GFK-1742F

Chapter 3
Jan 2020
Circuit Servo Axis 1-4 | Aux Axis 2-4 | Signal Name | Faceplate |Auxiliary|Servo
Identifier | Circuit Circuit (X=A,B,C, or |Pin Terminal | Terminal
Function Function D Connector) Board Board
IN9 Overtravel (+) Faceplate 24v IN9_X 16 16 6
Input
INTO Overtravel (-) Faceplate 24v INTO_X 34 34 14
Input
IN11 Home Switch Home Switch IN11_X 17 17 7
INCOM 24v Input 24v Input INCOM_X 35 35 15
Common Common
1/0O Type: Optically Isolated 24v Source [Sink Inputs
Circuit Type: Source | Sink (5K resistance to INCOM)

Input Impedance:
Maximum Input Voltage:
Logic 0 Threshold:
Logic 1 Threshold:

Input Filtering:

5.4K ohms to INCOM (@ 24 VDC)
+[-30.0v (referenced to INCOM)

+[- 6.0 v max (referenced to INCOM)
+[-18.0 v min (referenced to INCOM)

5 milliseconds typical

Note:

negative input with respect to INCOM.
T I
OPTOCOUPLER |
5100
IN M ! _
| A
10002 4 —+— |
| o NN

INCOM e ;

These inputs use bi-directional optocouplers and can be turned on with either a positive or

Installing and Wiring the DSM314

85

User Manual
GFK-1742F

Chapter 3
Jan 2020
Single Ended 5v Inputs/Outputs
Circuit Digital Servo |AnalogServo [Signal Name |Faceplate |Auxiliary|Servo
Identifier |Axis 1,2 Axis 1-4 and (X=A,B,C,or |Pin Terminal | Terminal
Circuit Aux Axis 2-4 D Connector) Board Board
Function Circuit Function
105 Servo PWM | Strobe 1 Input 105_X[IN5_X 9 9 N/C
oV Alarm Ov 0V_X 27 27 N/C
Ov
106 Servo PWM | Strobe 2 Input 106_X[IN6_X 10 10 N/C
ov Alarm Ov ov_X 28 28 N/C
Ov
107 Servo PWM | Not Used 107_X[IN7_X 11 11 N/C
oV Alarm Ov 0V_X 29 29 N/C
Ov
108 Servo ENBL / Not Used 108_X[IN8_X 12 12 N/C
oV Alarm Ov 0V_X 30 30 N/C
Ov
I/O Type: Single Ended 5v Inputs [Outputs
Circuit Type: Sink (4.7K ohm pull-up to internal +5v)

Input Impedance:

Maximum Input Voltage:
Logic O Input Threshold:
Logic 1 Input Threshold:

Input Filtering:

Output Sink Current
On State Output Voltage

Strobe Response:

4.7K ohms to internal +5v
-1.0v, +7.0v

+0.8 v max

+2.4vmin

10 microseconds typical
10 mA max

+0.5vat 10 mA

Minimum Pulse Width: 10 microseconds. Position
Capture Accuracy: +/- 2 counts with an additional 10
microseconds of variance

Note:

For digital servos, these points act as the PWM / ENBL outputs and Alarm inputs. For Analog Servos

and Aux axes, these points are input only. The listed Ov pins should be normally used for the signal

return.

+5V

= 4700

OPEN COLLECTOR DRIVER \I

Installing and Wiring the DSM314

86

User Manual Chapter 3
GFK-1742F Jan 2020
5v Differential Outputs
Circuit | Digital Servo Axis 1, | Analog Servo Axis 1- | Signal Name | Faceplate | Auxiliary | Servo
Identifier | 2 Circuit Function 4 and Aux Axis 2-4 (X=A,B,C,or |Pin Terminal | Terminal
Circuit Function D Connector) Board Board
OouT2 Serial EncoderReq(+) | NotUsed OUT2P_X 13 13 N/C
Serial EncoderReq (-) | Not Used OUT2M_X 31 31 N/C
OouT3 Faceplate 5v Output (+) | Faceplate 5v Output (+) | OUT3P_X 14 14 5
Faceplate 5v Output (-) | Faceplate 5v Output(-) | OUT3M_X 32 32 13
1/0O Type: 5Sv Differential Outputs
Circuit Type: Differential Totem Pole (Source [Sink)

Output Source/Sink Current:

20 mA max

Output Voltage: +[- 1.5 v min across 120-ohm differential load
Note: Axis 1 and Axis 3 use CMOS Drivers with 47-ohm series resistors. Axis 2 and Axis 4 use RS-422 Line
Drivers.
CMOS Driver + 5 \-"'
\-'::jj::c *\-"v“v—o UTxP RS422 Line Driver
L~ L
OUTxM
CMOS Driver CMOS Drver -+ ':'E_
1 OUTxP
\\\ - \\\ -~ «4'\7-\ OUTXM I)
— Ter——NAN
7 L

Axis 1 and Aux Axis 3

Axis 2 and Aux Axis 4

Installing and Wiring the DSM314

87

User Manual Chapter 3
GFK-1742F Jan 2020

24v DC Optically Isolated Output

Circuit Servo Axis 1-4 Circuit | Aux 2-4 Axis Circuit | Signal Name (X | Faceplate| Auxiliary | Servo
Identifier |Function Function =A,B,C,orD |Pin Terminal | Terminal
Connector) Board Board

OouT Faceplate 24v Output (+) | Faceplate 24v Output (+) | OUT1P_X 18 18 8

Faceplate 24v Output (-) | Faceplate 24v Output (-) | OUTTIM_X 36 36 16

1/O Type: 24v DC Optically Isolated Output

Circuit Type: Isolated Solid-State Relay (SSR)

Output Current: 125 mA continuous, 500 mA for 10 ms (resistive or

inductive)
Output Voltage Drop: 1.0vmaxat 0.125 amps

Note: Output is protected by a 30v transzorb and a 0.2-amp Polyswitch. If a short circuit occurs, the
output will automatically switch to a high impedance state until the load is removed. The load
should not be reapplied for 60 seconds. This is a dc output and it will appear to be always ON if
connections to it are reversed.

: SOLID STATE
i RELAY
I ouT +
i
i h 4
| "
N ph\—— OUT -

Installing and Wiring the DSM314 88

User Manual Chapter 3
GFK-1742F Jan 2020
Optically Isolated Enable Relay Output
Circuit Digital Servo Analog Servo | Aux Axis 2-4 Signal Name | Faceplate |Auxiliary |Servo
Identifier |Axis 1, 2 Circuit | Axis 1-4 Circuit | Circuit Function | (X=A,B,C, |Pin Terminal |Terminal
Function Function orD Board Board
Connector)
ENBL Servo MCON (+) Drive Enable (+) Drive Enable (+) ENBL1_X 15 15 N/C
Servo MCON Ov Drive Enable (-) Drive Enable (-) ENBL2_X 33 33 N/C
I/O Type: Optically Isolated Enable Relay Output
Circuit Type: Isolated AC Solid State Relay (SSR)
Output Current: 30 mA continuous, 50 mA for 10 ms
Output Voltage Drop: 1.0 vmaxat 10 mA
Note: Thisis a low current SSR output. The output is ON when the associated faceplate Axis Enabled

LED is illuminated.

This occurs when:

The servo is enabled

A Force Digital Servo Velocity %AQ Cmd is used (Axis 1, 2) A Force Analog Output %AQ Cmd is

used

Installing and Wiring the DSM314

89

User Manual Chapter 3
GFK-1742F Jan 2020
Differential +/- 10v Analog Inputs
Circuit Digital Servo Axis | Analog Servo Axis |Signal Name |Faceplate |Auxiliary |Servo
Identifier |1, 2 Circuit 1-4 and Aux Axis 2- | (X=A, B, C, or | Pin Terminal | Terminal
Function 4 Circuit Function | D Connector) Board Board
AIN1 IR Phase Current (+) Faceplate Analog In (+) | AINTP_X 7 7 N/C
IR Phase Current (-) Faceplate Analog In (-) | AINTM_X 25 25 N/C
AIN2 IS Phase Current (+) Faceplate Analog In (+) | AIN2P_X 8 8 N/C
IS Phase Current (-) Faceplate Analog In (-) | AIN2M_X 26 26 N/C

1/0O Type:
Circuit Type:

Input Impedance:

Maximum Input Voltage:

Resolution:
Linearity:
Input Offset:
Gain Factor:

Gain Accuracy:

Differential +/- 10v Analog Inputs
Differential Input

102K ohms common mode with respect to faceplate
connector Ov 204K ohms differential

+[- 15 v common mode with respect to faceplate
connector Qv +/- 20 v differential

15 bits

13 bits

+/- 1.0 millivolt

+[-10.0v = +/- 32,000 counts
+/-0.5%

Update Rate: 2 milliseconds + host controller sweep time when
datais reported to the host controller’s %Al table.
Note: Use faceplate Ov pins for common mode reference.

—
K oA TOAD
N e o MULTIPLEXER

ov

Installing and Wiring the DSM314

90

User Manual Chapter 3
GFK-1742F Jan 2020
Single Ended +/- 10v Analog Output
Circuit Analog Servo Axis | Digital Servo Axis | Signal Name | Faceplate |Auxiliary |Servo
Identifier | 1-4 Circuit Function| 1,2 and Aux Axis 2- | (X=A, B, C, or | Pin Terminal | Terminal
4 Circuit Function | D Connector) Board Board
AOUT1 Analog Servo Velocity | Faceplate Analog Out | AOUT_X 6 6 4
Command or Analog
Servo Torque
Command
ACOM Analog Out Com Analog Out Com ACOM_X 24 24 12
1/0O Type: Single Ended Analog
Output Circuit Type: Op Amp Voltage Follower Output

Load Impedance:

Output Current:

Resolution:

Linearity:

Output Offset Voltage:

Force D/A Gain Factor:

Gain Accuracy:

Force Analog Output Update Rate:

2K ohms minimum

5 mA max

13 bits

13 bits

+[- 500 microvolts max

+[-10.0v = +/- 32000 counts

+-1.0%

Analog Output %¥AQ command.

Host controller sweep rate when used by Force

250 microseconds when used as Digital Servo tuning
output.

Note:

AOUT and the negative differential input to ACOM.

The Select Analog Output Mode %AQ command can be used to select the source for the analog

output. Refer to Chapter 5 for more information.

OoP-AMP xt‘:;_l_mﬁ\’q\— AQUT
,-—'/r

|

ov

o

FTC DEVICE

ACOM

Since this is a single ended output, it should normally drive a user device with a differential input
to prevent common mode noise problems. The positive differential input should be connected to

Installing and Wiring the DSM314

91

User Manual Chapter 3

GFK-1742F Jan 2020

+5v Power
Circuit Servo Axis | Aux Axis Signal Name | Faceplate |Auxiliary |Servo
Identifier Circuit Circuit (X=A,B,C,or |Pin Terminal |Terminal

Function Function D Connector) Board Board

P5V 5v Power 5v Power P5V_X 4 4 3
ov Ov Ov ov_X 22 22 11

1/0O Type: +5V Encoder Power

Circuit Type: +5V Power with Electronic Short Circuit Protection

Output Voltage: 4.70vto5.20vat 0.5 amp

Output Current: 0.5 amp max (total for all connectors)

Notes:

Note: This output is intended to power external devices such as Incremental Quadrature Encoders
requiring less than 0.5 amps total from all four axis connectors. The output current is provided by
the host controller backplane +5v supply and is protected by an electronic short circuit protector
in the DSM314 module.

The total external device current drawn from this +5V circuit must be added to the power supply
consumption value in the DSM314 configuration screen in the configuration software and must
be added in if performing a manual power supply loading calculation.

The listed Ov pin should normally be used as the power return signal.

Installing and Wiring the DSM314 92

User Manual Chapter 4
GFK-1742F Jan 2020

Chapter4: Configuration

This chapter describes the configuration steps necessary to set up the DSM314 for a specific
application. Refer to Chapter 2 forinstructions on how to configure the system to send a Jog
command to the DSM to test that the system components are operable. Refer to Chapter
15 for Electronic CAM configuration information.

The DSM314 Controller is configured using the following programming software:
RX3i Machine Edition version 4.5 or later
Series 90-30 Machine Edition version 2.1 or later
VersaPro version 2.1 or later (refer to Appendix H)
Configuration is a two-part procedure consisting of:

1. Rack/Slot Configuration
2. Module Configuration

4.1 Connecting the Programmer to the Host
Controller

All DSM314 programming is done through the configuration/programming software
interface, yielding a single point of programming for the module. For more information,
please refer to the Series 90-30 PLC Installation and Hardware Manual, GFK-0356 or the
PACSystems RX3i System Manual, GFK-2314. The programming environment has several
communications options. One communications option is to connect the programmer
directly to the host controller SNP port, as shown in the following figure. Consult the
software documentation for additional communications methods.

Note: The DSM314 also has a serial port on the module faceplate. This serial port is used only for
updating the DSM314 firmware.

Figure 54: DSM Programmer Connection Diagram

Configuration, Motion Programming,
and Local Logic Programming

SNP ¢

(RS-485)

PLC

= wo

Personal Computer running
Configuration/Programming Software

Configuration 93

User Manual Chapter 4
GFK-1742F Jan 2020

4.2 Rack/Slot Configuration

The hardware configuration defines the type and location of all modules present in the PLC
racks. This is done by first completing setup screens that represent the modules in a
baseplate, and saving the information to a configuration file, which is then downloaded to
the PLC CPU.

1. Start the Machine Edition Logic Developer - PLC software. The Machine Edition
dialog box appears.

Figure 55

CIMPLICITY Machine Edition m |

— Create a new project using

" Empty project

,5_1 ‘ ' Machine Edition template
b— ——f

é (" Open an existing project

Project] Location

Show: f* Fecent Projects £ Al Projects

[~ Don't show this dialog box on startup

| oK I Cancel

2. Under Create a New Project, choose Machine Edition Template and click OK. The
New Project dialog box appears.

3. Type a name for Project Name. In the Project Template dropdown list, select Series
90-30 PLC or PACSystems RX3i. Click OK.

Configuration 94

User Manual
GFK-1742F

Chapter 4
Jan 2020
Figure 56
x

Froject Name:

|D‘SM_EHam|:|Ie

Project Template:

Set as default |

Project Location; | My Computer

@l

& project with one
with default settings.

PACSystems RX3i

| »

PACSystems RX3i target preconfigured

=1-E8 Sample
- & Target1
{58 Data Watch Lists

=1 Logic

. [=-T8 Program Blocks
Tl _MAIN

g Reference View Tables
@[Supplemental Files

o]

fffifi Hardware Corfiguration

Targetl: PACSystems RX3i

Data Watch Lists: Empty

Hardware Default PACSysterns
Configuration: R 3i —
Logic Program Contains empty

Blocks: _MAIN LD Block
Reference View Contains Default

Tables: RYTs

Supplemental Contains ernpty

Files: folders

Cancel

Your project appears in the Navigator window as shown in the following figure.

Figure 57

EJ~- DSM_Example
=4 Target1

=4 Data Watch Lists

E]Eﬁf. Hardware Configuration

: Eim Rack 0 (IC
=T Logic

695C

5012)

: T:g Program Blocks
El_Ej Reference View Tables
- [Default Tables
El% Supplemental Files

/Y AUP Files

~¢_y Documentation Files

Configuration

95

User Manual
GFK-1742F

Configuration

Chapter 4
Jan 2020
4. Expand ® the Main Rack node, which contains the default power supply and CPU.
Figure 58

=-{E8 DSM_Example
= ﬂ Target1

B4 Data Watch Lists
= fijij Hardware Canfiguration
WER 11|rack 0 (1C695CHS012)
@l slot 0 (IC625PSAD40)
: slat 1 (Used Yith Slot 09
g slot 2 (ICe25CPUAL0)
Slot 3 {Used With Slot 2)

- Sl
@ Slets ()
- slat 6)
@ Skt 7
-~ Slata)
@ Slet9 ()
[slat 10()
@ slet 11 ()
@ st 12()
5. Ifnecessary, replace the power supply and/or CPU with the models that will be used
in your application. To replace a module, right click and choose Replace Module.
6. AddaDSM314 to the rack configuration.
Note: Because an IC694DSM314 module and an IC693DSM3 14 module have the same functionality, a
Series 90-30 PLC supports them in the same way. If you install an IC694DSM314 in a Series 90-30
PLC, however, you cannot select it in Logic Developer - PLC. You must select an IC693DSM314
module and configure it as if it were an IC694DSM3 14.
A. Right click an empty slot and choose Add Module. The Module Catalog dialog box
appears.
B. Select the Motion tab, choose the DSM314 and click OK.

96

User Manual
GFK-1742F

4.3

Configuration

Chapter 4
Jan 2020

Figure 59

Central Processing Lnit |
Discrete Inpull Discrete Dulpull Discrete Mised | Analog Inpull Analog Uutputl

Catalog Mumber Description

x|
Analog Mlxedl Eurrrnunlcallunsl Bus Controller Mation | 3rd F'arty] Power Suppllasl

Cancel
ICES3APILZ00 High Speed Counter Maodule
ICE344PLZ00 High Speed Counter Module
ICB93DSM314 [MotionMateDSM314 |
ICE94DSM314 Mation Mate DSk 314
ICE93DSM324 Mation Mate DS324
ICE34DSM 324 Motion Mate DSk 324

This operation adds the DSM314 to the rack and displays the DSM314 configuration screens
that allow you to customize the DSM314 to your application. Refer to chapter 4 for details
concerning the DSM314 configuration settings.

You should complete the configuration of your host controller to include the Power Supply,
Rack, CPU and additional modules to match the target system. Consult the software

user’s manual and on-line help as needed.

Important

The completed configuration must be stored to the host controller. See “Storing Your
Configuration to the PLC” in Chapter 2 for instructions on how to do this. For additional
details, consult the software user’s manual, and on-line help.

Note:

A host controller status error of “System Configuration Mismatch” with the same rack/slot
location as a DSM3 14 indicates that there is a parameter configured and sent to the DSM314 that
has been rejected by the DSM314. Carefully check each parameter of your DSM314 configuration
with the configuration settings in this manual for the discrepancy. Correct the discrepancy, clear
the host controller Fault, and re-Store the configuration. Check that the error has been corrected.
See the next section, Enabling Run Mode on the PLC, for instructions on viewing and clearing PLC
faults.

The DSM314 can detect many typical configuration errors. These are returned as error codes of
the form Dxxx (hex) in the Module Status Code %Al word or Axis Error Code %Al words. These errors
do not cause a host controller status of “System Configuration Mismatch”. Refer to Appendix A
for a description of these errors. Correct any configuration errors and restore the configuration
with the host controller in Stop mode.

Module Configuration

97

User Manual
GFK-1742F

4.3.1

Configuration

Chapter 4
Jan 2020

Setting the Configuration Parameters

The hardware configuration data is presented in a tabular format. The tabs correspond to
the groupings shown below. The tab and/or tabs that correspond to the groups are shown
in parenthesis after the group name. Note that tabs appear and disappear based upon the
configuration selections made on the Settings tab. For example, if Axis 4 is disabled, the Axis
#4 and Tuning #4 tabs are not shown.

e Module Configuration Data (Settings, CTL Bits, Output Bits)

e Serial Communication (SNP Port)

e Axis Configuration Data

e Axis Tuning

¢ Advanced Settings

e Power Consumption

The content of each tab is as shown below:

Tab Name Function or Description

Settings Contains PLC Reference assignments and lengths, DSM Axis Setup and
other global data

SNP Port DSM front panel SNP port setup

CTL Bits Configuring the DSM’s 24 control bits

Output Bits Configuring the DSM’s 8 faceplate digital outputs

Axis #1 - Axis #4

Configuring axis parameters such as Position Limits, Find Home Velocity
and Jog Acceleration

Tuning #1 - Tuning #4

Configuring servo loop tuning items such as Motor Type, Position Loop
Time Constant and Velocity Feedforward.

Advanced

Allows user entry of custom tuning parameters for any axis

Power Consumption

Lists DSM power required from backplane supply (4.0 watts + encoder

power)

For additional details concerning the operation of the configuration software, please
consult the online help or PAC Machine Edition Logic Developer-PLC Getting Started, GFK-

1918.

98

User Manual

GFK-1742F

4.3.2

Configuration

Settings

The Settings tab contains configuration information that allows you to define basic module
operation. These settings specify the number of controlled axes, axis operating modes etc.
The selections on these tabs can cause other tabs within the configuration to appear or
disappear. For example, if you disable axis #4, the Axis and Tuning tabs relating to axis #4
are not displayed.

Chapter 4
Jan 2020

The Settings tab is where you define the Motion program, Local Logic, and Cam block
names. These names determine which programs stored in the CPU will be transferred to
each DSM on system power-up.

During each CPU sweep, data is automatically transferred between the DSM314 and the

CPU. The Settings tab contains the CPU interface data references and the starting locations
for the automatic transfers. The configuration parameters in the Settings tab are described
in Table 26. All Reference Section designations shown in the tables pertain to this chapter.

Table 26: Settings Tab

Configuration | Description Values Default Units Reference
Parameter Section
Number of Axes | Number of Controlled 1 4 N/A 1.01
Axis 2
3
4
%| Reference Start address for %I ref CPU Dependent %100001 or next N/A 1.02
type (80 bits) higher reference
%l Length %| reference address 32 =1 Axis N/A N/A 1.02
length 48 =2 Axis Length automatically
64 =3 Axis determined by
80 =4 Axis Number of Axes
setting
%Q Reference Start address for %Q ref | CPU Dependent %Q00001 or next N/A 1.02
type (80 bits) higher reference
%Q Length %Q reference address 32 =1 Axis N/A N/A 1.02
length 48 =2 Axis Length automatically
64 =3 Axis determined by
80 = 4 Axis Number of Axes
setting
%Al reference Start address for %Al ref | CPU Dependent %Al00001 or next N/A 1.02
type (84 bits) higher reference
%Al Length %Al reference address 24=1 Axis N/A N/A 1.02
length 44 =2 Axis Length automatically
64 =3 Axis determined by
84 =4 Axis Number of Axes
setting
%AQ reference | Start address for AQ CPU Dependent %AQ00001 or next N/A 1.02
ref type (12 bits) higher reference
%AQ Length %AQ reference address 3=1Axis N/A N/A 1.02
length 6 =2 Axis Length automatically
9 =3 Axis determined by

99

User Manual

GFK-1742F

Configuration

Chapter 4
Jan 2020
Configuration [Description Values Default Units Reference
Parameter Section
12 =4 Axis Number of Axes
setting
Axis 1 Mode Axis 1 Control Mode Analog Servo Analog Servo N/A 1.03
Digital Servo
Axis 2 Mode Axis 2 Control Mode Analog Servo Analog Servo N/A 1.03
Digital Servo
Auxiliary Axis
Axis 3 Mode Axis 3 Control Mode Analog Servo Auxiliary Axis N/A 1.03
Auxiliary Axis
Axis 4 Mode Axis 4 Control Mode Disabled Disabled N/A 1.03
Analog Servo
Auxiliary Axis
Local Logic The Local Logic Disabled Disabled N/A 1.04
Mode Engine mode Enabled
Total Encoder Encoder power RX3i: 0.000 through | 0 RX3i: Amps | 1.05
Power requirements 0.500 90-30: Watts
90-30: 0 through 2.5
Motion Program | The motion program Name mustbe 20 | <blank> N/A 1.06
Block Name name to execute onthe | characters orless
module and begin with a
Local Logic The local logic program letter orunderscore ['p)an1> N/A 1.07
Block Name name to execute on the (_) only
module alphanumeric
characters and non-
CAM Block The CAM block name to consecutive <blank> N/A 1.08
Name execute on the module underscores are
allowed.
I/O Scan Set The scan set (as defined in | 1 through 32 1 N/A 1.09
(RX3i only) the CPU's Scan Sets tab)
to be assigned to this
module.
100

User Manual Chapter 4
GFK-1742F Jan 2020

1.01 Number of Axes. This parameter selects the number of axes the DSM314 is going to
control and the size of automatic data transfers between the PLC and DSM. (Default
=4.) The following two tables document the possible axis combinations for Analog
and Digital modes. Axes identified as Limited Aux Axis provide position feedback but
no internal motion command generation.

Table 27: Number of Axes
Item |#Axes |Axis1 Axis 2 Axis 3 Axis 4 Local Logic | Sample
Rate (ms)
1. 4 Analog Servo | Analog Servo Analog Servo | Analog Servo Disabled 2.0
2. 4 Analog Servo | Analog Servo Analog Servo | Auxiliary Axis Disabled 2.0
3. 4 Analog Servo | Analog Servo Analog Servo | Disabled Disabled 2.0
4. 4 Analog Servo | Analog Servo Analog Servo | Disabled Enabled 2.0
5. 4 Analog Servo | Analog Servo Analog Servo | Limited Aux Axis | Enabled 2.0
6. 4 Analog Servo | Analog Servo Augxiliary Axis | Analog Servo Disabled 2.0
7. 4 Analog Servo | Analog Servo Auxiliary Axis | Auxiliary Axis Disabled 2.0
8. 4 Analog Servo | Analog Servo Auxiliary Axis | Disabled Disabled 2.0
9. 4 Analog Servo | Analog Servo Auxiliary Axis | Disabled Enabled 2.0
10. 4 Analog Servo | Analog Servo Auxiliary Axis | Limited Aux Axis | Enabled 2.0
11. 4 Analog Servo | Auxiliary Axis Analog Servo | Analog Servo Disabled 2.0
12. 4 Analog Servo | Auxiliary Axis Analog Servo | Auxiliary Axis Disabled 2.0
13. 4 Analog Servo | Auxiliary Axis Analog Servo | Disabled Disabled 2.0
14. 4 Analog Servo | Auxiliary Axis Analog Servo | Disabled Enabled 2.0
15. 4 Analog Servo | Auxiliary Axis Analog Servo | Limited Aux Axis | Enabled 2.0
16 4 Analog Servo | Auxiliary Axis Augxiliary Axis | Analog Servo Disabled 2.0
17. 4 Analog Servo | Auxiliary Axis Auxiliary Axis | Auxiliary Axis Disabled 2.0
18. 4 Analog Servo | Auxiliary Axis Auxiliary Axis | Disabled Disabled 2.0
19. 4 Analog Servo | Auxiliary Axis Auxiliary Axis | Disabled Enabled 2.0
20. 4 Analog Servo | Auxiliary Axis Auxiliary Axis | Limited Aux Axis | Enabled 2.0
21. 3 Analog Servo | Analog Servo Analog Servo | NA Disabled 2.0
22. 3 Analog Servo | Analog Servo Analog Servo | NA Enabled 2.0
23. 3 Analog Servo | Analog Servo Auxiliary Axis | NA Disabled 2.0
24, 3 Analog Servo | Analog Servo Auxiliary Axis | NA Enabled 2.0
25. 3 Analog Servo | Auxiliary Axis Analog Servo | NA Disabled 2.0
26. 3 Analog Servo | Auxiliary Axis Analog Servo | NA Enabled 2.0
27. 3 Analog Servo | Auxiliary Axis Auxiliary Axis | NA Disabled 2.0
28. 3 Analog Servo | Auxiliary Axis Augxiliary Axis | NA Enabled 2.0
30. 2 Analog Servo | Analog Servo NA NA Disabled 1.0
31. 2 Analog Servo | Analog Servo NA NA Enabled 2.0
32. 2 Analog Servo | Auxiliary Axis NA NA Disabled 1.0
33. 2 Analog Servo | Limited Aux Axis | NA NA Enabled 1.0
34. 1 Analog Servo | NA NA NA Disabled 0.5
35. 1 Analog Servo | NA NA NA Enabled 1.0

Configuration 101

User Manual

GFK-1742F

Configuration

Chapter 4
Jan 2020
Table 28: Digital Axis Configurations
Item | # Axes | Axis 1 Axis 2 Axis 3 Axis 4 Local Logic | Sample Rate
(ms)
1. 4 Digital Servo | Digital Servo | Analog Servo | Disabled Disabled 2.0
2. 4 Digital Servo | Digital Servo | Analog Servo | Disabled Enabled 2.0
3. 4 Digital Servo | Digital Servo | Auxiliary Axis | Disabled Disabled 2.0
4. 4 Digital Servo | Digital Servo | Auxiliary Axis | Disabled Enabled 2.0
5. 3 Digital Servo | Digital Servo | Analog Servo | NA Disabled 2.0
6. 3 Digital Servo | Digital Servo | Analog Servo | NA Enabled 2.0
7. 3 Digital Servo | Digital Servo | Auxiliary Axis | NA Disabled 2.0
8. 3 Digital Servo | Digital Servo | Auxiliary Axis | NA Enabled 2.0
9. 2 Digital Servo | Digital Servo | NA NA Disabled 2.0
10. |2 Digital Servo | Digital Servo | NA NA Enabled 2.0
1. |1 Digital Servo | NA NA NA Disabled 2.0
12. |1 Digital Servo | NA NA NA Enabled 2.0
1.02 1/Q/AIJAQ Len. Displays the beginning addresses and number of %I, %Q, %Al, and

1.03

%AQ references assigned to the DSM314. The reference sizes are set when the user
configures the number of axes.

Axis n Mode. These parameters define the command output types provided to the
servo sub-systems. Digital Servo selects a special digital output for Digital servo
drives. If Digital Servo is selected, Axes 1 and 2 must be digital. Analog Servo selects
a +/-10-volt velocity command or +/- 10-volt torque command for standard analog
servo drives. The torque or velocity interface is configured by the Analog Servo
Command setting in the module configuration. Auxiliary Axis disables the position
loop so that the internal command generator and encoder position input can be
used for follower or cam functions. If any axis connector is used as a master source
input for follower mode, it should be configured as Auxiliary Axis. An Auxiliary Axis
will output an analog voltage proportional to Commanded Velocity if Velocity
Feedforward is set to a non-zero value. When an axis is configured as Auxiliary Axis
and identified as Limited Aux Axis in Table 27, position feedback is available but
internal motion command generation is not available. An axis configured as
Disabled (applies to Axis 4 only) provides analog and digital i/o but no position
feedback or internal motion command generation. (Default = Analog Servo (Axis 1-
2), Aux Axis (Axis 3), Disabled (Axis 4)).

102

User Manual
GFK-1742F

Configuration

1.04

1.05

1.06

1.07

1.08

Chapter 4
Jan 2020

Local Logic Mode. This parameter defines the Local Logic engine status. To enable
Local Logic this parameter must be set to Enabled. If Local Logic is enabled, the
maximum number of Servo axes available is 3. A Local Logic Block Name must also
be entered when Local Logic Mode = Enabled. (Default = Disabled)

Total Encoder Power. This parameter defines the total power consumption for all
encoders attached to the DSM module. (Default = 0). This parameter should account
for all analog axis and master encoders and is used to update the Power
Consumption display in the configuration software.

Motion Program Block Name. This parameter defines the optional Motion Program
block name to execute on the DSM module. If no name is entered, the DSM will
assume that Motion Program blocks are not used. If a name is entered, a Motion
Program block of the same name must exist within the active folder. Entering an
invalid name will cause an error to be generated when storing the hardware
configuration to the PLC. The name may consist of up to 31 characters, but cannot
have any blank spaces, although you are allowed to use the underline character.
Both upper- and lower-case characters are permitted. (Default = <blank>).

Local Logic Block Name. This parameter defines the optional Local Logic block name
to execute on the DSM module. If no name is entered, the DSM will assume that
Local Logic blocks are not used. If a name is entered, a Local Logic block of the same
name must exist within the active folder. Entering an invalid name will cause an error
to be generated when storing the hardware configuration to the PLC. The name may
consist of up to 31 characters, but cannot have any blank spaces, although you are
allowed to use the underline character. Both upper- and lower-case characters are
permitted. For Local Logic to operate, the Local Logic Mode must also be set to
Enabled. (Default = <blank>).

CAM Block Name. Defines the optional CAM block name to execute on the DSM
module. If no name is entered, the DSM will assume that CAM blocks are not used.
If a name is entered, a CAM block of the same name must exist within the active
folder. Entering an invalid name will cause an error to be generated when storing the
hardware configuration to the PLC. The rules for CAM Block names are:

Only the characters A-Z, a-z, 0-9, and _ (underscore symbol) are allowed.
Consecutive underscores and blank spaces are not allowed.

The CAM block name must begin with a letter or underscore symbol.
A block cannot have the same name as another block that exists in an open folder.
A CAM block name may contain up to a maximum of seven characters.

This feature was first supported in DSM314 firmware release 2.00.

See Chapter 15 for CAM feature details. (Default = <blank>).

1.09

I/O Scan Set.

The scan set (as defined in the CPU's Scan Sets tab) to be assigned to this module.
For details on scan set operation refer to the PACSystems CPU Reference Manual,
GFK-2222.

103

User Manual
GFK-1742F

4.3.3

Configuration

Chapter 4
Jan 2020

Serial Communications Port Configuration Data

The DSM314’s Serial Communications Port uses an R|-11 connector labeled COMM on the
module’s faceplate and supports the RS-232 protocol. It is used for firmware upgrades to
flash memory and must be configured properly to communicate with the upgrade software

running on your programmer. Make sure the programmer’s configuration parameters and

the DSM314’s Serial Communications Port configuration parameters match. These

configuration parameters are described in Table 29.

Table 29: SNP Port Tab
Configuration |Description Values Defaults | Units Ref.
Parameter
Data Rate Baud rate of SNP | 300, 600, 1200, 2400, 19200 N/A 2.01
Port 4800, 9600, 19200
Stop Bits Number of stop lor2 1 N/A 2.02
bits
Parity Parity ODD, EVEN, NONE OobD N/A 2.03
Idle Time Maximum linkidle | 1...255 10 sec 2.04
time
Modem Modem 0...255 0 .01 2.05
Turnaround Time | turnaround time sec/count
SNPID SNPID Seven characters consisting [AOO0001 | N/A 2.06
of A-F and 0-9. First
character must be A-F.

2.01

2.02

2.03

2.04

2.05

2.06

Baud Rate. The baud rate parameter specifies the transmission rate, in bits per
second, of data through the serial port.

Stop Bits. All serial communications devices use at least one (1) stop bit. For slower
devices, set this parameter to two (2) stop bits.

Parity. Specifies whether or not a parity bit is to be used (NONE if not), and if so,
whether it should be ODD or EVEN.

Idle Time. Specifies the time, in seconds, that the DSM314 will wait for a new
message to be received from the master device before assuming that
communications have been lost or terminated. In such a case, the DSM314 will
reinitialize to wait for the start of a new SNP connection sequence.

Modem Turnaround Time. When utilizing a modem, a Modem Turnaround Time
must be specified. Thisis the time required for the modem to start data transmission
after receiving the transmit request. If no modem is used, 0 should be specified. If a
modem is used, a value greater than 0 must be specified.

SNP ID. An identifier consisting of from 0 to 7 characters consisting of A-F and 0-9.
The first character specified must be in the set A-F. The identifier must be utilized for
a multi- drop network. The DSM314 will support multi-drop connections only if the
RS232 connection is converted to RS422/485.

104

User Manual

GFK-1742F

4.3.4

Configuration

Chapter 4
Jan 2020

Note:

Since this Serial Communications Port is used only for upgrading the DSM314’s firmware, it is

recommended you leave this port’s communications settings at their default values. Use cable
IC693CBL316 to connect this port to the serial port of a personal computer running the firmware

upgrade software.

Control (CTL) Bits

The CTL Bits configuration tab allows the user to configure the input source for Control Bits

(CTLO1-CTL24). The configuration screen allows the user to select a CTL bit configuration

that corresponds with Motion Program and Local Logic program requirements. CTL Bits

configuration parameters are described in Table 30. For additional information concerning

CTL bit configuration, consult chapter 14.

Table 30: CTL Bits Tab

Configuration Parameter | Description Default Ref

CTLO1 Config CTLO1 Bit Configuration | IN9_A (Axis 1 +OT) Chapter 14
CTLO02 Config CTLO02 Bit Configuration | INTO_A (Axis 1 -OT) Chapter 14
CTLO3 Config CTLO3 Bit Configuration [INT1_A (Axis 1 Home Sw) | Chapter 14
CTLO4 Config CTLO4 Bit Configuration | Strobe1 Level (Axis 1) Chapter 14
CTLO5 Config CTLO5 Bit Configuration | IN9_B (Axis 2 +OT) Chapter 14
CTLO6 Config CTLO6 Bit Configuration | INT0_B (Axis 2 -OT) Chapter 14
CTLO7 Config CTLO7 Bit Configuration [INT1_B (Axis 2 Home Sw) | Chapter 14
CTLO8 Config CTLO8 Bit Configuration | Strobe1 Level (Axis 2) Chapter 14
CTLO9 Config CTLO9 Bit Configuration | %Q bit Offset 12 Chapter 14
CTL10 Config CTL10 Bit Configuration | %Q bit Offset 13 Chapter 14
CTL11 Config CTL11 Bit Configuration | %Q bit Offset 14 Chapter 14
CTL12 Config CTL12 Bit Configuration | %Q bit Offset 15 Chapter 14
CTL13 Config CTL13 Bit Configuration [IN9_C (Axis 3 +OT) Chapter 14
CTL14 Config CTL14 Bit Configuration [INT0_C (Axis 3 -OT) Chapter 14
CTL15 Config CTL15Bit Configuration |IN11_C (Axis 3 Home Sw) | Chapter 14
CTL16 Config CTL16 Bit Configuration | Strobe1 Level (Axis 3) Chapter 14
CTL17 Config CTL17 Bit Configuration | %Q bit Offset 24 Chapter 14
CTL18 Config CTL18 Bit Configuration | %Q bit Offset 25 Chapter 14
CTL19 Config CTL19 Bit Configuration | %Q bit Offset 40 Chapter 14
CTL20 Config CTL20 Bit Configuration | %Q bit Offset 41 Chapter 14
CTL21 Config CTL21 Bit Configuration | %Q bit Offset 56 Chapter 14
CTL22 Config CTL22 Bit Configuration | %Q bit Offset 57 Chapter 14
CTL23 Config CTL23 Bit Configuration | %Q bit Offset 72 Chapter 14
CTL24 Config CTL24 Bit Configuration | %Q bit Offset 73 Chapter 14

105

User Manual
GFK-1742F

4.3.5

Configuration

Chapter 4
Jan 2020

Each CTL bit shown in the previous table can be configured to one of the values in the

following table

Table 31: Allowed Values for CTL Bits Tab

Local Logic Controlled
IN9_A (Axis 1 +OT)
INTO_A (Axis 1-OT)
INT1_A (Axis T Home Sw)
IN9_B (Axis 2 +OT)
IN10_B (Axis 2 -OT)
IN11_B (Axis 2 Home Sw)
IN9_C (Axis 3 +OT)
IN10_C (Axis 3 -OT)

Strobe1 Level
Strobe2 Level (Axis3
INT1_C (Axis 3 Home Sw) Strobel Level (Axis4

IN9_D (Axis 4 +OT)
IN10_D (Axis 4 -OT)
INT1_D (Axis 4 Home Sw)
StrobeT Level (Axis1)

Strobe2 Level (Axis1)
Strobe1 Level (Axis2

Strobe2 Level (Axis2

%Q bit Offset 12
%Q bit Offset 13
%Q bit Offset 14
%Q bit Offset 15
%Q bit Offset 24
%Q bit Offset 25
%Q bit Offset 40
%Q bit Offset 41

(
(
(
(
(
(%Q bit Offset 56

)
)
Axis3)
)
)

Strobe2 Level (Axis4) %Q bit Offset 57

%Q bit Offset 72
%Q bit Offset 73
FBSA* Write Bit 1
FBSA* Write Bit 2
FBSA* Write Bit 3
FBSA™* Write Bit 4

Local Logic Active Flag

* FBSA s an acronym for “Fast Backplane Status Access” (Service Request #46). See GFK-0467L

or later for details.

Output Bits

The Output bits configuration tab allows the user to configure the DSM314 faceplate digital
outputs for either Local Logic program control or PLC program control. Output Bit
parameters are described in Table 32. Refer to Chapter 14 for additional information

concerning Output bit configuration.

Table 32: Output Bits Tab

Source

DSM Control (Digital Output3_4)

Configuration |Description |Values Defaults | Ref

Parameter

Out1_AConfig | Out1_A Control | PLC Control (%Q bit Offset 24) PLC Control [Chapter 14
Source DSM Control (Digital Output1_1)

Out3_AConfig | Out3_A Control | PLC Control (%Q bit Offset 25) PLC Control [Chapter 14
Source DSM Control (Digital Output3_1)

Out1_B Config | Out1_B Control | PLC Control (%Q bit Offset 40) PLC Control [Chapter 14
Source DSM Control (Digital Output1_2)

Out3_B Config | Out3_B Control | PLC Control (%Q bit Offset 41) PLC Control [Chapter 14
Source DSM Control (Digital Output3_2)

Out1_CConfig [Out1_CControl |PLC Control (%Q bit Offset 56) PLC Control | Chapter 14
Source DSM Control (Digital Output1_3)

Out3_CConfig | Out3_CControl | PLC Control (%Q bit Offset 57) PLC Control | Chapter 14
Source DSM Control (Digital Output3_3)

Out1_D Config [Out1_D Control | PLC Control (%Q bit Offset 72) PLC Control | Chapter 14
Source DSM Control (Digital Output1_4)

Out3_D Config [Out3_D Control | PLC Control (%Q bit Offset 73) PLC Control | Chapter 14

106

User Manual

GFK-1742F

4.3.6

Configuration

Axis Configuration Data

The DSM314 Axis configuration parameters define items such as User Units to Counts ratio,
Jog Velocity, Jog Acceleration, End of Travel, and Velocity limits. The configuration
parameters for each control loop mode are defined and briefly described here. The numbers
in the “Ref” column refer to section reference numbers in this chapter. Values for
MaxPosnUu, MaxVelUu, and MaxAccUu in the following table can be calculated using the

formulas in Table 37 (“Computing Data Limit Variables™).

Table 33: Axis Configuration Data

Chapter 4
Jan 2020

Parameter Description Values Defaults | Units Ref

User Units User Units Value 1...65,535 1 N/A 5.01

Counts Feedback Counts 1...65,535 1 N/A 5.01

Overtravel Limit Sw | Over travel Limit Switch Enabled Enabled N/A 5.02

Enable [Disable Disabled

Drive Ready Input Drive Ready Input Control Enabled Enabled N/A 5.03
Disabled

High Position Limit | High Position Limit -MaxPosnUu +8388607 | User units 5.04
...*MaxPosnUu-1*

Low Position Limit | Low Position Limit -MaxPosnUu -8388608 User units 5.05
...+MaxPosnUu-1*

High Software EOT | High Software End of Travel | -MaxPosnUu +8388607 | User units 5.06

Limit Limit ...tMaxPosnUu-1*

Low Software EOT | Low Software End of Travel | -MaxPosnUu -8388608 User units 5.07

Limit Limit ...+MaxPosnUu-1*

Software End of Software End of Travel Disabled Disabled N/A 5.08

Travel Control Enabled

Velocity Limit Axis Velocity Limit 1...MaxvelUu 1,000,000 | Userunits/sec | 5.09

Command Direction | Allowable Commanded Bi-directional Positive Only | Bi- N/A 5.10

Direction Negative Only directional

Axis Direction Axis Direction Normal Normal N/A 5.11
Reverse

Feedback Source Feedback type Default Default N/A 5.12
Ext Quadrature Encoder
Ext Serial Encoder

Feedback Mode Feedback Mode Incremental Incremental | N/A 5.13

(Digital Mode only) Absolute

Reversal Reversal Compensation 0...255 0 user units 5.14

Compensation

Drive Disable Delay | Drive Disable Delay 0...60,000 100 ms 5.15

Jog Velocity Jog Velocity 1...MaxVelUu +1000 User Units [5.16

secC
Jog Acceleration Jog Acceleration 1...MaxAccUu* +10,000 User Units | 5.17
sec?
Jog Acceleration Jog Acceleration Mode Linear Linear N/A 5.18
Mode Scurve

107

User Manual

GFK-1742F

Configuration

Chapter 4
Jan 2020

Parameter Description Values Defaults | Units Ref
Home Position Home Position Low Position Limit... High |0 user units 5.19

Position Limit
Final Home Velocity | Final Home Velocity 1...MaxVelUu* +500 User Units | 5.21

sec
Home Offset Home Offset Value -32,768...+32,767 0 user units 5.20
Find Home Velocity | Find Home Velocity 1...MaxVelUu* +2000 User Units | 5.22
sec

Home Mode Find Home Mode Home Switch Home N/A 5.23

Move + Switch

Move -
Return Data 1 Mode | Return Data 1 Mode 0...FF 0 5.24
Return Data 1 Offset | Return Data 1 Offset -2,147483,648 to 0 5.24

2,147,483,647
Return Data 2 Mode | Return Data 2 Mode 0...FF 0 5.24
Return Data 2 Offset | Return Data 2 Offset -2,147483,648 to 0 5.24

2,147,483,647
Cam Master Source | Cam Master Source Cmd Position 1 Actual N/A 5.25

Actual Position 1 Position 3

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4
Follower Control Follower Control Loop Disabled Disabled N/A 5.26
Loop Enable Enabled
Ratio A Value Follower A/B Ratio A -32768...+32767 1 N/A 5.27
Ratio B Value Follower A/B Ratio B 1...32767 1 N/A 5.27
Follower Master Follower Master Source 1 None None N/A 5.28
Source 1 Cmd Position 1

Actual Position 1

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4
Follower Master Follower Master Source 2 None None N/A 5.29
Source 2 Cmd Position 1

Actual Position 1

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4

108

User Manual

GFK-1742F

Configuration

Chapter 4
Jan 2020
Parameter Description Values Defaults | Units Ref
Follower Enable Follower Enable Input None None N/A 5.30
Trigger Trigger CTLO1-CTL32
Follower Disable Follower Enable Input None None N/A 5.31
Trigger Trigger CTLO1-CTL32
Follower Disable Follower Disable Action Stop Stop N/A 5.32
Action Inc Position
Abs Position
Ramp Makeup Follower Ramp Makeup 1...MaxAccUu* 10,000 User Units | 5.33
Acceleration Acceleration sec?
Ramp Makeup Mode | Follower Ramp Makeup Makeup Time Makeup N/A 5.34
Mode Makeup Velocity Time
Ramp Makeup Time | Follower Ramp Acceleration | 0...32000 0 mSec 5.35
Makeup Time
Ramp Makeup Follower Ramp Makeup 1...MaxVelUu* +100,000 User Units |5.36
Velocity Velocity sec

* See Table 37 for calculating MaxAccUu, MaxPosnUu, and MaxVelUu.

109

User Manual
GFK-1742F

Configuration

5.01

Chapter 4
Jan 2020

User Units, Counts. The User Units to Counts ratio sets the number of programming
units for each position feedback count. This allows the user to program the DSM314
in application-specific units. The User Units and Counts values must be within the
range of 1to 65,535. The User Units to Counts ratio must be within the range of 8:1
to 1:32. For example, if there is 1.000 inch of travel for 8192 feedback counts, a
1000:8192 User Units: Counts ratio sets 1 User Unit equal to 0.001 inch. Default is
1:1.

The User Units to Counts ratio sets the number of position programming units for
each feedback count. It is a requirement to set this value correctly for the
mechanical systems coupled to the axis, otherwise movement to unsafe and
inaccurate positions may occur.

Note: Itisimportant to set this relationship at the beginning of the configuration session; most
other configuration fields are specified in user units.

For example, Velocity will be specified in user units per second and Acceleration will
be specified in user units per second per second.

This ratio is a very powerful scaling feature. A User Unit to Counts ratio can be
configured to allow programming in other than default counts. In a simplified
example, suppose an encoder feedback application has an encoder that produces
1,000 quadrature counts per revolution (250 lines) and is geared to a machine that
produces one inch per revolution. The default unit would be one thousandth of an
inch per count. However, you may want to write programs and use the DSM300
Series module with metric units. A ratio of 2540 User Units to 1000 Counts can be
configured to allow this. With this ratio, one user unit would represent .01
millimeters. 2540 user units would represent 25.40 millimeters (one inch) of travel.

The example below illustrates how to meet the requirements that the User Units and
Counts values be within the range of 1 to 65,535, and the User Units to Counts ratio
be within the range of 8:1 to 1:32.

The basic equation to satisfy is:

User Units _ (Load Movement per Motor Rotation) + (Desired User Units Resolution)

Counts Encoder Counts per Motor Rotation

The numerator and denominator must each fit within the RANGE limits. The reduced
fraction must fit between the RATIO limits. The decimal point is always implied, not
used. The User Units to Counts ratio is always expressed as an integer ratio.

Sample Application

Use the User Units to Counts ratio to configure the DSM314 so you can program in
engineering units rather than encoder counts. As an example, assume a machine has
a motor with a motor-mounted quadrature encoder connected through a gear
reducer to a spur gear. The spur gear is mounted to the end of a pinch-roller shaft.
The pinch roller feeds sheet material for a cut-to-length application. The motion
program will specify the length of cut sheets. The programmer wishes to program
in 0.01-inch resolution.

110

User Manual
GFK-1742F

Chapter 4
Jan 2020

The following data is given:

2000-line encoder (x4 = 8000 counts per encoder revolution)
20:1 gear reduction
14.336-inch pitch diameter spur gear

Inch desired programming unit (.01)

Although several approaches are possible, the most straightforward is to base
the calculations on a single spur gear revolution.

1.

Configuration

First determine the number of User Units per spur gear revolution:
14.336-inch pitch diameter * = (pi) = 45.0378 inches circumference
45.0378 inches [0.01-inch desired programming units = 4503.78
User Units per revolution of spur gear

Then determine the number of encoders counts per spur gear revolution:

., 4counts =20 motorrevs. 160,000 encoder counts

2000 lines - = .
line 1 gear rev. per spur gear revolution

Then check the value of the User Units to Counts ratio. The ratio must be
in the 8:1 to 1:32 (8 to 0.03125) range and the two numbers must be in
the 1to 65535 range.

4503.78 User Units [160,000 encoder counts = 0.02815 or 1:35.5

This ratio is too small, so something must be changed. Any of the
following system components could be changed to solve the problem:

— Change the spur gear diameter to 15.92 inch or larger
— Change the encoder lines per revolution to 1800 or less
— Change the gear reduction to 18:1 or less

— Change the desired programming unit to 0.001 inch

By far, the easiest component to change is the desired programming unit
to 0.001 inch.

Recalculate to determine the revised User Units per revolution using
0.001-inch programming unit.

14.336 inches diameter * pi = 45.0378 inches circumference

45.0378 inches [/ 0.001-inch programming unit = 45,037.8 User Units per
revolution of spur gear

Thus, the User Units to Counts ratio is 45,038 [160,000 = 0.2815 or
about 1:3.6, which is within the valid ratio range.

So, a 45,038 | 160,000 ratio would be used except that 160,000 is
larger than the maximum 65,535 range value. Dividing both numbers
by 10 solves this to make the ratio 4,504 | 16,000. Note that in the

111

User Manual
GFK-1742F

Configuration

5.02

Chapter 4
Jan 2020

above example, we simply reduced the fraction and ignored the slight
rounding error

One method of avoiding “rounding” is to express the numeric ratio as
a fraction. From the previous example, any number set that produced
a0.2815 ratio could be used. An example is 2815 / 10000.

Another approach is to rationalize the fraction (reduce it to its lowest
terms). This is done by evenly dividing both the numerator and
denominator by successively smaller prime numbers, beginning with
the largest prime that will evenly divide into both the numerator and
the denominator, until no more division without remainders is
possible.

Always maintain an exactinteger fraction, a decimal ratio expressed as a fraction,
or a rationalized fraction when configuring the User Units to Counts ratio for the
best accuracy. The user must determine if the rounding error, if present, is of
significance. A rotary mode application that always operates in one direction will
accumulate rounding errors over time and “drift”. A linear application will only
accumulate error for the length of travel then “rewind” as the axis reverses.

Overtravel Limit Switch. Selects whether the DSM300 Series module uses the
hardware over travel limit switch inputs.

DISABLED, the faceplate overtravel inputs (IN09 and IN10) may be used as general-
purpose motion program flow control and program branching inputs (assigned to
CTLO1- CTL24).

ENABLED, indicates that the DSM300 will check the axis over travel inputs
continuously, every 10 milliseconds whenever the %I Drive Enabled input is true. If
either limit switch opens (the input goes to logic zero, Off) all motion is immediately
commanded to stop. No deceleration control is active; the servo velocity command
is set to zero. The solid-state axis enable relay will not open until after the %Q Enable
Drive command is set to zero. An error code indicating which limit is tripped is
reported to the %Al Axis Error Code. At this point, only one DSM314 action is
allowed: the appropriate %Q Jog and %Q Clear Error bits may be used simultaneously
to back away from the Limit Switch. The %Q Clear Error bit must be maintained ON
to Jog off the limit switch. The user may also manually move the disabled axis off the
limit switch. After the alarm is cleared, normal operation may resume.

ACAUTION

Force D/A commands ignore the limit switches and should be used with caution.

112

User Manual
GFK-1742F

Configuration

5.03

5.04

5.05

5.06

Chapter 4
Jan 2020

Drive Ready Input. Enables or disables the Drive Ready input for Analog Servos. This
configuration item is ignored for a Digital Servo or Auxiliary axis, If the Drive Ready
input is enabled, the Drive Ready faceplate input signal (IN4) must be turned on (set
to Ov) within 1 second after the Enable Drive %Q bit is turned on. If the Drive Ready
faceplate input is turned off while the Drive Enabled %I bit is on, error code COh will
be reported and the axis will stop. The Drive Ready Input configuration should be set
to Disabled for Analog Servos that do not provide a compatible Drive Ready output
signal.

High Position Limit. (User Units). When moving in the positive direction, the Actual
Position will roll over to the low limit when this value is reached. The Position Limits
can be used for continuous rotary applications when the Software End of Travel
configuration is set to Disabled. The High Position Limit should always be set one
User Unit smaller than the desired cycle. For example, a 360° machine would have a
High Position Limit setting of 359. At the next count past 359, the count would roll
over to the value set in the Low Position Limit parameter (0 in this example). For
proper operation, the rollover modulus (High Position Limit - Low Position Limit +1)
must always be greater than the distance traveled by the axis in one position loop
sample time (normally 2 ms). See Appendix C for considerations when using an
absolute mode encoder. Default: 8,388,607.

Low Position Limit. Low Pos Limit (User Units). When moving in the negative
direction, the Actual Position will roll over to the high limit when this value is
reached. . The Position Limits can be used for continuous rotary applications when
the Software End of Travel configuration is set to Disabled. For proper operation, the
rollover modulus (High Position Limit - Low Position Limit +1) must always be
greater than the distance traveled by the axis in one position loop sample time
(normally 2 ms). See Appendix C for considerations when using an absolute mode
encoder. Default: - 8,388,608.

High Software EOT Limit. High Software End of Travel Limit (User Units). If the limit
is enabled and the DSM314 is programmed to go to a position greater than the High
Software EOT value, an error will result and the DSM314 will not allow axis motion.
If the Follower control loop is enabled, the High Software EOT Limit is ignored for
slave axis motion resulting from master axis commands. The limit only applies to
slave axis motion resulting from internally generated jog and motion program
commands. The limit is always ignored for Move at Velocity %AQ commands.
Default: +8,388,607.

In Analog or Digital Servo modes, the High Software EOT limit is used only when the
Software End of Travel configuration is set to Enabled. If the High Software EOT Limit
is enabled and its value is more positive than the High Position Limit, the High
Software EOT Limit will internally be set equal to the High Position Limit. Axis error
code 17h will also be reported, indicating that the limit has been adjusted. The High
Software EOT Limit is ignored for Jog commands if the Position Valid %I bit is off.

In Auxiliary Axis mode, the High Software EOT limit has separate purposes
depending on the setting for Software End of Travel:

113

User Manual
GFK-1742F

Configuration

5.07

5.08

5.09

Chapter 4
Jan 2020

Software End of Travel set to Enabled - Motion Programs and Jog commands
are restricted to the High Software EOT Limit value. A Move at Velocity %AQ
Command can cause Commanded Position to exceed the EOT limit.
Commanded Position will roll over at the maximum positive and negative
position values (-2,147,483,648 ...+2,147,483,647 at 1:1 scaling).

Software End of Travel set to Disabled - The High Software EOT Limit is used as
the rollover value for Commanded Position. Motion Program, Jog and Move at
Velocity commands will all cause Commanded Position to roll over at the High
Software EOT Limit.

Low Software EOT Limit. Low Software End of Travel Limit (User Units). If the limit is
enabled and the DSM314 is programmed to go to a position less than the Low
Software EOT, an error will result and the DSM314 will not allow axis motion. If the
Follower control loop is enabled, the High Software EOT Limit is ignored for slave
axis motion resulting from master axis commands. The limit only applies to slave axis
motion resulting from internally generated jog and motion program commands.
The limit is always ignored for Move at Velocity ¥AQ commands. Default: -
8,388,608

In Analog or Digital Servo modes, the Low Software EQOT limit is used only when the
Software End of Travel configuration is set to Enabled. If the Low Software EOT Limit
is enabled and its value is more negative than the Low Position Limit, the Low
Software EOT Limit will internally be set equal to the Low Position Limit Axis error
code 17h will also be reported, indicating that the limit has been adjusted. The Low
Software EOT limit is ignored for Jog commands if the Position Valid %I bit is off.

In Auxiliary Axis mode, the Low Software EOT limit has separate purposes depending
on the setting for Software End of Travel:

Software End of Travel set to Enabled - Motion Programs and Jog commands
are restricted to the Low Software EOT Limit value. A Move at Velocity %AQ
Command can cause Commanded Position to exceed the EOT limit.
Commanded Position will roll over at the maximum positive and negative
position values (-2,147,483,648 ...+2,147,483,647 at 1:1 scaling).

Software End of Travel set to Disabled - The Low Software EOT Limit is used as
the rollover value for Commanded Position. Motion Program, Jog and Move at
Velocity commands will all cause Commanded Position to roll over at the Low
Software EOT Limit.

Software End of Travel. Enables or disables the High Software EOT Limit and Low
Software EOT Limit. Default: Disabled

Velocity Limit. Axis Velocity Limit (User Units/sec). The Velocity Limit applies to the
sum of all velocity command sources for an axis, including the internal path
generator and external follower master axis commands. If a servo velocity command
exceeds the limit, error code F2h will be reported and the servo command will
internally be set to the limit value. Default: 1,000,000

114

User Manual
GFK-1742F

Configuration

5.10

5.11

5.12

5.13

5.14

Chapter 4
Jan 2020

Command Direction. Allows an axis to be configured for unidirectional or bi-
directional operation. If unidirectional operation is selected (Positive Only or
Negative Only), servo commands in the opposite direction will not be sent to the
servo position loop. Default: Bi- directional

Axis Direction For all digital servos, a configured axis direction of Normal defines the
positive axis direction as counterclockwise (CCW) motor shaft rotation when viewed
looking into the motor shaft. A configured axis direction of Reverse defines the
positive axis direction as clockwise (CW) shaft rotation.

For analog servos, a configured axis direction of Normal defines the positive axis
direction as encoder channel A leading channel B. A configured axis direction of
reverse defines the positive axis direction as encoder channel B leading channel A. In
practice, the axis direction configuration allows the user to easily reverse the motion
caused by all commands without having to change the motion program. Default:
Normal

Feedback Source. This configuration item is unused in the present DSM314
firmware. It must be set to Default.

Feedback Mode. Only used when the Axis Mode is set to Digital Servo. This item
configures Incremental or Absolute feedback type for the serial encoder.
Incremental means the serial encoder is being used as an incremental encoder and
encoder battery alarms will not be reported. Absolute means the serial encoder is
being used as an absolute encoder (encoder backup battery installed), which
maintains position if system power is cycled. In Absolute mode, encoder battery
alarms will be reported. See appendix C, Position Feedback Devices, for more
information. Default: Incremental

Reversal Compensation. A compensation factor that allows the servo to reverse
direction and still provide accurate positioning in systems exhibiting backlash.
Backlash is exhibited by a servomotor that must move a small amount (lost motion)
before the load begins moving when direction is reversed. For example, consider a
dead bolt door lock. Imagine the servo controls the key in the lock and the feedback
reports bolt movement. When the servo turns the key counterclockwise, the bolt
moves left. However, as the

servo turns the key clockwise, the bolt does not move until the key turns to a certain
point. The Reversal Compensation feature adds in the necessary lost motion to
quickly move

the servo to where motion will begin on the feedback device. The DSM314 removes
the compensation distance when a move in the negative direction is commanded
and adds the compensation distance before a move in the positive direction.
Default: 0.

Note: Reversal compensation is not available if the Follower Control Loop configuration is set
to Enabled.

115

User Manual
GFK-1742F

Configuration

5.15

5.16

5.17

5.18

Chapter 4
Jan 2020

Drive Disable Delay. Servo Drive Disable Delay (milliseconds). The time delay from
the time the zero-velocity command is received until the drive enable (digital servo
MCON) signal switches off. Disable Delay is effective when the Enable Drive %Q bit is
turned off or certain error conditions (Stop Mode) occur. Disable Delay should be
longer than the worst-case deceleration time of the servo from maximum speed.
Because turning OFF the Enable Drive %Q bit stops the DSM314 from commanding
the servo, there are times when the drive enable signal should stay ON. For example,
if the servo runs into an End of Travel Limit and the drive enable signal was
immediately turned OFF due to the error, the servo may continue moving until it
coasted to a stop. Thus, to allow the DSM314 to command and control a fast stop,
the Drive Disable Delay should be longer than the deceleration time of the servo
from maximum speed.

The disable delay may be used to control when torque is removed from the motor
shaft. Applications using an electro-mechanical brake generally need time for the
brake to engage prior to releasing servo torque. The delay should be set to a value
longer than the engagement time for the brake. Default: 100.

Jog Velocity. Jog Velocity (User Units/second). The velocity at which the servo moves
during a Jog operation. Jog Velocity is used by motion programs when no Velocity
command is included in the program. Jog Velocity is always used by the %AQ Move
Command (27h). Default: 1000.

Jog Acceleration. Jog Acceleration Rate (User Units/second/second). The
acceleration and deceleration rate used during Jog, Find Home, Move at Velocity,
Abort All Moves and Normal Stop operations. A Normal Stop occurs when the PLC
switches from Run to Stop or after certain programming errors (refer to Appendix
A). Jog Acceleration is used by motion programs when no Acceleration command is
included in the program. Jog Acceleration is always used by the %AQ Move
Command (27h). The value of Jog Acceleration should be set high enough to
perform satisfactorily during Abort all Moves and Normal Stop operations. Default:
10000.

Note: A minimum value dfter scaling is used in the DSM314. This value is determined by the
rule: Jog Acc * (user units/counts) >= 32 counts/sec/sec.

Jog Acceleration Mode. Jog Acceleration Mode (LINEAR or S-CURVE). The
acceleration mode for Jog, Find Home, Move at Velocity, Abort All Moves and
Normal Stop operations. A Normal Stop occurs when the PLC switches from Run to
Stop or after certain programming errors (refer to Appendix A). LINEAR (constant
acceleration) causes commanded velocity to change linearly with time. S-CURVE
(jerk limited acceleration) causes commanded velocity to change more slowly than
the linear mode at the beginning and end of acceleration intervals. Motions using S-
Curve acceleration require twice the time and distance to change velocity compared
to motions using the same acceleration value with Linear acceleration. In order to
maintain equal machine cycle times, an S-Curve motion profile requires an
acceleration value (and peak motor torque) twice as large as the equivalent Linear
acceleration motion profile. Therefore, a tradeoff between motor cost and machine
cycle time may be necessary. Default: LINEAR.

116

User Manual
GFK-1742F

Configuration

5.19

5.20

5.21

5.22

5.23

5.24

Chapter 4
Jan 2020

Home Position. Home Position (User Units). The value assigned to Commanded
Position when a Find Home cycle completes.

Home Offset. Home Position Offset (User Units). A value added to or subtracted
from the servo’s final stopping point when a Find Home cycle completes. Home
Offset adjusts the final servo stopping point relative to the encoder marker. See
chapter 6 for details on the home cycle. Default: 0.

Final Home Velocity. Final Home Velocity (User Units/second). The velocity at which
the servo seeks the final Home Switch transition and Encoder Marker pulse at the
end of a Find Home cycle. This velocity is also used for the home cycle MOVE+ and
MOVE- modes. See chapter 6 for details on the home cycle. Final Home Velocity
must be slow enough to allow a 10 millisecond (filter time) delay between the final
Home Switch transition and the Encoder Marker pulse. Default: 500

servo seeks the initial Home Switch transitions during the Find Home cycle when the
Home Mode is configured for HOMESW. If desired, Find Home Velocity can be set to
a high value to allow the servo to quickly locate the Home Switch. Default: 2000

Home Mode. Find Home Mode. The method used to find home during a Find Home
cycle. HOME SWITCH indicates that a Home Switch is to be monitored to Find Home.
MOVE+ and MOVE- specify direct positive and negative movement to the next
encoder marker at the Final Home Velocity. See chapter 6, “Non-Programmed
Motion,” for details on the Home Cycle, Home Switch, move+, and Move- Modes.
Default: HOMESW.

Return Data 1 Mode and Offset, Return Data 2 Mode and Offset. These configuration
parameters allow alternate data to be reported in the User Selected Data 1 and User
Selected Data 2 %Al location for each axis. The alternate data includes information
such as Parameter memory contents and the DSM314 Firmware Revision.

There are two Return Data configuration parameters, a mode selection and an offset
selection. The mode parameter selects the Return Data type. The offset parameter
is only used when the Parameter Data mode (18h) is selected. Mode default = 0
(Torque Command). Offset default = 0. The following Return Data selections are
allowed:

117

User Manual
GFK-1742F

Configuration

Chapter 4
Jan 2020
Table 34: User Selected Return Data
Digital | Analog |Analog |Selected Return Data Data Data Offset
Torque |Velocity Mode

Y Y N Torque Command 00h not used

Y Y Y DSM Firmware Revision 10h not used

Y Y Y DSM Firmware Build ID No. (hex) 11h not used

Y N N Absolute Feedback Offset (cts) 17h not used

Y Y Y Parameter Data 18h Parameter

Number (0-255)

Y Y Y CTL bits 1-32 19h not used

Y Y Y Analog Inputs - Axis 1 1Ch not used

Y Y Y Analog Inputs - Axis 2 1Dh not used

Y Y Y Analog Inputs - Aux 3 1Eh not used

Y Y Y Analog Inputs - Aux 4 1Fh not used

Y Y Y Commanded Position (user units) | 20h not used

Y Y Y Follower Program Command 21h not used
Position (cts)
Unadjusted Actual Position (cts) 28h not used
Unadjusted Strobe 1 Position (cts) |29h not used
Unadjusted Strobe 2 Position (cts) |2Ah not used

Torque Command is scaled so that +/- 10000 = +/- 100% torque.

DSM Firmware Revision is interpreted as two separate words for major-minor
revision codes.

DSM Firmware Build ID is interpreted as a single hex word.

Absolute Feedback Offset is the position offset (in counts) that is used to initialize
Actual Position when a digital Absolute Encoder is used. Actual Position = Absolute
Encoder Data + Absolute Feedback Offset.

Analog Inputs provides two words of data for each axis: low word = AIN1 and high
word = AIN2. The data is scaled so that +/- 32000 = +/- 10.0v.

Commanded Position (user units) is a copy of the Commanded Position %Al data
reported for each axis. Refer to Chapter 5.

Follower Program Command Position (cts) is the active commanded position (in
feedback counts) updated and used by the internal motion command generator.
Refer to Chapter 9 - Combined Follower and Commanded Motion.

Unadjusted Actual Position is the accumulated actual position (in counts, not user
units) with a 32-bit binary rollover value of -2,147,483,648 ... +2,147,483,647. A
Find Home or Set Position command sets the Unadjusted Actual Position to a value
equal to the %Al Actual Position data scaled to counts. For details on the operation
of Unadjusted Actual Position, refer to “Return Data” in Chapter 5.

118

User Manual
GFK-1742F

Configuration

5.25

5.26

5.27

5.28

5.29

Chapter 4
Jan 2020

Unadjusted Strobe 1 Position is the value of Unadjusted Actual Position captured
when a Strobe 1 input occurs.

Unadjusted Strobe 2 Position is the value of Unadjusted Actual Position captured
when a Strobe 2 input occurs.

Atleast three PLC sweeps or 10 milliseconds (whichever represents more time) must
elapse before the new Selected Return Data is available in the PLC.

Cam Master Source. This configuration item is unused in the present DSM314
firmware.

Follower Control Loop. When this configuration item is set to Enabled, the servo axis
will follow a master axis input in addition to the standard internally generated
motion functions. Default: Disabled

Ratio A Value and Ratio B Value. (Follower Control Loop must be Enabled) The A over
B ratio sets the follower slave/master gear ratio.

A * Master Reference Counts
B

Follower Axis Motion (counts) =

Therange for Ais -32,768 to +32,767 and Bis 1 to +32,767. When A is negative, the
slave axis will move in the opposite direction from the master. The DSM firmware
supports A/B slave/master follower ratios in the ranges of 32:1 to 1:10,000. Default:

Follower Master Source 1. (Follower Control Loop must be Enabled.) Configures
follower Master Axis Source 1. Allowed choices are Commanded or Actual Position
for any of the 4 axes (as long as it’s a configured axis). Follower Master Source 1 is
active when the Follower Master Source Select %Q bit is OFF.

Cmd Position or Actual Position of a slave axis should not be selected as a master
source for that axis. If an unconfigured axis is selected for Follower Master Source 1,
it will be ignored. Default: None. Refer to Chapter 8 for information on follower
mode.

Follower Master Source 2. (Follower Control Loop must be Enabled.) Configures
follower Master Axis Source 2. Allowed choices are Commanded or Actual Position
for any of the 4 axes (as long as it’s a configured axis). Follower Source 2 is active
when the Follower Master Source Select %Q bit is ON.

Cmd Position or Actual Position of a slave axis should not be selected as a master
source for that axis. If an unconfigured axis is selected for Follower Master Source 2,
it will be ignored. Default: None. Refer to Chapter 8 for information on follower
mode.

119

User Manual
GFK-1742F

Configuration

5.30

5.31

5.32

5.33

Chapter 4
Jan 2020

Follower Enable Trigger. Follower Enable Trigger Input. Selects the control bit,
CTLO1-CTL32, to be used as the Follower Enable trigger input. The follower axis is
enabled when the selected trigger input transitions ON and the Enable Follower %Q
bit is also ON. After Follower is enabled, the PLC Enable Follower %Q bit and an
optional Follower Disable trigger bit controls the active state of the following
function. None means the follower axis is enabled only by the Enable Follower %Q
bit. Default: None.

Follower Disable Trigger. Follower Disable Trigger Input. Selects the control bit,
CTLO1-CTL32, to be used as the Follower Disable trigger input. The trigger input is
tested only when the Enable Follower %Q bitis ON. When the Enable Follower %Q bit
is ON, an OFF to ON transition of the trigger bit will disable the follower. Turning OFF
the Enable Follower %Q bit immediately disables the follower, regardless of the
disable trigger configuration. Default: None.

Follower Disable Action. Stop means the follower will immediately decelerate to
zero velocity at the configured Follower Ramp Acceleration rate. Inc Position means
the follower will continue at its present velocity, then decelerate and stop after a
specified distance has elapsed. The incremental distance is specified in a parameter
register for each axis:

P227 = Axis 1 Incremental distance
P235 = Axis 2 Incremental distance
P242 = Axis 3 Incremental distance
P250 = Axis 4 Incremental distance

The incremental distance represents the total actual position change that will occur
from the point where the follower is disabled until it stops.

A configuration of Abs Position is not supported in the present DSM314 firmware.
Default: Stop

Ramp Makeup Acceleration. Follower Ramp Makeup Acceleration (uu/sec?).
Specifies the acceleration used to:

- Accelerate the follower axis to match master velocity after the follower is
enabled (sector AB in Figure 60),

- Make up the master command counts lost during follower acceleration (sector
BC and DE in Figure 60),

— Decelerate to a stop after the follower is disabled (sector FG in Figure 60).

120

User Manual Chapter 4
GFK-1742F Jan 2020

Figure 60: Velocity profile during the follower ramp cycle

|
C ' D
________ J | Follower
f | | E Disabled
B [| ‘/
Velocity ' ! ! F
4—+— Ramp Makeup —+——
: Time : |
A [| i G
0! | : | =
! \ | : i Time

5.34 Ramp Makeup Mode. Choices are Makeup Time or Makeup Velocity, explained
below.

- Makeup Time Mode - in this mode the makeup process takes the amount of
time specified by Ramp Makeup Time parameter (refer to Figure 60). This is the
default mode.

- Makeup Velocity Mode - This mode is reserved for future use.

5.35 Ramp Makeup Time. Follower Acceleration Ramp Makeup Time (milliseconds).
Specifies the time in milliseconds used to make up the master command counts lost
during a follower acceleration ramp. If the distance correction is not possible in the
configured makeup time (because the value is too small) then the correction time is
longer, and a warning error is reported. This setting only has an effect when the
Ramp Makeup Mode is set to Makeup Time.

If an acceleration ramp without any correction for lost counts is desired,
Makeup Time should be set to 0. In this case, the motor will synchronize
velocity relative to the master, but will not attempt to correct for any positional
deviation that occurs while the follower axis is accelerating.

Makeup time has a minimum value of 10, so for values entered in the range of
1...10 use 10 instead.

Default: 0.

Refer to Chapter 8, Follower Motion, Follower Axis Acceleration Ramp Control
section, for a much more detailed discussion of this feature

5.36 Ramp Makeup Velocity. This field is reserved.

Configuration 121

User Manual

GFK-1742F

4.3.7

Configuration

Chapter 4

Jan 2020

Tuning Data

The DSM314 Tuning tabs are used to configure Servo axis tuning data. Parameters such as
Motor Type, Velocity at Max Cmd, Velocity Feed Forward Percentage, and Position Loop
Time Constant are configured in these tabs. From one to four Tuning tabs may appear in the
DSM314 configuration window, one tab for each Servo axis configured in the Settings tab.

The numbers in the “Ref” column of the table below refer to item numbers in this chapter.

Table 35: Tuning Tab Items

Configuration Parameter | Description Values Defaults | Units Ref
Motor Type Motor Type 0...65535 0 N/A 6.01
Analog Servo Command Analog Servo Command Type | Velocity Velocity N/A 6.02
Torque (MNete
Position Error Limit Position Error Limit 100...60,000 60,000 User Units | 6.03
In Position Zone In Position Zone 1...60,000 10 User Units | 6.04
Pos Loop Time Constant Position Loop Time Constant | 0...65535 1000 0.1 mSec |6.05
Velocity at MaxCmd Velocity at Maximum 256.. MaxVelUu Vet 1 100,000 | User Units | 6.06
Command
Velocity Feed Forward Velocity Feed Forward 0...12000 0 .01% 6.07
Percentage Percentage
Acceleration Feed Forward Acceleration Feed Forward 0...12000 0 .01% 6.08
Percentage Percentage
Integrator Mode Position Loop Integrator off off N/A 6.09
Mode Continuous
Servo Null
Integrator Time Constant Position Loop Integrator Time | 0...10000 0 mSec 6.10
Constant
Velocity Loop Gain Velocity Loop Gain 0...65535 16 N/A 6.11
Note:

e Torque Mode is supported in DSM firmware version 3.0 or later

e See Table 37 for calculating MaxVelUu.

6.01 Motor Type. Selects the type of AC servomotor to be used with the DSM314 in
Digital Mode ONLY. The DSM314 internally stores setup motor parameter tables for
each of the motors supported. A motor type of 0 disable s digital servo control by
the DSM314 for the digital servo axis. Motor type must be set to 0 when no digital
servo is attached if any %Q bit commands or %AQ data commands will be sent to the
axis. Supported Motor types are listed in the tables below.

The Motor Type must be 0 for ANALOG Mode or if no motor is attached to the axis.
Default: 0.

Motor part numbers are used to determine the proper Motor type code and are in
the form ZA06B-xxxx-yyyy, where xxxx represents the motor specification field. For
example: When reading a motor number from a motor label of ZA06B-0032-B078,
the motor specification digits 0032 indicate the motor model of B2/3000. The B

122

User Manual
GFK-1742F

Configuration

Chapter 4

Jan 2020

Series table references the Motor Type Code (36) needed for the configuration field.
Supported Motor types are listed in the tables below. The list of supported motors

may be expanded in future releases.

a Series Servo Motor

Motor Type Code Motor Model Motor Specification
61 o 1/3000 0371
46 o 2/2000 0372
62 o 2/3000 0373
15 o 3/3000 0123
16 o 6/2000 0127
17 . 6/3000 0128
18 o 12/2000 0142
19 o 12/3000 0143
27 o 22/1500 0146
20 o 22/2000 0147
21 o 22/3000 0148
28 ©30/1200 0151
22 o 30/2000 0152
23 30/3000 0153
30 .40/2000 0157
29 o 40/FAN 0158
o L Series Servo Motor

Motor Type Code Motor Model Motor Specification

56 o L3/3000 0561

57 o L6/3000 0562

58 o L9/3000 0564

59 o L25/3000 0571

60 o L50/2000 0572

123

User Manual
GFK-1742F

Configuration

a C Series Servo Motor

Chapter 4
Jan 2020

Motor Type Code Motor Model Motor Specification
7 . C3/2000 0121
8 o C6/2000 0126
9 0 C12/2000 0141
10 o C22/1500 0145

a HV Series Servo Motor

Motor Type Code Motor Model Motor Specification
3 o 12HV/3000 0176
4 o 22HV/3000 0177
5 o 30HV/3000 0178

a M Series Servo Motor

Motor Type Code Motor Model Motor Specification
24 o M3/3000 0161
25 o M6/3000 0162
26 o M9/3000 0163

B Series Servo Motor

Motor Type Code Motor Model Motor Specification
13 B0.5/3000 0013
35 $1/3000 0031
36 B 2/3000 0032
33 B 3/3000 0033
34 8 6/2000 0034

BM Series Servo Motor

Motor Type Code Motor Model Motor Specification
115 M 0.5/5000 0115
116 M 1/5000 0116

6.02 Analog Servo Command. The Analog Servo Command determines whether the

analog command issued by the DSM300 series module is a velocity or torque
command. The torque command selectionis supported in the DSM314 firmware 3.0
or later. Default: Velocity

124

User Manual Chapter 4
GFK-1742F Jan 2020

6.03 Position Error Limit. Position Error Limit (User Units). The Position Error Limit is the
maximum Position Error (Commanded Position - Actual Position) allowed when the
DSM314 is controlling a servo. Position Error Limit should normally be set to a value
10% to 20% higher than the highest Position Error encountered under normal servo
operation. Default: 60000.

The Position Error Limit range formula is:
256 x (user units/counts) Position Error Limit 60,000 x (user units/counts)

If Velocity Feedforward is not used, Position Error Limit can be set to a value
approximately 20% higher than the Position Error required to produce a 4000-rpm
command. The Position Error (User Units) required to produce a 4000-rpm
command with 0% Velocity Feed forward is:

Position Error (user units) = Position Loop Time Constant (ms) x Servo Velocity @ 4000 rpm

(user units/sec)

1000
Example

The user units counts ratio is 2:1 and the Position Loop Time Constant is 50 ms.

Step 1:
Calculate servo velocity at 4000 rpm = (2 user units/count) x (8192 counts/rev) x (4000 revs/minute)
(60 seconds/minute)
= 1,092,266 user units/second
Step 2:

Calculate Position Error at 4000 rpm = (50 milliseconds) x (1,092,266 user units/second)

1000 milliseconds/second
= 54613 user units
If Velocity Feedforward is used to reduce the following error, a smaller error limit

value can be used, but in general, the error limit value should be 10% - 20% higher
than the largest expected following error.

Note: An Out of Sync error will occur and cause a fast stop if the Position Error Limit Value is exceeded
by more than 1000 counts. The DSM314 attempts to prevent an Out of Sync error by temporarily
halting the internal command generator whenever position error exceeds the Position Error Limit.
Halting the command generator allows the position feedback to catch up and reduce position
error below the error limit value.

If the feedback does not catch up and the position error continues to grow, the Out of Sync
condition will occur. Possible causes are:

1. Erroneous feedback wiring
Feedback device coupling slippage

Servo drives failure.

> wWwN

Mechanically forcing the motor/encoder shaft past the servo torque
capability.

Configuration 125

User Manual
GFK-1742F

Configuration

6.04

6.05

Chapter 4
Jan 2020

5. Commanded motor acceleration or motor deceleration that is greater
than system capability.

In Position Zone. In Position Zone (User Units). When the Position Error is less than
or equal to the active In Position Zone value, the In Zone %I bit will be ON. Default:
10.

Pos Loop Time Constant (0.1ms). Position Loop Time Constant (units = 0.1
milliseconds). The desired servo position loop time constant. This value configures
the amount of time required for the servo velocity output to reach 63% of its final
value when a step change occurs in the Velocity command. The lower the value, the
faster the system response. Values that are too low will cause system instability and
oscillation. Default: 1000 = 100 ms.

Note: Foraccurate commanded velocity profile tracking, Pos Loop Time Constant should be 1/4
to 1/2 of the MINIMUM system acceleration or deceleration time. For example, if the
fastest acceleration that must occur occupies 100msec of time the Pos Loop Time
Constant should be between 25 to 50msec. To maintain system stability, use the largest
value possible.

For users familiar with servo bandwidth expressed in rad/sec:
Bandwidth (rad/sec) = 1000 / Position Loop Time Constant (ms)
For users familiar with servo gain expressed in ipm/mil:
Gain (ipm/mil) = 60 / Position Loop Time Constant (ms)

Table 36: Gain | Bandwidth | Position Loop Time Constant

Gain (ipm/mil) |Bandwidth (rad[sec) |Position Loop Time Constant (ms)
0.5 8.5 120

0.75 12.5 80

1.0 16.6 60

1.5 25.1 40

2.0 334 30

2.5 41.8 24

3.0 50 20

For applications that do not require feedback control or employ very crude
positioning systems, an Open Loop Mode exists. Setting a zero Position Loop Time
Constant, which indicates that the positioning loop is disabled, selects this mode.
Note thatin Open Loop Mode, the only way to generate motion is to program a non-
zero Velocity Feedforward. The Position Error is no longer used to generate motion
because Position Error is based on position feedback and Open Loop Mode ignores
all feedback.

ACAUTION

For Analog Axes, the Position Loop Time Constant will not be accurate unless the
Velocity at Max Cmd value is set correctly.

126

User Manual
GFK-1742F

Configuration

Chapter 4
Jan 2020

6.06 Velocity at MaxCmd (User Units/Second.) All DSM314 analog servo functions

6.07

depend on this value being correct for proper operation.
For Digital Servo Mode, the Velocity at Max Cmd configuration field is not used.

For Analog Servo Mode in Velocity Mode, the Velocity at Max Cmd configuration
field is the Actual Servo Velocity (User Units/second) desired for a 10 Volt DSM314
analog velocity command output to the servo. The Force D/A Output %AQ
Immediate Command and the Actual Velocity %Al status word can be used for a
command voltage to empirically determine the proper configuration value if
necessary.

For Analog Servo Mode in Torque Mode, the Velocity at Max Cmd configuration field
is the maximum velocity that the user desires the servo to be able to run. The value
is determined by the capabilities of the servo system being controlled and the
capabilities of the driven load.

In Digital Mode only, if the user sends the DSM314 a velocity command that exceeds
the servo system capability, the DSM314 will clamp that command value at the
appropriate maximum motor velocity boundary. Note that no error will be reported
back to the DSM314.

See Appendix D, “Start-up and Tuning Digital and Analog Servo Systems,” for more
information on determining the correct value.

Default: 100000.

ACAUTION

The Velocity at 10V must be configured correctly in order for the analog servo Pos
Loop Time Constant and Velocity Feedforward factors to be accurate.

Velocity Feed Forward (0.01%). Velocity Feed forward gain (units = 0.01 percent).
The Commanded Velocity percentage that is added to the DSM314’s position loop
velocity command output. Increasing Velocity Feedforward causes the servo to
operate with faster response and reduced position error. The optimum value for
each system has to be determined individually. For Digital Servos, 95 % Velocity Feed
Forward Percentage value is a good starting point. For analog servos, 70% is a good
starting point. The servo system capabilities will determine the optimum value. If
Velocity Feed Forward is changed, Pos Err Limit may require adjustment. Default: 0.

ACAUTION

For Analog Axes, the Velocity Feed Forward Percentage will not be accurate unless
the Velocity at MaxCmd value is first set correctly.

127

User Manual
GFK-1742F

4.3.8

Configuration

6.08

6.09

6.10

6.11

Chapter 4
Jan 2020

Acceleration Feed Forward Percentage. This configuration item is not used in the
current DSM314 firmware.

Integrator Mode Integrator Mode. Position loop position error integrator operating
mode. Off means the integrator is not used. Continuous means the integrator runs
continuously even during servo motion. Servo Null means the integrator only runs
when the Moving %l status bit is OFF. Integrator Mode should normally be set to Off.
Continuous mode may be used for Follower operation only when a constant or
slowly changing master velocity is expected. This parameter should not be used to
dampen disturbances in the position loop feedback. Never select Continuous for
point to point positioning applications. Default: OFF.

Integrator Time Constant Integrator Time Constant (milliseconds). This is the
position loop position error integrator time constant. This value indicates the time
required to reduce the position error by 63%. For example, if the Integrator Time
Constantis 1000 (1 second), the Position Error would be reduced to 37% of its initial
value after 1 second. A value of zero turns off the integrator. If used, the Integrator
Time Constant should be 5 to 10 times greater than the Position Loop Time Constant
to prevent instability and oscillation. Default: 0.

Velocity Loop Gain Used to set velocity loop gain. This applies to Digital Servos and
Analog Torque Mode Servos only. This parameter is not used for Analog Servos in
Velocity Mode. The formula

x 16

Velocity Loop Gain Load Inertia (J,)
= Motor Inertia (Jy)

can be used to select an initial velocity loop gain value. The allowable value range is
0 to 255. The value of 0 should be used if the motor shaft is not attached to a load.
Default: 16 (load inertia equals motor inertia).

Computing Data Limit Variables

The data limit values for parameters MaxPosnUu, MaxVelUu, and MaxAccUu, referred to in
some of the tables in this chapter, can be calculated using the following formulas:

Table 37: Computing Data Limit Variables

Formulas for Computing Data Limit Variables
Position Limit MaxPosnUu | Velocity Limit MaxVelUu | Acceleration Limit
MaxAccUu
If uu:cts >=1:1 MaxVelUu = 1,000,000* If uu:cts >=1:1
MaxPosnUu =536,870,912 uu/cts MaxAccUu = 1,073,741,823
Else (uu:cts < 1:1) Else (uu:cts < 1:1)
MaxPosnUu =536,870,912 * MaxAccUu = 1,073,741,823*
uu/cts uu/cts

128

User Manual
GFK-1742F

4.3.9

Configuration

Chapter 4
Jan 2020

Advanced Tab Data

The Advanced Tab allows up to 16 custom tuning parameters and associated data to be
entered for each axis. Although the Advanced Tab has 16 rows for entering axis tuning
parameter data, the DSM314 Release 1.0 firmware only allows Entry rows 1 and 2 to be
used. The figure below shows data in the cells for Axis 1 on Entry rows 1 and 2. DSM firmware
version 3.0 or later removes this restriction.

Figure 61: Advanced Tab

Sattmgs] SNP Pnrll CTL Bisl Output Blts] Az #1 I iz ﬂ2| s uﬂ Tuning #1 | Tuning #2 Advanced IPDWEI Eﬂnsumcliﬂnl
Entry Axis 1 Pan # [Axis 1 Data [Axis 2 Par # [Axis 2 Data [Axis 3 Par # [Axis 3 Data
Entry Row | ——— |1 1 2 0 0 0 0

Entry Row 2——> ;U

\Qil

|~ | @ o] = w2 |ra

9

10
1
12
13
14
15
16

L]

cCoococoCcooOooCOoO0CoooOw
coocococooo00ooo

ocoocococoooooooooo
coooocoooooooooo
cooococooooo0 o000
cooococoooooooooo

- coooocoooooooooo
[l

Tuning Parameter 1: Sets Digital Encoder Resolution (for digital servos only). Settings other
than 0 result in a derating of the maximum supported motor speed. Note that, for settings
0 and 1, some motors’ maximum speed ratings are below the maximum supported speed
shown in the table. Range of allowable settings: 0 — 3. In Figure 61 above, Tuning Parameter
1is set to a value of 2 for Axis 1.

Table 38: Tuning Parameter 1 Values

Tuning Parameter 1 Values Counts/Revolution Maximum Supported Motor Speed

0 8192 44001,2
1 16384 36622
2 32768 1831

3 65536 915
Note:

e Default setting

e Some motors’ maximum speed rating is lower than the value in the table

Tuning Parameter 3: Sets minimum velocity output (millivolts) for analog servos. Allowed
datarangeis 0 -1000 millivolts. The recommended setting is 5 - 10mv, or just enough to
make the servo pullin to +/- 1 count of position error. In Figure 4.2 above, Tuning
Parameter 3 is set to a value of 10 for Axis 1.

129

User Manual
GFK-1742F

4.3.10

Configuration

Chapter 4
Jan 2020

Tuning Parameter 6: Sets the encoder resolution. The parameter is only used in torque
mode. For correct torque mode operation, this value must be set to the number of
quadrature encoder counts (4X encoder lines) generated by the motor feedback device per
revolution. The user can determine the value from the feedback device specification. As a
double check, the user may wish to connect the feedback device to the DSM and manual
rotate the motor shaft one revolution. The reading on the DSM %Al data for actual position
should closely match (variations are caused by the accuracy of manual turning shaft one
revolution) the value placed in this parameter. The allowed range is 100-32767
counts/revolution. The default value is 4096 counts per revolution

Tuning Parameter 7: Sets the velocity requlator proportional gain. The parameter is only
used in torque mode. The proportional gain is multiplied by velocity error (velocity
command - velocity feedback) to generate the portion of the torque command due to the
proportional term. Correctly setting this value will determine how well the velocity
regulator performs in the control system. Appendix D describes a method to correctly tune
this parameter. The allowable range for the velocity loop proportional gain termis 0-32767.
The default value is 1500.

Tuning Parameter 8: Sets the velocity regulator integral gain. The parameter is only used in
torque mode. The integral gain is the term multiplied by the area of the velocity error
(velocity command - velocity feedback) to generate the portion of the torque command
due to the integral term. Correctly setting this value will determine how well the velocity
regulator performs in the control system. Appendix D describes a method to correctly tune
this parameter. The allowable range for the velocity loop proportional gain termis 0-32767.
The default value is 0.

Tuning Parameter 10: Sets the Torque Command Filter setting. The torque command filter
allows the user to activate a low pass filter for the velocity requlator output. . The filter is
typically used to keep the controller from exciting a machine resonance. The allowable
range for torque filter settings is 0 — 3. The default value is 0.

Table 39: Tuning Parameter 10 Values

Tuning Parameter 10 Values Torque Command Low Pass Filter Setting
0 OFF1

1 Low Bandwidth Filter (150 Hz 3db point)

2 Medium Bandwidth Filter (250 Hz 3db point)

3 High Bandwidth Filter (350 Hz. 3db point)

Power Consumption Data
This is a display-only tab that indicates the power required by the DSM314 module.

130

User Manual
GFK-1742F

Chapter5: DSM314 to Host Controller

5.1

Interface

This chapter defines the data that is transferred between the CPU and the Motion Mate
DSM314 automatically each host controller sweep, without user programming. This data is
categorized as follows:

e Input Status Data (Transferred from Motion Mate DSM314 to CPU)
— StatusBits: 32 (1 Axis), 48 (2 Axes),64 (3 Axes), 80 (4 Axes) bits of %I data

— Status Words: 24(1 Axis),44 (2 Axes) ,64 (3 Axes) ,84 (4 Axes) words of % Al
data

e Output Command Data (Transferred from CPU to Motion Mate DSM314)

— Discrete Commands: 32(1 Axis),48(2 Axes),64(3 Axes),80(4 Axes) bits of %Q
data

— Immediate Commands: 3(1 Axis),6(2 Axes),9(3 Axes),12 (4 Axes) words of %AQ
data

Note: Throughout this chapter words shown in italics refer to actual host controller machine data
references (%1, %A, %Al, %AQ).

Section 1: %l Status Bits

The following %I Status Bits are transferred automatically from the DSM314 to the CPU each
sweep. The actual addresses of the Status Bits depend on the starting address configured
forthe %l reference (see Table 40, “Settings Tab”). The bit offsets listed in the following table
are offsets to this starting address. All reference section designations pertain to this chapter.

Table 40: %I Status Bits

Bit Description Axis Ref. |Bit Description Axis | Ref.
Offset Offset

00 Module Error Present N/A 1.01 |40 Position Error Limit Servo2 | 1.12
01 Local Logic Active N/A 1.02 |41 Torque Limit Servo2 | 1.13
02 New Configuration Received N/A 1.03 |42 Servo Ready [IN4_B (5v) |Servo2|1.14
03 Reserved 43 Reserved

04 CTLO1 (function selected by config) | N/A 1.04 (44 Follower Enabled Servo2 | 1.15
05 CTLO2 (function selected by config) | N/A 1.04 |45 Velocity Limit Servo2 | 1.16
06 CTLO3 (function selected by config) [N/A 1.04 |46 Follower Ramp Active Servo2 | 1.17
07 CTLO4 (function selected by config) | N/A 1.04 |47 Reserved

08 CTLO5 (function selected by config) | N/A 1.04 |48 Axis OK Servo 3| 1.05
09 CTLO6 (function selected by config) [N/A 1.04 |49 Position Valid Servo3 [1.06
10 CTLO7 (function selected by config) | N/A 1.04 |50 Drive Enabled Servo 3| 1.07

DSM314 to Host Controller Interface

Chapter 5
Jan 2020

131

User Manual Chapter 5

GFK-1742F Jan 2020
Bit Description Axis Ref. |Bit Description Axis | Ref.
Offset Offset
11 CTLO8 (function selected by config) | N/A 1.04 |51 Program Active Servo3 | 1.08
12 CTL13 (function selected by config) | N/A 1.04 |52 Moving Servo3{1.09
13 CTL14 (function selected by config) | N/A 1.04 |53 In Zone Servo3{1.10
14 CTL15 (function selected by config) | N/A 1.04 |54 Strobe 1 Flag (5v) Servo3 | 1.11
15 CTL16 (function selected by config) | N/A 1.04 |55 Strobe 2 Flag (5v) Servo3 | 1.11
16 Axis OK Servo1 [1.05 |56 Position Error Limit Servo3|1.12
17 Position Valid Servo1l [1.06 |57 Reserved
18 Drive Enabled Servol |[1.07 |58 Servo Ready/IN4_CInput |Servo3|1.14
19 Program Active Servol [1.08 |59 Reserved
20 Moving Servo1l [1.09 |60 Follower Enabled Servo3|1.15
21 In Zone Servol [1.10 |61 Velocity Limit Servo3|1.16
22 Strobe 1 Flag (5v) Servol [1.11 |62 Follower Ramp Active Servo3 | 1.17
23 Strobe 2 Flag (5v) Servol |[1.11 |63 Reserved Servo 3
24 Position Error Limit Servo1 [1.12 |64 Axis OK Servo4 | 1.05
25 Torque Limit Servol |[1.13 |65 Position Valid Servo4 [1.06
26 Servo Ready [IN4_A (5v) Servol [1.14 |66 Drive Enabled Servo4 | 1.07
27 Reserved 67 Program Active Servo4|1.08
28 Follower Enabled Servol |[1.15 |68 Moving Servo4 | 1.09
29 Velocity Limit Servo1l [1.16 |69 In Zone Servo4 | 1.10
30 Follower Ramp Active Servol [1.17 |70 Strobe 1 Flag (5v) Servo4 [1.11
31 Reserved 71 Strobe 2 Flag (5v) Servo4 [1.11
32 Axis OK Servo2 [1.05 |72 Position Error Limit Servo4 | 1.12
33 Position Valid Servo2 |[1.06 |73 Reserved Servo 4

34 Drive Enabled Servo2 [1.07 |74 Servo Ready [IN4_D (5v) |Servo4 | 1.14
35 Program Active Servo2 [1.08 |75 Reserved Servo 4

36 Moving Servo2 [1.09 |76 Follower Enabled Servo4 | 1.15
37 In Zone Servo2 [1.10 |77 Velocity Limit Servo4|1.16
38 Strobe 1 Flag (5v) Servo2 |[1.11 |78 Follower Ramp Active Servo4 | 1.17
39 Strobe 2 Flag (5v) Servo2 [1.11 |79 Reserved Servo 4

1.01 Module Error Present. This status bit is set when the DSM314 detects any error.
Errors related to a specific Servo or Auxiliary Axis will be identified in the associated
Axis n Error Code %Al word. Module errors not related to a specific axis will be
identified in the Module Status Code %Al word. See section 2, “%Al Status Words”,
for more details. The Clear Error %Q bit is the only command that will clear the
Module Error Present %l status bit and the associated Module Status Code and Axis
n Error Code %Al word(s). If the condition causing the error is still present, the

Module Error Present %I status bit will not be cleared.

DSM314 to Host Controller Interface

132

User Manual Chapter 5
GFK-1742F Jan 2020
1.02 Local Logic Active. When this status bit is ON, it indicates that a Local Logic
program is executing.
1.03 New Configuration Received. The New Configuration Received %l status bit is set
whenever the host controller sends a reset command or new configuration to the
DSM314. New Configuration Received should be cleared by a host controller
program before any %AQ Immediate commands such as In Position Zone or Position
Loop Time Constant have been sent to the DSM314. The status bit can then be
monitored by the host controller. If the bit is set, then the DSM314 has been reset
or reconfigured. The host controller should clear the bit and then re-send all
necessary %AQ commands. The bit is cleared by %AQ Immediate command 49h.
Refer to section 4, “%AQ Immediate Commands,” later in this chapter, for more
details about the ¥AQ immediate command interfaces.
1.04 Configurable %l Status Bits. These inputs indicate the state of configurable CTL bits
CTLO1-CTLO8 and CTL13-CTL16. The default CTL bit assignments report the level of
external input devices connected to faceplate signals. All CTL bits may be tested
during the execution of motion program Wait and Conditional Jump commands.
CTL bits can also be used to trigger the follower ramp enable | disable functions. The
CTL bit assignments are selected through configuration. Consult Chapters 4 and 14
for additional information. Default CTLO1-CTLO8 and CTL13-CTL16 assignments are
shown in Table 41.
Table 41: Defaults for Configurable %l Status Bits
Bit Signal |Signal Use Input | Faceplate Digital Servo| Analog Servo | Aux
Name [Name Type |Connector Pin|TB Pin Axis TB Pin
CTLO1 IN9_A Servo Axis 1 (+) Overtravel [24v A-16 6 16
CTLO2 INTO_A | Servo Axis 1 (-) Overtravel 24v A-34 14 34
CTLO3 INTT_A Servo Axis 1 Home Switch 24v A-17 7 17
CTLO4 |[INT_A |ServoAxis 1Strobe 1 Level | 5v A-1,19 1,9 9
CTLO5 IN9_B Servo Axis 2 (+) Overtravel | 24v B-16 6 16
CTLO6 IN1T0_B [Servo Axis 2 (-) Overtravel 24v B-34 14 34
CTLO7 INT1_B | Servo Axis 2 Home Switch 24v B-17 7 17
CTLO8 IN1_B Servo Axis 2 Strobe 1 Level 5v B-1,19 1,9 9
CTL13 IN9_C Servo Axis 3 (+) Overtravel 24v C-16 NA 16
CTL14 IN1T0_C | Servo Axis 3 (-) Overtravel 24v C-34 NA 34
CTL15 INT1_C | Servo Axis 3 Home Switch 24v c-17 NA 17
CTL16 [IN5_C Servo Axis 3 Strobe 1 Level | 5v c9 NA 9

1.05

Axis OK. The Axis OK status bit is ON when the DSM314 is ready to receive
commands and control a servo. An error condition that stops the servo will turn Axis
OK OFF. When Axis OK is OFF, no commands other than the Clear Error %¥Q bit will
be accepted by the axis.

DSM314 to Host Controller Interface

133

User Manual
GFK-1742F

1.06

1.07

1.08

1.09

Chapter 5
Jan 2020

Position Valid. For a Servo Axis, the Position Valid status bit indicates that a Set
Position command or successful completion of a Find Home cycle has initialized the
position value in the Actual Position % Al status word. For a Servo Axis, Position Valid
must be ON in order to execute a motion program.

For an Auxiliary Axis, the Position Valid status bit indicates that an Aux Encoder Set
Position command or successful completion of a Find Home cycle has initialized the
position value in the Actual Position % Al status word. For an Aux Axis, Position Valid
is not required to be ON in order to execute a motion program.

If the DSM314 is configured to use an absolute feedback digital encoder (o or B
Series servo with optional encoder battery), Position Valid is automatically set
whenever the digital encoder reports a valid absolute position. See Appendix C for
details of operation when absolute mode digital encoders are used.

Drive Enabled. The Drive Enabled status bit indicates the state of the Enable Drive
%Q bit and the solid-state relay output supplied by the DSM314. The ON state of the
Drive Enabled %I bit corresponds to the CLOSED state of the relay output and the ON
state of the associated faceplate EN LED. In Digital mode, the solid-state relay
provides the MCON signal to the Digital Servo through the servo command cable.
Drive Enabled is cleared following power-up or an error condition that stops the
servo.

Program Active. The Program Active status bit for each axis indicates that a Motion
Program (1-10) or a Move $AQ command (27h) is executing on that axis. Executing
a multi- axis program will set the Program Active %I bits for both Axis 1 and Axis 2.

Moving. The Moving status bit is ON when Commanded Velocity is non-zero,
otherwise it is OFF. All Move, Jog, and Move at Velocity commands will cause the
Moving bit to be set to ON. The Force Servo Velocity AQ command and Follower
acceleration ramp will not set the Moving bit.

In Follower mode, Moving is ON for the conditions described above and is not
affected by the enabled or disabled state of the follower master input. When the
Follower acceleration [deceleration ramp is active, a separate %l bit, Follower Ramp
Active, is ON. Refer to Chapter 8, Follower Motion, for additional information on the
Follower Acceleration Ramp.

In Zone. Operation of the In Zone bit depends only on the Position Error value and is
not related to the state of the Moving bit. In Zone will be ON whenever Position Error
is less than or equal to the configured In Position Zone value. In Zone (ON) can be
used in combination with the Moving bit (OFF) to determine when the axis has
arrived at its destination.

DSM314 to Host Controller Interface

134

User Manual Chapter 5
GFK-1742F Jan 2020
Table 42: In Zone Bit Operation
Cmd Generator Active Position Error < In [In Zone bit | Axis at Destination
(Moving %l bit ON) Position Zone
No No OFF No
No Yes ON Yes
Yes No OFF No
Yes Yes ON No
1.11 Strobe 1 Flag, Strobe 2 Flag. The Strobe 1 Flag and Strobe 2 Flag status bits indicate

that an OFF to ON transition has occurred at the associated faceplate Strobe Input.
When this occurs, an axis position is captured and reported in the Strobe n Position
%Al status word, where “n” is Axis 1 - Axis 4. The Strobe n Flag %I bit is cleared by the
associated Reset Strobe n %Q bit. A maximum of 2 host controller sweeps is required
for the Strobe n Flag %I bit to be cleared in the host controller after a Reset Strobe n
%Q bitis turned ON. Once the Strobe n Flag bit is cleared, new data may be captured
by another Strobe Input. The position capture resolution is +/- 2 counts with an
additional 10 microseconds of variance for the strobe input filter delay.

Note:

The Strobe n Flag bits do not indicate the logic level of the faceplate input, they only indicate that
an OFF to ON transition has occurred on the input.

Position Error Limit. The Position Error Limit status bit is set when the absolute value
of the position error exceeds the configured Position Error Limit value. When the
Position Error Limit status bit is set, Commanded Velocity and Commanded Position
are frozen to allow the axis to” catch up” to the Commanded Position.

Torque Limit. The Torque Limit status bit is set when the commanded torque
exceeds the torque limit setting for the configured motor type.

Servo Ready. This status bit is set when faceplate signal IN4 of the associated
connector (A, B, Cor D) is ON (active low: ON = Ov, OFF = +5v). For each Servo Axis,
this input reports the Servo Ready state of the servo amplifier.

Follower Enabled. This status bit indicates when the Follower is enabled for the axis.
The Enable Follower % Q bit and an optional CTLO1-CTL32 faceplate trigger input
enable the Follower function. If follower ramp acceleration control is active when
Follower Enabled turns on, the axis will accelerate to the master velocity command,
and when it turns off, the axis will decelerate to zero master velocity command. Both
acceleration and deceleration during the ramp process will utilize the configured
Follower Ramp Acceleration.

Velocity Limit. The Velocity Limit status bit is set if the velocity requested by any axis
command (internal path generator or internal/external follower source) exceeds the
configured velocity limit. Therefore, Velocity Limit is an indication that the axis is no
longer locked to its position command. If Follower is enabled, an error code is
reported in the associated axis Error Code variable when Velocity Limit is set.

An exception exists when unidirectional motion is configured by setting Command
Direction to Positive Only or Negative Only. Positive Only means that the velocity

DSM314 to Host Controller Interface

135

User Manual

GFK-1742F

5.2

Chapter 5

Jan 2020

limit is zero for negative motion. Negative Only means that the velocity limit is zero
for positive motion. No error is generated for the limit that is set to zero. For
example, if Command Direction is set to Negative Only and + Counts are
commanded, the Velocity Limit Status bit is set, but no Status Error code is reported.

1.17 Follower Ramp Active. When the follower is enabled, Follower Ramp Active is ON
during initial acceleration and distance makeup. When the follower is disabled,
Follower Ramp Active is ON until the Follower Disable Action incremental distance
(if selected) has been traveled and the follower has decelerated to zero velocity.

Section 2: %Al Status Words

The following %Al Status Words are transferred automatically from the DSM314 to the CPU
each sweep. The total number of the %Al Status Words is configured with the Configuration
Software to be alength of 24, 44, 64 or 84. The actual addresses of the Status Words depend
on the starting address configured for the %Al references. See Table 40, “Settings Tab.” The
word numbers listed in the following table are offsets to this starting address. All reference
section designations pertain to this chapter. All %Al data except Actual Velocity is updated
within the DSM314 at the position loop sampling rate (2 ms for digital servos, 0.5 ms or 1.0
ms for some analog servo configurations). Actual Velocity is updated once every 128
milliseconds.

Table 43: %Al Status Words

Word | Description Axis Ref |Word |Description Axis Ref
Offset Offset

00 Module Status Code N/A 2.01

01-03 Reserved

04 Axis 1 Error Code Servo1 |2.02 44 Axis 3 Error Code Servo3 |2.02
05 Command Block Number Servol |2.03 |45 Command Block Number |Servo3 |2.03
06-07 Commanded Position Servol |2.04 |46-47 |Commanded Position Servo3 |2.04
08-09 Actual Position Servo1 |2.05 48-49 Actual Position Servo 3 2.05
10-11 Strobe 1 Position Servo1 |2.06 50-51 Strobe 1 Position Servo 3 2.06
12-13 Strobe 2 Position Servol |2.06 |52-53 |Strobe 2 Position Servo3 |2.06
14-15 Position Error Servo1 |2.07 54-55 Position Error Servo 3 2.07
16-17 Commanded Velocity Servo1 |2.08 56-57 Commanded Velocity Servo3 |2.08
18-19 Actual Velocity Servo1 |2.09 58-59 | Actual Velocity Servo3 |2.09
20-21 User Selected Data 1 Servol |2.10 |60-61 User Selected Data 1 Servo3 |2.10
22-23 User Selected Data 2 Servo1 |2.11 62-63 | User Selected Data 2 Servo3 | 2.11
24 Axis 2 Error Code Servo2 |2.02 64 Axis 4 Error Code Servo4 |2.02
25 Commanded Block Number |Servo2 |2.03 65 Command Block Number |Servo4 |2.03

DSM314 to Host Controller Interface

136

User Manual Chapter 5
GFK-1742F Jan 2020

26-27 Commanded Position Servo2 |2.04 66-67 Commanded Position Servo4 |2.04

28-29 Actual Position Servo2 |2.05 68-69 Actual Position Servo4 | 2.05

30-31 Strobe 1 Position Servo2 |2.06 70-71 Strobe 1 Position Servo4 | 2.06

32-33 Strobe 2 Position Servo2 |2.06 72-73 Strobe 2 Position Servo4 |2.06

34-35 Position Error Servo2 |2.07 74-75 Position Error Servo 4 2.07

36-37 Commanded Velocity Servo2 |2.08 76-77 | Commanded Velocity Servo4 |2.08

38-39 Actual Velocity Servo2 |2.09 |78-79 |Actual Velocity Servo4 |2.09

40-41 User Selected Data 1 Servo2 |2.10 80-81 User Selected Data 1 Servo4 |2.10

42-43 User Selected Data 2 Servo2 |2.11 82-83 User Selected Data 2 Servo4 | 2.11

2.01

2.02

2.03

Module Status Code. Module Status Code indicates the current DSM314 operational
status. When the Module Error Present %l flag is set, and the erroris not related to a
specific axis, an error code number is reported in the Module Status Code that
describes the condition causing the error. A new Module Status Code will not replace
a previous Module Status Code unless the new Module Status Code has Fast Stop or
System Error priority.

The Module Status Code word is also used to report System Status Errors. These are
of the format Dxxx, Exxx, and Fxxx. For details on System Status Error codes, refer to
Appendix A.

For a list of Motion Mate DSM314 error codes refer to Appendix A.

Axis 1 - Axis 4 Error Code. The Servo Axis n Error Code, where n = Axis 1 - Axis 4,
indicates the current operating status of each axis. When the Module Error Present
%l flag is set, and the error is related to a particular axis, an error code number is
reported, which describes the condition causing the error. A new Axis Error Code will
replace a previous Axis Error Code if it has equal or higher priority (Warning, Normal
Stop, Fast Stop) compared to the previous Axis Error Code.

For a list of Motion Mate DSM314 error codes refer to Appendix A.

Command Block Number. Command Block Number indicates the block number of
the command that is presently being executed in the active Program or Subroutine.
It changes at the start of each new block as the program commands are executed,
and thus identifies the present operating location within the program. Block
numbers are displayed only if the motion program uses them. Additionally, the most
recently used block number will be displayed until superseded by a new value. The
Command Block Number is set to zero on power cycle or reset.

DSM314 to Host Controller Interface

137

User Manual Chapter 5
GFK-1742F Jan 2020

2.04 Commanded Position. Commanded Position (user units) is where the axis is
commanded to be at any instant in time. For a Servo Axis, the difference between
Commanded Position and Actual Position is the Position Error value that produces
the Velocity Command to drive the axis. The rate at which the Commanded Position
is changed determines the velocity of axis motion.

If Commanded Position moves past either of the count limits, it will roll over to the
other limit and continue in the direction of the axis motion.

2.05 Actual Position. Actual Position (user units) is a value maintained by the DSM314 to
represent the physical position of the axis. It is set to an initial value by the Set
Position %¥AQ Immediate command or to Home Position by the Find Home cycle.
When digital absolute encoders are used, Actual Position is automatically set
whenever the encoder reports a valid position. The motion of the axis feedback
device continuously updates the axis Actual Position.

If Actual Position moves past either of the count limits, it will roll over to the other
limit and continue in the direction of the axis motion.

2.06 Strobe 1, 2 Position. Strobe 1 Position and Strobe 2 Position (user units) contain the
axis actual position when a Strobe 1 Input or Strobe 2 Input occurs. When a Strobe
Input occurs, the Strobe 1Flag or Strobe 2 Flag %I bit is set to indicate to the host
controller that new Strobe data is available in the related Strobe 1 Position or Strobe
2 Position status word. The host controller must set the proper Reset Strobe 1 or
Reset Strobe 2 Flag %Q bit to clear the associated Strobe 1,2 Flag %l bit.

Strobe 1, 2 Position will be maintained and will not be overwritten by additional
Strobe Inputs until the Strobe 1, 2 Flag %I bit has been cleared. If the Reset Strobe
Flag %Q bit is left in the

ON state (thus holding the Strobe 1, 2 Flag %I bit in the cleared state), then each
Strobe Input that occurs will cause the axis position to be captured in Strobe 1, 2
Position.

The Strobe 1, 2 Position actual position values are also placed in data parameter
registers for use with motion programs commands. The data parameter register
assignments are as follows:

Servo Axis 1 Servo Axis 2 Servo Axis 3 Servo Axis 4
Strobe 1 Position |P224 P232 P240 P248
Strobe 2 Position |P225 P233 P241 P249

This feature allows the strobe input to trigger a Conditional JUMP in a program
block using the Strobe 1 Position or Strobe 2 Position as the destination of a
CMOVE or PMOVE command.

See Chapter 1, “Product Overview, DSM314 Position Strobes,” for information on
strobe latency and processing times.

DSM314 to Host Controller Interface 138

User Manual
GFK-1742F

5.3

2.07

2.08

2.09

2.10

2.1

Chapter 5
Jan 2020

Position Error. Position Error (user units) is the difference between Commanded
Position and Actual Position. In the servo control loop, Position Error is multiplied by
a gain constant to provide the servo velocity command.

Commanded Velocity. Commanded Velocity (user units/sec) is a value generated by
the DSM314 axis command generator. Commanded Velocity indicates the
instantaneous velocity command that is producing axis motion. At the beginning of
a move it will increase at the acceleration rate, and once the programmed velocity
has been reached, it will stabilize at the programmed velocity value.

In Follower mode, Commanded Velocity only represents the output of the axis
command generator. The Follower Master Axis input or the Follower Acceleration
Ramp controller does not affect Commanded Velocity.

Actual Velocity. Actual Velocity (user units/sec) represents the axis velocity derived
from the Feedback device and is updated by the DSM314 once every 128
milliseconds.

User Selected Data 1. There is one of these words for each of the four axes. The
information reported in User Selected Data 1 is determined by module
configuration (see Chapter 4) or the Select Return Data 1 %AQ command (see
Section 4, “%AQ Immediate Commands,” in this chapter).

User Selected Data 2. There is one of these words for each of the four axes. The
information reported in User Selected Data 2 is determined by module
configuration (see Chapter 4) or the Select Return Data 2 %AQ command (see
Section 4, “%AQ Immediate Commands,” in this chapter). Refer to Section 4 “%AQ
Immediate Commands” for additional information.

Section 3: %Q Discrete Commands

The %Q Outputs listed in Table 44 represent Discrete Commands that are sent automatically
to the DSM314 from the CPU each host controller sweep. Acommand is executed by turning
onits corresponding Output Bit. The actual addresses of the Discrete Command bits depend
on the starting address configured for the %Q references. See Table 40, “Settings Tab.” The
Bit Offsets listed in the following table are offsets to this starting address. Numbers in the
“Ref” columns pertain to sections in this chapter.

DSM314 to Host Controller Interface

139

User Manual Chapter 5
GFK-1742F Jan 2020
Table 44: %Q Discrete Commands
Bit Description Axis Ref |Bit Description Axis Ref
Offset Offset
00 Clear Error N/A 3.01 |40 OUT1_B/ Config. CTLbitsrc. |Servo2 |3.12
01 Enable Local Logic N/A 3.02 |41 OUT3_B/ Config. CTLbitsrc. |Servo2 |3.13
02 Execute Motion Program 1 N/A 3.03 |42 Reserved
03 Execute Motion Program 2 N/A 3.03 |43 Reserved
04 Execute Motion Program 3 N/A 3.03 |44 Enable Follower Servo2 |3.14
05 Execute Motion Program 4 N/A 3.03 |45 Select Follower Master Servo2 |3.15
Source
06 Execute Motion Program 5 N/A 3.03 |46 Reserved
07 Execute Motion Program 6 N/A 3.03 |47 Reserved
08 Execute Motion Program 7 N/A 3.03 |48 Abort All Moves Servo3 |3.05
09 Execute Motion Program 8 N/A 3.03 |49 Feed Hold (Pause Program) Servo3 |3.06
10 Execute Motion Program 9 N/A 3.03 |50 Enable Drive | MCON Servo3 |3.07
11 Execute Motion Program 10 N/A 3.03 |51 Find Home Servo3 |3.08
12 Configurable CTL bit source N/A 3.04 |52 Jog Plus Servo3 |3.09
13 Configurable CTL bit source N/A 3.04 |53 Jog Minus Servo3 |3.10
14 Configurable CTL bit source N/A 3.04 |54 Reset Strobe 1 Servo3 |3.11
15 Configurable CTL bit source N/A 3.04 |55 Reset Strobe 2 Servo3 |3.11
16 Abort All Moves Servol [3.05 |56 OUT1_C/ Config. CTLbitsrc. |Servo3 |[3.12
17 Feed Hold (Pause Prgm) Servol |3.06 |57 OUT3_C/ Config. CTLbitsrc. |Servo3 |[3.13
18 Enable Drive | MCON Servo1l |3.07 |58 Reserved
19 Find Home Servol |3.08 |59 Reserved
20 Jog Plus Servo1 [3.09 |60 Enable Follower Servo3 |3.14
21 Jog Minus Servol [3.10 |61 Select Follower Master Source |Servo3 |3.15
22 Reset Strobe 1 Servol [3.11 |62 Reserved
23 Reset Strobe 2 Servol [3.11 |63 Reserved
24 OUT1_A/ Config. CTLbitsrc. |Servo1 [3.12 |64 Abort All Moves Servo4 |3.05
25 OUT3_A/ Config. CTLbitsrc. |Servo1 [3.13 |65 Feed Hold (Pause Program) Servo4 |3.06
26 Reserved 66 Enable Drive | MCON Servo4 |3.07
27 Reserved 67 Find Home Servo4 |3.08
28 Enable Follower Servol [3.14 |68 Jog Plus Servo4 |3.09
29 Select Follower Master Source | Servo1 [3.15 |69 Jog Minus Servo4 |3.10
30 Reserved 70 Reset Strobe 1 Servo4 |3.11
31 Reserved 71 Reset Strobe 2 Servo4 |3.11
32 Abort All Moves Servo2 |3.05 |72 OUT1_B/ Config. CTLbitsrc. |Servo4 |[3.12
33 Feed Hold (Pause Program) Servo2 |3.06 |73 OUT3_B/ Config. CTLbitsrc. |Servo4 |[3.13
34 Enable Drive | MCON Servo2 |3.07 |74 Reserved Servo 4
DSM314 to Host Controller Interface 140

User Manual
GFK-1742F

Chapter 5
Jan 2020

35

Find Home

Servo2 |3.08 |75 Reserved Servo 4

36

Jog Plus

Servo2 |3.09 |76 Enable Follower Servo4 |3.14

37

Jog Minus

Servo2 |3.10 |77 Select Follower Master Source |Servo4 |[3.15

38

Reset Strobe 1

Servo2 |3.11 78 Reserved Servo 4

39

Reset Strobe 2

Servo2 |3.11 79 Reserved Servo 4

3.01

3.02

3.03

3.04

3.05

Clear Error. When an error condition is reported, this command is used to clear the
Module Error Present %l status bit as well as the associated Module Status Code and
Axis 1-Axis 4 Error Code %Al status words. Error conditions that are still present (such
as an End of Travel limit switch error) will not be cleared and must be cleared by some
other corrective action. If the Clear Error bit is maintained ON, a Jog command can
be used to move away from an open hardware overtravel limit switch.

Enable Local Logic. This command enables the current Local Logic program within
the DSM to execute. Refer to Chapter 4 for information on configuring the Local
Logic program name.

Execute Motion Program 1 - 10. These commands are used to select stored motion
programs for immediate execution. Each command uses a one-shot action; thus a
command bit must transition from OFF to ON each time a program is to be
executed. Programs may be temporarily paused by a Feed Hold command.

When a program begins execution, Rate Override is always set to 100%. A Rate
Override %AQ command can be sent on the same sweep as the Execute Motion
Program n %Q bit and will be effective as the program starts.

Only one Motion Program can be executed at a time per axis. The Program Active %I
status bit must be OFF, or Motion Program execution will not be allowed to start. A
multi-axis Motion Program uses both axis 1 and axis 2, so both Program Active bits
must be OFF to start a multi-axis Motion Program.

Configurable CTL Bit Sources. %Q bit offsets 12-15 are configurable as sources for
CTL bits CTLO1-CTL24. Refer to Chapter 4 for additional information. The default
configuration is:

%Q bit offset 12: CTLO9
%Q bit offset 13: CTL10
%Q bit offset 14: CTL11
%Q bit offset 15: CTL12

Abort All Moves. This command causes any motion in progress to halt at the
current Jog Acceleration rate and configured Jog Acceleration Mode. Therefore it is
important to use a Jog Acceleration that will provide deceleration in a satisfactory
distance. Any pending programmed or immediate command is canceled and
therefore not allowed to become effective. The abort condition is in effect as long
as this command is on. If motion was in progress when the command was received,
the Moving status bit will remain set until the commanded velocity reaches zero.

DSM314 to Host Controller Interface

141

User Manual
GFK-1742F

3.06

3.07

3.08

3.09

Chapter 5
Jan 2020

Feed Hold (On Transition). This command causes any motion programs in progress
to stop at the active program acceleration rate. The Feed Hold command does not
stop motion commanded by a master source in Follower Enabled Mode. Once the
motion is stopped, the Moving status bit is cleared, and the In-Zone status bit is set
when the In Zone condition is attained. Jog commands are allowed when in the Feed
hold condition. After an ON transition, program motion will stop, even if the
command bit transitions back OFF before motion stops.

Feed Hold (Off Transition). This command causes any motion programs interrupted
by Feed Hold to resume at the programmed acceleration and velocity rate.
Additional program moves will then be processed, and normal program execution
will continue. Feed Hold OFF behaves in a similar fashion to an Execute Program
command except the path generation software uses only the remaining distance in
the program.

If jogging occurred while Feed Hold was ON, the interrupted Move command will
resume from where the axis was left after the Jog. The Move finishes at the correct
programmed velocity and continues to the original programmed position as if no
jog displacement occurred.

Enable Drive | MCON. If the Module Error Present and Drive Enabled %I status bits
are cleared, this command will cause the Drive Enable relay contact to close and the
Drive Enabled %I bit to be set. When the Drive Enabled %I bit is set, the path
generation and position control functions are enabled, and servo motion can be
commanded. A signal will be sent (MCON) to the digital servo enabling the drive.
Enable Drive must be maintained ON to allow normal servo motion (except when
using Jog commands). If using the Force Analog Output immediate command (see
Section 4.06, “Force Analog Output”), the applicable Enable Drive signal must be on
to produce an analog output with this command.

Find Home. This command causes the DSM314 to establish the Home Position. A
Home Limit Switch Input from the 1/O connector roughly indicates the reference
position for Home, and the next encoder marker encountered indicates the exact
home position. When the Home Mode axis configuration is set to MOVE+ or MOVE-
, the Home Limit Switch input will be ignored. For a Servo Axis, the configured Home
Offset defines the location of Home Position as the offset distance from the Home
Marker. The Position Valid %I bit indication is set at the conclusion of the Home
Cycle. See Chapter 6 for additional Home Cycle information. See Appendix C for
absolute encoder information.

Jog Plus. When this command bit is ON, the axis moves in the positive direction at
the configured Jog Acceleration and Jog Velocity rates. Turning Jog Plus OFF causes
the axis to decelerate and stop. If Jog Plus is momentarily turned off, even for one
host controller sweep, the axis will decelerate to a stop then accelerate and continue
jogging. The axis will move as long as the Jog Plus command is maintained and the
configured Positive End Of Travel software limit or Positive Overtravel switch is not
encountered. The Overtravel switch inputs can be disabled using the OT Limit
configuration parameter. Jog Plus may be used to jog off of the Negative Overtravel

DSM314 to Host Controller Interface

142

User Manual Chapter 5
GFK-1742F Jan 2020

switch if the Clear Error %Q bit is also maintained on. See Chapter 6, Non-
Programmed Motion, for more information on Jogging with the DSM314.

3.10 Jog Minus. When this command bit is ON, the axis moves in the negative direction
at the configured Jog Acceleration and Jog Velocity rates. Turning Jog Minus OFF
causes the axis to decelerate and stop. If Jog Minus is momentarily turned off, even
for one host controller sweep, the axis will decelerate to a stop then accelerate and
continue jogging. The axis will move as long as the Jog Minus command is
maintained and the configured Negative End Of Travel software limit or Negative
Overtravel switch is not encountered. The Overtravel switch inputs can be disabled
using the OT Limit configuration parameter. Jog Minus may be used to jog off of the
Positive Overtravel switch if the Clear Error %Q bit is also maintained on. See Chapter
6, “Non-Programmed Motion,” for more information on Jogging with the DSM314.

3.11 ResetStrobe 1, 2 Flag. The Strobe n Flag %I status bit flag informs the host controller
that a Strobe Input has captured an axis position that is now stored in the associated
Strobe n Position %Al status word. When the host controller acknowledges this data,
it may use the Reset Strobe n Flag %Q command bit to clear the Strobe n Flag %I
status bit flag. Once the Strobe n Flag %l bit is set, additional Strobe Inputs will not
cause new data to be captured. The flag must be cleared before another Strobe
Position will be captured. As long as the Reset Strobe n Flag %Q command bit is set,
the Strobe n Flag bit will be held in the cleared state. In this condition, the latest
Strobe Input position is reflected in the Strobe n Position status word, although the
flag cannot be used by the host controller to indicate when new data is present.

3.12 OUT1_A, B, C, D Output Control | Configurable CTL Bit Source. Each axis connector
has a 24-vdc solid state relay (SSR) output rated at 125 ma. The OUT1_A, OUT1_B,
OUT1_Cand OUT1_D Output Control %Q bits can control the state of the associated
output, but only if the associated Output Bits configuration is set for host controller
Control. Refer to Chapter 4 for configuration information.

For each axis, the following connector terminals are assigned:

Faceplate Auxiliary TB Servo TB IC693ACC335
Connector Pin 1C693ACC336 Terminal Terminal

OUTTSSR(+) 18 18 18

terminal

OUT1SSR(-) 36 36 16

terminal

These %Q bits are also available as sources for configurable CTL bits, independent
of the Output Bits configuration. Refer to Chapter 4 for information on configuring
the CTLO1-CTL24 bit sources.

DSM314 to Host Controller Interface 143

User Manual Chapter 5
GFK-1742F Jan 2020

Note: The OUT_1A, B, C, D bits will not control the faceplate outputs unless the associated
Output Bits configuration is set for host controller Control. Refer to Chapter 4 for
configuration information.

3.13 OUT3_A, B, C, D Output Control [Configurable CTL Bit Source. Each axis connector
has a differential 5-vdc output that is suitable for driving 5v TTL or CMOS loads. The
OUT3_A, OUT3_B, OUT3_C and OUT3_D Output Control %Q bits control the state
of the associated output, but only if the associated Output Bits configuration is set
for PLC Control. Refer to Chapter 4 for configuration information.

For each axis the following connector terminals are assigned:

Faceplate Auxiliary TB|Servo TB IC693ACC335
Connector Pin |IC693ACC336 Terminal | Terminal

oUT3 (+)|14 14 5

terminal

OoUT3 (-)|32 32 13

terminal

Note: The OUT_3A, B, C, D bits will not control the faceplate outputs unless the associated
Output Bits configuration is set for PLC Control. Refer to Chapter 4 for configuration
information.

These %Q bits are also available as sources for configurable CTL bits, independent of
the Output Bits configuration. Refer to Chapter 4 for information on configuring the
CTLO1-CTL24 bit sources.

3.14 Enable Follower. When this bit is set and the Follower Enabled %l status bit indicates
the Follower is enabled, motion commanded by the external or internal master will
act as an input to the follower loop. An optional Follower Trigger bit may be
configured to initiate follower motion. When a Follower Trigger is used, Enable
Follower must be ON for the trigger condition to be tested. Clearing Enable Follower
disconnects the follower loop from the master source. Jog, Move at Velocity, and
Execute Program n commands will be allowed regardless of the state of Enable
Follower. When the Follower is enabled, Jog, Move at Velocity, or Execute Program
n commands will be superimposed on the master velocity or position command.
Find Home is not allowed unless Enable Follower is cleared. Refer to Chapter 8 for
additional information. This bit is only used by follower mode.

3.15 Select Follower Master Source. This bit switches the follower master axis source
from Follower Master Source 1 (bit OFF) to Follower Master Source 2 (bit ON). The
Follower Master sources are configurable as Commanded Position or Actual Position
from any of the 4 axes.

DSM314 to Host Controller Interface 144

User Manual
GFK-1742F

5.4

Chapter 5
Jan 2020

Section 4: %AQ Immediate Commands

The following %¥AQ Immediate Command words are transferred each host controller sweep
from the CPU %AQ data to the DSM314. The number of AQ words configured (6, 9, or 12)
depends upon the number of controlled axes configured. The actual addresses of the
Immediate Command words depend on the starting address configured for the %AQ words.
See Table 40, “Settings Tab.” The word offset numbers listed in the following table are
offsets to this starting address. The words are assigned as follows:

Table 45: %AQ Word Assignments

Word Offset |Description Axis

00 Immediate Command Word Servo 1
01-02 Command Data Servo 1
03 Immediate Command Word Servo 2
04-05 Command Data Servo 2
06 Immediate Command Word Servo 3
07-08 Command Data Servo 3
09 Immediate Command Word Servo 4
10-11 Command Data Servo 4

Only one %AQ Immediate command may be sent to each axis of the DSM314 every host
controller sweep, the only exception being the Load Parameter Immediate command,
which is axis independent. The number of Load Parameter Immediate commands that can
be sent in one sweep depends upon the number of %AQ words configured (see Table 47 for
details).

Even though the commands are sent each sweep, the DSM314 will act on a command ONLY
if it changed since the last sweep. When any of the 3 words change, the DSM314 will accept
the data as a new command and respond accordingly.

The Axis OK %I bit must be ON for an axis to accept a new %AQ Immediate Command. Under
some conditions such as a disconnected digital encoder, un-powered servo amplifier, or un-
cleared error, Axis OK will be OFF and the %AQ command processing for that axis will be
disabled. If Digital Servo Axis 1 or 2 is not used for motor control, the configured Motor Type
must be set to 0 or an error will be reported, and Axis OK will stay OFF.

The 6-byte format for the Immediate Commands is defined in Table 46. The actual
addresses of the Immediate Command Words depend on the starting address configured
for the %AQ references. The word numbers listed in the following table are offsets to this
starting address.

DSM314 to Host Controller Interface 145

User Manual Chapter 5
GFK-1742F Jan 2020

The word offsets are shown in reverse order and in hexadecimal to simplify the data entry.
The following example sends the Set Position command to axis 1. The first word, word 0,
contains the actual command number. For the Set Position command, the command
number is 0023h. The second and third words contain the data for the Set Position
command that is a position. The second word, word 1, is the least significant word of the
position and the third word, word 2, is the most significant word.

Example:

To set a position of 3,400,250, first convert the value to hexadecimal. 3,400,250 decimal
equals 0033E23A hexadecimal. For this value, 0033 is the most significant word and E23A is
the least significant word. The data to be sent to the DSM314 would be:

Word2 Word1 Word0 Command
0033 E23A 0023 Set Position 3,400,250

Setting up word 0 as a hexadecimal word and words 1 and 2 as a double integer in a
Reference View Table display will simplify immediate command entry.

The data limit values MaxPosnUu, MaxVelUu and MaxAccUu are computed as shown

below:
Formulas for Computing Data Limit Variables

Position Limit MaxPosnUu | Velocity Limit MaxVelUu | Acceleration Limit MaxAccUu

If uu:cts >=1:1 MaxVelUu = 1,000,000* If uu:cts >=1:1
MaxPosnUu = 536,870,912 | uu/cts MaxAccUu =1,073,741,823

Else (uu:cts < 1:1) Else (uu:cts < 1:1)
MaxPosnUu = 536,870,912 * MaxAccUu = 1,073,741,823*
uu/cts uu/cts

In the following %$AQ command table, only the word offsets for Servo Axis 1 are listed.
Word offsets for the other axes are computed by adding 3 (Servo Axis 2), 6 (Servo Axis 3),
or 9 (Servo Axis 4) to the listed word offsets. The Ref column numbers refer to sections in
this chapter.

DSM314 to Host Controller Interface 146

User Manual Chapter 5
GFK-1742F Jan 2020
Table 46: %AQ Immediate Commands Using the 6-Byte Format
Word 2 Word 1 Word 0 Immediate Command Definition Ref
Byte 5| Byte 4 |Byte3 |Byte2 Byte 1 | Byte 0
XX XX XX XX 00 00h Null 4.01
XX XX XX RO% 00 20h Rate Override 4.02
RO%=0...120%
XX XX * Incr 00 21h Position Increment Without Position Update | 4.03
Incr. =-128 ... +127 User Units
Velocity 00 22h Move At Velocity 4.04
Vel. =-MaxVelUu ... +MaxVelUu
Position 00 23h Set Position 4.05
Pos. = -MaxPosnUu ... + MaxPosnUu-1
XX XX Analog Output 00 24h Force Analog Output 4.06
Analog Output =-32,000 ... + 32,000
XX XX * Incr. 00 25h Position Increment With Position Update 4.07
Incr. =-128 ... +127 User Units
XX XX XX In Posn Zone | 00 26h In Position Zone 4.08
Range=0...255
Position or Parameter # Move |27h Move Command 4.09
Type Pos. = -MaxPosnUu ... + MaxPosnUu-1
Par#=0...255
Velocity 00 28h Jog Velocity 4,10
Vel. = +1 ... +MaxVelUu
Acceleration 00 29h Jog Acceleration 4.11
Acc. = +1 ... + MaxAccUu
XX XX Time Constant 00 2Ah Position Loop Time Constant 4.12
(0.1 ms units) Time Constant=0-65535 (0.1 ms
units)
XX XX VFF (0.01% 00 2Bh Velocity Feedforward 4.13
units) VFF=0...12000 (0.01% units)
XX XX Integr. TC 00 2Ch Integrator Time Constant 4.14
Time Constant=0, 10... 10,000 ms
Ratio B Ratio A 00 2Dh Follower A/B Ratio 4.15
Ratio A=-32,768 ... +32,767
RatioB=+1...+32,767
XX XX XX VLGN 00 2Eh Velocity Loop Gain (Digital mode only) 4.16
VLGN =0... 255
XX XX Torque Limit 00 2Fh Torque Limit (Digital mode and Analog Torque | 4.17
(0.01% units) Mode only)
Range = 0-10000 (0.01% units)
Position 00 31h Set Aux Encoder Position 4.18
DSM314 to Host Controller Interface 147

User Manual Chapter 5
GFK-1742F Jan 2020
Word 2 Word 1 Word 0 Immediate Command Definition Ref
Byte5 [Byte 4 [Byte3 |Byte2 Byte 1 |Byte 0
Pos. =-MaxPosnUu ... + MaxPosnUu-1
XX XX Servo Velocity Cmd 00 34h Force Servo Velocity 4.19
S Velocity Cmd = -4,095 ...
Note: Notusedin ervo velocty =m
Analog Velocity +4,095 RPM
Mode - See
Force D/A
Output
command
XX XX Offset Mode [40h Select Return Data 1 4.20
XX XX Offset Mode |41h Select Return Data 2 4.21
XX XX Make-Up Time 00 42h Follower Ramp Distance Make-Up Time 4.22
Active Range =0, 10 ... 32000 ms
XX XX KpVel 07 46h Velocity Regulator Proportional Gain (Analog | 4.23
Torque Mode Only)
KpVel = 0-32767
XX XX KiVel 08 46h Velocity Regulator Integral Gain (Analog 4.24
Torque Mode Only)
KiVel = 0-32767
XX XX TqFilt mode 0A 46h Torque Command Filter (Analog Torque Mode | 4.25
Only)
TqFilt = 0-3
XX XX Mode Axis 47h Select Analog Output Mode (Digital mode 4.26
only)
XX XX XX XX 00 49h Clear New Configuration Received 4.27
Parameter Data Par#h [50h Load Parameter Immediate 4.28
Par#=0...255
Parameter Data = Range depends on
parameter usage.

*=0nly 00 or FFh are acceptable.

xx = don’t care

4.01

Null. This is the default AQ Immediate command. Since the %AQ words are

automatically transferred each CPU sweep, the Null command should always be
used to avoid inadvertent execution of another AQ Immediate command.

4.02

Rate Override. This command immediately changes the % feedrate override value,

which will modify the commanded velocity for all subsequent programmed moves.
This new value will become effective immediately when received by the DSM314. It
is stored and will remain effective until overwritten by a different value. A rate
override has no effect on non- programmed motion or acceleration. Rate Override

is set to 100% whenever a program is initiated. The Rate Override command can be
sent on the same CPU sweep as an Execute Program %Q bit and the Override value

DSM314 to Host Controller Interface

148

User Manual Chapter 5
GFK-1742F Jan 2020

will immediately take effect. Rate Override can be used to adjust the programmed
velocity (not acceleration) of a particular move or a set of moves on any given axis.

4.03 Position Increment Without Position Update. (User units) This command offsets the
axis position from -128 to +127 user units without updating the Actual Position,
Unadjusted Actual Position (UAP), or Commanded Position. The DSM314 will
immediately move the axis by the increment commanded if the servo is enabled.
Position Increments can be used to make minor machine position corrections to
compensate for changing actual conditions. See Chapter 6, “Non-Programmed
Motion,” for more information on using Position Increment Commands with the
DSM314.

Note: The %AQ Position Increment without Position Update command (21h) does not change
the UAP. If an application uses this command, the UAP will no longer match Actual
Position. For details on the operation of UAP, see page 156.

4.04 Move At Velocity. (User units/sec) This command is executed from the CPU to move
the axis at a constant velocity. The active Jog Acceleration rate and configured Jog
Acceleration Mode are used for Move at Velocity commands. Axis actual position
data will roll over at the configured Hi or Lo Limit when reached during these moves.
See Chapter 6, “Non-Programmed Motion, for more information on the Move at
Velocity Command.”

4,05 Set Position. (User units) This command changes the axis position register values
without moving the axis. Operation of the command depends on the axis
configuration:

Servo Axis - The Commanded Position and Actual Position values will both be
changed so that no motion command will be generated. The Actual Position will be
set to the value designated and the Commanded Position will be set to the value +
Position Error. Set Position cannot be performed when the Moving %I bit or the
Program Active %l bit is ON. Set Position is allowed if the In Zone %I bit is OFF as long
as Actual Velocity is < 100 cts/sec. The position value must be within the End of
Travel Limits and Count Limits or a status error will be reported. The Position Valid
%l bit is set after a successful Set Position command. See Appendix C for
considerations when using absolute mode encoders. The Set Position command is
commonly used to set the starting position reference point to zero (or another
value) without homing the axis.

Aux Axis - Commanded Position is set to the command data. For an Aux Axis, Actual
Position is independent of Commanded Position and is not affected by Set Position.
Refer to paragraph 4.18 Set Aux Encoder Position to set Actual Position for an Aux
axis encoder. Set Position cannot be performed when the Moving %I bit or the
Program Active %l bit is ON. The position value must be within the End of Travel
Limits or a status error will be reported.

Note: ~ When a digital servo system with absolute encoder (Feedback Mode = Absolute) is first
powered up dfter removal or replacement of the encoder battery, the encoder must be
rotated past its internal reference point. If this is not done the Set Position command will
be ignored and Error Code 53h (Set Position before encoder passes reference point) will
be reported.

DSM314 to Host Controller Interface 149

User Manual
GFK-1742F

4.06

Chapter 5
Jan 2020

Force Analog Output. Each axis connector supports one analog output signal. The
Force Analog Output immediate command may be used in the CPU application
program to set the value of this DC voltage output. The Force Analog Output
command operates one of the analog outputs on DSM faceplate connector CorDin
Digital mode, orin Analog Velocity mode, on connector A, B, C, or D. Multiple Force
Analog Output commands can be used to operate outputs on different connectors
by using the appropriate ¥AQ word offsets (see the paragraph before Table 46). A
Force Analog Output command has a range of +32000 (+10.00 Vdc) to -32000 (-
10.00 Vdc). When the axis is configured for Analog Torque mode the Force Analog
output command is NOT available.

Note: It is necessary to enable the applicable %Q “Enable Drive” bit (there is one for each axis)
to activate the analog output value set by this command. This differs from IC693DSM302
functionality.

There are two requirements to sustain the forced analog output voltage: (1) the
Force Analog Output command and value must remain continuously in the ¥AQ
data, and (2) the associated %Q “Enable Drive” bit must be on. The %Q “Enable
Drive” bit can be used to switch the analog output voltage on and off.

When a Force Analog Output command is active for a given axis, any other 2AQ
immediate command for that axis will remove the Force Analog Output command
and turn off the associated analog output.

There are some differences between the Digital and Analog Axis Modes when using
this command, which are detailed below:

Digital Mode

e The Force Analog Output command can only be used on connectors C and D
in Digital mode (in Digital mode, both Axis 1 and Axis 2, on connectors A and
B respectively, must be digital). In fact, Force Analog Output is the default
signal on connectors C and D in Digital mode.

o If Axes 1 and 2 (connectors A and B) are configured for digital servo, their
analog outputs are used only for servo tuning, and this function cannot be
overridden by the Force Analog Output command. Issuing a Force Analog
Output command to a digital axis (connector A or B) will have no effect, and
no error will be reported.

¢ In Digital mode, a Force Analog Output signal can be overridden if another
signal is routed to connector C or D by the Select Analog Output Mode
command. If the default Force Analog Output command has been overridden
on connectors C or D, it can be reinstated by either (1) issuing the immediate
command Select Analog Output (Signal Code 00) to each affected axis or (2)
power cycling the DSM314. See Section 4.25, “Select Analog Output Mode.”

DSM314 to Host Controller Interface

150

User Manual
GFK-1742F

Chapter 5
Jan 2020

Force Analog Output (Digital Mode) Example

In this example, Axes 1 and 2 are configured as Digital, the beginning DSM314 %Q
address is configured as %Q1, and the beginning %¥AQ address is configured as
%AQ1. Connectors C and D are set at their default analog output condition (Force
Analog Output).

To force an analog output of +5VDC on connector D, the Force Analog Output
immediate command will be issued in the ladder logic program. Since the first %AQ
word was configured as %AQT1, the three words that apply to Connector D (“Axis 4”),
are %AQ10, %AQ11, and %AQ12 (see the paragraph above Table 46 for details).
Since %Q1 was configured as the first %Q bit, the Enable Drive (Servo 4) bit for Axis 4
is %Q67 (see Table 44, “%Q Discrete Commands”).

So the following values must be moved into the applicable words, using Move
instructions in ladder logic (using a WORD type Move instruction makes it easier to
move a hex number):

%AQ10 Set to 24h (which specifies the Force Analog Output command)

%AQ11 Set to +16000 (which equals +5VDC)

%AQ12 Set to 0 (this word is not used to convey significant data)
Additionally, the %Q67 bit (Enable Drive) must be set to logic 1.

Figure 62
4| lﬁ MOVE MOVE MOVE
WORD INT INT
0024__| | %AQ10 +16000 | | %AQ11 +00000 | | %AQ12
IN OUT IN OUT N OouT
LEN LEN LEN
00001 00001 00001
Analog Velocity Mode

¢ InAnalog Velocity mode, the Force Analog Output command can be used on
all four connectors to force a voltage output.

e The Select Analog Output command, discussed in the “Digital Mode” section
above, does not work in Analog mode.

Analog Torque Mode

e InAnalog Torque mode, the Force Analog Output command is NOT available.

DSM314 to Host Controller Interface

151

User Manual
GFK-1742F

4.07

4.08

4.09

Chapter 5
Jan 2020

Position Increment with Position Update. (User units) This command is similar to the
Position Increment Without Position Update command (#21h) except that Actual
Position and Commanded Position (returned in %Al data) are both updated by the
increment value. If the servo is enabled, the DSM314 will immediately move the axis
by the increment value. Position Increments can be used to make minor machine
position corrections to compensate for changing actual conditions. See Chapter 6,
“Non-Programmed Motion, for more information on Position Increment
Commands with the DSM314.”

In Position Zone. (User Units) This command can be used to set the active In Position
Zone to a value different than the configured value.

The DSM314 compares In Position Zone to the Position Error in order to control the
In Zone %I bit. When the Position Error is < In Position Zone, the In Zone %I bit is ON.

If the DSM314 is power cycled or the host controller CPU is reset for any reason, the
value set by this command will be lost and the In-Position zone value set by
configuration software will be reinstated.

Move Command. This command will produce a single move profile that will move
the axis to the position commanded each time it is sent. The current Jog
Acceleration and Jog Velocity (which can also be changed by %AQ commands) will
be used for the move. A PMOVE command does not complete (Program Active %I
bit turns OFF) until Commanded Position has reached the destination and the In
Zone %l bit is on. A CMOVE command completes (Program Active %l bit turns off)
whenever Commanded Position reaches the destination even if In Zone is OFF.
Therefore, a CMOVE will complete even if Actual Position has not yet reached the
CMOVE destination. The Program Active %I bit can be monitored to determine when
an AQ Move command is active.

The data field for this command may contain the move position or distance in bytes
2-5 with the command type (in hexadecimal format) as defined below:

Move Type (byte 1):
00h = Abs, Pmove, Linear
01h = Abs, Cmove, Linear
10h = Abs, Pmove, Scurve
11h = Abs, Cmove, Scurve
40h = Inc, Pmove, Linear
41h =Inc, Cmove, Linear
50h =Inc, Pmove, Scurve

51h =Inc, Cmove, Scurve

DSM314 to Host Controller Interface

152

User Manual Chapter 5
GFK-1742F Jan 2020

The data field for this command may contain a parameter number in byte 2 (bytes
3-5 unused) with the command type as defined below:

Move Type (byte 1):
80h = Abs, Pmove, Linear
81h = Abs, Cmove, Linear
90h = Abs, Pmove, Scurve
91h = Abs, Cmove, Scurve
COh =Inc, Pmove, Linear
Clh=Inc, Cmove, Linear
DOh =Inc, Pmove, Scurve
D1h=Inc, Cmove, Scurve

The Move Command is executed as a single move motion program. Therefore, all
the restrictions that apply to motion program execution also apply to the Move
Command. For example, if a program is already active for axis 1, then an attempt to
send this command for axis 1 will result in an error condition being reported.

4.10 Jog Velocity. (User units/sec) This command sets the velocity used when a Jog %Q
bit is used to jog in the positive or negative direction. Jog Velocity is used by motion
programs when no Velocity command is included in the program. Jog Velocity is
always used by the ¥AQ Move Command (27h). A host controller reset, or power
cycle returns this value to the configured data.

4.11 Jog Acceleration. (User units/sec/sec) This command sets the acceleration value
used by Jog, Find Home, Move at Velocity, Abort All Moves and Normal Stop
operations. A Normal Stop occurs when the host controller switches from Run to
Stop or after certain programming errors (refer to Appendix A). Jog Acceleration is
used by motion programs when no Acceleration command is included in the
program. Jog Acceleration is always used by the %AQ Move Command (27h). A host
controller reset, or power cycle returns this value to the configured data.

Note: A minimum value dfter scaling is used in the DSM314. This value is determined by the
rule:

Jog Acc * (user units/counts) >= 32 counts/sec/sec.

4.12 Position Loop Time Constant. (0.1 Milliseconds) This command allows the servo
position loop time constant to be changed from the configured value. The lower the
Position Loop Time Constant value, the faster the system response. Values that are
too low will cause system instability and oscillation. For accurate tracking of the
commanded velocity profile, the Position Loop Time Constant should be 1/4 to 1/2
of the MINIMUM system acceleration or deceleration time. For Analog mode, the
“Vel at Max Cmd” configuration value must be set correctly for proper operation of
the Position Loop Time Constant. A host controller reset, or power cycle returns this
value to the configured data.

DSM314 to Host Controller Interface 153

User Manual Chapter 5
GFK-1742F Jan 2020

4.13 Velocity Feedforward. This command sets the Velocity Feedforward gain (0.01
percent). Itis the percentage of Commanded Velocity that is added to the DSM314
velocity command output. Increasing Velocity Feedforward causes the servo to
operate with faster response and reduced position error. Optimum Velocity
Feedforward values are 90-100 %. For analog servos, the “Vel at Max Cmd”
configuration value must be set correctly for proper operation of the Velocity
Feedforward gain factor. A host controller reset or power cycle returns this value to
the configured data.

4.14 Integrator Time Constant. (Milliseconds) This command sets the Integrator Time
Constant for the position error integrator. The value specifies the amount of time in
which 63% of the Position Error will be removed. The Integrator Time Constant
should be 5 to 10 times greater than the Position Loop Time Constant to prevent
instability and oscillation. It is recommended that the position error integrator only
be used in continuous follower applications. Use of the integrator in point to point
positioning applications may result in position overshoot when stopping.

4.15 Follower A/B Ratio. This command allows the host controller to update the slave:
master A/B ratio used in each follower loop. “A” is a 16-bit signed integer with a
minimum value of - 32,768 and a maximum value of +32,767. “B” is a 16-bit integer
with a minimum value of 1 and a maximum value of 32,767. The magnitude of the
A/B ratio must be in the range 32:1 to 1:10,000 or a status error will be generated.
Refer to Chapter 8 for additional information about the A/B ratio.

4,16 Velocity Loop Gain. (VLGN) Digital Mode and Analog Torque Mode only. The velocity
control loop gain for a digital servo axis and Analog Torque mode servo may be set
with the Velocity Loop Gain command. The VLGN value is used to match the load
inertia (J.) to the motor inertia (Ju). VLGN is defined with a default value of 16
representing an inertia ratio of 1 to 1. The VLGN value is calculated assuming that
the load is rigidly applied to the motor. Therefore, in actual machine adjustment the
required value may significantly differ from the calculated value due to rigidity,
friction, backlash, and other factors. A host controller reset or power cycle returns
VLGN to the value set in the configuration software. A suggested starting point for
Velocity Loop Gainis:

Velocity Loop Gain = Load Inertia (J,)
Motor Inertia (Jy)

x 16

The allowed range of Velocity Loop Gain is 0 to 255.

For example: The motor inertia (Ju) of a particular servo is 0.10 |b-in-s%. The load
inertia (J.) in this application is 0.05 Ib-in-s%. VLGN = (0.05 / 0.10) * 16 =8

The default Velocity Loop Gain is set using the Velocity Loop Gain setting in the
configuration software.

DSM314 to Host Controller Interface 154

User Manual Chapter 5
GFK-1742F Jan 2020

ACAUTION

Anincorrect VLGN value may cause an axis to be unstable. Care should be used when
making any change to the VLGN value.

4,17 Torque Limit. (0.01 percent) Digital Mode and Analog Torque Mode only. The
Torque Limit Command provides a method of limiting the torque produced by the
servomotor. In Analog Torque Mode, the Torque limit value limits the torque
command to a percentage of the full-scale torque command value. Specifically, it
limits the full scale of the analog output where full scale equals 10 volts. The DSM314
will set the Torque Limit at the default 10000 (100 %) whenever a power cycle or
reset occurs. The host controller application logic must set any other value for
desired Torque Limit. The valid range for Torque Limitis 0 to 10000 in units of 0.01%.
This represents 0 - 100 % of peak torque at commanded velocity. If an over- range
value of 10001 - 65535 is sent, the torque limit will be set to 10000. Torque Limit
can be changed during axis motion and takes effect immediately. Refer to the
appropriate servo motor manual for the motor torque curve to determine the actual
value of torque output available at a given velocity. A simple example would be the
use of Torque Limit to prevent over-tightening on a machine.

4.18 Set Aux Encoder Position. (User Units) This command sets the Actual Position value
for an Aux Axis Encoder without using a Find Home operation. The Position Valid %I
bit for the Aux Axis will be set when the command is received.

4.19 Force Servo Velocity. (RPM) Digital Mode and Analog Torque Mode only. This
command bypasses the position loop and forces a velocity command to the digital
servo for tuning purposes. In Analog Torque Mode it bypasses the position loop and
forces a velocity command to the velocity requlator. Acceleration control is not used
and changes in velocity take effect immediately. A Force Servo Velocity command
value of +4095 will produce a motor velocity of + 4,095 RPM and -4095 will produce
a motor velocity of -4,095 RPM (depending on individual motor maximum
velocities). The digital servo control loops may limit actual motor speed to a lower
value. Care should be taken not to operate a servomotor past the rated duty cycle.

The Enable Drive %Q bit must be active with no other motion commanded for the
Force Servo Velocity command to operate. The command must remain
continuously in the %AQ data for proper operation. When a Force Servo Velocity
command is active for a given axis, any other %AQ immediate command for that axis
will remove the Force Servo Velocity data and halt the servo. Chapter 6, Non-
Programmed Motion, also contains information on Force Servo Velocity.

4,20 Select Return Data 1. This command allows alternate data to be reported in the User
Selected Data 1 %Al location for each axis. The alternate data includes information
such as Parameter memory contents and the DSM314 Firmware Revision.

The Select Return Data 1 command uses a mode selection and an offset selection.
The mode selection (byte offset +1 of the six-byte command) determines the Return
Data type. The offset selection (byte offsets +2, +3 of six-byte command) selects an
individual data item for some modes. Setting the mode to 00h causes the default

DSM314 to Host Controller Interface 155

User Manual
GFK-1742F

Torque Command to be reported. The default mode and offset for User Selected

Data 1 can be set in the module configuration software.

4.21 Select Return Data 2. This command allows alternate data to be reported in the User
Selected Data 2 %Al location for each axis. The alternate data includes information

Chapter 5
Jan 2020

such as Parameter memory contents and the DSM314 Firmware Revision.

The Select Return Data 2 command uses a mode selection and an offset selection.
The mode selection (byte offset +1 of the six-byte command) determines the Return
Data type. The offset selection (byte offsets +2, +3 of six-byte command) selects an
individual data item for some modes. Setting the mode to 00h causes the default
Torque Command to be reported. The default mode and offset for User Selected

Data 2 can be set in the module configuration software.

The following selections are allowed for Select Return Data 1 and Select Return

Data 2.

Return Data

Digital | Analog | Analog | Selected Return Data Data Data Offset
Torque | Velocity Mode
Y N Torque Command 00h not used
Y Y DSM Firmware Revision 10h not used
Y Y DSM Firmware Build IDNo. [11h not used
(hex)
Y N N Absolute Feedback Offset 17h not used
(cts)
Y Y Y Parameter Data 18h Parameter
Number (0-255)
Y Y Y CTL bits 1-32 19h not used
Y Y Y Analog Inputs - Axis 1 1Ch not used
Y Y Y Analog Inputs - Axis 2 1Dh not used
Y Y Y Analog Inputs - Aux 3 1Eh not used
Y Y Y Analog Inputs - Aux 4 1Fh not used
Y Y Y Commanded Position (user | 20h not used
units)
Y Y Y Follower Program Command | 21h not used
Position (cts)
Y Y Y Unadjusted Actual Position | 28h not used
(cts)
Y Y Y Unadjusted Strobe 1 29h not used
Position (cts)
Y Y Y Unadjusted Strobe 2 2Ah not used
Position (cts)

Torque Command is scaled so that +/- 10000 = +/- 100% torque.

DSM314 to Host Controller Interface

156

User Manual
GFK-1742F

Chapter 5
Jan 2020

DSM Firmware Revision is interpreted as two separate words for major-minor
revision codes.

DSM Firmware Build ID is interpreted as a single hex word.

Absolute Feedback Offset is the position offset (in counts) that is used to initialize
Actual Position when a digital Absolute Encoder is used. Actual Position = Absolute
Encoder Data + Absolute Feedback Offset.

Analog Inputs provides two words of data for each axis: low word = AINT and high
word = AIN2. The data is scaled so that +/- 32000 = +/- 10.0v.

Commanded Position (user units) is a copy of the Commanded Position %Al data
reported for each axis. Refer to paragraph 2.04 in Chapter 5.

Follower Program Command Position (cts) is the active commanded position (in
feedback counts) updated and used by the internal motion command generator.
Refer to Chapter 9 - Combined Follower and Commanded Motion.

Unadjusted Actual Position (UAP) is the accumulated actual position (in counts, not
user units) with a 32 bit binary rollover value of -2,147,483,648 ... +2,147,483,647.
A Find Home or Set Position command sets the UAP to a value equal to the Actual
Position data scaled to counts.

UAP is initialized or reset when a Set Position or Home operation is completed. It
tracks actual motor rotation after these operations within the 32 bit raw encoder
count range with rollover, regardless of how the rotation is commanded (except for
the Position Increment without Position Update command).

If a Set Position command is executed or a Find Home cycle is completed, the UAP is
set to the raw counts equivalent to the Set Position data or the configured Home
Position after scaling by the Counts to User Units ratio on the individual axis tab of
the DSM configuration. That is, the raw counts are calculated as:

UAP = (Set Position data or Home Position value) x (Counts) | (User Units),
rounded to the nearest integer value.

The Home Offset configuration parameter, which is provided to allow the actual
stopping position on a homing cycle to be offset from the encoder marker location,
does not affect the UAP, since this added move takes place before the home position
is set.

The UAP value is maintained through power cycles as long as the encoder backup
battery power is maintained, even if the axis is moved while power is off. (The DSM
reads the encoder absolute data as part of the power on sequence.) It is also
maintained during axis E- Stop and emergency stop fault conditions including out of
sync.

Note: The %AQ Position Increment without Position Update command (21h) does not change
the UAP. If an application uses this command, the UAP will no longer match Actual
Position.

Unadjusted Strobe 1 Position is the value of Unadjusted Actual Position captured
when a Strobe 1 input occurs.

DSM314 to Host Controller Interface

157

User Manual
GFK-1742F

4.22

Chapter 5
Jan 2020

Unadjusted Strobe 2 Position is the value of Unadjusted Actual Position captured
when a Strobe 2 input occurs.

Note: Atleast three host controller sweeps or 10 milliseconds (whichever represents more time)
must elapse before the new Selected Return Data is available in the host controller.

Follower Ramp Distance Make-Up Time. When the Follower Ramp feature has been
selected and the follower is enabled, the following axis is ramped up to the Master
velocity at the configured Follower Ramp Acceleration rate when the Master
Velocity is non-zero at the time the Follower is enabled. The master counts that
accumulate during acceleration of the follower axis are stored. In this mode, the
follower axis will accelerate to a velocity that exceeds the Master Velocity in order to
make up the position error that accumulated while the Follower axis was
accelerating to the Master Velocity. This make-up distance correction has a
trapezoidal velocity profile determined by the Follower Ramp Distance Make-Up
Time and Ramp Makeup Acceleration at the beginning of the correction. This mode
is used when the Follower axis must be position-and-velocity-synchronized to the
Master position at the instant the Follower mode was enabled.

If the Follower Ramp Distance Make-Up Time is too short, then the velocity profile is
a triangular profile. If during the distance correction, velocity exceeds 80% of the
velocity limit, then the automatically calculated velocity will be clamped at 80% of
the configured velocity limit. In both cases a warning message is reported, and the
real distance make-up time is longer than programmed, but the distance is still
corrected properly.

Setting a Follower Ramp Distance Make-Up Time of 0 allows the Ramp feature to
accelerate the axis without making up any of the accumulated counts. In this
instance, the Follower axis velocity will not exceed the master velocity. For
applications where the Follower axis only needs to be synchronized to the master
velocity and lost counts do not matter, set the distance make-up time = 0.

Typical velocity profile during the follower ramp cycle is shown below.

Figure 63

master velocity

|

1 |

| ' Follower
T | Make-up | Disabled

I distance ' g

] I

Velocity "_'_ Make-Up Time —+——»

Time

Velocity-time Profile
(Follower Enabled at t=0)

See Chapter 8, “Follower Motion, Follower Axis Acceleration Ramp Control”
section, for a much more detailed discussion of this feature.

DSM314 to Host Controller Interface

158

User Manual Chapter 5
GFK-1742F Jan 2020

4.23 Velocity Loop Proportional Gain. Analog Torque Mode only. The Velocity Loop
Proportional Gain AQ command allows the user to set the velocity regulator
proportional gain in Analog Torque mode. The proportional gain is multiplied by
velocity error (velocity command - velocity feedback) to generate the portion of the
torque command due to the proportional term. Correctly setting this value will
determine how well the velocity regulator performs in the control system. Appendix
D describes a method to correctly tune this parameter. The allowable range for the
velocity loop proportional gain term is 0-32767. The default value is 1500.

4.24 Velocity Loop Integral Gain. Analog Torque Mode only The velocity loop integral
gain AQ command allows the user to set the velocity requlator integral gain in
Analog Torque mode. The integral gain is the term multiplied by the area of the
velocity error (velocity command - velocity feedback) to generate the portion of the
torque command due to the integral term. Correctly setting this value will
determine how well the velocity regulator performs in the control system. Appendix
D describes a method to correctly tune this parameter. The allowable range for the
velocity loop proportional gain term is 0-32767. The default value is 0

4.25 Torque Command Filter. Analog Torque Mode only. The torque command filter AQ
command allows the user to activate a low pass filter for the velocity regulator
output (Torque Command). The filter is typically used to keep the controller from
exciting a machine resonance. The allowable setting for the Torque Command filter
are shown in Table 438.

Table 47: Torque Filter Commands

TqFilt Mode Torque Command Low Pass Filter Setting
0 OFF1

1 Low Bandwidth Filter (150 hz 3db point)

2 Medium Bandwidth Filter (250 hz 3db point)

3 High Bandwidth Filter (350 hz. 3db point)

1 Default setting

4.26 Select Analog Output Mode. Digital Mode only. For digital servos, this command lets
you choose what analog signals will be sent to the Analog Output pins (pins 6 and
24) on the four DSM faceplate connectors. The Select Analog Output Mode
command uses a Signal Code to specify the signal to be sent, and a Connector Code
to specify the DSM connector to receive the signal. This command is particularly
useful for servo tuning. This command can be sent from the Command registers for
any axis (1-4).

DSM314 to Host Controller Interface 159

User Manual
GFK-1742F

Chapter 5
Jan 2020

Use the following structure to set up the 6-byte %AQ Immediate Command
(described in Table 46):

Byte 0 contains the Select Analog Output Mode command code (47h).
Byte 1 contains the Connector Code, a hex number.
Bytes 2-3 contain the Signal Code, a decimal number.

Bytes 4-5 are not used and should contain 0.

Connector Codes
Connector Code | Connector Selected | Connector Pins
01h Connector A Pin 6 =0UT
02h Connector B Pin 24 = COM (Ref to OV)
03h Connector C Refer to the I/O Connection
04h Connector D Diagrams in Chapter 3 for
Terminal Board connections.
Signal Codes
Note in the following Signal Code table that only some of the signals have a default
output.
Signal Code Signal Description Default Output to:
00 decimal* %AQ Force Analog Output data* Connector CorD
10 decimal Servo Axis 1 Torque Command None
15 decimal Servo Axis 1 Actual Velocity Connector A
20 decimal Servo Axis 2 Torque Command None
25 decimal Servo Axis 2 Actual Velocity Connector B

*

Cannot be re-routed. This signal code can only be used to restore this signal
back to its default output.

Note:

The analog output is not available for user control on digitally controlled axes. Issuing
the Force Analog Output or the Select Analog Output commands for digital axes will have
no effect on these analog outputs.

The Select Analog Output Mode has three basic uses:

1.

DSM314 to Host Controller Interface

Re-route either Servo Axis 1 Actual Velocity or Servo Axis 2 Actual Velocity
from its default output to a different output. The %¥AQ Force Analog Output
data signal cannot be re-routed to a different connector; however, it can be
replaced on its default output connector (C or D) by another signal that is
routed there by the Select Analog Output Mode command.

Route one of the two signals lacking a default output, Servo Axis 1 Torque
Command and Servo Axis 2 Torque Command, to one of the outputs, thus
replacing the previous signal on that output. This is shown in Example 2,
below.

Restore signals with default outputs that were replaced by a re-routed signal.
In Example 2, the %AQ Force Analog Output signal, which is normally found

160

User Manual
GFK-1742F

Chapter 5
Jan 2020

on Connector D by default, is replaced by the Servo Axis 1 Torque Command
signal that was routed to connector D by the Select Analog Output Mode
command. In Example 3, the %AQ Force Analog Output signal is restored to
Connector D by using the Select Analog Output Mode command.

Example 1:

In this example, the Servo Axis 1 Actual Velocity signal (Signal Code=15) is re-routed
from its default output on Connector A to Connector B (Connector Code=02h),
replacing any previous signal on Connector B. This is accomplished by placing the
following data in the %AQ immediate command words:

Figure 64

Word 2 Word 1 Word 0

(Byte 5 and Byte 4) (Byte 3 and Byte 2) (Byte 1 and Byte 0)
+00000 +00015 0247h
e
Signal Code (19) Target Connector Select Analog Output Mode
Code (02h) Command Code (47h)

Example 2:

In this example, the Servo Axis 1 Torque Command signal (Signal Code=10) is
selected as the Analog Output on Connector D (Connector Code=04h), replacing
any previous signal on Connector D. To accomplish this, place the following data in
the %AQ immediate command words:

Figure 65
Word 2 Word 1 Word 0
(Byte 5 and Byte 4) (Byte 3 and Byte 2) (Byte 1 and Byte 0)
+00000 +00010 0447h
g
Signal Code (10) - Target Connector Select Analog Output Mode
Code (04h) Command Code (47h)

DSM314 to Host Controller Interface 161

User Manual
GFK-1742F

4.27

4.28

Chapter 5
Jan 2020

Example 3:

In Example 2, the %AQ Force Analog Output default signal was replaced as the
Analog Output on Connector D by the Servo Axis 1 Torque Command signal. To
restore the %AQ Force Analog Output signal (Signal Code=00) to Connector D
(Connector Code=04h), place the following data in the ¥AQ immediate command
words:

Figure 66
Word 2 Word 1 Word 0
(Byte 5 and Byte 4) (Byte 3 and Byte 2) (Byte 1 and Byte 0)
+00000 +00000 0447h

;AN
Signal Code (00) Target Connector Select Analog Output Mode
Code (04h) Command Code (47h)

Clear New Configuration Received. This command clears the New Configuration
Received %I bit. Once cleared, the Configuration Complete bit is only set when the
host controller resets or reconfigures the module. The host controller can monitor
the bit to determine if it must re-send other %AQ commands, such as In Position
Zone or Jog Acceleration. This would only be necessary if the %AQ commands were
used to override DSM314 configuration data programmed with the host controller
configuration software. This command can be sent from the Command registers for
any axis (1-4).

Load Parameter Imnmediate. This command is executed from the host controller to
immediately change a DSM314 data parameter value. It can be sent from the
Command registers for any axis (1-4). Data parameters are only used by motion
programs. Each parameter change requires a command. Byte 1 of Word 0 contains
the Parameter Number (in hexadecimal format) to be changed. The DSM314
contains 256 double word parameters, numbered 0-255 (decimal). For details, see
“Parameters (P0-P255) in the DSM314” in chapter 7.

Table 48: Number of Load Parameter Immediate Commands Permitted per

Sweep
Number of Axes | Number of %AQ | Number of Load Parameter Inmediate
Configured Words Commands Permitted per Sweep
2 6 2
3 9 3
4 12 4

DSM314 to Host Controller Interface

162

User Manual
GFK-1742F

Chapter 6: Non-Programmed Motion

Chapter 6
Jan 2020

The DSM314 can generate motion in an axis in one of several ways without using a motion

program.

e Find Home and Jog Plus/Minus use the %Q bits to command motion.

e Move at Velocity, Move, Force Servo Velocity, Force Analog Output, and Position

Increment use $AQ immediate commands.

During Jog, Find Home, Move at Velocity, Move and Force Servo Velocity, any other
commanded motion, programmed or non-programmed, will generate an error. The only
exception is the Position Increment %AQ command, which can be commanded any time.

See the description of Position Increment motion below for more details.

Non-programmed motions (Abort All Moves, Jog Plus/Minus, Move at Velocity, AQ Move
Cmd and Normal Stop) use the Jog Acceleration and Jog Acceleration Mode. The Feed Hold

%Q command uses the programmed acceleration and acceleration mode.

6.1 DSM314 Home Cycle

A home cycle can be used to establish a correct Actual Position relative to a machine
reference point. The configured Home Offset defines the location of Home Position as the

offset distance from the Home Marker.

The Enable Drive %Q bit must be ON during an entire home cycle. However, the Find Home
%Q bit does not need to be held ON during the cycle; it may be turned on momentarily with
aone-shot. Note that turning ON the Find Home %Q bit immediately turns OFF the Position
Valid %I bit until the end of the home cycle. The Abort All Moves %Q bit halts a home cycle,
but the Position Valid bit does not turn back ON. No motion programs can be executed

unless the Position Valid bit is ON.

6.1.1 Home Switch Mode

If the Find Home Mode is configured as HOMESW (HOME Switch), the Home Switch input
from the axis /O connector is used first to roughly indicate the reference position for home.
Then, the next encoder marker encountered when traveling in the negative direction

indicates the exact location. An open Home Switch input indicates the servo is on the
positive side of the home switch and a closed Home Switch input indicates the axis is on the
negative side of the home switch. An OFF to ON transition of the Find Home %Q command
yields the following home cycle. Unless otherwise specified, acceleration is at the current

Jog Acceleration and configured Jog Acceleration Mode.

Non-Programmed Motion

163

User Manual
GFK-1742F

Chapter 6
Jan 2020

Find Home Routine for Home Switch

If initiated from a position on the positive side of the home switch, in which case the home
switch must be OPEN (Logic 0), the Find Home routine starts with step 1 below. (All of the
first several steps of the following routine are necessary to allow for a variety of possible
home switch designs and starting positions.) If the Find Home routine is initiated from a
position on the negative side of the home switch, in which case the home switch must be
CLOSED (Logic 1), the routine starts with step 3 below.

1. The axis is moved in the negative direction at the configured Find Home Velocity
until the Home Switch input closes.

2. The axis decelerates and stops.

3. The axis is accelerated in the positive direction and moved at the configured Find
Home Velocity until the Home Switch input opens.

4. The axis decelerates and stops.

5. The axis is accelerated in the negative direction and moved at the configured Final
Home Velocity until the Home Switch input closes.

6. The axis continues negative motion at the configured Final Home Velocity until a
marker pulse is sensed. The marker establishes the home reference position.

7. The axis decelerates and stops (at a position past the marker pulse).

8. The axis is moved, at the current Jog Velocity, the number of user units specified by
the Home Offset value from the home reference position. If Home Offset = 0, the
axis moves back to the position of the marker pulse.

9. The axis decelerates and stops.

10. The DSM314 sets the Commanded Position and Actual Position %Al status words to
the configured Home Position value. Finally, the DSM314 sets the Position Valid %I
bit to indicate the home cycle is complete.

Home Switch Example

Many different home switch designs are possible. The switch may be normally open or
normally closed and may be mounted in one of several possible locations. The example
given in this section illustrates a fairly common arrangement used for linear axes. In the
following picture, the home switch is a normally open proximity switch, mounted near the
end of the machine slide’s travel range (in the negative direction). The imaginary line that
divides the home switch’s positive and negative sides is the home switch’s operating point,
located approximately on the switch’s centerline. If the machine slide travelsin the negative
direction far enough so that the right-hand edge of the home switch cam causes the home
switch to close, we consider the machine slide as having crossed over to the “negative side”
of the home switch. The home switch cam is long enough so that while the machine slide is
on the negative side of the home switch, it will keep the normally open home switch closed.

Non-Programmed Motion

164

User Manual
GFK-1742F

Chapter 6
Jan 2020

Note the relationships of the home position, the negative overtravel position, and the
positive stop position. A small amount of distance is provided in the negative direction
between the home position and the negative overtravel position. This is to allow some
“working room” for adjustment and setup of these positions and for the “find home”
routine, which requires that its final move be in the negative direction.

Distance is also provided between the overtravel limit position and the positive stop.
Enough distance should be allowed here to prevent the machine slide from hitting the
positive stop. The correct distance needs to be greater than the worst-case stopping
distance required by the machine slide after it reaches the overtravel limit position.

In this example, the machine slide’s working range is on the positive side of the home
switch. If the DSM’s Home Position parameter was set to 0, this would simplify
programming absolute positioning commands since only positive numbers would be used.

Often, the home position needs to be set to an exact distance from a reference point on the
machine. To facilitate this adjustment, the home switch cam could be made with slotted
mounting holes that would allow a coarse adjustment of the cam to bring the calibration to
within one turn of the encoder. Then, the small remaining distance would be accurately
measured, and the value obtained would be entered into the DSM’s Home Offset
parameter.

Figure 67: Home Switch Example

4—— <+ Direction = —m

|
||
|
|
[
| | Positive
| | Stop
[
<——» Machine Slide B
|
: 7 [
| | Machi
- | | lachine
,// [Frame
Home Switch Carmr™ I I
~ .
/// CJ i |
Home Switch | |
|
||
/"l |
T
Home Position
ot
=
|

MNegative Overtravel Position

Non-Programmed Motion

165

User Manual
GFK-1742F

6.1.2

Chapter 6
Jan 2020

Move+ and Move- Modes

If Find Home Mode is configured as MOVE+ or MOVE-, the first encoder marker pulse
encountered when moving in the appropriate direction (positive for MOVE+, negative for
MOVE-) after the find home command is given is used to establish the exact location. In this
mode, the operator usually jogs the axis to a position close (within one revolution of the
encoder) to the home position first, then initiates the find home command. To assist the
operator in jogging to the correct position, a set of alignment marks indicating a close
proximity to the home position is sometimes placed on the machine and machine axis.

Move - (Minus) Home Cycle Example

The next picture shows an example of the Home Position parameter set to Move - (minus).
In this example, the operator jogs the axis until the moveable mark on the machine slide
lines up with the stationary mark on the alignment plate mounted to the machine frame.
(Note that the marks align on the positive side of home position since the Home Position
parameteris set to Move -). Then the operatorinitiates the find home routine, which causes
the axis to move in the negative direction until the marker pulse occurs.

Figure 68: Move - (Minus) Home Position Example

--+— + Direction - —

Positive
Stop

-— Machine Slide

ad

Moveable Alignment Mark /

Stationary Alignment Mark

Home Paosition

Negative Overtravel Position |
45742 ovs

Non-Programmed Motion

166

User Manual
GFK-1742F

6.2

Chapter 6
Jan 2020

Find Home Routine for Move + or Move -

When the find home command (an OFF to ON transition of the Find Home %Q bit) is
initiated, the following sequence of events occurs:

1. Theaxisis accelerated at the Jog Acceleration rate and moved at the configured Final
Home Velocity (positive direction for MOVE+, negative direction for MOVE-) until a
marker pulse is sensed. This marker pulse establishes the home reference position.

2. The axis is stopped (at a position past the marker pulse) using the configured Jog
Acceleration rate and with the configured Jog Acceleration Mode.

3. The axis is moved, at the configured Jog Velocity and with the configured Jog
Acceleration rate and Jog Acceleration Mode, the number of user units specified by
the Home Offset value from the home reference position. If Home Offset = 0, the
axis moves back to the position of the marker pulse.

4. The axis is stopped at the configured Jog Acceleration rate and with the configured
Jog Acceleration Mode.

5. The DSM314 sets the Commanded Position and Actual Position %Al status words to
the configured Home Position value; the DSM314 sets the Position Valid %l bit to
indicate the home cycle is complete.

Jogging with the DSM314

The Jog Velocity, Jog Acceleration, and Jog Acceleration Mode are configuration parameters
in the DSM314. These values are used whenever a Jog Plus or Jog Minus %Q bit is turned ON.
Note that if both bits are ON simultaneously, no motion is generated. The Jog Acceleration
and Jog Acceleration Mode are also used during Find Home, Move at Velocity, Abort All
Moves and Normal Stop. Programmed motions use the Jog Velocity and Jog Acceleration as
defaults.

A Jog Plus/Minus %Q command can be performed when no other motion is commanded, or
while programmed motion is temporarily halted due to a Feed Hold %Q command. The
Enable Drive %Q bit does not need to be ON to jog, but it can be ON. Turning on a Jog
Plus/Minus %Q bit will automatically close the Enable Relay and turn on the Drive Enabled %I
bit. When an overtravel limit switch is OFF, Jog Plus/Minus and Clear Error %Q bits may be
turned on simultaneously to move away from the open limit switch. Thus, a Jog Plus %Q
command will not work while the positive end of travel switch is open and Jog Minus will not
work while the negative end of travel switch is open. Turning a Jog %Q bit OFF causes the
axis to decelerate and stop. If a Jog %Q bit is momentarily turned off, even for one CPU
sweep, the axis will decelerate to a stop then accelerate and continue jogging.

Non-Programmed Motion

167

User Manual
GFK-1742F

6.3

Chapter 6
Jan 2020

Move at Velocity Command

A Move at Velocity %AQ command is generated by placing the value 22h in the first word of
%AQ data assigned to an axis. The second and third words together represent a signed 32-
bit velocity. Note that the third word is the most significant word of the velocity. Once the
command is given, the %AQ data can be cleared by sending a NULL command or changed
as desired. Move at Velocity will not function unless the servo drive is enabled (Enable Drive
%Q command and Drive Enabled %l status bit are set).

The listing of %AQ immediate commands shows the words in reverse order to make
understanding easier. For example, to command a velocity of 512 user units per second in a
DSM314 configured with %¥AQ data starting at %AQ1, the following values should be used:
0022h (34 decimal) in ¥AQ1, 0200h (512 decimal) in %AQ2, and 0 in %AQ3. When the
DSM314 receives these values, if Drive Enabled %l is ON, Abort All Moves %Q is OFF, and no
other motion is commanded it will begin moving the axis at 512 user units per second in the
positive direction using the current Jog Acceleration and Acceleration Mode.

The Drive Enabled %l bit must be ON before the DSM314 receives the immediate command
or an error will occur. Also, if a Move at Velocity command is already in the %AQ data, the
velocity value must change while the Drive Enabled bit is ON for the DSM314 to accept it.
The DSM314 detects a Move at Velocity command when the %AQ values change.

When the DSM314 is performing a Move at Velocity command, it ignores the software end
of travel limits (Pos EOT and Neg EOT). Hardware overtravel limits must be ON if they are
enabled.

A Move at Velocity command can be stopped without causing an error in two ways: a Move
at Velocity command with a velocity of zero, or turning the Abort All Moves %Q bit ON for at
least one CPU sweep.

Non-Programmed Motion

168

User Manual
GFK-1742F

6.4

6.5

Chapter 6
Jan 2020

Force Servo Velocity Command (DIGITAL
Servos; Analog Torque Mode)

This command bypasses the position loop and forces a velocity RPM command to the digital
servo or Analog Torque Interface for tuning purposes. Acceleration control is not used and

changes in velocity take effect immediately. A Force Servo Velocity command value of
+4095 will produce a motor velocity of + 4,095 RPM and -4095 will produce a motor velocity
of -4,095 RPM (depending on individual motor maximum velocities). The digital servo
control loops may limit actual motor speed to a lower value.

ACAUTION

Care should be taken not to operate a servomotor beyond its rated duty cycle.

The Enable Drive %Q bit must be active with no other motion commanded for the Force
Servo Velocity command to operate. The command must remain continuously in the ¥AQ
data for proper operation. When a Force Servo Velocity command is active for a given axis,
any other %AQ immediate command for that axis will remove the Force Servo Velocity data
and halt the servo. A one-shot Force Servo Velocity command will therefore only operate
during the sweep in which it appears.

Refer to Chapter 5, Motion Mate DSM314 to Host Controller Interface, for more information
on this command.

Note: The Force Analog Output command, described below, is used for analog servos with a Velocity
command interface.

Force Analog Output Command (ANALOG
Velocity Interface Servos)

In Analog Velocity Interface mode, the Force Analog Output %AQ immediate command
operates the analog output on the DSM faceplate connectors A, B, C, or D. A Force Analog
Output value of +32000 will produce +10.00 Vdc and a Force Analog Output value of -32000
will produce -10.00 Vdc.

Force Analog Output operates only while the %AQ data is active. When a Force Analog
Output command is active for a given axis, any other %AQ immediate command for that axis
will remove the Force Analog Output command and turn off the associated analog output.

Refer to Chapter 5, “Motion Mate DSM314 to Host Controller Interface”, for more
information on this command.

Non-Programmed Motion

169

User Manual
GFK-1742F

6.6

6.7

Chapter 6
Jan 2020

Position Increment Commands

To generate small corrections between the axis position and the DSM314 tracking, the
Position Increment %AQ commands can be used to offset Actual Position by a specific
number of user units. If the Drive Enabled %l bit is ON, the axis will immediately move the
increment amount. If the position increment without position update is used (%AQ
command 21h), the Actual Position %Al status word reported by the DSM314 will remain
unchanged. If the Position Increment with Position Update is used (¥AQ command 25h),
the Actual Position and Commanded Position %Al status words reported by the DSM314 will
be changed by the increment value. Position Increment can be used at any time, though
simultaneous use with the Force Servo Velocity command is impossible because the Force
Servo Velocity command must remain in the %AQ command data area or the servo will be
stopped.

Other Considerations
Other considerations when using non-programmed motion are as follows:

e The Abort All Moves %Q bit, when ON, will prevent any non-programmed motion
from starting.

e Turning ON the Abort All Moves %Q bit will immediately stop any current non-
programmed motion at the current Jog Acceleration.

o A Set Position AQ command during non-programmed motion will cause a status
error.

e Turning OFF the Enable Drive %Q bit while performing a home cycle or executing a
Move at Velocity ¥AQ command will cause a stop error.

e The Feed Hold %Q bit has no effect on non-programmed motion.
e TheRate Override %AQ command has no effect on non-programmed motion.

e Changing the Jog Velocity or Jog Acceleration will not affect moves in progress.

Non-Programmed Motion

170

User Manual
GFK-1742F

Chapter 7
Jan 2020

Chapter 7: Programmed Motion

7.1

Programmed Motion

A motion program consists of a group of user-programmed motion command statements
that are stored to and executed in the DSM314. The DSM314 executes motion program
commands sequentially in a block-by-block fashion once a program is selected to run.

The motion program is executed autonomously from the host controller, although the host
controller starts the DSM314 motion program and can interface with it (with parameters
and certain commands) during execution. In addition, external inputs (CTL bits) connected
directly to the DSM314 faceplate or controlled by Local Logic can be used in motion
programs to delay or alter program execution flow. The host controller receives status
information (such as position, velocity, and Command Block Number) from the DSM314
during program execution. Motion programs 1—10 and subroutines 1—40 are created using
the host controller programming software and are stored along with the module’s
configuration settings to the DSM314 via the host controller backplane.

For further information, please refer to the online help for your software, or the software
user manual, PAC Machine Edition Logic Developer-PLC Getting Started, GFK-1918.

Single-Axis Motion Programs and Subroutines

A single-axis program contains program statements for one axis only. The programmed axis
is specified in the first line of the program, for example: PROGRAM 1 AXIS1. The DSM314
may operate up to four single-axis programs. These programs may run independently or
simultaneously. For example, motion Program 1 may be written for Axis 1 and motion
Program 2 written for Axis 2. Each axis may be home referenced and the motion program
for each axis may execute independently without regard to the state of the other axis.
Alternately, Program 1 and Program 2 may start simultaneously (via the run program %Q
bits) during the same CPU sweep.

DSM314 motion programs support the subroutine feature, which may include all the
available motion program commands including the CALL command. The SYNC Block
command is reserved for multi-axis (Axis 1 and 2) programs and subroutines. Subroutines
can be nested, using CALL statements, to a maximum of eight levels. Single-axis
subroutines, similar to motion programs, contain commands for only one axis. The
difference is that the axis number is not specified in a single-axis subroutine. A single-axis
motion program may CALL any single-axis subroutine stored in module memory. For
example, single-axis motion Program 1, operating Axis 1, may include a CALL statement to
single-axis Subroutine 1. Additionally, single-axis motion Program 2, operating Axis 2, may
include a CALL statement to single-axis Subroutine 1. Single-axis motion programs cannot
CALL multi-axis subroutines.

The motion program and subroutine structure allow flexibility in execution and axis control
in the DSM314 module. The practical limitation is that each axis may only execute one
program at a time. For example, if Program 1 is enabled to run in Axis 1, it must either
complete or abort prior to enabling Program 2 to run in Axis 1.

171

User Manual
GFK-1742F

7.2

7.3

Programmed Motion

Chapter 7
Jan 2020

Multi-Axis Motion Programs and Subroutines

The term multi-axis is specified in the definition statement (on the first line) of a program or
subroutine, for example: PROGRAM 2 MULTI-AXIS, or SUBROUTINE 7 MULTI-AXIS. Axis 1 and
Axis 2 are the only two axis numbers permitted in a multi-axis program or subroutine. Both
axes must be home referenced and meet the remaining prerequisites (see the section
“Prerequisites for Programmed Motion” on page 173) before a program can be executed. A
multi-axis motion program may CALL only multi-axis subroutines. One motion program
instruction, SYNC Block, is available only in a multi-axis motion program or subroutine.
Subroutine “nesting” limitations are the same as for a single-axis motion program. In a
multi-axis program, there are two categories of moves: 1-Axis moves, and 2-Axis moves.

1-Axis moves: When two consecutive 1-Axis moves are programmed, the second move will
begin execution within 2 milliseconds after the first move finishes.

2-Axis moves: A 2-Axis move is programmed with three consecutive blocks. The first of the
three blocks must contain the SYNC Block command. The next two blocks contain the move
commands, one for Axis 1, and one for Axis 2. When the SYNC Block command is executed,
the two moves will be started “together” (within 2 milliseconds). Note that only the start of
the moves is synchronized.

More information about multi-axis programming, program block structure, flow control
(JUMP), and the SYNC Block command, is provided later in this chapter.

Motion Program Command Types
The motion program commands are grouped into four categories:
Type 1 Commands

CALL (Subroutine) JUMP

Type 2 Commands

Block number

SYNC (Block Synchronization)

LOAD (Parameter)

ACCEL (Acceleration)

VELOC (Velocity)

Type 3 Commands

PMOVE (Positioning Move)

CMOVE (Continuous Move)

DWELL

WAIT

172

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Program/Subroutine Definition Commands

PROGRAM

ENDPROG

SUBROUTINE

ENDSUB

Type 1 commands can redirect the program path execution, but do not directly affect

positioning.

Call (Subroutine) executes a subroutine before returning execution to the next
command.

Jumps may be conditional or unconditional. An unconditional jump always

redirects execution to a specified program location. A conditional jump is assigned
a CTL bit to check. If the CTL bit is ON, the jump redirects execution to a specified
program location. If the CTL bit is OFF, the jump is ignored.

Type 2 commands also do not affect position.

Block numbers provide an identification or label for the Type 3 command that
follows. Block numbers are required with JUMP commands; otherwise, they are
optional. If a program block does not contain a block number, the previous block
number, if any, remains in effect.

The SYNC (synchronize block) command is a two-axis synchronization command
(this may or may not delay motion on one axis).

The Load Parameter command allows the user to load a value into a parameter
register.

The Velocity (VELOC) and Acceleration (ACCEL) commands specify velocity and
acceleration rates for the Type 3 MOVE command or commands that follow.
Velocity and Acceleration commands remain in effect until changed.

Type 3 commands start or stop motion and thus affect positioning control.

Positioning (PMOVE) and Continuous (CMOVE) moves command motion.

The Dwell, Wait, and End of Program commands stop motion.

173

User Manual
GFK-1742F

7.4

7.5

Programmed Motion

Chapter 7
Jan 2020

Program Blocks and Motion Command
Processing

A program block consists of and is defined as one (and only one) Type 3 command with any
number and combination of preceding Type 1 and 2 commands.

A block number has two primary uses: (1) it provides a Jump-To identification (label), and
(2) it identifies the section of the program that is currently executing via the Block Number
%Al Status words for each axis. Type 2 commands are optional; a program block can contain
asingle Type 3 command. Type 2 commands and Conditional Jumps do not take effect until
the DSM executes the next Type 3 command.

While the DSM314 is executing a program block, the following program block is processed
into a buffer command area. This buffering feature minimizes block transition time. Thus,
parameters used in a move must be loaded before the move command that was
programmed two blocks earlier completes execution. In other words, in order to minimize
the block-to-block transition time, a new block is pre-processed during previous block
execution. Program block parameters must be loaded before the preceding block begins
execution.

When a DSM314 is executing a multi-axis program, the program commands are scanned
independently by each axis and only the data designated for that axis is executed. Note that
some multi-axis program commands do not specify an axis (Block number, Jump, Call, and
End) and therefore apply to both axes.

A multi-axis program can contain SYNC commands to synchronize the axes at designated
points. When the first axis reaches a SYNC block (a block containing a SYNC command), it
will not execute the next block until the other axis has also reached the SYNC Block. Refer to
Example 18, “Multi-axis Programming”, later in this chapter, for an example of this.

Prerequisites for Programmed Motion

The following conditions must be satisfied before a motion program can be initiated (for a
multi-axis program, the conditions must be met for both axes):

e The Enable Drive %Q bit must be ON

e The Drive Enabled %I bit must be ON

e The Position Valid %I bit must be ON

e The Moving %I bit must be OFF

e TheProgram Active %I bit must be OFF
e The Abort All Moves %Q bit must be OFF

e The axis position must be within the configured end of travel limits (High Software
EOT and Low Software EQOT), unless the Software End of Travel mode is configured
as Disabled

e The Overtravel Limit Switch inputs must be ON (24V input is high) if enabled

e AfForce Digital Servo Velocity %AQ command must not be active

174

User Manual
GFK-1742F

7.6

1.7

Programmed Motion

Chapter 7
Jan 2020

e The program to be executed must be a valid program stored in the DSM314

Conditions That Stop a Motion Program

A motion program will immediately cease when one of the following conditions occurs:
e The Abort All Moves %Q bit turns ON
e The Enable Drive %Q bit turns OFF

e An Overtravel Limit Switch turns OFF when OT Limit Switch is ENABLED via
configuration.

e The next programmed move, either PMOVE or CMOVE, will pass a Software EOT
Limit (unless the Software End of Travel mode is configured as Disabled)

e A Stop Normal or Stop Fast Response Method Error occurs. See Appendix A, “Error
Reporting.”

Motion Program Basics
Number of Programs, Subroutines, and Statements

The DSM314 supports 10 motion programs, 40 subroutines, and a maximum total of 1000
motion program statements.

Format

e Motion programs and subroutines are written using ASCII text.

¢ Only one motion language statement is permitted per line, and a motion language
statement may not span more than one line. Normal comments may span multiple
lines.

e White space and blank lines may be used to improve readability and to separate
certain items.

e The Motion Editor is not case sensitive.
¢ All motion programs and subroutines must be contained in a single file.
Single-axis and multi-axis programs and subroutines

A given single-axis program must have the capability to be run on any one axis specified in
the Program definition statement. Therefore, motion language commands in single-axis
programs and subroutines will not specify an axis. Rather, the axis specified in the PROGRAM
statement is used for all motion commands in the program. Multi-axis programs and
subroutines can only call multi-axis subroutines. Likewise, single-axis programs and
subroutines can only call single-axis subroutines.

Program and subroutine definition statements

The Motion Editor requires “Program” and” Subroutine” definition statements that specify
program/subroutine number and axis configuration (PROGRAM 1 AXIS2 or SUBROUTINE 2
MULTI-AXIS). These statements are placed on the first line of the program or subroutine.
Programs are terminated with an ENDPROG statement, subroutines are terminated with
and ENDSUB statement. These statements serve as separators between programs and

175

User Manual
GFK-1742F

7.7.1

Programmed Motion

Chapter 7
Jan 2020

subroutines, identify the program and subroutine numbers, and indicate the type of
program (single-axis or multi-axis).

Block numbers and sync blocks

Block numbers will be suffixed with a colon (1: for example). Sync blocks are identified by a
line with a block number followed by the SYNC command (2: SYNC for example). Block
numbers may appear alone on a line or preceding a motion command on the same line.

Motion Language Syntax and Commands

White space

White space has no significance and is ignored, except where necessary to use as a
separator. For example, in “CMOVE AXIS1 50000, ABS,S-CURVE” a space is required as a
separator between CMOVE and AXIS1, but is not required in the phrase 50000,ABS because
the comma separates the parameters. Blanks, blank lines, and tabs are considered white
space.

Numeric Constants

Numeric constants are limited to 32-bit integer values, which may be signed or unsigned
depending on the context in which they are used. All motion commands further limit this
range. Numeric constants may be entered as decimal, hexadecimal, or binary values.
Hexadecimal and binary constants are identified by the prefixes, 16# and 2#, respectively
(do not use a space between the prefix and the number). Hexadecimal and binary constants
cannot be prefixed with a negative sign. Therefore, negative values must be entered in two’s
complement form. Numeric constants may contain single underline characters (e.g.
5_000_000) between digits to improve the readability of large numbers or to represent
implied decimal points in fixed point numbers.

Comments

The (* character pairintroduce a normal comment, which terminates with the *) character
pair. These comments may appear anywhere white space can, for example within or
following a motion program statement, alone on a line, or spanning several lines. These
comments do not nest. The [/ character pair introduces a single line comment. All text
following the [/ to the end of the line is ignored by the Motion Editor. However, if using the
/[, do not force a break to the next line (by using a Return) or an error will result. If you wish
to make long comments readable on the Motion Editor screen without the need for scrolling
to the right, you can use the (* and *) symbols (required for multi-line comments) along
with Returns (created by pressing the Enter key), which force the text to break to the next
line.

176

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Motion Program Key Words

The following words have special significance in the motion programming language.

ABS AXIS3 ENDSUB MULTI-AXIS SUB
ABSOLUTE AXIS4 ENDS PMOVE SYNC
ACCEL CALL INCR PROGRAM VELOC
ACC CMOVE INCREMENTAL PROG VEL
ACCELERATION DWELL JUMP S-CURVE VELOCITY
AXIS1 ENDP LINEAR SINGLE-AXIS WAIT
AXIS2 ENDPROG LOAD SUBROUTINE

Variables

Motion Programs support a limited set of predefined variables: the parameter data registers
and the CTL bits. In the following table, x represents a decimal value in the specified range.
The value x is interpreted based on its numeric value. Therefore, a given variable may be
referenced several ways. For example, P1 and PO01 both refer to Parameter Data Register 1
and will be accepted by the Motion Editor.

Variable Constraints
Px 0<x<255
CTLx 01<x<32
Separators

Separators are used to separate elements or are added to elements to indicate that they
serve a unique function.

Separator | Function

Separate command parameters

Identifies a constant as a block number

177

User Manual Chapter7
GFK-1742F Jan 2020

71.7.2 Motion Program Commands

This section describes the motion commands. Most motion commands have two forms,
multi-axis and single-axis. The multi-axis form is used in multi-axis programs and
subroutines and requires the axis to be specified as a parameter in certain commands (for
example: VELOC AXIS1 5000). In single-axis programs the axis number is specified in the
program header (for example: PROGRAM 2 AXIS1) and must not be specified within the
program.

Some of the command keywords have aliases. The alias command keywords are
functionally equivalent to the actual keywords. Alias usage is optional and largely a matter
of personal preference.

Items that appear within angle brackets (“<”, “>”) represent classes of items, and are

» o«

described in more detail. ltems that appear in square brackets (“[”, “]”) are optional. ltems

that appearin curly brackets (“{”, “}”) are required for multi-axis programs and subroutines
but are illegal when used in single-axis programs or subroutines.

The general format of motion language commands is KEYWORD {axis} <parameter [,
parameter]>. If the axis is specified, it immediately follows the command keyword.
Command parameter(s) follow the axis, if specified. If there are multiple parameters, they
are separated by commas.

Note: The DSM314 does not support the NULL command or Program Zero.

ACCEL

The ACCEL statement sets the axis acceleration for subsequent moves and remains in effect
in a given program unless changed. If an ACCEL statement is not used in a program, the
moves will accelerate at the current Jog Acceleration value. Moves programmed before the
first ACCEL statement will accelerate at the current Jog Acceleration. Moves programmed
after an ACCEL statement will use the value in the ACCEL statement.

Note: ACCEL commands for a given axis in a program or subroutine must be separated by a PMOVE
statement, CMOVE statement, or an unconditional jump.

Syntax:

ACCEL {<axis>} <acceleration>

Parameter Description

<axis> The axis number can only be specified in a multi-axis program or
subroutine. The axis may be specified using the keywords or constants.

<acceleration> The acceleration is specified by using either an unsigned constant in the
range of 1-1,073,741,823 or by using a parameter data register.

Aliases:

ACC, ACCELERATION

Programmed Motion 178

User Manual
GFK-1742F

Programmed Motion

Chapter7
Jan 2020
Errors:
1. ACCEL commands must be separated by at least one move command.
2. Specified acceleration constant is not in the range of 1 - 1,073,741,823
3. Parameter data register is not in the range of 0 - 255.
4. Axis specified in single-axis program.
5. No axis specified in multi-axis program.
6. Specified axis does not support programmed motion.
Block Number

Block numbers may be used as the destination of JUMP commands. They may appear
alone on aline, or preceding a command.

Syntax:

<block num>: [<command>]

Parameter |Description

<block num> | Block number must be in the range of 1 - 65535

<command> |Any command except PROGRAM, SUBROUTINE, ENDPROG, ENDSUB, or another
block number may follow a block number on the same line

Aliases:
None
Errors:

1. All block numbers and synch block numbers must be unique within a program or
subroutine.

2. Block number must be in the range of 1 - 65535.

CALL

The CALL command calls a subroutine from a program or subroutine.
Syntax:

CALL <subroutine destination>

Parameter Description

<subroutine destination> | A subroutine destination specified as a constant, 1 — 40, or a parameter
data register.

Aliases:
None
Errors:
1. Subroutine number must be in the range of 1 - 40, or parameter data register 0 -

255.

179

User Manual Chapter7
GFK-1742F Jan 2020

2. If caller is a subroutine, it cannot call itself (no recursive calls) or call another
subroutine that directly or indirectly references it.
3. Call destination subroutine must be defined in the same file.

4. Single-axis programs and subroutines can only call single-axis subroutines. Multi-
axis programs and subroutines can only call multi-axis subroutines.

CMOVE

The CMOVE command programs a continuous move using the specified position and
acceleration mode.

Syntax:

CMOVE {<axis>} <position>, <positioning mode>, <acceleration mode>

Parameter Description
<axis> The axis can only be specified in a multi-axis program or subroutine.
The axis may be specified using the AXISx keywords or constants.
<position> The destination positions. May be a constant or a parameter data
register.
<positioning mode> Specifies incremental (INCR) or absolute (ABS) positioning.
<acceleration mode> Specifies linear (LINEAR) or s-curve (S-CURVE) acceleration for the
move.
Aliases:
None
Errors:

1. Axis specified in single-axis program.
2. No axis specified in multi-axis program.

3. Position must be in the range of -536,870,912 - 536,870,911, or parameter data
register 0 - 255.

4. Positioning mode must be either INCR or ABS.
5. Acceleration mode must be either LINEAR or S-CURVE.

6. Specified axis does not support programmed motion.

Programmed Motion 180

User Manual Chapter7
GFK-1742F Jan 2020

DWELL

DWELL causes motion to cease for a specified time period before processing the next
command. Specifying a dwell of zero (either as a constant or the value in a parameter data
register) causes no dwell to occur (this is a change from APM and DSM302 functionality).

A single DWELL command only applies to one axis. Therefore, in a multi-axis program, you
must designate an axis number for each DWELL command. For example: DWELL AXIS1
2000. If you wish to pause both axes in a multi-axis program, you must use a DWELL
command for each axis.

Syntax:
DWELL {<axis>} <delay>
Parameter Description
<axis> The axis can only be specified in a multi-axis program or subroutine. The
axis may be specified using the AXISx keywords or constants.
<delay> Delay in milliseconds specified as a constant or a parameter data
register. Range is 0-60,000 ms. A value of 0 is interpreted as a null
command.
Aliases:
None
Errors:

1. Axis specified in single-axis program.
No axis specified in multi-axis program.

Delay must be in the range of 0 - 60,000 or parameter data register 0 - 255.

H W N

Specified axis does not support programmed motion.

ENDPROG

The ENDPROG statement terminates a motion program definition.
Syntax:

ENDPROG

Aliases:

ENDP

ENDSUB

The ENDSUB statement terminates a motion subroutine definition.
Syntax:

ENDSUB

Aliases:

ENDS

Programmed Motion 181

User Manual
GFK-1742F

Programmed Motion

JumP

Jump to a block number or sync block within the current program or subroutine. The jump

Chapter 7
Jan 2020

may be conditional, based on the state of a CTL bit, or unconditional.

Syntax:

JUMP <condition>, <destination>

Parameter

Description

<condition>

Jump condition, must specify CTLO1 - CTL32 or UNCOND

<destination>

Destination block or synch block number

Aliases:
None

Errors:

1. Jump condition must be CTLin the range of 1 - 32, or keyword UNCOND.

2. Destination block must be in the range of 1 - 65535 and must be defined within the

same program or subroutine as the JUMP statement.

LOAD

Initializes or changes a parameter data register with 32-bit twos-complementinteger value.

Syntax:

LOAD <parameter data register>, <load value>

Parameter

Description

<parameter data register>

Parameter data register to be initialized. Restricted to registers PO00 —
P255.

<load value>

32-bit numeric constant.

Aliases:
None

Errors:

1. Parameter data register must be in the range of PO00 - P255.

2. lLoadvalue must be in the range of a 32-bit twos-complement value.

182

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

PMOVE

The PMOVE command programs a positioning move using the specified position and
acceleration mode.

Syntax:

PMOVE {<axis>} <position>, <positioning mode>, <acceleration mode>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The
axis may be specified using the AXISx keywords or constants.

<position> The destination positions. May be a constant or a parameter data register.

<positioning mode> Specifies incremental (INCR) or absolute (ABS) positioning.

<acceleration mode> | Specifies linear (LINEAR) or s-curve (S-CURVE) acceleration for the move.

Aliases:
None
Errors:
1. Axis specified in single-axis program.
2. No axis specified in multi-axis program.

3. Position must be in the range of -536,870,912 - 536,870,911, or parameter data
register 0 - 255.

4. Positioning mode must be either INCR or ABS.
5. Acceleration mode must be either LINEAR or S-CURVE.

6. Specified axis does not support programmed motion.

PROGRAM

The PROGRAM statement is the first statement in a motion program. The program
statement identifies the program number (1-10) and the axis configuration. Program
definitions cannot nest.

There are two types of motion programs, single axis in which all commands are directed to
the same axis, and multi-axis, which may contain commands for axis 1 and axis 2. The
program type is specified by the PROGRAM statement. A single-axis program is identified
by specifying the target axis following the program number (for example, PROGRAM 3

AXIS1). A multi-axis program is identified by the word MULTI-AXIS following the program
number (for example, PROGRAM 4 MULTI-AXIS).

The program axis configuration is used to enforce whether or not the axis parameter must
be supplied in the program’s motion commands. It also restricts multi-axis programs to
calling multi-axis subroutines, and single-axis programs to calling single-axis subroutines.
The axis specified in a single-axis program is used by any subroutine it calls; therefore, an
axis number should not be specified anywhere within a single-axis subroutine.

183

User Manual Chapter7
GFK-1742F Jan 2020

Syntax:

PROGRAM <program number> <axis configuration>

Parameter Description

<program number> The program number must be a decimal value in the range of 1 - 10. Within a
source file, each PROGRAM defined must have a unique number.

<axis configuration> The axis configuration must have a value of MULTI-AXIS for multi-axis programs,
or axis designation (for example, AXIST) for single-axis programs. Axes may be
specified using the AXISx keywords or constants, where x = 1-4.

Aliases:

PROG

SUBROUTINE

The SUBROUTINE statement is the first statement in a motion subroutine. The subroutine
statement identifies the subroutine number (1-40) and the axis configuration. Subroutine
definitions cannot nest.

There are two types of motion subroutines, single axis in which all commands are directed
to the same axis, and multi-axis, which may contain commands for axis 1 and axis 2. The
subroutine type is specified by the SUBROUTINE statement. A single-axis subroutine is
identified by the word SINGLE-AXIS following the subroutine number. A multi-axis
subroutine is identified by the word MULTI-AXIS following the subroutine number.

The subroutine axis configuration is used to enforce whether or not the axis parameter must
be supplied in the subroutine’s motion commands. It also restricts multi-axis subroutines to
calling multi-axis subroutines, and single-axis subroutines to calling single- axis subroutines.
A single-axis subroutine uses the axis number specified in the calling program.

Syntax:

SUBROUTINE <subroutine number> <axis configuration>

Parameter Description

<subroutine number> | The subroutine number must be a decimal value in the range of 1 - 40.
Within a source file, each subroutine defined must have a unique number.

<axis configuration> | The axis configuration must have a value of MULTI-AXIS or SINGLE-AXIS.

Aliases:

SUB

Programmed Motion 184

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Sync Block

A sync block is a special case of a block number. A sync block may only be used in a multi-
axis program.

A sync block is identified by a block number followed by the command SYNC. The SYNC
command must appear on the same line as the block number.

Syntax:
<block num>: SYNC

Parameter Description

<block num> Block number must be in the range of 1 - 65535

Aliases:
none
Errors:

1. Sync blocks can only appear in multi-axis programs.

2. All block numbers and synch block numbers must be unique within a program or
subroutine.

3. Syncblocks and block humbers cannot appear in consecutive statements without
an intervening command.

4. Syncblock numbers must be in the range of 1 - 65535.

VELOC

Sets the axis velocity used by subsequent motion program move commands and remains in
effect until changed by another VELOC statement. If a VELOC statement is not used in a
program, moves will use the current Jog Velocity value. Also, moves programmed before
the first VELOC statement will use the current Jog Velocity.

Note: VELOC commands for a given axis in a program or subroutine must be separated by a PMOVE
statement, CMOVE statement, or an unconditional jump.

Syntax:
VELOC {<axis>} <velocity>

Parameter | Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The axis may be
specified using the AXISx keywords or constants.

<velocity> | The desired velocity. May be a constant or a parameter data register.

Aliases:

VEL, VELOCITY

185

User Manual Chapter7
GFK-1742F Jan 2020

Errors:
1. Axis specified in single-axis program.
2. No axis specified in multi-axis program.
3. Velocity must be a constant in the range of 1 - 8388607.
4. VELOC commands must be separated by at least one move command.
5

Specified axis does not support programmed motion.

WAIT

Permits synchronization with some external event through the CTL bits. Execution of the
next command is suspended until the specified CTL is set.

A single WAIT command only applies to one axis. Therefore, in a multi-axis program, you
must designate the axis number that a WAIT applies to. For example: WAIT AXIS1 CTLO1. If
you wish to make both axes wait in a multi-axis program, you must use a separate WAIT
command for each axis.

Syntax:
WAIT {<axis>} <ctl>
Parameter | Description
<axis> The axis can only be specified in a multi-axis program or subroutine. The axis may be
specified using the AXISx keywords or constants.
<ctl> Specifies CTLOT - CTL32.
Aliases:
none
Errors:

1. Axis specified in single-axis program.
No axis specified in multi-axis program.

CTL must be in the range of 1 - 32,

el

Specified axis does not support programmed motion.

Programmed Motion 186

User Manual
GFK-1742F

7.7.3

Programmed Motion

Chapter 7
Jan 2020

Program and Subroutine Structure

Single-axis Program Structure

PROGRAM definition statement. It must be the first line of the program. It must
identify the program number and axis number. The program number has a space
between the PROGRAM keyword and the number. In contrast, the axis number must
not have a space within it. For example:

PROGRAM 1 AXIS3

Body. The program body contains the actual program commands. Note that in a
single-axis program, you must not specify an axis number in any of the commands.
Doing so will generate an error. An example of correct syntax for a single-axis
programiis:

ACCEL 50000

End of Program. Uses the ENDPROG statement. This statement clearly identifies the
end of the program and helps separate one program or subroutine from another.
The ENDPROG should be the only thing on the last line of any program:

ENDPROG

Single-Axis Program Example

Note that the axis number is specified in the first line and is not specified in the program
body. Note also, that there is no space in the term AXIS1.

PROGRAM 2 AXIST

ACCEL 50000

VELOC 5000

PMOVE 10000, ABS, LINEAR
DWELL 6000

PMOVE 5000, ABS, LINEAR

ENDPROG

Multi-Axis Program Structure

PROGRAM definition statement. Must be the first line of the program. It must
identify the program number and the fact that this is a multi-axis program by using
the MULTI-AXIS term. For example:

PROGRAM 3 MULTI-AXIS
Body. Contains the actual program commands. Note that in a multi-axis program,
you must specify an axis number in many of the commands. Failure to do so will

generate an error. The axis number term, such as AXIS1, must not have a space
within it. An example of correct syntax for a multi-axis program command is:

ACCEL AXIS1 50000

187

User Manual Chapter7
GFK-1742F Jan 2020

e End of Program. Uses the ENDPROG statement. This statement clearly identifies the
end of the program and helps separate one program or subroutine from another.
The ENDPROG should be the only thing on the last line of any program:

ENDPROG
Multi-Axis Program Example

Note that the term MULTI-AXIS must be used in the PROGRAM statement on the first line,
and that axis numbers are specified in the applicable commands in the program body.

PROGRAM 1 MULTI-AXIS
ACCEL AXIS1 500000
VELOC AXIS1 5000
1: CMOVE AXIS2 -100000, ABS, LINEAR DWELL AXIS2 6000
JUMP CTL31,1
CALL P255
LOAD P215, 2000
PMOVE AXIS1 8388607, INCR, S-CURVE
ENDPROG
Single-axis Subroutine Structure

o SUBROUTINE definition statement. It must be the first line of the subroutine. It must
identify the subroutine number and contain the SINGLE-AXIS statement. For
example:

SUBROUTINE 3 SINGLE-AXIS

e Body. The subroutine body contains the actual programmed commands. Note that
in a single-axis subroutine, you must not specify an axis number in any of the
commands. Doing so will generate an error. An example of correct syntax for a
single-axis subroutine command is:

ACCEL 50000

e Endof Subroutine. Uses the ENDSUB statement. This statement clearly identifies the
end of the subroutine and helps separate one subroutine or program from another.
The ENDSUB should be the only thing on the last line of any subroutine:

ENDSUB

Programmed Motion 188

User Manual Chapter7
GFK-1742F Jan 2020

Single-Axis Subroutine Example

An axis number should not be specified in a single-axis subroutine. That is because a single-
axis subroutine will apply to the axis specified in the single-axis program that calls it. This
allows a subroutine to be used by different single-axis programs, regardless of the particular
axis number they specify.

SUBROUTINE 15 SINGLE-AXIS
ACCEL 50000
VELOC 10000
PMOVE 200000, ABS, LINEAR
DWELL 3000
PMOVE 50000, ABS, LINEAR
ENDSUB
Multi-Axis Subroutine Structure

e SUBROUTINE definition statement. It must be the first line of the subroutine. It must
identify the subroutine number and the fact that this is a multi-axis program by using
the MULTI-AXIS term. For example:

SUBROUTINE 7 MULTI-AXIS

e Body. The subroutine body contains the actual programmed commands. Note that
in a multi-axis subroutine, you must specify an axis number in many of the
commands. Failure to do so will generate an error. An example of correct syntax for
a multi-axis subroutine command is:

ACCEL AXIS2 50000

e Endof Subroutine. Uses the ENDSUB statement. This statement clearly identifies the
end of the subroutine and helps separate one subroutine or program from another.
The ENDSUB should be the only thing on the last line of any subroutine:

ENDSUB

Multi-Axis Subroutine Example
SUBROUTINE 2 MULTI-AXIS

ACCEL AXIS2 P100

VELOC AXIS2 P105
2: SYNC

CMOVE AXIS2 P001, INCR, S-CURVE

DWELL AXIS2 POO1

JUMP CTLO1, 2

PMOVE AXIS2 P214, ABS, LINEAR
ENDSUB

Programmed Motion 189

User Manual
GFK-1742F

7.7.4

Programmed Motion

Chapter 7
Jan 2020

Command Usage Examples

The following examples are not complete programs. For example, in many cases the
PROGRAM and ENDPROG statements are not shown. These statements (in correct context)
would need to be added to make the program compile successfully. Programmed moves
have three parameters:

1. The distance (data) to move or position to move to,
2. Thetype of positioning reference (command modifier) to use for the move, and

3. The type of acceleration (command modifier) to use while performing the move.

Note: Motion programs can contain statements that use constants as data associated with commands
or variables that are also referred to as parameters (P0-P255).

Absolute or Incremental Positioning

Absolute Positioning

In an absolute positioning move, the first parameter is the position to move to. The
following is an absolute positioning move example.

PMOVE 5000, ABS, LINEAR

In this example, the axis will move from its current position, whatever it may be, to the
position 5000. Thus, the actual distance moved depends upon the axis’ current position
when the move is encountered. If the initial position is 0, the axis will move 5000 user units
in the positive direction. If the initial position is 8000, the axis will move 3000 user units in
the negative direction. If the initial position is 5000, the axis will not move.

Incremental Positioning

In anincremental move, the first parameter specifies the distance to move from the current
position. The DSM314 translates incremental move distances into absolute move positions.
This eliminates error accumulation. The following is an incremental positioning move
example.

PMOVE 5000, INCR, LINEAR

In this example, the axis will move from its current position to a position 5000 user units
greater. With an incremental move, the first parameter specifies the actual number of user
units the axis moves.

190

User Manual Chapter7
GFK-1742F Jan 2020

Types of Acceleration

Linear Acceleration

A sample linear move profile that plots velocity versus time is shown in Figure 69. As
illustrated, a linear move uses constant (linear) acceleration. The area under the graph
represents the distance moved.

Figure 69: Sample Linear Motion

ACCEL 1000 v
VELOC 2000

PMOVE 6000, INCR,
LINEAR

S-Curve Acceleration

An S-Curve motion sample, plotting velocity versus time, is shown below. As illustrated, S-
Curve acceleration is non-linear. When the move begins, the acceleration starts slowly and
builds until it reaches the programmed acceleration. This should be the midpoint of the
acceleration. Then, the acceleration begins decreasing until it is zero, at which time the
programmed velocity has been reached. An S-Curve move requires twice the time and
distance to accelerate and decelerate that a comparable linear move need. The area under
the graph represents the distance moved.

Figure 70: Sample S-Curve Motion

ACCEL 2000
VELOC 2000 v
PMOVE 8000, INCR, S-
CURVE

Programmed Motion 191

User Manual
GFK-1742F

7.7.5

Programmed Motion

Chapter 7
Jan 2020

Types of Programmed Move Commands
The following examples are not complete programs. For example, in many cases the

PROGRAM and ENDPROG statements are not shown. These statements (in correct context)
would need to be added to make the program compile successfully.

Positioning Move (PMOVE)

A PMOVE must always come to a complete stop. The stop must long enough to allow the In
Zone %l bit to turn ON before the next move can begin.

A PMOVE uses the most recently programmed velocity and acceleration. If a VELOC
command has not been encountered in the motion program, the Jog Velocity is used as
default. If an ACCEL command has not been encountered in the motion program, the Jog
Acceleration is used as default.

Continuous Move (CMOVE)

A CMOVE does not stop when completed unless it is followed by a DWELL or a WAIT, the
next programmed velocity is zero, or it is the last program command. It does not wait for In
Zone %] bit to turn ON before going to the next move. A normal CMOVE is a command that

reaches its programmed position at the same time that it reaches the velocity of the
following Move command.

A CMOVE uses the most recently programmed velocity and acceleration. If a VELOC
command has not been encountered in the motion program, the Jog Velocity is used as
default. If an ACCEL command has not been encountered in the motion program, the Jog
Acceleration is used as default.

A special form of the CMOVE command can be used to force the DSM314 to reach the
programmed CMOVE position before starting the velocity change associated with the next
move command (that is, execute the entire CMOVE command at a constant velocity).
Programming an incremental CMOVE command with an operand of 0 (for example: CMOVE
0, INCR, LINEAR) will delay the servo velocity change until the next move command in
sequence. The following sequence of commands illustrates this effect (assume ACCELs are
chosen to allow motions to complete normally):

Command Data Comments

VELOC 10000 ||Set velocity of first move = 10000

CMOVE 15000, ABS, LINEAR //Reach velocity of second move (20000) at position = 15000
VELOC 20000 ||Set velocity of second move = 20000

CMOVE 30000, ABS, LINEAR (*Stay at velocity = 20000 until position = 30000, then
change to velocity = 5000*)

CMOVE 0, INCR, LINEAR (*Flag to signal the DSM314 to wait for next move before
changing to the next velocity*)
VELOC 5000 ||Set velocity of third move = 5000

PMOVE 40000, ABS, LINEAR /[Final stop position = 40000

192

User Manual
GFK-1742F

Note: White space characters (blank spaces, tabs, etc.) were used in the program above to improve

readability.

Figure 71:

v
20000 -

10000 1

5000 +

Example 1, Before Inserting CMOVE (0)

15000 30000 40000 t

Figure 72

V
20000 4

100001
5000 1

: Example 2, After Inserting CMOVE (0)

15000 30000 40000 t

Programmed Motion

Chapter 7
Jan 2020

193

User Manual Chapter7
GFK-1742F Jan 2020

Programmed Moves

By combining CMOVEs and PMOVES, absolute and incremental moves, and linear and s-
curve motion, virtually any motion profile can be generated. The following examples show
some simple motion profiles, as well as some common motion programming errors.

Example 1: Combining PMOVEs and CMOVEs

This example shows how simple PMOVEs and CMOVEs combine to form motion profiles.

Figure 73: Combining PMOVEs and CMOVEs

ACCEL 1000

VELOC 2000

PMOVE 5000, ABS, LINEAR
VELOC 1200

PMOVE 10000, ABS, S-CURVE
ACCEL 1500

VELOC 2800

CMOVE 6000, INCR, LINEAR v ;
VELOC 1200 /_\ . ;
CMOVE 23000, ABS, S-CURVE P /a ol s ipL
ACCEL 1000 ———0
VELOC 2800 ’
PMOVE 5000, INCR, LINEAR

The first PMOVE accelerates to program velocity, moves for a distance, and decelerates to a
stop. This is because motion stops after all PMOVEs. When the first move stops, it is at the
programmed distance.

The second move is an s-curve PMOVE. It, like the first, accelerates to the programmed
velocity, moves for a time, and decelerates to zero velocity because it is a PMOVE.

The next move is a linear CMOVE. It accelerates to program velocity, moves for a time, and
then decelerates to a lower velocity using linear acceleration. When a CMOVE ends, it will
be at the programmed position of the move just completed, and at the velocity of the next
move. Thus when the fourth move begins, it is already at its programmed velocity.

The fourth move is a CMOVE, so as it approaches its final position, it accelerates to be at the
velocity of the fifth move when it completes. The graph shows the acceleration of the fourth
move is s-curve.

Finally, the fifth move begins and moves at its programmed velocity for a time until it
decelerates to zero. Any subsequent moves after the fifth would begin at zero velocity
because the fifth move is a PMOVE.

Programmed Motion 194

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Example 2: Changing the Acceleration Mode During a Profile

The following example shows how a different acceleration, and an even acceleration mode,
can be used during a profile using CMOVEs. The first CMOVE accelerates linearly to the
programmed velocity. Because the second CMOVE’s velocity is identical to the first, the first
CMOVE finishes its move without changing velocity. The acceleration of the second move is
S-curve as it decelerates to zero velocity.

Figure 74: Changing the Acceleration Mode During a Profile

ACCEL 2000 v

VELOC 6000 I

CMOVE 13000, ABS, I

LINEAR |

ACCEL 4000 cL | ¢S

CMOVE 15000, INCR, S- |

CURVE 13000 t

Example 3: Not Enough Distance to Reach Programmed Velocity

CMOVES and PMOVES can be programmed that do not have enough distance to reach the
programmed velocity. The following graph shows a CMOVE that could not reach the
programmed velocity. The DSM314 accelerates to the point where it must start
decelerating to reach the programmed position of C1 at the velocity of the second
CMOVE.

Figure 75: Not Enough Distance to Reach Programmed Velocity

ACCEL 2000 v

VELOC 8000

CMOVE 7000, INCR, LINEAR

ACCEL 10000 y
VELOC 2000
CMOVE 4400, INCR, LINEAR '

195

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Example 4: Hanging the Move When the Distance Runs Out

A serious programming error involves “hanging” (i.e. leaving no desirable options for the
command generator) the move at a high velocity when the distance runs out. In the
following example, the first CMOVE accelerates to a high velocity. The second CMOVE has
an identical velocity. However, the distance specified for the second CMOVE is very short.
Thus, the axis is running at a very high velocity and must stop in a short distance. If the
programmed acceleration is not large enough, the following profile could occur. The
DSM314 attempts to avoid overshooting the final position by commanding a zero velocity.
This rapid velocity change is undesirable and can cause machine damage.

Figure 76: Hanging the DSM314 When the Distance Runs Out

ACCEL 500 v
VELOC 3000
CMOVE 9000, ABS, LINEAR |
ACCEL 600 I
CMOVE 4800, INCR, LINEAR C1 : C2

1

9000 t

DWELL Command

A DWELL command is used to generate no motion for a specified number of milliseconds.
The DWELL command may use a value stored in a designated parameter.

A DWELL after a CMOVE will make the CMOVE stop before the next move, unless the
specified dwell duration is zero milliseconds. A DWELL is treated as a “null” command and
skipped (CMOVE continues to the next Move following the DWELL) if the DWELL command
has a value of zero, or references a parameter register that has a value of zero.

A single DWELL command only applies to one axis. Therefore, in a multi-axis program, you
must designate an axis number with each DWELL command. For example: DWELL AXIS1
2000. If you wish to pause both axes in a multi-axis program, you must use a DWELL
command for each axis.

Example 5: DWELL

A simple motion profile, which moves to a specific point, waits, and returns to the original
point is shown below.

Figure 77: Dwell Command Example

ACCEL 30000

VELOC 15000 v
PMOVE 120000,

ABS, LINEAR

DWELL 4000

PMOVE 0, ABS,
LINEAR

P2

196

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Wait Command

The WAIT command is similar to the DWELL command. Instead of generating no motion for
a specified period of time, a WAIT stops program motion until a specified CTL bit turns ON.
Thus motion stops any time a WAIT is encountered, even if the CTL bitis ON before the WAIT
is reached in the program. The trigger to continue the program can be any of the twelve CTL
bits.

If, in the previous example, WAIT were substituted for DWELL, the motion profile would be
the same except the second PMOVE would not start until the CTL bit turned ON. If the CTL
bit was ON when the program reached the WAIT, the second PMOVE would begin
immediately after the first PMOVE finished.

Also, if WAIT were used instead of DWELL in the previous example, CMOVEs and PMOVEs
would generate similar velocity profiles. The WAIT will stop motion whether the previous
move is a CMOVE or PMOVE.

A single WAIT command only applies to one axis. Therefore, in a multi-axis program, you
must designate an axis number with each WAIT command. For example: WAIT AXIS1
CTLOO1. If you wish to have both axes wait in a multi-axis program, you must use a separate
WAIT command for each axis.

Subroutines

The DSM314 can store up to ten separate programs and forty subroutines. Subroutines can
be defined as two types: single-axis and multi-axis. Subroutines are available for all motion
programs created with the Motion Editor. Commands within single-axis subroutines do not
contain an axis number; this allows single-axis subroutines to be called from any single-axis
program (the commands in the subroutine use the axis number specified by the calling
program). Commands within multi-axis subroutines contain axis numbers just like
commands within multi-axis programs. Multi-axis subroutines can only be called from
multi-axis programs or subroutines. Single-axis subroutines can only be called from single-
axis programs or subroutines. For example, a single-axis program for axis 1 and a single-axis
program for axis 2 can call the same single-axis subroutine simultaneously. Each subroutine
must be assigned a unique number between 1 and 40.

Subroutines are programmed using the CALL command, which specifies the subroutine
number to be called. When a CALL is encountered during program execution, program
execution is redirected to the subroutine. When the subroutine completes, program
execution resumes at the command after the CALL command. Subroutines can be called
from another subroutine, but once a subroutine has been called, it must complete before it
can be called again for the same axis. Thus, recursion is not allowed.

197

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Block Numbers and Jumps

Block numbers are used as reference points within a motion program and to control jump
testing. A %Al data word displays the current block number which can be monitored to
ensure correct program execution or to determine when events should occur. A block
number can also serve as a JUMP command destination. Jumps may be unconditional or
conditional. An unconditional jump command simply tells the DSM314 to continue
program execution at the destination block number. A conditional jump only executes if the
specified condition occurs. Examples of both types of jumps follow.

Unconditional Jumps

Example 6: Unconditional Jump

In the example below, the program executes a PMOVE, dwells for 2 seconds, then
unconditionally jumps back to the beginning of the program at block 1. Thus, the PMOVE
repeats until an end of travel limit (High Software EOT or Low Software EOT) or Overtravel
Limit Switch is reached. An Abort All Moves %Q bit command could also be used to halt the
program.

Figure 78: Unconditional jJump

ACCEL 10000
VELOC 30000 v
1: |
PMOVE 200000, INCR, LN SN /_\[
LINEAR
DWELL 2000
JUMP UNCOND, 1
Conditional Jumps

A conditional jumpis aJUMP command with a CTL bit specified in the command. Conditional
jumps are Type 1 commands in that they affect program path execution, but they are also
similar to Type 2 commands because they do not take effect until a Type 3 command
following the JUMP command is executed. When a conditional JUMP command is executed,
the DSM314 examines the specified CTL bit. If the bitis ON, program execution jumps to the
destination block numbers; if the bit is OFF, the program continues executing the command
after the JUMP. Note that the Type 3 command after the conditional jump and at the jump
destination will affect jump behavior.

Conditional Jump commands should not be used with multi-axis programs containing SYNC
blocks unless the JUMP is triggered while both axes are testing the same JUMP command.
Failure to follow this recommendation can result in unpredictable operation.

Conditional Jump testing starts when the next PMOVE, CMOVE, DWELL, or WAIT command
following a Conditional JUMP becomes active.

When Conditional Jump testing is active, the designated CTL bit is tested at the position loop
update rate (0.5, 1.0 or 2.0 milliseconds depending on configuration).

198

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Conditional Jump testing ends when the designated CTL bit turns ON (Jump Trigger occurs)
or when a new Block Number becomes active.

If more than one Conditional Jump is programmed without an intervening PMOVE, CMOVE,
DWELL, or WAIT command, only the last Conditional Jump will be recognized.

A Conditional Jump cannot be used as the last line of a Subroutine (or on the line before an
Unconditional Jump to the end of a subroutine) because jump testing terminates when the
End Subroutine command is processed.

In summary, a Conditional Jump transfers control to a new program block on the basis of
one of the external CTLinput bits turning ON. Tests for CTL bit status can be carried out once
or continuously during the following Type 3 command if it is in the same program block.
Multiple Conditional Jumps are not supported within the same program block (the following
example illustrates this incorrect usage of the Conditional Jump command).

Conditional Jump Example 1:
PROGRAM 1 MULTI-AXIS

VELOC AXIS1 10000
ACCEL AXIS1 10000

1: JUMP CTLO1,2 /[This JUMP command will be ignored
JUMP CTL02,3 |[This JUMP command will be recognized
CMOVE AXIS1 +40000, INCR, LINEAR

2: CMOVE AXIS2 +20000, INCR, LINEAR
3: PMOVE AXIS2 +100000, ABS, LINEAR
4: DWELL AXIS2 100

ENDPROG

The first JUMP is not programmed correctly because (1) it is not followed by an intervening
Type 3 command, and (2) it is in the same block as another JUMP command. When a new
Block Number becomes active AFTER a Conditional JUMP command, Jump testing will occur
one final time.

Conditional Jump Example 2:
PROGRAM 2 AXIS1

VELOC 10000

ACCEL 10000
1: CMOVE 20000, ABS, LINEAR

JUMP CTLO1,3
2: PMOVE 40000, ABS, LINEAR [/CTLO1 tested only once
3: DWELL 100

199

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

ENDPROG

In the example above, The CTLO1 bit test occurs just once because the PMOVE following the
JUMP contains a new Block Number (2). However, changing the location of Block Number 2
causes CTL bit testing throughout the PMOVE following the JUMP, as seen in the following
example:

Conditional Jump Example 3:
PROGRAM 3 AXIS1

VELOC 10000
ACCEL 10000
1: CMOVE 20000, ABS, LINEAR
2: JUMP (CTLO1,3
PMOVE 40000, ABS, LINEAR [/CTLO1 tested throughout PMOVE
3: DWELL 100
ENDPROG

In this example, the CTLO1 bit is tested throughout the PMOVE because the PMOVE and
JUMP commands are in the same Block.

The DSM314 can perform a Conditional JUMP from an active CMOVE to a program block
containing a CMOVE or PMOVE without stopping. For the axis to jump without stopping,
the distance represented by the CMOVE or PMOVE in the Jump block must be greater than
the servo stopping distance. The servo stopping distance is computed using the present
commanded velocity and the acceleration parameters that would be in effect when the
jump block became active.

The axis will STOP before jumping if a Conditional Jump trigger occurs under any of the
following conditions:

e WhenaPMOVEis active

e When a CMOVE is active and the Jump destination block contains a CMOVE or
PMOVE representing motion in the opposite direction.

e When a CMOVE is active and the Jump destination block contains a CMOVE or
PMOVE representing motion in the same direction with insufficient distance for the
axis to stop.

e When a CMOVE is active and the Jump destination block contains a DWELL, WAIT or
END (program) command.

If the axis does STOP before a Conditional Jump, the current programmed acceleration and
acceleration mode will be used.

Unconditional Jumps do not force the axis to stop before jumping to a new program block.
Forexample, a CMOVE followed by a JUMP Unconditional to another CMOVE will behave just
as if the two CMOVEs occurred without an intervening Unconditional JUMP.

200

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

If Conditional Jump testing is active when the DSM314 command processor encounters a
CALL SUBROUTINE command, the axis will stop and terminate jump testing before the CALL
is executed.

If Conditional Jump testing is active when the DSM314 command processor encounters an
END SUBROUTINE command, the axis will stop and terminate jump testing before the END
SUBROUTINE is executed.

Jump Testing

Conditional jumps perform jump testing. If the CTL bit is ON, the jump is immediately
performed. If the CTL bit is OFF, the DSM314 watches the CTL bit and keeps track of the
JUMP destination. This monitoring of the CTL bit is called jump testing. If during jump
testing the CTL bit turns ON before a BLOCK command, another JUMP command, or a CALL
command is encountered, the jump is performed. These commands will end jump testing.

Example 7: Jump Testing

Consider the following two single-axis program section examples. In Example 1, the move
to position 2000 is completed before jump testing begins. The block number occurring
immediately after the JUMP command ends jumps testing. Thus, the duration for which the
CTL bit is monitored is very short. However, in Example 2, the JUMP command is
encountered before the CMOVE command. This starts the jump testing before motion
begins, and jump testing continues as long as the move lasts. If the CTL bit turns ON while
the move is being performed, the jump will be performed. After the move completes, the
next block number is encountered, which ends jump testing, and program execution
continues normally. If additional moves were programmed ahead of the next block number,
jump testing would continue during those moves until the next block number was
encountered.

Example 1 Example 2
ACCEL 5000 ACCEL 5000
VELOC 1000 VELOC 1000
1: 1:
CMOVE 2000, ABS, LINEAR JUMP CTLO1, 3
JUMP CTLO1, 3 CMOVE 2000, ABS, LINEAR
2 2

201

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Normal Stop Before JUMP

A conditional jump command is similar to Type 2 commands in that jump testing does not
start until the Type 3 command immediately after the JUMP is executed. If this Type 3
command would normally stop motion, then motion will stop before jump testing begins.
Type 3 commands that will stop motion are: DWELL, WAIT, ENDPROG, and moves in the
opposite direction.

Thus, even though the CTL bit may be ON before the block with the conditional JUMP and
Type 3 command is executed, axis motion will stop before program execution continues at
the jump destination. This stopping is NOT a Jump Stop, which is described in Example 10.

Example 8: Normal Stop Before JUMP

The following example contains a jump followed by a DWELL command. The DSM314,
because it processes ahead, knows it must stop after the CMOVE command. Thus, it comes
to a stop before the DWELL is executed. Since jump testing does not begin until the DWELL
is executed, testing begins after motion stops. Jump testing ends when the following
CMOVE begins due to the associated BLOCK command. The dashed lines in the velocity
profile indicate when jump testing takes place. In this example, the CTLO3 bit does not turn
ON during the program execution.

Figure 79: Normal Stop Before JUMP

1: ACCEL 5000
VELOC 10000
CMOVE 60000, INCR, LINEAR V
2. JUMP CTL03, 4
DWELL 4000
3: ACCEL 10000 / \
VELOC 5000 I Jume

| ;
CMOVE 15000, INCR, LINEAR I Testing

202

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Jumping Without Stopping

If the Type 3 command following a conditional jump is a CMOVE and the Type 3 command
at the destination is a move command with sufficient distance to fully decelerate to zero
when completed, the jump will be executed without stopping. This is the only way to sustain
motion when a jump is performed.

Example 9: JUMP Without Stopping

This is a simple example of a conditional jump from one CMOVE to another. While jump
testing the CTLO3 bit, the first CMOVE accelerates to the programmed velocity. Before the
dashed line, the CTLO3 bit is OFF, but at the dashed line the CTLO3 bit turns ON. Program
execution is immediately transferred to block 3 and the CMOVE there begins. Because the
velocity at the jump destination is different, the velocity changes at the acceleration
programmed of the jump destination block. Finally, as the second CMOVE completes,
velocity is reduced to zero and the program ends.

Figure 80: JUMP Without Stopping

1: ACCEL 2000
VELOC 10000 v
JUMP CTLO3,3
CMOVE 120000, INCR, LINEAR

3: ACCEL 20000
VELOC 5000 croson A t
CMOVE 15000, INCR, LINEAR

|
|

C1 I c2
I

203

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Jump Stop

A jump stop is a stop that is caused by a jump. When a jump stop occurs, the current
programmed acceleration and acceleration mode are used. Note that s-curve motion will
achieve constant velocity before beginning to decelerate. See the s-curve jump examples
for more details. There are two ways of generating a jump stop each described below.

A conditional JUMP triggered during a PMOVE will always generate a jump stop. Because a
PMOVE always stops before continuing to a subsequent motion, a jump stop always occurs
when a jump takes place during a PMOVE.

When a conditional jump trigger occurs during a CMOVE, however, a jump stop will not
occur if the motion programmed at the jump destination is a PMOVE or CMOVE
representing sufficient distance in the same direction. A jump stop will occur if the PMOVE
or CMOVE at the jump destination does not represent sufficient distance or represents
motion in the opposite direction.

In an s-curve move, a jump stop will do one of two things. If the jump takes place after the
midpoint of the acceleration or deceleration, the acceleration or deceleration is completed
before the jump stop is initiated. If the jump occurs before the midpoint of the acceleration
or deceleration, the profile will immediately begin leveling off. Once acceleration or
deceleration is zero, the jump stop begins. See the s-curve jump examples.

Example 10: Jump Stop

The following is an example conditional jump with a jump stop. An enhancement on
Example 5, DWELL, would be to watch an external CTL bit that would indicate a problem
with the positive motion. If the CTL bit never turns on, the profile for the following program
will be identical to the profile shown in the DWELL example. If the CTL bit turned on during
the first PMOVE or the DWELL, the reverse movement would immediately commence.

The following profile would appear if the CTL bit turned on during the first PMOVE, at the
dashed line. Because the first move completed early due to the CTL bit turning on, the
second move would not have to move as far to get back to 0 position as it did in the DWELL
example. Note that because the motion programmed at the jump destination is in the
opposite direction as the initial motion, the profile would be identical if the moves were
CMOVEs instead of PMOVEs.

Figure 81: Jump Stop
ACCEL 30000 v
VELOC 15000
1. JUMP CTLO9, 2 :
PMOVE 120000, ABS, LINEA I
DWELL 4000 P1
2: PMOVE 0, ABS, LINEAR /1 P> t
CTL09 ON

204

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Example 11: Jump Followed by PMOVE

In this JUMP example, the command after the JUMP is a PMOVE in the same direction. The
velocity profile below shows the acceleration and movement for the first CMOVE and the
deceleration to the PMOVE’s velocity. The CTLO1 bit, OFF when the PMOVE begins, turns
ON at the second dashed line. Motion stops after a PMOVE, even if a conditional jump goes
to another block. Thus the CTLO1 bit triggers a deceleration to zero before the final CMOVE
begins.

Figure 82: Jump Followed by PMOVE

1: ACCEL 2000
VELOC 8000
CMOVE 76000, INCR,
LINEAR v
2: ACCEL 1000
VELOC 4000
JUMP CTLO1, 3 o1 . 2
PMOVE 50000, INCR, ' '
LINEAR 76000
3: ACCEL 6000 CTLOT ON
VELOC 6000
CMOVE 6000, INCR, LINEAR
S-CURVE Jumps

Jumps during linear motion and jumps during s-curve motion at constant velocities
immediately begin accelerating or decelerating to a new velocity. Jumps during a s-curve
acceleration or deceleration, however, require different rules in order to maintain a s-curve
profile. What happens when a jump occurs during an s-curve move while changing velocity
depends on whether the jump occurs before or after the midpoint (the point where the
acceleration magnitude is greatest) and whether the velocity at the jump destination is
higher or lower than the current velocity.

S-CURVE Jumps after the Midpoint of Acceleration or Deceleration

If the jump occurs after the midpoint of the change in velocity, the change will continue
normally until constant velocity is reached; then the velocity will be changed to the new
velocity using the acceleration mode of the move at the jump destination.

205

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Example 12: S-CURVE - Jumping After the Midpoint of Acceleration or
Deceleration
In the following example, a jump occurs during the final phase of deceleration, at the dashed

line. The deceleration continues until constant velocity is reached and then the acceleration
to the higher velocity begins.

Figure 83: Jumping After the Midpoint of Acceleration or Deceleration

ACCEL 50000
VELOC 100000
1: JUMP CTLO1,3

CMOVE 500000, ABS, S- v
CURVE

2: VELOC 60000 |

CMOVE 500000, INCR, S- c1 | 3
CURVE I

_ t
3: VELOC 85000 CTLO1 ON /
ACCEL 100000

CMOVE 250000, INCR, S-CURVE

S-CURVE Jumps before the Midpoint of Acceleration or Deceleration

If ajump takes place before the midpoint of acceleration or deceleration, the result depends
on whether the velocity at the jump destination is higher or lower than the velocity before
the jump took place. In the first case, when accelerating but the new velocity is lower, or
decelerating and the new velocity is greater, the DSM314 will immediately begin reducing
the acceleration or deceleration to zero. Once at zero velocity, the DSM314 will use the
jump destination acceleration and velocity and change to the new velocity.

Example 13: S-CURVE - Jumping Before the Midpoint of Acceleration or
Deceleration

In the following example, during the acceleration of the first CMOVE, a jump takes place at
the first dashed line. Because the velocity at the jump destination is lower than the velocity
of the first CMOVE the DSM314 slows the acceleration to zero. Constant velocity, zero
acceleration, occurs at the second dashed line. There, the DSM314 begins decelerating to
the new velocity using the acceleration at the jump destination. Finally, the second CMOVE
finishes.

Figure 84: Jumping before the Midpoint of Acceleration or Deceleration

ACCEL 1000
WVELOC 50000

1: JUMP CTLO1,3 !
CMOVE 50000, INCR, S-CURVE [
3: VELOC 5000 :
ACCEL 10000 | cr c2
CMOVE 15000, INCR, S-CURVE ' { :
CTLO1 ON \ C2 Begins

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

S-CURVE Jumps to a Higher Acceleration while Accelerating or a lower
Deceleration while Decelerating

The second case involves jumping to a higher velocity while accelerating or a lower velocity
while decelerating. When this occurs, the DSM314 continues to the first move’s
acceleration or deceleration. This acceleration or deceleration is maintained, similar to be a
linear acceleration, until the axis approaches the new velocity. Then the normal S-curve is
used to reduce acceleration or deceleration to zero.

Example 14: S-CURVE - Jumping to a Higher Velocity While Accelerating or
Jumping to a Lower Velocity While Decelerating

In this example, a JUMP command is triggered during the initial phase of acceleration (at the
first dashed line) and the velocity at the jump destination is higher than that of the current
move. The first dashed line indicates the maximum acceleration of the first CMOVE. This
value is held as the axis continues to accelerate until it s-curves back to constant velocity.
Constant velocity, the second dashed line, indicates the beginning of the second CMOVE.
This move continues until it decelerates to zero at the end of the program.

Figure 85: Jumping to a Higher Velocity While Accelerating, or Jumping to a Lower
Velocity While Decelerating

ACCEL 50000

VELOC 30000
1: JUMP CTLO2, 2

CMOVE 150000, INCR, S-CURVE
2: VELOC 90000

ACCEL 25000

CMOVE 500000, INCR, S-CURVE

CTLO02 ON C2 Beains

207

User Manual
GFK-1742F

7.7.6

Programmed Motion

Chapter 7
Jan 2020

Other Programmed Motion Considerations

The following examples are not complete programs. For example, in many cases the
PROGRAM and ENDPROG statements are not shown. These statements (in correct context)
would need to be added to make the program compile successfully.

Maximum Acceleration Time

The maximum time for a programmed acceleration or deceleration is 131 seconds. If the
time to accelerate or decelerate is computed to be longer than this time, the DSM314 will
compute an acceleration to be used based on 131 seconds. To obtain longer acceleration
times, multiple CMOVEs with increasing or decreasing velocities must be used.

Example 15: Maximum Acceleration Time

The following two program examples are only valid for a DSM314 using a 2ms position loop
update time. They show a hypothetical problem with a very long acceleration time in
Example1, and a possible solution in Example 2. In Example 1 below, 240 seconds is required
to reach the programmed velocity of 24,000 at an acceleration rate of 100 (24000 + 100 =
240). Since this is greater than the DSM’s limit of 131 seconds per acceleration or
deceleration, the DSM will calculate a value within its limit. In this case, the DSM calculates
that to reach a velocity of 24,000 in 131 seconds, an acceleration of 183 would be required.
The Example 1 solid line velocity profile shows the higher (183) acceleration rate used by
the DSM. The dashed line profile in that drawing indicates the desired (programmed)
acceleration rate and velocity profile that could not be attained.

Figure 86: Maximum Acceleration Time Example 1

ACCEL 100 V| Actual Desired
VELOC 24000 Profile Profile

PMOVE 8000000, INCR, LINEAR __H\'/

t

One solution (which requires some extra calculations) for obtaining a low acceleration for a
long period of time breaks a move up into separate continuous moves (using CMOVE
commands), with each move’s acceleration time being less than 131 seconds. In the
problem introduced in Example 1, the programmed move would require 240 seconds each
for acceleration and deceleration. Dividing this time in half by using two moves with
acceleration or deceleration times of 120 seconds each, places the moves within the DSM’s
limit of 131 seconds. This scheme is used in the following example.

Example 2 shows how the result desired in Example 1 could be obtained by replacing
Example 1’s single move with four moves. Four moves are required since both the
acceleration and deceleration portions of the profile must each be divided into two moves.
To divide the total acceleration (or deceleration) time in half, calculate the distance at the
midpoint of either slope, when velocity is 12000, to be 720,000 user units.

208

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

The distance traveled during acceleration or deceleration is calculated using the formula:

Change in velocity x Required time

2

Distance traveled =

12,000 x 120

2

(For 240 seconds is needed to reach a velocity of 24,000, a velocity of 12,000 can be reached
in 120 seconds.) The initial CMOVE and the final PMOVE both use this distance. A second
CMOVE “takes over” at the midpoint of the acceleration slope from the first CMOVE and
accelerates to the target velocity of 24,000. A third CMOVE is required for dividing up the
deceleration portion of the profile. The final move, a PMOVE, “takes over” from the third
CMOVE at the deceleration midpoint distance (720,000 user units from the final position).
The third CMOVE, as it approaches its final position, will automatically decelerate to the
PMOVE’s velocity of 12,000. The dashed lines in the Example 2 drawing separate the four
moves. To calculate the distances of the second and third CMOVEs, subtract the distances
calculated for the first CMOVE and final PMOVE (720,000 each for a total of 1,440,000) from
the final distance of 8,000,000. This gives a remaining distance of 6,560,000, which is
divided equally between the second and third CMOVES (3,280,000 each).

720,000 =

Figure 87: Maximum Acceleration Time Example 2

ACCEL 100
VELOC 12000
CMOVE 720000, INCR, LINEAR v c{{hg&

Second i\ /
VELOC 12000 CMOVE Starts PMOVE
CMOVE 3280000, INCR, LINEAR Starts ; Starts
VELOC 24000 24000 !

]

CMOVE 3280000, INCR, LINEAR 12000 ! ! |
VELOC 12000 720000 4000000 7280000 8000000 t

PMOVE 720000, INCR, LINEAR

209

User Manual
GFK-1742F

71.7.7

Programmed Motion

Chapter 7
Jan 2020

Feedhold with the DSM314

Feedhold is used to temporarily pause program execution without ending the program,
often to examine some aspect of a system. It causes all axis motion to end at the
programmed acceleration. When Feedhold is ended, program execution resumes.
Interrupted motion will resume at the programmed acceleration and velocity.

Feedhold is asserted by turning ON the Feed Hold %Q bit and lasts until the %Q bit is turned
OFF. The Abort All Moves %Q bit turning ON or an error that would normally cause a stop
error will end feedhold as well as terminate the program. During Feedhold, jogging positive
and negative is allowed, but no other motion. When Feedhold is terminated and program
execution resumes, the DSM314 remembers and will move to its previous destination.

Example 16: Feedhold

The following example illustrates a motion profile when Feedhold is applied. The linear
move accelerates to the programmed velocity at the programmed rate. Feedhold is applied
at the dashed line, so velocity decreases at the programmed acceleration to zero. Then, a
Jog is performed using the Jog Minus %Q bit. This is evident because the jog velocity is
negative. Note that the acceleration used during the Jog is the current Jog Acceleration,
which is different than the programmed acceleration. Note also, the Feed Hold %Q
command must be applied during the entire duration of the Jog. After the jog motion has
ceased, the Feedhold is ended and the program continues to completion.

Figure 88: Feedhold Example

ACCEL 1000

VELOC 2000 |

PMOVE 12000, I

INCR, LINEAR I
|

J N\ t
Feedhold eedhold

Applied Removed

210

User Manual
GFK-1742F

7.7.8

Programmed Motion

Chapter 7
Jan 2020

Feedrate Override

Some applications require small modifications to a programmed velocity to handle outside
changes. A Rate Override %AQ immediate command, which is sent to the DSM through
ladder logic, allows changes to a programmed feedrate (velocity) during program
execution. (Details about the Rate Override command are found in Chapter 5.) When a
program begins executing, the override rate is initially set to 100%. Thus, changes to
feedrate before the execute program bit is turned ON will be ignored. However, a rate
override commanded on the same sweep as an execute program bit will be effective.

A percentage can be assigned to the feedrate override of from 0% to 120%. When a Rate
Override is commanded, the DSM314 internally multiplies the feedrate percentage by
programmed velocity to obtain a new velocity. If the axis is moving, the current move’s Jog
Acceleration Mode is used to change velocity to the new velocity. All future move velocities
will be affected by the feedrate change. Note that when a feedrate of 0% is applied, no
motion will be generated until a new feedrate is commanded. Also note the Moving %I bit
stays ON when the feedrate is 0%.

Rate Override has no effect on non-programmed motion such as Jog, Find Home, or Move
at Velocity.

Example 17: Feedrate Override

During execution of this program, feedrate changes of + or -10% are commanded. Dotted
lines indicate -10%, dashed lines indicate +10%.

Figure 89: Feedrate Override Example

ACCEL 1000
VELOC 6000
PMOVE 110000,
INCR, LINEAR

211

User Manual
GFK-1742F

7.7.9

Programmed Motion

Chapter 7
Jan 2020

Multi-axis Programming

Sync Blocks can be used in a multi-axis program to synchronize the axis motion commands
at positions where timing is critical.

Example 18: Multi-axis Programming

This example assumes that axis 1 controls vertical motion and axis 2 controls horizontal
motion. The objective is to move a piece of material from point A to point E as quickly as
possible while avoiding the obstacle that prevents a direct move between those points.

A simple way would be to move straight up from point A to point C, and then from point C
to point E. This sequence, however, wastes time. A better way would begin the horizontal
movement before reaching point C. It has been determined that after axis 1 has moved to a
position of 30,000, user units (to point B), axis 2 could then start and still clear the obstacle.
The program segment could be programmed as follows:

10: CMOVE AXIS1 30000, INCR, LINEAR

20: SYNC
PMOVE AXIS1 50000, INCR, LINEAR
PMOVE AXIS2 120000, INCR, LINEAR

When Block 10 is executed, axis 1 begins its 30,000-unit move while axis 2 pauses. When
the axis 1 move completes, two things occur: axis 1 begins the 50,000-unit PMOVE
commanded in Block 20 (SYNC) without stopping (because the first move was a CMOVE),
and axis 2 begins its 120,000-unit move. In the figure below, the axis 1 first move transfers
the part from point A to point B. At point B, axis 1 continues moving (performing its second
move) and axis 2 begins its move, bringing the part to point D. Axis 1 completes its second
move at point D and stops; however, axis 2 continues, and moves the part to point E.

Figure 90: Feedrate Override Example

0 AXIS 2 120,000

80,000 A
C D Part E
Mowve 2
‘........... .
30,000 OBSTACLE
Move 1
AXIST 0l

212

User Manual
GFK-1742F

7.7.10

Programmed Motion

Chapter 7
Jan 2020

If this program segment is not at the beginning of a program, and for some reason axis 2 has
not yet reached Block 20 when axis 1 has moved 30,000 counts, an error would occur. Axis
1 would continue to 80,000 counts, and the DSM314 would report a “Block Sync Error
during a CMOVE” in the Status Code.

Ifitis imperative that the axes synchronize at Block 20, changing Block 10 to a PMOVE would
guarantee synchronization, but then axis 1 would stop at 30,000 counts.

Parameters (P0-P255) in the DSM314

The DSM314 maintains 256 double word parameters (0 through 255) in memory. These
parameters can be used as variables in ACCEL, VELOC, DWELL, PMOVE, and CMOVE motion
commands. Be aware that range limits still apply, and errors may occur if a parameter
contains a value out of range. Parameters 216-255 are special purpose parameters. Some
of the special purpose parameters are automatically written by the DSM314. For example,
P224 is automatically updated when Position Strobe 1 on Axis 1 occurs. The following table
describes the function of the special purpose parameters.

Table 49: Special Purpose Parameters

Parameter Number | Special Purpose Function Axis Units
216-223 Reserved

224 Position Strobe 1 Axis 1 user units
225 Position Strobe 2 Axis 1 user units
226 Commanded Position at Follower Enable Trigger | Axis 1 user units
227 Follower Incremental Stop Distance Axis 1 user units
228-231 Reserved

232 Position Strobe 1 Axis 2 user units
233 Position Strobe 2 Axis 2 user units
234 Commanded Position at Follower Enable Trigger | Axis 2 user units
235 Follower Incremental Stop Distance Axis 2 user units
236-239 Reserved

240 Position Strobe 1 Axis 3 user units
241 Position Strobe 2 Axis 3 user units
242 Commanded Position at Follower Enable Trigger | Axis 3 user units
243 Follower Incremental Stop Distance Axis 3 user units
244-247 Reserved

248 Position Strobe 1 Axis 4 user units
249 Position Strobe 2 Axis 4 user units

213

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020
Parameter Number | Special Purpose Function Axis Units
250 Commanded Position at Follower Enable Trigger | Axis 4 user units
251 Follower Incremental Stop Distance Axis 4 user units
252-255 Reserved

Parameters are all reset to zero after a power cycle or after a DSM314 configuration is stored
by the host controller. Parameters can be assigned in three ways:

e The motion program LOAD command.
e The Load Parameter Immediate AQ command.

e The COMM_REQ function block. This is the preferred way if you need to send
multiple parameters per scan. The COMM_REQ function block is described in
Appendix B.

Assigning a value to a parameter overwrites any previous value. Parameter values can be
changed during program execution, but the change must occur before the DSM314 begins
executing the Type 3 command (Move, Wait or Dwell) previous to the Type 3 command that
uses the parameter. This is due to the pre-processing of Type 3 commands that occurs
within the DSM314. Note that a J[UMP command clears preprocessing and forces the
program commands at the jump target to be processed.

Below is an example of a motion program using Parameters. The values of Parameters 1-5
are pre-loaded with a COMREQ command from the host controller at least two program
blocks before usage.

(Remember that “program blocks” are not the same as sections of the motion program that
are labeled with the BLOCK # command.)

Block/Command/Data Comments
1: VELOCPO0O1 /[Set velocity of first move = value in Parameter 1
ACCEL P002 /| Set acceleration of first move = value in Parameter 2
CMOVE P003, ABS, LINEAR // Reach velocity of 2nd move (20000) at position = Par. 3
2: VELOC 20000 // Set velocity of second move = 20000
PMOVE 20000, INCR, LINEAR // Normal PMOVE
DWELL P004 [/ Dwell for Parameter 4 time
PMOVE P005, INCR, LINEAR // PMOVE to value in Parameter 5
(* Strobe #1 occurs on Axis-1 during move to Param. 5 position *)
DWELL 1000 // Dwell for one second
LOAD P006,2000 // Load Parameter 6 parameter
3: MOVEP224, INCR, LINEAR /| Move to strobed position for Strobe #1 on axis-1
DWELL 2000 // Dwell for two seconds

PMOVE P006, ABS, S-CURVE /| Final stop position = value in Parameter 6

214

User Manual
GFK-1742F

7.7.11

Programmed Motion

Chapter 7
Jan 2020

Calculating Acceleration, Velocity and Position Values

One method of determining the value for APM or DSM motion program variables such as
Acceleration, Velocity or Position is to plot the desired move or move segment as a velocity
profile. A velocity profile plots time on the horizontal axis of a graph and velocity on the
vertical axis. The key to understanding profile generation is to break the complete move into
smaller segments that may be analyzed geometrically. Most applications will use the
economical trapezoidal move, velocity profile as illustrated below. To move as quickly as
possible, use a triangular velocity profile if the servo has sufficient speed range. A triangular
move would accelerate half the distance then decelerate the remaining half. Another
alternative is to use a trapezoidal profile with a shorter slew segment.

Kinematic Equations

Kinematics is the branch of mechanics that studies the motion of a body or a system of
bodies without consideration given to its mass or the forces acting oniit. The following table
includes transformations of the basic linear equations as applied to the acceleration portion
of motion profiles. Use these formulae to calculate the velocity and acceleration for the
acceleration portions of the move.

Table 50: Linear Equation Transformations

iven A, X AV At V,t V, X Xt
Solve For
Acceleration V/t V22X X/
Velocity V24X At 2X[t
X (Distance) V2[2A A2 | Vt]2
time W V/A 2X|V

Figure 91 provides an example of a trapezoidal move. Beginning at zero velocity the axis
accelerates in a positive direction (ta), run (slew) at velocity for some time (t), then
decelerate back to zero velocity (td). That’s a complete move or move segment. By looking
at the figure, you can easily separate the different portions of the move. A common rule of
thumbis to divide the trapezoidal move into three-time portions, one-third for acceleration,
one-third at slew velocity and the remaining third to decelerate. The slew (X;) section of an
equally divided trapezoidal velocity profile represents 2 of the distance moved and the
acceleration and deceleration portions each represent V4 of the total distance. The rule of
thirds minimizes the RMS torque current in the motor and is the most economical use of
energy.

215

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

Figure 91: Trapezoidal Move

Trapezoidal Move V, -
+Limits max motor speed
-Higher accel torque than triangle move
-Symmetrical profile (1/3, 1/3, 1/3 time)
maximizes power transfer to load
*Most common for long moves

Velocity

A = acceleration time

D = deceleration

X = distance

V= velocity peak Torque T,
t, = time acceleration

t, = time at slew velocity
ty = time deceleration

T, = acceleration Torque
T, = deceleration Torque
X, = acceleration distance _
X, = slew distance Equations X= Vo (0.513 Tt 0.9)
X, = deceleration distance X

Ty

Vi (0.5¢t, +t,+0.5¢t)

a=Vop p=Ym
a ILc\‘

Once the move segment outline is drawn, you will need to examine specifications or
physical restrictions applicable to the move. For instance, the move may have to complete
in a certain time interval (t, + t; + tq) or move a fixed distance (X). The maximum velocity
(Vpi) of the servomotor is one example of a physical limitation. Given any two known values
of the acceleration portion of the move segment, a remaining variable can be found using
the kinematic equations as illustrated in the example below.

Trapezoidal Velocity Profile Application Example

For this example, assume that a complete move of 16 inches must be made in three seconds
and the maximum motor velocity, translated through the gearing is 15 inches per second.
Using the rule of thumb for trapezoidal moves, divide the move’s time into thirds: t,=1 sec,
ts=1secand ty= 1 sec. You can also subdivide the 16-inch move into three distances. The
slew (X;) section of an equally divided trapezoidal velocity profile represents %5 of the
distance moved and the acceleration (X,) and deceleration (X4) portions each represent V4
of the total distance: X, =4 in, Xs =8 in and X4 =4 in.

To calculate peak Velocity (Vpi), the first acceleration portion of the move must travel a
given distance (X,) in a given time (t,). From the above Kinematic Velocity formula (2X/t)
using the given, X,=4 inches and t, = 1 second, (2*4 inches) [1 second = 8 inches/second.

To calculate Acceleration the simplest formulais (V/T)=(8 inches/second | 1 second)=8
inches/second/second.

The Position (Distance = X) is the entire distance moved (X, + X, + X4) or 16 inches.

216

User Manual
GFK-1742F

Triangular Velocity Profiles

Chapter 7

Jan 2020

The triangular velocity profile minimizes servo acceleration rate and requires a higher

servomotor velocity when compared to a trapezoidal profile of the same distance and

time. Use a triangular profile for fast short moves.

Figure 92: Triangular Velocity Profile

Position = Area

/

Ty

time

Equations: ;
Vpk
! V. (t +t;)
x=— +
5 pkVa Tid Velocity
. 2(x)
7= _
i (t, +13) Torque
Vor
="

Td

Non-Linear or S-Curve Acceleration

S-Curve or jerk limited acceleration calculation is simple to do if the linear calculation is
accomplished first. The APM and DSM motion controllers use 100% jerk limiting. To convert
a linear acceleration to 100% jerk limited acceleration you either double the Acceleration
value (2*A) or double the time used for acceleration (2ta). Using S-Curve acceleration at the
same acceleration rate (A) as linear acceleration will require twice the time (ta) reaching
velocity. If the time duration of the move must remain the same and the servo has sufficient
peak torque, use twice the acceleration (2*A) to reach velocity in the same amount of time.

Figure 93: S-Curve Acceleration

Equations: Velocity

e

a Acceleration

a
4x.f s \
t, =
V

ta

ts

Programmed Motion

217

User Manual
GFK-1742F

7.7.12

Programmed Motion

Chapter 7
Jan 2020

Motion Editor Error and Warning Messages

The editor will generate three types of error messages; syntax errors, semantic errors, and
warnings. These are explained below.

The editor will only generate program code if your source motion program contains no
syntactic or semantic errors. If the editor detects unrecognized syntax or semantic errors, it
will generate an error message that can be used to troubleshoot the program. The last page
of this chapter discusses this subject (“Using Error Messages to Troubleshoot Motion
Programs”).

Error messages displayed in the Status window contain a numeric error code. The following
listing matches error code, error description, and common cause information.

The Motion Editor enforces maximum limits for position, velocity, and acceleration based
8:1 uu/cts scaling.

Syntax Errors

The programming software’s motion editor translates programs into the code used by the
DSM314. If the source code violates the syntactic rules, the editor cannot recognize the
code and generates syntax errors. Syntax errors will attempt to describe the error source.

Semantic Errors

This section describes parse errors reported by the motion parser and their typical causes.
(M200) Undefined identifier

Text string is not a recognized motion program variable or keyword.

(M201) Parameter register must be in range of P0O00 - P255

Motion program referenced a parameter register outside the range of P000 - P255.
(M203) CTL variable must be inrange CTLO1 - CTL32 (DSM314)

Motion program referenced a CTL bit outside the valid range.

(M204) Invalid motion program input

Motion program file contains an invalid character. Motion program files must contain only
ASClI text or white space.

(M210) Hexadecimal constants must be in range of 16#0 - 16#FFFFFFFF

Motion program contains a hexadecimal number outside the valid range.

(M211) Binary constants must be in range of 0 to (2732)-1

Motion program contains a binary number outside the valid range. A binary number
cannot contain more that 32 binary digits.

(M212) Integer constants must be in range of 0 to 4294967294

Motion program contains an unsigned integer value that cannot be represented in 32 bits.

218

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

(M213) Signed integer constants must be in range of -2147483648 to 2147483647
Motion program contains a signed integer value that cannot be represented in 32 bits.
(M214) SYNC Statement is only valid in multi-axis programs and subroutines

A single-axis motion program or subroutine attempted to define a sync block.
(M215) Multi-axis programs do not support Axis 3 or 4

Commands in multi-axis programs can only reference axis 1 or 2.

(M220) Specified axis is out of range

A single-axis motion program can only reference axis 1, 2, 3, or 4.

(M221) Acceleration must be inrange 1 - 1073741823

An ACCEL command has specified an acceleration outside the valid range.

(M222) Velocity must be inrange 1 - 8388607

A VELOC command has specified a velocity outside the valid range.

(M223) Position must be in range -536870912 — 536870911

A CMOVE or PMOVE command has specified a position outside the valid range.
(M224) Dwell must be in range 0 - 60000

A DWELL command has specified a dwell outside the valid range.

(M225) Block number must be in range 1 - 65535

A motion program or subroutine has attempted to define a block number outside the valid
range.

(M230) Must specify an axis in a multi axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a multi-axis program or
subroutine must specify an axis.

(M231) Cannot specify axis in a single-axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a single-axis program or
subroutine must not specify an axis.

(M233) Acceleration reassignment without intervening move command

Itisillegal to change the acceleration for a given axis if there is not an intervening PMOVE or
CMOVE command.

(M234) Velocity reassignment without intervening move command

It is illegal to change the velocity for a given axis if there is not an intervening PMOVE or
CMOVE command.

(M235) Block number already defined in this program unit
The motion program or subroutine has attempted to define a block number that has already

been defined.

219

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

(M236) Jump destination block not defined

The motion program or subroutine has a JUMP statement to a block number that has not
been defined.

(M237) Call destination subroutine not defined
The motion program or subroutine contains a call to a subroutine that has not been defined.
(M238) Program must beinrange 1 -10

A PROGRAM statement is attempting to define a program number that is outside the valid
range.

(M239) Attempt to redefine program. Program already defined

A PROGRAM statement is attempting to define a program using a program number that is
already defined.

(M240) End program definition with ENDPROG statement

APROGRAM has been terminated with an ENDSUB statement, or an ENDSUB statement was
encountered within a program.

(M242) Missing ENDPROG statement

APROGRAM had not been terminated with an ENDPROG statement when the end of file was
encountered.

(M243) Subroutine must be in range 1-40

A SUBROUTINE statement is attempting to define a subroutine number that is outside the
valid range.

(M244) Attempt to redefine subroutine. Subroutine already defined

A SUBROUTINE statement is attempting to define a program using a subroutine number
thatis already defined.

(M245) End subroutine definition with ENDSUB statement

A SUBROUTINE has been terminated with an ENDPROG statement, or an ENDPROG
statement was encountered within a subroutine.

(M246) No subroutine is being defined
The program block contains an ENDSUB command, but there is no open SUBROUTINE.
(M247) Subroutine cannot call itself

The DSM does not support any kind of recursion. Once invoked a subroutine cannot call
itself or be called by a subroutine that it has invoked.

(M248) Axis definition of subroutine must match caller
An attempt has been made to call a single-axis subroutine from a multi-axis program or

subroutine, or call a multi-axis subroutine from a single-axis program or subroutine.

220

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

(M249) Already defining program or subroutine

A PROGRAM or SUBROUTINE statement has been encountered within an unterminated
PROGRAM or SUBROUTINE.

(M280) Instruction limit exceeded, max 1000

A motion program block can contain no more that 1000 program statements. This error is
issued if the number of statements exceeds that limit.

(M281) File must contain at least one program

A motion program block must contain at least one PROGRAM; otherwise, there is no way to
invoke it. This error is issued if a motion program block does not contain any PROGRAMs.

(M282) Statement must be within a program or subroutine

This error is issued if motion program commands occur outside a PROGRAM or
SUBROUTINE.

(M283) This instruction is invalid for the specified module type
A motion program block contains an instruction that is invalid for the destination module.
(M293) Maximum error count exceeded.

The motion program parser reports up to 30 errors when parsing a motion program block.
When that limit is reached, this error is issued and no more errors are reported.

(M300) Parse directives must precede any executable statements

A #pragma directive must be issued at the beginning of the motion program block, i.e.
preceding any motion program statements.

(M301) Invalid directive option
An invalid #pragma directive has been specified.
(M302) Invalid directive parameter

An invalid option has been specified as #pragma directive parameter.

Warnings

Warnings are generated for code that seems questionable but does not specifically cause
an error. This section describes parse warnings reported by the motion parser and their
typical causes.

(M482) Unexpected end of program: unclosed comment
A comment was not terminated when an end of file was encountered.
(M483) Nested comments.

The motion parser does not support nesting comments. A warning is issued if a comment
is defined within a comment.

221

User Manual
GFK-1742F

Programmed Motion

Chapter 7
Jan 2020

(M490) Program contains no executable statements

Awarning is issued if a program block contains no executable statements.

Using Error Messages to Troubleshoot Motion Programs
After creating motion programs or subroutines in the Motion Editor window, you can check
for basic errors by clicking the Block Check icon @ on the toolbar.

The editor checks the motion program block and report any errors it detects in the
Information window. The next figure shows an example of an error detected during the
check.

Figure 94: Using Error Messages to Troubleshoot Motion Programs

& VersaPro - test102 - [Part1_blk] |_[5] x]
@ File Edit View Inseit Folder PLC Tools Window Help -15]x]
dla ZEl@| 1|u]e] 2|o]x] 8] ¥ ol|| Fmmmlale| S <
[1t n] olo]lo|e]e|w] [F|E _||| E]lE] |] ;J,|ﬂ|2;,| [» ;‘sl;ﬁll’l _||
PROGRAM 2 AXIS1
ACCEL 500000 3 tesioz
YELOC 5000 1ii Hardware Configuration
g%gz% Eéggnuu, ABS. LINEAR [E Varisble Declarations
| LOAD P215, 305419896 MaIN - LD
. e | FMOVE AXIS1 8388607, INCR, S-CURVE Pat] -MP
Cursor ENDPROG >
5] PartiLL - LL
-
: : — or: (M2 Cannot specify
nghhghIEd Ho object f1le generated
El’l’Dl’ \/IESSHGB Partl — 1 error(s), 0 warning(s).
B - | Syntax check summary. —-—————————
Total errors: 1
Total warnings: 0
| V]_General A Find n_Cross Relerence L<1 D
— T T T T 5 — — T -1 71
Global Local All System Temporary u _>[
For Help, press F1 777 Disconnected | [

aElalll &‘\nhnx er:msollEIannkl ¥ Microsoft Word - dsmive | FJversaPro - test102 .. GM\CIGSDH Photo Editor - @Eﬂ ‘ 12:03 PM

The error shown in the above figure, “Error: (M231) Cannot specify axis in a single-axis
program: 1,” refers to the last line of the program, just before the ENDPROG statement.
Notice that AXIS1 is found on this line. Since PROGRAM 2 is a single-axis program, the use
of axis numbers within the program is not allowed so an error was generated.

In the above example, the error message was double clicked, as indicated by the fact that it
is highlighted in reverse video. When this is done, the cursor jumps to the place in the
program that produced the error. You will note the presence of the cursor at the start of the
line containing the AXIS1 statement.

For further help in troubleshooting errors, the “Motion Editor Error and Warning Messages”
section of this chapter lists common causes for the various error codes. For example, the
listing for error (M231), seen in the example above, states:

(M231) Cannot specify axis in a single-axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a single-axis program or
subroutine must not specify an axis.

222

User Manual
GFK-1742F

Chapter 8
Jan 2020

Chapter 8: Follower Motion

8.1

Follower Motion

Configuring the DSM314 for Follower Control Loop = Enabled (in the configuration software
Axis Configuration tab) allows each Servo Axis (slave) to respond to a Master Axis input using
aprogrammable slave: master ratio. The DSM314 defines the slave: master ratio as the ratio
of two integer numbers A and B. The basic formula for computing Follower motion is:

Follower Servo Axis motion (slave axis) = Master Axis motion x (A/B)
or
slave : master ratio = A : B ratio

If a Jog, Move at Velocity or Execute Motion Program command is also initiated, the axis
motion will represent the combination of the Master Axis motion and the internally
commanded motion. This Chapter provides details of servo motion related to the Master
Axis input. Refer to Chapter 9 for additional information about combined Follower and
commanded motion.

When the Enable Follower %Q bit is turned ON, an axis will immediately begin following the
selected Master Source unless a Follower Enable Trigger input has been selected. If a
Follower Enable Trigger input has been selected, then the Enable Follower %Q bit must be
ON and an OFF to ON transition of the trigger input must occur. The external trigger input
CTLO1 - CTLO32 is selected in the configuration software.

The DSM314 always operates the follower axis in “ramp makeup” mode. If the master axis
has a nonzero velocity when the follower is enabled, the slave axis will accelerate at the
configured Ramp Makeup Acceleration to a speed that allows it to catch up to the master
axis.

Master Sources

A DSM314 Servo Axis can be configured to follow any two of eight possible master input
sources. The two sources are identified as Source 1 and Source 2. A Follower Master Source
Select %Q bit determines whether Source 1 or Source 2 is the active source. The available
selections for Source 1 and Source 2 are:

e Axis 1 Commanded Position
e Axis 1 Actual Position
e Axis 2 Commanded Position
e Axis 2 Actual Position
e Axis 3 Commanded Position
e Axis 3 Actual Position
e Axis4 Commanded Position

e Axis 4 Actual Position

223

User Manual
GFK-1742F

8.2

8.2.1

3.3

Follower Motion

Chapter 8
Jan 2020

Note that follower motion is summed with Jog, Move at Velocity, or Motion Programs. If a
slave axis is following a master input at velocity V1, and a Jog is commanded at velocity V2,
the axis will move at velocity V1 + V2.

External Master Inputs

Actual Position for Axis 1 - Axis 4 represent external master axis sources. An encoder
connected to the axis or the feedback of a servo system may be used as an actual position
source. The DSM314 follower loop allows a slave axis to follow a selected external source as
shown in this example:

Example 1: Following Axis 3 Actual Position Master Input

In this example, a graph of velocity (v) versus time (t) shows the velocities of the master
input (Actual Position 3), and the slave axis that is following the master. The DSM314 is
configured with Follower Master Source 1 = Actual Position 3 and the Select Master Source
%Q bit is OFF. The A:B ratio is 1:1. The velocity profile of the following (slave) axis is identical
to the masterinput.

Figure 95: Following Encoder 3 Master Input

V' Vv
AB
Ratio
=11
Master Follower

Internal Master Axis Command Generators

Commanded Position for Axis 1 - Axis 4 represent internal master axis sources. The DSM314
follower loop will allow a slave axis to follow a selected internal command source as shown
in this example:

224

User Manual
GFK-1742F

8.3.1

8.4

Follower Motion

Chapter 8
Jan 2020

Example 2: Following an Internal Master command

In this example, Axis 1 of the DSM314 is configured with Follower Master Source 2 =
Commanded Position 2 and the Select Internal Master %Q bit is ON. The A:B ratio is 1:2.
Axis 2 is commanded to Move at Velocity 12000 and then 0. Axis 1 follows axis 2 at half of
the axis 2 velocity and acceleration and moves only half the distance that axis 2 has moved.

Figure 96: Following Servo Axis 2 Encoder

\'% Vv

AB

Ratio
=12 /—\

Axis 2 (Master) t Axis 1 (Follower) t

A:B Ratio

A DSM314 axis following a master input can do so at a wide range of slave : master (A:B)
ratios. The “A” value can be any number from -32768 to 32767. The “B” value can be
anywhere between 1 and 32767. The magnitude of the A:B ratio can be from 1:10,000 to
32:1. Thus very precise ratios such as 12,356:12,354 or 32,000:1024 can be used.

The Follower A/B Ratio %AQ command can be used to change the A:B ratio at any time,
even while following. However, an invalid ratio will generate a status error and be ignored.
An invalid ratio is a ratio with B equal to or less than zero or A:B magnitude greater than
32:1 orless than 1:10,000.

When following with a non 1:1 ratio, the velocity profile of the master and follower will
look somewhat different. Horizontal lines, indicating constant velocity, and slanted lines,
indicating acceleration and deceleration, will be different. If the A:B ratio is less than 1:1,
the follower velocity and acceleration will be less than the master. Likewise, if the A:B ratio
is greater than 1:1, the follower velocity and acceleration will be greater than the master.
The duration of motion, and time that the slave axis will accelerate, decelerate, or stay at
constant velocity are the same for the master and follower.

The distance moved, which in a velocity profile is the area between the graph and the time
axis, will be that of the master multiplied by the A:B ratio. If Ais zero, no following motion
will be generated. If A is negative, the following axis will move with the direction of motion
reversed.

225

User Manual
GFK-1742F

8.4.1

Follower Motion

Chapter 8
Jan 2020

Example 3: Sample A:B Ratios

All of the following samples are following the master source input at various A:B ratios.

Figure 97: Sample A:B Ratios

I

AN

—

B /St

N

Master Source Follower Axis

AB Ratio =12

=

RN

—

i

—

_/ t
Follower Axis
AB Ratio = 56

Follower Axis
AB Ratio =4:3

N ‘
Follower Axis
A:B Ratio = -2:3

_/ t

Follower Axis
AB Ratio =-1:1

Follower Axis Follower Axis
AZB Ratio = 221 AB Ratio= 13

o
|

226

User Manual
GFK-1742F

8.5

8.5.1

Follower Motion

Chapter 8
Jan 2020

Example 4: Changing the A: B Ratio

One example of variable A:B ratios is to use one ratio while moving positive, and another
when moving negative. Note that determination of positive and negative velocity and
update of the A:B ratio must be done in the host controller or the DSM314 Local Logic
program. In the profile below, the following axis uses a 2:1 ratio when moving positive and
a 1:2 ratio when moving negative.

Figure 98: Changing the A:B Ratio

v Vv

/—/_K Ratio 2:1 \
Lt e

Master Source Following Axis

Velocity Clamping

Velocity clamping is available using the Velocity Limit set in the Configuration software.
When the master velocity exceeds the configured limit, the following axis will continue to
move at the limit velocity multiplied by the A:B ratio. The Velocity Limit %I bit is set and a
status error is generated to indicate that the slave axis is no longer locked to the master
input positioning. The slave axis has essentially fallen behind the master input.

Example 5: Velocity Clamping

The Velocity Limit is set to 100,000 in this example. Thus, the slave axis velocity is clamped
at 100,000 user units/sec in either direction. When the master axis peaks greater than the
limits, the following axis stays at the limit. After the master slows to under the limit, the
following axis continues tracking the master axis velocity. Counts generated in excess of the
Velocity Limit are lost to the follower. The horizontal dashed lines indicate the velocity
limits. The shaded area indicates the times when the In-Velocity Limit bit is ON and the
following axis is falling behind the master.

Figure 99: Velocity Clamping

v

Ratio
1:1

Master Axis Following Axis

227

User Manual
GFK-1742F

8.6

8.6.1

8.7

Follower Motion

Chapter 8
Jan 2020

Unidirectional Operation

Setting the axis Command Direction configuration to Positive Only or Negative Only results
in unidirectional follower motion. Any master axis counts in the zero limited direction are
ignored. No error is generated by counts in the zero limited direction. The In Velocity Limit
%l bit, however, does reflect the presence of a master command in the zero limited
direction.

Example 9: Unidirectional Operation

In this example, the Command Direction configuration is set to Positive Only. As shown in
the velocity profile below, the slave axis follows the positive counts, butignores the negative
counts. Note that when the master is moving negative, the In Velocity Limit %I bit is ON, but
no status error is generated.

Figure 100: Unidirectional Operation

v V

/N~ LN

Master Source Following Axis

Enabling the Follower with External Input

Any CTL bit CTLO1- CTL32 can be configured as an enable trigger for the follower axis. If a
CTL bit source is configured as an external faceplate input, that input can be used to start
the follower. When no input is selected, the follower is enabled and disabled directly by the
Enable Follower %Q bit. When an input is selected for the Enable Trigger and the Enable
Follower %Q bit is set, the next positive transition of the defined input will instantly enable
the follower. The follower will remain enabled until the Enable Follower %Q bit is cleared.
The faceplate 24v inputs have 5 ms filters that result in a Follower Enable Trigger response
time of 5-7 milliseconds. The faceplate 5v inputs do not have these filters and will provide
an Enable Trigger response time of 2 millisecond or less.

When the Enable Follower trigger occurs, the Commanded Position at that pointis captured
in a parameter register so that it can be used in a Programmed Move command. The
position is captured in parameter 226 (for Servo Axis 1), parameter 234 (for Servo Axis 2),
parameter 242 (for Servo Axis 3) or parameter 250 (for Servo Axis 4).

Follower Enabled status is returned in a %I bit for each axis.

228

User Manual
GFK-1742F

3.8

8.9

8.10

Follower Motion

Chapter 8
Jan 2020

Disabling the Follower with External Input

Any CTL bit CTLO1- CTL32 can be configured as a Disable Trigger for the follower axis. The
triggerinputis tested only when the Enable Follower %Q bitis ON. When the Enable Follower
%Q bit is ON, an OFF to ON transition of the trigger bit will disable the follower. Turning OFF
the Enable Follower %Q bit immediately disables the follower, regardless of the disable
trigger configuration.

Follower Disable Action Configured for
Incremental Position

Configuring the Follower Disable Action for Inc Position allows the follower axis to perform
an Incremental Registration Move. Disabling the follower with the Enable Follower %Q bit or
optional Disable Trigger will cause the axis to continue at its present velocity, then
decelerate and stop after a specified distance has elapsed. The incremental distance is
specified in a parameter register for each axis:

P227 = Axis 1 Incremental distance
P235 = Axis 2 Incremental distance
P242 = Axis 3 Incremental distance
P250 = Axis 4 Incremental distance

The incremental distance represents the total actual position change that will occur from
the point where the follower is disabled until it stops. Superimposed motion commands
(Jog, Move at Velocity or Motion Programs) should not be active during a Follower
Registration Move.

Follower Axis Acceleration Ramp Control

For applications where the Follower is enabled after the Master command is already up to
speed, the Follower Ramp feature can be used to apply a controlled acceleration rate to
bring the follower axis up to speed. This may be done without losing any Master command
counts from the point at which the Follower was enabled. During the automatically
generated Follower Ramp Control make-up move, the acceleration/deceleration does not
exceed the configured Follower Ramp Acceleration value and provides a smooth motion.
When the follower is enabled, the slave axis is ramped up to the master velocity at the active
configured Follower Ramp Acceleration rate. This function is most useful when the master
source is in motion before the follower mode is enabled. In addition to the host controller
Enable Follower %Q bit, a CTL bit (CTLO1-CTL32) may be configured as the enable follower
signal for position registration functions. When the Enable Follower %Q bit is ON, then the
CTL bit chosen acts as a rising edge trigger to enable follower mode. After Follower is
enabled, only the host controller Enable Follower %Q bit controls the active state of the
following function. When the follower axis is enabled to a moving master source, some
master source counts cannot be used immediately. The master counts that accumulate
during acceleration of the follower axis are stored. When the follower axis reaches the

229

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

master velocity, they will be inserted during make-up distance correction motion. This
motion has an automatically calculated trapezoidal velocity profile determined by the
Follower Ramp Distance Makeup Time, the amount of accumulated counts, and the
configured Follower Ramp Acceleration. Set the Follower Ramp Distance Make-up Time to
the desired time in the configuration software or it can be changed with the host controller
%AQ Command 42h.

If the Follower Ramp Distance Makeup Time is too short, then the automatically generated
velocity profile is triangular in profile. If during the distance correction velocity exceeds 80%
of the configured Velocity Limit, then the automatically calculated move velocity will be
clamped at 80% of the limit value. Clamping the makeup move velocity at 80% of the
velocity limit allows the system some reserve velocity capacity for continued tracking of the
master source velocity. In both cases a warning message is reported, and the real distance
make-up time is longer than programmed, but the distance is still corrected properly.

Setting a Follower Ramp Distance Make-Up Time of 0 allows the Ramp feature to accelerate
the axis without making up any of the accumulated counts. In this instance velocity will not
exceed the master velocity. For applications where lost counts do not matter, set the
distance make-up time = 0.

By default, the superimposed motion profile that is automatically generated by the follower
ramp function (with non-zero makeup time) is trapezoidal using the Follower Ramp
Acceleration and a distance derived from the active Ramp Makeup Time.

The value of the Velocity Limit may affect functionality differently depending on the
relationships of the master source velocity. The following case examples illustrate these
points.

Case 1: The master source velocity is less than 80% of the configured Velocity Limit and the
makeup time (Mkup Time) is a long enough interval so that the resultant velocity remains
less than 80% of the VIim. This is the preferred operation; no errors are reported, and the
over speed move of the ramp function occurs within the specified makeup time. The
follower axis velocity will not exceed 80% of the Vlim unless the master source velocity
increases.

Case 2: The master source velocity is below 80% of the configured Velocity Limit but the
makeup time interval is too short to allow operation as in case 1. A status only error (ECh)
will be returned when the follower velocity matches the master command velocity. The
makeup move will accelerate using the active Follower Ramp Acceleration to 80% of the
velocity limit (Vlim). The makeup move will occur, and all accumulated counts stored during
initial acceleration will be used.

Case 3: The master source velocity is greater than 80% of the configured Velocity Limit when
the follower velocity matches the master command velocity. A status only error (EAh) is
returned and no makeup correction move is attempted.

230

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

Case 4: At the time when the follower velocity matches the master command velocity and
the makeup move is to occur and conditions are the same as in Case 1 or Case 2 and the
makeup move has initiated, the master source increases to >80% of the Velocity Limit. The
amount of accumulated counts and the active makeup time value will determine if the
makeup move will complete in the specified makeup time. A status only error (F2h) will
occur if the combined master command velocity and the makeup move velocity reach 100%
of the velocity limit. The master command velocity will not exceed 100% of the Velocity
Limit value. Accumulated counts may be lost and the makeup move will not complete.

The Follower Ramp Active %l bit indication is turned on while the ramp control is in effect for
both the ramp up/make-up and ramp down.

The Follower Enabled and Follower Ramp Active %l bits can be monitored by the host
controller to determine which part of the follower ramp up/ramp down cycle is active. The
following figure shows the state of Follower Enabled and Follower Ramp Active during a
follower cycle.

Figure 101: Follower Ramp Up/Ramp Down Cycle (Case 2)

Follower
Disabled
T Make- up distance }a ©
Velocity|
}*— Make- up time —'-l
0 — :
Time
Fallower
Enabled
Follower

Ramp Active | - |

The programmed make-up time can be too short for the required distance correction. In
this case a warning error is reported (in the point B of the trajectory), but system continues
acceleration up to the speed, insuring the minimum possible distance correction time. The
velocity profile for such case is shown on the figure 106.

231

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

Figure 102: Follower Ramp Up/Ramp Down Cycle - Case 2 with make-up time too
small.

C
Follower
T Make-up Disabled
B distance
Velocity | make-up
time
0 —

Time

During the ramp phase of the distance correction, the velocity limit is controlled. If
calculated velocity is too high, then the velocity is clamped, and warning error code is set (in
the point C of the trajectory). Figure 107 shows the velocity profile during the follower ramp
cycle for this case.

Figure 103: Follower Ramp Up/Ramp Down Cycle - case with active velocity limit.

Time

| Constant
max Vel=0.8"VIim : C : Eoll
________ ollower
T | Make-up | Disabled
B [distance | e
Welocity ! make-u !
| ake-up |, i
/. ! time |
| Lo
| | i
| I —
| P i
| | : i

If the acceleration time (sector BC of the trajectory in figure 107) exceeds 128 seconds, then
another warning error will be reported. In this case the distance also will be corrected
accurately.

232

User Manual

GFK-1742F

8.10.1

Follower Motion

Chapter 8
Jan 2020

Follower Mode Command Source and Connection
Options

The diagrams on the following pages illustrate a variety of Master axis and Follower slave
axis loop connection options.

The diagram below illustrates the three DSM314 analog axes connected in parallel with
Actual Position for Axis #4. The reader should note that with this configuration, the Local
Logic function can be run. This is because the command generator for axis #4 is not required
for this configuration. The Master Source Configuration items are all set to Actual Position
Axis #4. This is not a requirement. However, it does eliminate a source of error due to the
master source select bit being set incorrectly.

Figure 104: 3-Axis Analog Follower | Parallel Structure | Follower Source = Actual
Position 4

/™ Actual Position
(| -
_ Axis #4

Feed Forward
. — | Ratio ,| Position ® Servo R;J—NKM\I f.«:g:;
——p= AB Loop . Amplifier | / -
Master Enable — - s
Source Follower
Sglect Axis #1 Motion Jog/
Axis #1
Program Move at -
Velocity r/— N
.\1 | Encoder
Slave Axis #1 -
Feed Forward
| Sl
P - — — ave
—ap Ratio . Position /-M ' Motor
> AB Loop o/ Axi
Master Enable 7 s
Fy
Source Follower
f:i"eﬁ Axis #2 Motion Jog/
s #2
Program Move at e
Veloci
ty :1/2\, Encoder
_ NS
Slave Axis #2
Feed Forward
| ™~ sl
- - — ~_ TN ave
] Ratio - Position L) Sen_.fo > M} Motor
——p AB Loop — Amplifier _— N Axista
Master Enable ry - T |
Source Follower ~
Select Axis #3 Motion Jog/
Axis #3 Program Move at -
Velocity < 3 \: Encoder
A
Slave Axis #3

233

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

The diagram below illustrates the three DSM314 analog axes connected in parallel with
Commanded Position for Axis #4. The reader should note that with this configuration, the
Local Logic function cannot be run. This is because the command generator for axis #4 is
required for this configuration. The Master Source Configuration items are all set to
Commanded Position Axis #4. This is not a requirement. However, it does eliminate a source
of error due to the master source select bit being set incorrectly.

Figure 105: 3-Axis Analog Follower | Parallel Structure | Source = Commanded
Position 4

Path Generator Axis #4

Commanded
Position
Axis #4 Feed Forward |
- i iti '—' Slave
I - Ratio .| Position p Sen-,rg x_,x Ve M\' Votor
AB Loop - Amplifier N :
Master Enable /---- - Aoistl
Source Follower '
Axis #1 Aoas #1 Motion Jog/
Program Move at 1
Velocity I/ ; ™
\ / Encoder
. AN
Slave Axis #1
Feed Forward
| i o Sl
- i iti . N ave
O Il B Pﬁfg's "0 Afn%’ﬁ;?er >/ M} Motor
Master Enable _ o N Axis#2
Source Follower ’—+ 1
Axis #2 Axis #2 Motion Jog/
Program Move at
Velocly /2\1 Encoder
. N
Slave Axis #2
Feed Forward
| H"x,_ _
— " oyp| FREMIO ,| Position Servo . g M\'fl f’:oag
— AB Loop Amplifier P \ X
M Enable T . Axis#3
aster y)
Follower o
Source X
i Axis #3
Aods #3 Motion Jog/
Program Move at]
Velocity /’3 \"u Encoder
. N
Slave Axis #3

234

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

The diagram below illustrates the two DSM314 digital axes connected in parallel with
Commanded Position or Actual Position for Axis #3. The reader should note that with this
configuration the Local Logic function can be run. This is because the command generator
for axis #4 is not required for this configuration.

Figure 106: 2-Axis Digital Follower | Parallel Structure | Source = Commanded or

Actual Position 3

Path Generator Axis #3

Commanded s
Position Feed Forward ave
Axis #3 Motor

| Axis#1
e = Ratio Position .. | Veloaty and Servo 4 \-1

po aB [Loop ™ Torque Loop [”| Amp -\%M J
Master Enable ”
Source Follower ’J L‘

Select Axis #1
elec 15 Motion MJogm

Program [VIOVE]
Velocity I,/] ™
. N
Slave Axis #1 Encoder

Feed Forward Slave

o — Ratio Pasition ~~ | Velocity and

i TP aB [Loop Sag Torque Loop
Master Enable A ’J
Source Follower)

Select Axis #2 Motion Jog/
Program Move at -
Velocity I// 9
. N
Slave Axis #2
/’“"_\ Actual Encoder
{ 3) Position
N Axis #3

235

User Manual
GFK-1742F

Follower Motion

Chapter 8
Jan 2020

The diagram below illustrates two DSM314 digital axes connected in parallel with
Commanded Position from Axis 1 driving servo loops for Axis 1 and Axis 2. This will allow
both axes to run from the same commanded path. Note that Axis 1 is configured with
Follower Control Loop = Disabled. This configuration does not allow for load sharing
between axes that are tightly coupled. The reader should note that with this configuration
the Local Logic function can be run. This is because the command generator for axis #4 is
not required for this configuration.

Figure 107: 2-Axis Digital Follower | Parallel Structure [Source = Commanded Position
1

Path Generator Axis #1

Commanded
Position S,
; Feed Forward envo
Axis #1 Maotor
! Aisi1
.| Position . | Velocity and | _[Servo '
" Loop e Torque Loop | | Amp \‘M_ J
A
N
| '1 ,:
, . _/
Axis #1 (Follower Control Loop = Disabled) Encoder
Feed Forward Slave
Motor
Axis#2
o - Ratio Position - | Velocity and Senvo g \\,
- " aB [Loop > Torque Loop |~ | Amp l__N! J
Master Enable i
Source Follower
Axis #2 Axis #2 Motion Jog/
Program Move at L
Velocity o
- [2)
. AN
Slave Axis #2 (Follower Control Loop = Enabled)
Encoder

236

User Manual
GFK-1742F

Follower Motion

The diagram below illustrates the four DSM314 analog axes connected in two parallel pairs.
The reader should note that with this configuration the Local Logic function cannot be run.

Chapter 8
Jan 2020

This is because the servo position loop for axis #4 is required for this configuration.

Figure 108: Four-Axis Analog Follower [Parallel Structure | Src = Cmd Pos 1 & Cmd

ﬁ"x__
Senvo T

Ampilifi er_—~

N

e

Sernvo e
Amplifier

Servo “‘x

Amphrer

T

-\\I
N

/""\

Servo T
Ampliﬁe[_,z""

L

Pos 3
Path Generator Axis #1
Commanded
Position
Axis #1 Feed Forward
Position :l\
Loop
&
Axis #1 (Follower Control Loop = Disabled)
Feed Forward
T .
— P Ratio Position
L AB Loop | ™™
¥
Master Fi“g:lrgr i
Source .
Axsg NS Motion Jog/
Program Move at
Welocity
Slave Axis #2 (Follower Control Loop = Enabled)
Path Generator Axis #3
Commanded
Position
Axis #3 Feed Forward
.| Position
- Loop
F
Axis #3 (Follower Control Loop = Disabled)
Feed Forward
I
— o Ratio o Position x
— AB = Loop
Master FE Tla ble
Source o _ower
Axis#4 ~ Axs# Motion Joa/
Program Move at
Welocity

Slave Axis #4 (Follower Control Loop = Enabled)

~, Seno

I Maotor
Axis#i

Encoder

Slave
Motor
Axis#H2

Encoder

Senvo
Motor
AxisH3

Encoder

237

User Manual
GFK-1742F

Follower Motion

Follower Control Loop Block Diagram

Chapter 8
Jan 2020

Figure 109: Follower Axis Control Loop Block Diagram

%Q Enable CTLO1- Follower AXis Follower Control Loop
Follower CTL32 Enabled (Axis 1 loop is shown)
| l (Axis 2,34 loap is identical)
+Enablea|’ Follower
Ramp Active
Master Source 1 %Q Master Disable P
Source Select Control
1 per Servo Axiz T
Path Generator Axis # | | Acc Velocity
or o = Ramp Timebase
Actual Position Axis # Control v
Selected by + Master FF
Configuration LU Velocity
\r/
Velocity Velocity
Limit Limit
Master Source 2
¥
i b-\) v
Path Generator Axis # — A—»f X
o Tracking Error Ratio
L) Accumulator B—» .p
Actual Position Axis #
*B B 1/B
Selected by - - L Jog
Configuration
Path e Move
(Command) @ Vel
Generator |g yome
1 per Servo Axis
Motion
/-— - PGM CMD Programs
/ Actual Position ‘ Cmd
[Enc1oder \— | Position () velocity + Yo
| | B ./ >
\ /-J Register + T ! Pos Error -/
T Position| _’{FB Counts)
I -
| NOTE: Local Logic Emorand | o 1y Error Limit
| In Follower Mode, Servo Axis 1 Position in zone
! : Detection
| Motion = (Master CTSx A/B) + Increment Cmd [—»In Zone
i Cmd Generator CTS ¥ ¥
E Pos Loop x Position FFo%—p X Vel
. - Time Constant Loop Gain FF Gain
/ \ - 3
I'l Motor \ " Servo | N et
PR e [e
| / “~._Amplifier _ Ly
‘\ /’ S~ Servo Velocity Command

..,

238

User Manual Chapter9
GFK-1742F Jan 2020

Chapter9: Combined Follower and
Commanded Motion

Combined motion consists of Follower motion commanded from a master axis combined
with one of these internally commanded motions:

e JogPlus/Minus %Q Command

e Move at Velocity AQ Command
e Move %AQ Command

e Stored Motion Program

Combined motions are additive. The slave axis motion is equal to the sum of the motion
commanded by the master axis and the internally commanded motion.

9.1 Example 1: Follower Motion Combined with Jog

In this example, the Enable Follower %Q bit is set, causing the slave axis to follow the master
input. While the slave axis is following, the Jog Plus %Q bit is set. The following axis
accelerates from its master’s velocity to its master’s velocity added to the current Jog
Velocity. This acceleration will be just as if the axis was not following a master source at the
time. When the Jog Plus %Q bit is cleared, the following axis decelerates to its master’s
velocity. In the velocity profiles below, the dotted lines indicate when the Jog Plus %Q bit is
turned ON and then OFF.

Figure 110: Combined Motion (Follower + Jog)

v v

/\ﬁ

Master Source t Following t

;

Combined Follower and Commanded Motion 239

User Manual
GFK-1742F

9.2

Chapter9
Jan 2020

Follower Motion Combined with Motion
Programs

Motion commands from stored programs or the Move %AQ command can also be
combined with the master command to drive the follower axis. These point-to-point move
commands can come from one of the stored motion programs 1 through 10 and any stored
subroutines they may call. The Move %AQ command is treated as a single line motion
program, which uses the present Jog Velocity and Jog Acceleration. Program execution is
started by the host controller setting an Execute Program n %Q bit or sending a Move %AQ
command.

If there is no master command, the axis can be commanded solely from the stored motion
program data. Thus, with no master input to Servo Axis 2 and Commanded Position 2
selected as the master source for Servo Axis 1, a stored program can be used to control
Servo Axis 2 with Servo Axis 1 following per the designated ratio.

When PMOVEs are executed with Follower not enabled, the In Zone %l bit must be set at the
end of the move before programmed motion will continue. When Follower is enabled, since
In Zone may not turn on while also following a master command, the In Zone indication will
not be required to continue. The next Move will take place when the commanded distance
for the previous move has completed. The In Zone %I bit will always indicate the true in zone
condition.

The active commanded position updated and used by the stored motion program is
referred to as Program Command Position. Each time a program is selected for execution,
this position register is initialized in one of the two ways listed below.

1. If the follower is not enabled, the Program Command Position is set to the current
Commanded Position = Actual Position + Position Error.

2. If the follower is enabled, the Program Command Position is set to the Program
Reference Position (0). Since the Program Command Position is only updated by
internally generated commands (and not by the master command), it will then
indicate the position commanded by the stored program. Absolute move
commands from the stored program will be referenced to the Program Reference
Position.

Therefore when an absolute move is the first move in a program, it will behave like
an incremental move when the follower is enabled. Additional absolute moves
within a program will be referenced to the current Program Command Position,
which is updated by each move. Once a motion program finishes, executing another
program with follower enabled will again cause the Program Command Position to
be initialized to zero.

Position ranges (in counts) for the Actual and Program Command Position registers are
indicated in the figure below.

Combined Follower and Commanded Motion

240

User Manual
GFK-1742F

Chapter9
Jan 2020
Figure 111: Combined Motion (Follower + Jog)
Program
Position Range
Fixed Lo Limit (max) Hi limit (max) Fixed
2B -536M | +536M +1B
Actual Position ’ |

(from Feedback)

With sustained commanded motion in the same direction, the Program Command Position
will roll over at +2,147,483,647 or -2,147,483,648 counts.

The Actual Position, however, will be confined by the configured High Position Limit and
Low Position Limit.

Table 51 below indicates which source commands affect these position registers and the
actualand commanded velocities. Program Command Position is updated only by internally
generated move commands (program commands, Jog Plus Minus, Find Home, and Move at
Velocity). The Commanded Velocity (returned in %Al data) also only indicates velocity
commanded by these internally generated move commands. Actual Position and Actual
Velocity %Al return data reflect the combination of the master input and the move
commands. In other words, counts coming from the master source affect only the Actual
Position and Actual Velocity. If there are no internally generated move commands, the
Commanded Velocity will be 0 and the Program Command Position will not change.

Table 51: Command Input Effect on Position Registers

COMMAND Follower |Follower Registers Affected by input
Input Enabled

Master Commands | No None affected

(from selected Yes Actual Position %Al status word is updated
Master source)

Commanded Position %Al status word is updated
(Actual Position + Position Error)

Program Command Position is Not affected

Actual Velocity %Al status word is updated

Commanded Velocity %Al status word is Not affected

Program No Actual Position %Al status word is updated

Commands Commanded Position %Al status word is updated
Actual Position + Position Error)

Program Command Position is updated

Actual Velocity %Al status word is updated

Commanded Velocity %Al status word is updated
(by Program commanded velocity only)

Yes Actual Position %Al status word is updated
(by Program command + Master command)

Commanded Position %Al status word is updated

Combined Follower and Commanded Motion

241

User Manual
GFK-1742F

Chapter9

Jan 2020

COMMAND
Input

Follower
Enabled

Follower Registers Affected by input

(Actual Position + Position Error)
Program Command Position is updated
(by Program command only)
Actual Velocity %Al status word is updated

(by Program command velocity + Master command
velocity)

Commanded Velocity %Al status word is Updated
(by Program command velocity only)

Other Internally
Generated Move
Commands
(Home, Jog, and
Move at Velocity)

No

Actual Position %Al status word is updated

Commanded Position %Al status word is updated
(Actual Position + Position Error)

Program Command Position is updated but not used

Actual Velocity %Al status word is updated.

Commanded Velocity %Al status word is updated
(by Internal command velocity only)

Yes

(Find Home
is not
allowed)

Actual Position %Al status word is updated
(by Internal command + Master command)
Commanded Position %Al status word is updated
(Actual Position + Position Error)
Program Command Position is updated but not used
Actual Velocity %A status word is updated
(by Internal command velocity + Master command
velocity)
Commanded Velocity %Al status word is updated
(by Internal command velocity only)

Combined Follower and Commanded Motion

242

User Manual
GFK-1742F

The Program Command Position can be synchronized to the Actual Position %Al value in

three ways:

Chapter9
Jan 2020

e Find Home %Q command execution

e Set Position %AQ command

e Execute Motion Program n %Q command (if the follower is not enabled)

The effect of these commands is indicated in Table 52 below.

Table 52: Actions Affecting Program Command Position

ACTION Follower |Resulting Updates to Follower Position Registers
Enabled
Home Found No Actual Position %Al status word is set to Home Value
Program Command Position is set to Actual Position + Position
Error
Yes Find Home %Q command is Not allowed
Status Erroris returned
Set Position %AQ Not Actual Position %Al status word is set to $AQ Value
Command applicable | Program Command Position is set to Actual Position + Position
Error
Note: Set Position is not allowed if the Moving %/ bit is ON.
Execute Program No Actual Position %Al status word is NOT affected
Program Command Position is set to Actual Position + Position
Error
Yes Actual Position %Al status word is NOT affected

Program Command Position is set to Reference Position (0)

Program moves will execute in a continuous fashion such that incremental PMOVE or
CMOVE commands past the limits will roll over at the limit and continue. Absolute PMOVE
or CMOVE commands can also be used for applications that do not require going beyond

the high/low count limits.

Any internally generated move command can be immediately terminated by the Abort All

Moves %Q command.

The User Selected Data %Al status word can be changed to report the Program Command

Position by using the Select Return Data ¥AQ command. Refer to Chapter 5 for details.

The following application example illustrates how a stored program can be used to control
positioning operations relative to the detected edge of a moving object as it moves at a rate

detected by the master axis (Aux Axis 3) encoder input.

Combined Follower and Commanded Motion

243

User Manual Chapter9
GFK-1742F Jan 2020

9.3 Example 2: Follower Motion Combined with
Motion Program

Applications that require modifying parts on the fly (such as notching, marking, riveting,
spot welding, spot gluing, and so forth) would make use of the point-to-point moves
superimposed on follower motion and enable follower at input features. A typical
configuration and control sequence required for these applications is shown below.

Figure 112

Follower
Home Carriage Part

Sensor Edge
\ ,/ / Sensor
Master /

motion PART |0
(Aux Axis 3) :

Follower Axis

Control Sequence

1. With Enable Follower %Q bit OFF, the host controller commands Follower axis to
home position where Actual Position & Program Command Position are
synchronized and set to Home Position value. Position Valid %I bit indicates when
this step is complete.

2. The host controller sets the Enable Follower %Q bit command.

Note: The CTLO1- CTL24 bit to which the part edge sensor is connected would already have been
configured in the Follower Enable Trigger configuration parameter.

3. When the Part edge sensor trips, the DSM314 enables the Follower axis to start
following the master (Aux Axis 3) encoder inputs. The Follower Enabled %I bit
indicates when the axis is following the master command. Note that the Accel Ramp
and Make-Up Time feature could be used to allow the follower axis to catch up to
the master axis if required.

4. Once the follower is enabled, the host controller sends the Execute Motion Program
n %Q bit to start execution of the selected program for the follower axis. At the time
the program is selected, Program Command Position will be set to program
reference position (0) because the follower is enabled. Program execution is then
relative to the moving part edge as the follower axis tracks the part. Program
Command Position now contains the position of the follower axis relative to the part
edge and Actual Position indicates the total distance the follower axis has moved
from the Home point (master +/- program commands).

5. Atthe end of program, the host controller turns Enable Follower %Q bit OFF and
loops back to step 1 to repeat for next part.

Combined Follower and Commanded Motion 244

User Manual Chapter9
GFK-1742F Jan 2020

Note:

Since the DSM314 saved the Follower enable input trigger Commanded Position in a parameter
register (#226 for axis 1, #234 for axis 2), step 1 this time could be used to execute another
program with an absolute move command back to the parameter value position and continuing
with step 2. In this case, the Moving and In Zone %I bit indications could be used to indicate when
step 1 is complete.

This method is possible because the Program Command Position is set to the Actual Position +
Position Error when Execute Motion Program is commanded with the follower disabled.

Combined Follower and Commanded Motion 245

User Manual Chapter 10
GFK-1742F Jan 2020

Chapter 10: Introduction to Local Logic
Programming

This chapter contains an introduction to the basic local logic programming concepts. The
DSM and the DSM motion programming language are not discussed in detail in this chapter.
These concepts are discussed in other chapters within this manual.

10.1 Local Logic Programming

The local logic program works in conjunction with the host controller logic program and
motion program to yield a flexible programming environment. Specifically, local logic
programs provide the user with the ability to perform math and logic that is deterministic
and synchronized with the DSM Position Loop execution rate. This ability is critical to many
applications where the accuracy and/or speed require this tight synchronization.

The DSM local logic function provides the user the ability to execute basic logic and
mathematical functions within the DSM module. Additionally, local logic permits fast
read/write access to local DSM digital and analog I/O. Consult Chapters 13 and 14 for a
complete listing of available I/O. The local logic program execution method guarantees the
local logic program runs at the position loop sample rate and completes each sample
period. Note: If the module is unable to complete the local logic program execution within
the allotted time the module generates an error message. Chapter 13 and Appendix E
contain more information concerning program execution times. Additionally, the local logic
program runs in parallel with normal DSM motion programs. The parallel program
execution allows the local logic program to supervise the motion program. Thus, local

logic programs are also called supervisory logic blocks (SLB). The local logic program
execution versus motion program execution is shown in Figure 113.

Figure 113: Local Logic Versus Motion Program Execution

Motion Program Local Logic Program (Supervisory Logic Block)
CMOVE ## ABS,SCURVE Position_Loop_TC_1:=50;

PMOVE ## ABS,SCURVE IF Actual_Position_1>4000 THEN

DWELL ## Digital_Output1_1:=ON;

PMOVE ## ABS LINEAR END_IF;
. IF Actual_Position_1>=4500 THEN
Digital_Output1_1.=0FF;
END_IF;
IF Actual_Position_1> 6000 THEN
Digital_Output2_1:=0ON;
END_IF;
IF Actual_Position_1>=7500 THEN
Digital_Output2_1:=0OFF;

Moti END_IF;

pri;?Qm | cvMOVE | PMOVE | DWELL | PMOVE ETC..|
ms ’<7m5 ‘ ms ‘ ms ‘ ms ’<7m5 ‘ ms ‘ ms ‘ ms ms

fsgir‘ém?\ SLB \ sLB \ SLB \ SLB \ SLB \ SLB \ SLB \ sLB \ SLB \ SLB \

Time |

P
»

Introduction to Local Logic Programming 246

User Manual Chapter 10
GFK-1742F Jan 2020

It is important to understand the concept shown in Figure 113. before writing local logic
programs. The local logic program runs to completion each position loop sample period.
The program then re-executes the complete local logic program the next position loop
sample period. This execution method differs from the motion program execution method.
The motion programs execute each command to completion in a sequential fashion,
without any time guarantees. This conceptisillustrated in Table 53., which lists the first four
local logic execution periods for the local logic and motion programs shown in Figure 113.
In the example, note that the local logic program executes to completion each position loop
sample period. The motion program statements execute until the controlled motion
achieves the desired result. For additional details concerning motion program statement
execution, consult chapter 7.

Table 53: Local Logic - Motion Program Execution Example

Position Loop Sample Active Motion Program | Local Logic Program
Number Statement Statements

n CMOVE ##,ABS,S-CURVE Position_Loop_TC_1:=50;
IF Actual_Position_1>4000 THEN

Digital_Output1_1:=0N;

END_IF;

IF Actual_Position_1>=4500 THEN

Digital_Output1_1:=OFF;

END_IF;

IF Actual_Position_1> 6000 THEN

Digital_Output3_1:=ON;

END_IF;

IF Actual_Position_1>=7500 THEN

Digital_Output3_1:=OFF;

END_IF;

n+1 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;

IF Actual_Position_1>4000 THEN

Digital_Output1_1:=ON;

END_IF;

IF Actual_Position_1>=4500 THEN

Digital_Output1_1:=OFF;

END_IF;

IF Actual_Position_1> 6000 THEN

Digital_Output3_1:=0N;

END_IF;

IF Actual_Position_1>=7500 THEN

Digital_Output3_1:=OFF;

Introduction to Local Logic Programming

247

User Manual
GFK-1742F

Chapter 10
Jan 2020

Position Loop Sample

Active Motion Program

Local Logic Program

Number Statement Statements
END_IF;

n+2 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;
IF Actual_Position_1>4000 THEN
Digital_Output1_1:=ON;
END_IF;
IF Actual_Position_1>=4500 THEN
Digital_Output1_1:=OFF;
END_IF;
IF Actual_Position_1> 6000 THEN
Digital_Output3_1:=ON;
END_IF;
IF Actual_Position_1>=7500 THEN
Digital_Output3_1:=OFF;
END_IF;

n+3 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;

IF Actual_Position_1>4000 THEN

Digital_Output1_1:=ON;

END_IF;

IF Actual_Position_1>=4500 THEN

Digital_Output1_1:=OFF;

END_IF;

IF Actual_Position_1> 6000 THEN

Digital_Output3_1:=ON;

END_IF;

IF Actual_Position_1>=7500 THEN

Digital_Output3_1:=OFF;

END_IF;

Introduction to Local Logic Programming

248

User Manual Chapter 10
GFK-1742F Jan 2020

10.2 When to Use Local Logic Versus Ladder Logic

The local logic programming language contains basic mathematical and logical constructs.
The capabilities are not designed to replace the host controller’s logic capabilities. Instead,
local logic is designed to complement the host controller’s logic and mathematical abilities.
Specifically, local logic is designed to solve a small logic and mathematical set that requires
tight synchronization with the controlled motion. The local logic program must run to
completion each sample period. Thus, local logic programs are limited in size. The default
local logic program size limitis 150 lines. The Local Logic build process will generate an error
message when the 150-line limit is exceeded. A warning message is generated when 100
lines are exceeded. If the program is very large and computationally intensive it may exceed
the allowed execution time and result in a watchdog timer warning/error (refer to Appendix
E). In contrast, the host controller’s program size is limited only by available memory.
However, as host controller program sizes increase, the host controller sweep times
increase. (For additional information concerning sweep times, please consult the
PACSystems CPU Reference Manual, GFK-2222 or the Series 90-30/20/Micro PLC CPU
Instruction Set Reference Manual, GFK-0467.) This is not true with local logic programs.
Local Logic programs always execute to completion every position loop sample period.
When using host controller logic, the added latency associated with the host controller
sweep times for time-critical logic operations that are tightly coupled to motion can be
unacceptable or limit process performance. These tightly coupled and time-critical
processes are potential Local Logic applications. Each process will have to be evaluated on
an individual basis to determine which sections to write in host controller logic and which
sections to write in Local Logic.

10.3 Getting Started with Local Logic and Motion
Programming

The sections that follow provide information on getting started with the Local Logic Editor
and Motion program editors. The sections concentrate on program usage with an emphasis
on program creation, syntax check, and program download.

10.3.1 Requirements

The Local Logic and Motion Program editors are integrated within the programming
software environment. You need one of the following software packages. Please refer to the
software documentation for installation instructions.

e Machine Edition Logic Developer - PLC version 2.1 or later
e VersaPro version 1.1 or later (Series 90-30 only. For details, refer to Appendix H.)
The DSM314 feature set also requires:
- PACSystems firmware release 2.8 or later, or

— 90-30 CPU firmware release 10.0 or later.

Introduction to Local Logic Programming 249

User Manual Chapter 10
GFK-1742F Jan 2020

10.3.2 Creating a Local Logic Program

The Local Logic editoris integrated into the programming software environment. The editor
allows you to easily create, edit, store, and download a Local Logic program. You create a
Local Logic program in a VersaPro folder or a Machine Edition project. Refer to the software
documentation for details on how to create or open a project.

For details on getting started with Machine Edition, refer to “Machine Edition
Configuration” in chapter 2. For details on using VersaPro, refer to Appendix H.

1. Tocreate alocal logic program, open your project in Machine Edition.

2. In the Project tab of the Navigator window, right click the Target containing the
DSM314, choose Add Component, and then choose Motion.

Figure 114

ETHN
=5 DSM314_Example

&dd Component Motion

tﬁiﬁ &dd All Components
5 E‘ ~ Rename F2
Delete... Del

The Motion Program folder appears in the Navigator.

3. Expand the Motion Program folder. Select Local Logic and choose New. A local
logic block is created in the Local Logic folder and the local logic editor opens.

Figure 115

=8 DSM314_Example
=4 Targetl

zﬁﬁﬁ Hardware Configuration
+-1 Logic

- @ Motion Program

=g Reference View Tables
3 Default Tables
0@ Supplemental Files

Introduction to Local Logic Programming

250

User Manual Chapter 10
GFK-1742F Jan 2020

4. To change the name of your local logic block, edit the name in the Block Properties,
which is displayed in the Inspector window.

Figure 116: Local Logic Editor Main Screen Layout, Machine Edition

Local Logic Editor \

E E . ;J’ Crastad: [l A :0’)9\
‘o Dala Wateh Lists = /I, R ’ -)
. =-fifi Hardware Configuration)
Navigator Window T Logic
=48 Mation Pragram //
£ CAM Profiles
g CAM Blocks
B4 Local Logic -
BT,
- Moton Blacks

B0 | oh @En Ee [Bva | D
2z

// Description:

Block Properlies

Inspector Window ——{_tare

LLB k1

L o

Infoiewer | (0.2 ICE3305.. | (0LO)ICESPW.. LBk

Inspecior |

10.4 Local Logic Variable Table

The programming environment includes a window that contains the Local Logic variables.
The Local Logic Variable table (LLVT) allows you to drag and drop or cut and paste the text
from the table into a program. (Reference Figure 123.).

e Toopen the LLVT in Machine Edition, right click the Local Logic folder in the
Navigator and choose Local Logic Variable Table.

Figure 117

= % totion Program
- gJP CAM Profiles
43P CAM Blocks

- {s| LLBKkY || New Ins

I;@ tMotion Bloc Feport Ctrl+T
SRR RECEEERIEY Local Logic Vanable Table
i+ Default Tab

. = ol = O DI’|+V
-y Supplemental Fi Easte Bloch
Delete All Blocks Del
Properties Alt+Enter

e Toopenthe LLVT in VersaPro, select Local Logic Variable Table from the View
menu, press Alt + 6, or click the Toggle Local Logic Variable Table button on
the toolbar.

Introduction to Local Logic Programming 251

User Manual
GFK-1742F

Chapter 10

Jan 2020

The table has several tabs that group the variables by category. The categories are:

e Axis 1 - Variables specific to axis number one

e Axis 2 - Variables specific to axis number two

e Axis 3 - Variables specific to axis number three

e Axis4 - Variables specific to axis number four

e Global - Global data such as Module Status Code

e CTLbits - DSM general purpose control/status bits

e Parameter Registers - DSM Parameter data
Figure 118: Local Logic Variable View Table

MName Type Group Description RlW| ~

D Actual_Position_1 32 Bits Status Variables | Actual_Position [user umits] is a value mamtamed by the DSM to represent the phy o

S Actual_Velocity_1 32 Bits Status Variables { Actual_Velocity [user umitsisec) represents the axis velocity derived from the posit

M Analog_Inputt_1 Signed 16 Bits FacePlate IO e Analog Input! variable reports the mput value Eor the first analog mput of the 3

3 Analog_Input2_1 Signed 16 Bits FacePlate /O iThe Analog_Input2 variable reports the imput value tor the second analog rput of £ b

1 Anis_Enabled 1 Eit Status Variables {The Auis Enabled status bit is ON when the DSM is ready to receive cornands ari «

4 Block_1 Unsigned 16 Bits : Status Variables : Block is the present cormmand block nurmber reported by the motion program. v
Corrmanded_Position_1 {32 Bits Status Variables i Corrnanded_Position [user units) is the mstantaneous axis position corminand. Thet o
Corrmanded Torque 1§32 Bits Status Variables iThe Cormnanded_Torque variable reports the present digital servo torque corritnan: o
Cormanded_Velocity_1 {32 Bits Status Variables : Cormnanded_Velocity [user unitsisec] is gemerated by the DSM auis corrnand geri v
Digital_Outputi_1 Eit FacePlate IO iThe Digital Output!bit controls the axis taceplate digital OUT_1 signal. This bit cam v
Digital_Output 1 Eit FacePlate /O :The Digital_Cutput3 bit controls the axis Eaceplate digital OUT_3 signal. This bit car v
Drive_Enabled_1 Eit Status Variables i The Drive_Enabled status bit mdicates the state of the Enable Drive 0 bit and the

| | Enable_Follower_1 Eit Comtrol Variables: When the Enable_Follower bit is set, motion cormmanded by the follower aster will v st

s twis1 & Buis2 p Bwisd p Awisd »_ Global 2 | 4] >

The table has six columns. The columns are as follows:

Name - This column contains the variable name that is valid to be used within alocal
logic program

Type - This is the data type for this variable. For example 32 Bits means that this
variable is a 32 bit variable.

Group - This is the group this variable is placed in. For example, FacePlate I/O means
that this variable refers to a point on the module faceplate.

Description — This column contains a textual description of the variable. If the user
hovers the mouse pointer over the description a tool tip will be generated that
allows the user too easily read the description.

R - This column indicates if the variable can be Read by a Local Logic program

W- This column indicates if the variable can be Written by a Local Logic program

Introduction to Local Logic Programming

252

User Manual
GFK-1742F

10.5

Chapter 10
Jan 2020

Connecting the Local Logic Editor to the DSM

The configuration/programming software has several communications options. One
communications option is to connect directly to the host controller SNP port, shown in
Figure 119 below. Ethernet options are also available. All DSM314 programming is done
through the software interface, yielding single point of programming for the module. (The
DSM314 also has a serial port on the module faceplate, which is used only for updating the
DSM314’s firmware.) Local Logic and Motion programs are stored to a dedicated memory
space inside the host controller CPU. The DSM314 then requests these programs by name
from the CPU during configuration. The link to the programs the DSM314 requests from the
CPU is contained in the Hardware Configuration for the host controller rack. The benefit is
that programs are not module-specific but are rack/slot specific. Thus, if there is a need to
swap DSM314s within a host controller, or to replace a DSM314, you need to perform the
following three steps: (1) turn off power to the host controller, (2) change out the DSM314
modules, and (3) reapply power to the host controller. Upon powering up, the host
controller will send the correct programs and configuration settings to the DSM314s.

Figure 119: Programmer Connection Diagram

Configuration, Motion
and Local Logic

SNP l

(RS-485)

Series 90-30 PLC
e
|

D

3

M

Personal Computer Running
Configuration/Programming Software

Introduction to Local Logic Programming

253

User Manual
GFK-1742F

10.6

10.6.1

Chapter 10
Jan 2020

Building a Local Logic Program

The programming software provides a self-contained environment that allows the user to
perform all the actions necessary to create, edit, and download a local logic program to a

DSM314 module.

Creating a Local Logic Program

Create a Local Logic program named Example. For details on how to do this, see: Section

“Machine Edition Configuration”.

“Starting VersaPro”.

The resulting display is like the figure below.

Figure 120: Machine Edition New Local Logic Program

2]

4

= T
= @8 DSM314 Example H
- & Targetl

‘% Data ‘Watch Lists
4] m Hardweare Configuration
-1 Logic
= % Motion Program
¢ CAM Profiles
g CAM Blocks
=R I:_ocal Logic
[# 43 Motion Blocks =
+-_ g Reference View Tables
& [By Supplemental Files | H
*

ERE

u. 2. B@e. [Bv. 2.]

=1

Block Properties
Mame LLBlk1

// Created: Oct 20, 2004

* Dascription:

Inspector I

(0.7)ICES4DS... LLEK [Target!]

N o

Introduction to Local Logic Programming

254

User Manual Chapter 10
GFK-1742F Jan 2020

The Local Logic editor is a free-form text editor that allows you to enter programs in the style
that you prefer. This example is a very simple Local Logic program that does not represent a
fully functional application because it is intended for instructional purposes only. The
example program is a simple timer application that relies on the digital servos position loop
sample period (2 mSec) as a time base. See Chapter 1 for position loop sample periods for
other configurations.

Sample Local Logic Program

L R L T L e e R s T T T

L

Program Name: LLExample

Description: The following example local logic program is
a program that creates a simple timer. The timer begins
after the first Local_Logic_Sweep has occurred. The
program makes uses the fact that Local Logic is run by
the DSM every 2 mSec. Thus, it counts local logic sweeps.
The program ﬁas three counters. The first counter is the
milliseconds counter while the other two counters are for
seconds and minutes. The seconds counter and minutes
countﬁrs roll over at 59. The program also sets CTLOL every
second.

L e s e e o o o e A o o g g e o o o g g A e o e o o o o o o e e g g A e e e o o g e s o o ol g g A

L
]

ok ok ook o2k ok

e LA

E

i

!

variables

PO01 = Milliseconds Counter
PO03 Seconds Counter

PO04 Minutes Counter
CTLO1 = Seconds Signal

LI
i

[T L. L L L L L L. 0 L L e L L L .
%o W ok ok o I
LU N N

P100 = Used to check if 1 sec has passed
P102 = Used to check if 1 Min has passed
F First_Local Logic_Swesep THEN (* First execution swssp *)
POO1 ::= 0O; (* Initialize POOL1l to O *)
PO03 := 03 (* Initialize POO03 to 0 *)
PO04 := 0; (* Initialize POO04 to 0O *)
END_IF;
POO1:==P0O01+2; (* Time in Milliseconds *)
plOo0:== PO0OL1l MOD 1000; [* Check to see if 1 Sec (1000 mS8ec) Passed) *)
IF P100 = 0 THEN (* Remainder of MOD Operation=0 1 3sc Passesd *)
PO03:=P003+1; [* Time in Seconds *)

CTLOLl := 1;
IF POO3 = &0 THEN [* If Second=s = &0 then start over at 0 *)

BO03:=0;
END IF;
END IF;
IF P100 <> 0 THEN
CTLOL :=0; (* CTLO1=0 When not incrementing sec counter *)
END_IF;
P1OL:=pP001 MOD &0000; [* Check to see if 1 Min (60000mSec) Passed *)
IF P101 = 0 THEN (* Remainder of MOD Operation=0 1 Min Passed *)
PO04:=P004+1; (* Time in Minutes *)
IF P0O04 = &0 THEN (* If Minutes = &0 then start over at 0 *)
POO4:=0;
END IF;
END_IF;

Once you type the above program into the text editor, the editor screen will look similar to
Figure 121..

Introduction to Local Logic Programming

255

User Manual
GFK-1742F

Chapter 10

Jan 2020
Figure 121: Local Logic (LLExample)
& VersaPro - MotionTest - [LLExample.blk] HI_IB
5] Fle Edit View Inset Folder PLC Tooks MWindow Help =181 x|

ala| sa@ slwe o =x| 8 Xl o] | glBl|| v | olols|s|e]e] H

RN RO R R B EsE I EEE]

IAII Function Groups EI IACCIS

=l 1|

- . ()
L,] MotionTest (# Program Name: LLExanple *)
i@l Hardware Configur: (* Description: The following example local logic program is *)
Variable Declaratior (* a program that creates a simple tinmer. The timer begins *)
(* after the first Local_Logic_Sweep has occurred. The *)
l @b _MAIN -LD (* program makes uses the fact that Local Logic is run by »*)
i 3 LLExample - LL (* the DSM every 2 mSec. Thus, it counts local logic sveeps. *)
RVTE I (* The program has three counters. The first counter is the *)
g ‘E Hampie (* milliseconds counter while the other two counters are for *)
‘@ MPE xample - MP (#* seconds and minutes. The seconds counter and minutes *)
(* counters roll over at 59. The program also sets CTLO1l every=)
(* second. *)
()
(* Variables *)
(* PO01 = Milliseconds Counter *)
(# P0O03 = Seconds Counter *)
(% P004 = Minutes Counter *)
(' Q'I'I.Ul =._Sec.onds .Sigpal. *)w
< »
Name Type | Len | Addess Description Stored Value Scope | Ret | Ow [~
est Bit 1 Global v
DSM_1 LLEnable Bit 1 DSM #1LocalLogic Enab Global v B
___ps_“)_gﬂl'_l'mo_lfn Word 2 .| DSM Tame m Minutes Global v
DSM_Tane MS Word 2 DSM Tame i Milliseconds: Global v
DSM_Time_Hrs Word 2 DSM Tame m Hours Global v
DSM_Tame_HalSec Word 2 $%2AT0041 DSM Tame Hal Seconds Global v -
| P\ Global (T Tocal Al » System . Temporay / | 4] | —.”_I
For Help, press F1 |RunEnabled [Connected [46 msec [Equal b7

Introduction to Local Logic Programming

256

User Manual
GFK-1742F

10.6.2

Checking Local Logic Syntax

Chapter 10
Jan 2020

At this point, you should validate the program to verify correct language syntax.

To check the language syntax, select Target, then Validate <Target Name>. You can also

press F7 anywhere in the Machine Edition window. All logic blocks in the active target are
checked. Results of syntax checking are displayed in the Feedback Zone. (If the Feedback
Zone is not already open, starting the Validate process opens it.)

In the following example, the line “First_Local_Logic_Sweep” is incorrectly typed as

“First_Local_Logic_Swee.”

Figure 122

»D5SM314_Exzample - CIMPLICITY Machine Edition - [LLEzample [Target1]]
File Edit Search Project Target Variables Tools Window Help

FSEHE vy i meoc x| naEES

Local Logic Editor

¥ 8

18]
s 0@ am

RIEH O 00 OE HEE E

P | [aEnferBunoe
|

2lx
E E _ (* PO0Y = Milliseconds Cou::rir =l
fd BPOOS o =l o am e
. — . (S0Ua Seconds | ter
= % E‘SNEN—:‘?WE (* PO04 = Minutes Counter
T mgdauhmthm (* CTLO! = Seconds Sigmal
(% B1O0 Usad to check if 1 Seac has passacd
'%Hadwaretmhguranm LoomaEE Used to check <& 1 oec n4s passed
[1 Loogc (* P103 = Used to check 1f 1 Min has passed
T m E—B Praaram Black - {ﬁﬁwtﬁﬁﬁﬁ—&ﬁﬁﬁﬁ—éﬁﬁﬁﬁ-ﬁﬁﬁﬁw'ﬁﬁﬁﬁ—&ﬁﬁﬁﬁ—ﬁﬁﬁﬁﬁ-ﬁﬁﬁﬁ—‘ﬁ
L L IF First Local Logic Swee THEN (# First execution s
E] s]é B @ [| POOL := 0: (* Initialize POO1 &
POO3 := O; (* Initialize POO3 ¢t
2lx PO04 = 0O (% Initialize P004 &
EHD IF:
Eluck Propelivs = | | _ld
4 *
N ame LLExample =] -
Inspector | LLEwample [Tar..| _InfoViewer |

ki

Build tab (Feedback Zone) &P

When a Machine Edition project is built
or validated, the status and results of
the build process are displayed in the

Build tab of the E Feedback Zone.

dlils_plays help for that. error. Do

If the ﬁ Companion window is opén,
clicking an error in the Build tab
e

-

Building block: LLExample. . .
| Checking block: LLExample. . .

Local Logic Parssr Rew.
Error 7800: Undefined
No object file generated

Validating Aborted - 1 errvor(s),

Tip: Press F4 to cycle through

1.00.0002
identifier:

0 warning(s)

arnings and error:

/ Ln24_ Col8 K [Difine [Admiristiator [LOCAL 7
Companion / Feedback /
Help Zone

Tip

To cycle through the warning and error messages in the Feedback Zone, press F4.

To go to the line that caused the error in the local logic program, double click the error
description in the Feedback Zone. The focus shifts to the Local Logic Editor window and the
cursor moves to the beginning of the line that has the error.

Chapter 12 contains details and corrective actions for syntax errors and warnings.

Introduction to Local Logic Programming

257

User Manual
GFK-1742F

10.6.3

Chapter 10
Jan 2020

Setting up Hardware Configuration for Local Logic

Once a successful syntax check has occurred, you need to set up the hardware configuration
that allows the example program to be downloaded to the correct DSM314 module. Note
that this is not the typical order in which these steps are done. Most users first set up their
hardware configuration and then generate the programming statements. However, the
orderin this example is reversed to betterillustrate the link between hardware configuration

and the Local Logic program name in the DSM314 hardware configuration.

For details on how to perform steps 1 and 2, see the following:

1.

VersaPro Configuration: Appendix H
Machine Edition Configuration: Chapter 4

If you have not already done so, open the hardware configuration and configure a
CPU that supports PACSystems RX3i Release 2.8 (or later) or Series 90-30 Release
10.0 (or later) firmware and an appropriate power supply for your application. Add
a DSM314 to your rack configuration. This operation adds the DSM314 to the rack
and opens the DSM314 configuration screens, which allow you to customize the
DSM314 to your particular application.

Note: For details concerning the DSM314 configuration settings, refer to chapter 4.
2. On the “Settings” tab, set the “Local Logic Mode” parameter to Enabled and type
the name of the example program, “LLExample” in the “Local Logic Block Name
field. The resulting Hardware Configuration screens will be as shown in Figure 123.
Note: This method of linking the DSM314 to a Local Logic program allows you to easily specify multiple

DSM314s that use the same Local Logic program. This example has only one DSM314. However,
if you have multiple DSM314s that need to run the same Local Logic program, simply indicate that
in the configuration for each DSM314 that needs to execute this program. This allows the
programmer to have one Local Logic source file for multiple DSM314s. Also note that this does
not preclude DSM314s from executing different programs.

Introduction to Local Logic Programming

258

User Manual Chapter 10
GFK-1742F Jan 2020

Figure 123: Hardware Configuration DSM314 Settings Tab (RX3i version shown)

Settings | SNP Port | CTL Bits | Output Bits | Ais #1 | Asis #2 | Axis #3| Tuning #1] Tu_4

Parameters Values
Aeaminer of g 4
%l Reference Zloooot
%l Length

*%0 Reference
%0 Length
Al Reference

%8| Length
%A0 Reference ZAQ000001
%40 Length
A 7 Adinsls B0 S OIY D
A Mok AnalogServo
Al Tk AUMlaty AR]
A f Mok Disabled
Lol L iz Moks Disabled

Total Encoder Power [Amps] oppgg
Muotion Program Block Mame
Local Logic Block Mame
Cam Block Mame

/0 Scan Set 1

3. Configure return data.

The example Local Logic program shown on page 254 uses parameter registers
P001, P003, and P004 as counters that contain values representing time. To view
these parameter registers in the DSM return data registers, you need to configure
return data. To configure return data:

A. Select the Axis #1 tab and input 18 in Return Data 1 Mode. This tells the DSM
that you want to return parameter registers. In Return Data 1 Offset, entera 1.
This tells the DSM to return parameter PO01.

The LLExample program returns PO01, P0O03 and P004. However, the grouping is
better if you return P003 and P004 in Axis #2. Therefore, you can either leave Return
Data 2 Mode and Return Data 2 Offset at the default values or enterin 18 in Return
Data 2 Mode and 2 in Return Data 2 Offset to tell the DSM to return P002. Note that
Select Return Data 1 Axis1 is returned in %Al memory offset 21 while Return Data 2
for Axis 1 is returned in % Al offset 23.

Introduction to Local Logic Programming 259

User Manual Chapter 10
GFK-1742F Jan 2020
Figure 124: Hardware Configuration DSM314 Axis#1 Tab

|| MotionT est (0.2) ICEI3DSM314 !EIE

Settingsl SHP Porl] CTL Bits] Output Bits | Axis #1 IAHis ﬂ2| Agis ﬁ&l Turing #1 I Tuning ﬂ2| Advan-:edl Power Eonsumptiohl
Paramet Values «|

Drive Dizable Delay (ms]: 100

Jog Yelocity: 1000

Jog Acceleration: 10000

Jog Acceleration Mode: Linear

Home Position: 0

Hame Offset: 0

Find Home Yelocity: 2000

Final Home Velocity; 500

Home Mode: Home Switch _I

Return Data 1 Mode: 18

Return Data 1 Dffset: 1

Fieturn Data 2 Mode: 18

Feturn Data 2 Dffset 2

Cam Master Source: Actual Position 3

Fadbwwar Sy’ oone Disabled

Ratio & Value: { ;I

[Motion Mate DSM314 Y,

The above steps must be repeated for P003 and P004.

B. Select the Axis #2 tab and input 18 in Return Data 1 Mode. This tells the DSM
that you want to return parameter registers. In Return Data 1 Offset, enter a 3.
This tells the DSM to return parameter P003.

C. On the Axis #2 tab, enter in 18 in Return Data 2 Mode and 4 in Return Data 2

Offset to tell the DSM to return P0O04.

Note: Select Return Data 2 Axis 2 is returned in %Al memory offset 41 while Return Data 2 for Axis 2 is

returned in % Al offset 43.

Figure 125: Hardware Configuration DSM314 Axis #2 Tab

||} MotionT est [0.2] IC693DSM314 !Eﬂ

Settings | SNP Port | CTL Bits | Output Bits | Asis #1 | Awis 72 Iﬂmis #3] Turing #1 | Tuning #2| Advanced | Power Consumption |
Parameters Values |

Drive Dizable Delay [ms): 100

Jog Yelocity: 1000

Jog Acceleration: 10000

Jog Acceleration Mode: Linear

Home Position; 0

Home Difset: 0

Find Home Velocity: 2000

Final Home elacity: 500

Hame Mode: Home Switch _I

Retun Data 1 Mode: 18

Retum Data 1 Offset: 3

Return Data 2 Maode: 18

Return Data 2 Offset: 4

Cam Master Source: Actual Position 3

Folbresr S oo Disabled

Ratio & Value: 1 ;I

[Motion Mate DSM314 Y

Introduction to Local Logic Programming

260

User Manual Chapter 10
GFK-1742F Jan 2020

4. Configure the CTL bit.

The sample Local Logic program shown on page 254 controls CTLO1, which is used
to signal the Motion Program that a second has passed. The CTL bit must be
configured to be under Local Logic Control. To do this, access the CTL Bits tab in
hardware configuration. Select “CTLO1 Config” and choose Local_Logic_Controlled.
The resulting CTLO1 tab is shown in Figure 126.

Figure 126: Hardware Configuration DSM314 CTL Bits Tab

Il MotionTest (0.2) IC6I3DSM314 !EII:]

Settings I SNP Pot | CTL Bits [Output Bits I Az #1 l A #2] Az #3 I Tuning #1 I Turing #2 I Advanced l Power Consumphion |

Parameters Values -

CTLO1 Config: Local Logic Controlled

CTLO2 Config IN10_4 [A=iz 1-0T) P

CTLO3 Config: INT1_A [Axis 1 Home S'W)

CTLD4 Config: Strobe 1 Level [Axis 1)

CTLOS Config: IN9_B [Axiz 2+ 0T)

CTLOE Config: IN10_E [Axis 2-0T)

CTLO? Config: IN11_B [Asis 2 Home 5w

CTLOB Config: Strobe 1 Level [Axis 2]

CTLOY Config: %20 Bit Offset 12

CTL10 Config: %0 Bit Offset 13

CTL11 Config: %0 Bit Dffzet 14

CTL12 Config: %0 Bit Dffset 15

CTL13 Config IN9_C [dxis 3+ OT)

CTL14 Config IN10_C [Awxiz 3-0T)

CTL15 Config: IN11_C [Axis 3 Home S'w)

CTL1E Config: Strobe 1 Level [Axis 3)

CTL17 Config %0 Bit Offset 24 |
[Motion Mate DSM314 \ A4

5. This completes the configuration changes necessary for the example. Close the
Hardware Configuration tool and save the folder. The link between the example
Local Logic program and the DSM314 module is now complete. You can now create
any required ladder logic and then perform a Check All on the programs.

Introduction to Local Logic Programming

261

User Manual Chapter 10
GFK-1742F Jan 2020

10.7 Downloading a Local Logic Program

To perform the download operation, first make sure that the communications port is
properly configured. To access communications setup, click on the target you want to
connect to in the Navigator window. Using Machine Edition, in the Inspector window, select
the Physical Port you want to connect through. (For information on downloading using
VersaPro, see Appendix H.)

Figure 127: Communications Setup

EEE
=l DSM314 Example
= RX3i
&2 Data'Watch Lists
=iy Hardware Configuration
=1 Logic
i & Program Blocks
=@ Motion Program
g CaM Profiles
£P CiM Blocks
_5 Local Logic -

4| | »

Ao o u. @M. BEe. [Bv. 2.

|»

12 =l

Target

Name I R3i

Tupe P

Description

Documentation Address

Family | PACSystems RX3

PLC Target Name DSM3IT14E sample

Update Rate [ms) 250

Sweep Time [ms) Oifline

PLC Status | Difine

Scheduling Mode Normal

Physical Port COM1 |
#Additional Configuration COM1

COm3

COr4
<<hdd/Remave COM Ports >

Inspector

After configuring the communications port, the local logic program can be downloaded
(stored) to the Host Controller CPU. To store the current folder to the Host Controller,
choose Target from the Menu Bar and Go Online with “<Target>” from the submenu. Once
connected, choose Target from the Menu Bar and Download “<Target>” to PLC from the
submenu. The store operation begins the folder transfer process from the programmer to
the Host Controller CPU. When you initiate the store operation, a dialog box is presented
that allows you to choose what to store to the Host Controller. In this case, you want to store
the Local Logic program, Hardware configuration, and any Host Controller logic. To perform
this operation, select, in the dialog box, Store hardware configuration and motion to the
PLC and Store logic to PLC.

Introduction to Local Logic Programming 262

User Manual Chapter 10
GFK-1742F Jan 2020

Note: The Local Logic and Motion programs are transferred as part of the Hardware configuration
process. Thus to download an updated Local Logic program and/or Motion program, select the
Hardware Configuration and Motion item in the Download to PLC dialog box.

Figure 128: Machine Edition Download Dialog Box

x
— Download to RAM

[¥ Hardware Configuration and Maotiore

Cancel

v Logic

[Initial/Forced values

[‘White ALL items to flash memory

Machine Edition will then check any blocks that have changed. If the build procedure is
successful, it will download the files to the Host Controller. Machine Edition will indicate any
errors or that it has successfully downloaded the program in the Feedback Zone window.

When the programs are downloaded to the host controller, you can interact with the DSM
to verify that the Local Logic program is working correctly. The Reference View Table (RVT)
display can be used for this operation. To create an RVT, right click on the Reference View
Tables folderin the Navigator window and select New from the menu. The new RVT is added
to the project.

Figure 129: Creating a New Reference View Table

=EH DSM314 Example
=% Targetl
P @ DataWatch Lists
+-fijip Hardware Configuration
-1 Logic
+-@ Motion Program

Sl] Feference View ablas
> ,jnaraumm_

+ [y Supplemental Fil Delete All User-Defined Tables

You can insert variables, select variable display formats, toggle data points, and send AQ
commands, among other actions. Consult the Machine Edition documentation for details
on RVT construction. A sample RVT that is useful for this program is shown below.

Introduction to Local Logic Programming 263

User Manual

Chapter 10

GFK-1742F Jan 2020
Figure 130: Reference View Table
[T | [Address
+U| +D| +D| +D| +D| +El| +Dl +E|I +0 £AT0001
+0, +0, +0, +0, +0, +0, +0, +0, +0 5AT0011
+U| +Dl +DJ +D| +Dl +D| +DI +EII +0 AT00Z1
+DI +DI +DI +DI +DI +DI +Dl +[II +0 %AT0031
+DI +0, +0, +|I|I +0, +\'lI +E|I +E|I +0 $AI004L
+DJ +Dl +DJ +Dl +Dl +Dl +DI +[II +0 %ATO0S51
+UI +DI +E|I +D| +ElI +D| +U| +[II +0 ZATO061
+0, +U| +0, +E|I +D| +0 +DI +E|I +0 $AT0071
+0, +0, +0) +0, +0, +0 +0, +0, +0 $AI0081
EIDUEIIJUDIJI DUDDDEIDUJ DDEIIIIDDIIIDI UDDDEIDDEII DEII]DDIJDDI DDDEIDDEIDI gooooooo0 sI00001
EIIIIDEIIIIDEIIIII DUDDUEIDDI IIIDEIIIIDEIIIIEII DUDDEIUDEII DEII]DEIIIIEIDI EIDDEIUDEIIIII gooooooo £I00065
00000000, 00000000 00000000 00000000 00000000, 00000000, D00D00D0 5000001
EII]DEH]DDIJI DEIDDDEIDDJ IJDEIIJDDIJDI DDDDEIDDEII DEH]DDIJDDl DDDEIDDEIIJI gooooooo 3000065
+UI +D| +DI +D| +DI +D| +Dl +EII +0 $A00001
+UI +0 +0, +|:|I +0, +[II +E|I +E|I +0 %A00011
L [»]

" AVTEsample T..

10.8

Executing Your Local Logic Program

Once the download operation is complete, the module is ready to execute the local logic

program. To cause the DSM module to execute the local logic program you must set the Q
bit offset 1 from the host controller, while the host controller is in RUN mode. At this point,
the local logic program is active and running within the DSM.

Note:

The LLExample sample program is a simple counter application. The user can use the RVT to look

at the passed parameters to verify that the program is active and functioning correctly. From the
RVT, you can see that 1 Minute 8 Seconds have passed since Local Logic was started (see %AI0043
and %AI0041, respectively). Additionally, 68370 milliseconds have passed as shown in %AI0021.
Additional details concerning the interface between the DSM and the host controller are contained
in chapter 5. You should save the folder once the program has been verified to work correctly.

Introduction to Local Logic Programming

264

User Manual
GFK-1742F

10.9

10.9.1

Using the Motion Program Editor

Now that you have successfully gotten the Local Logic program working, it would be useful
to link in a Motion Program. The Motion Program editor is accessed in a manner very similar
to the Local Logic editor. The editor allows you to easily create, edit, store, and download

Motion programs.

Creating a Motion Program

To create a Motion program in Machine Edition, expand the Motion Program folder in the
Navigator, then right click the Motion Blocks folder and choose New. The new Motion block

appears in the Navigator.

Chapter 10
Jan 2020

Figure 131: Creating a Motion Program in Machine Edition

= D534 Example
-4 Targetl
% Data Watch Lists
F--Eﬁﬁ Hardware Configuration
#-1r Logic
=48 Motion Program
~£JP CAM Profiles
{9 CAM Blocks
= Local Logic

-

iy _Fc?f ation Iu:lck New Ins
. = Reference View Report ChleT
Faste Block Chrl+
Delete &l Blocks Del
Properties Alt+Enter

To open the Motion editor, double click the Motion block.

Figure 132: Motion Program Editor

2lx
EPRE
= (5 DSM314 Exampls =
=& Targetl

€2 Data'Watch Lists
i+ fllip Hardware Configuration
+-» Logic
= % Mation Pragram

CaM Profile:

Cab Blocks
(& Local Lagic

=1 Motion Blocks

@ B

+# = Reference View Tables |—
=+ @y Supplemental Files

=
4 |+

Fop. | - Ui | BMa. FIPro... IEVaL” 4 Inf.
1=
Block Properties
Narme Esxamnple
Inspector I

s

// Description:

’r

o e e e e e e e e e e e e e e e e

L

1 Example [T argetl]l

Introduction to Local Logic Programming

265

User Manual
GFK-1742F

Chapter 10
Jan 2020

The Motion editor is a free-form text editor that allows you to enter a program in the style
that you prefer. The example uses a very simple Motion program. The example does not
represent a functional application and is for instructional purposes. The example is linked
with the Local Logic program entered in “Creating a Local Logic Program.” The Local Logic

program from page 254 is repeated for reference:

L
)
"

Rk R

Program Name: LLExample

Description: The following example Tocal logic program is

a program that creates a 51mp1e timer. The timer begins
after the first Local_Logic_Sweep has_occurred. The

program makes uses the fact that Local Logic is run by

the DSM everﬁ 2 msec. Thus, it counts local logic sweeps.
The program has three counters. The first counter is the
milliseconds counter while the other two counters are for
seconds and minutes. The seconds counter and minutes
counters roll over at 59. The program also sets CTLO1l every

b R eh el R e R e R R R SR L R S R SR R R LR SR R SR R

ERl
A o

ECRE- I
R R R R
A i e

i

EE

e L L s s L L L L L L i L L L L L L L L]
3 5

second

= Var1ab1e5)
* P001 = Milliseconds Counter)
* PO03 = Seconds Counter)
* P004 = Minutes Counter)
* CTLOLl = Seconds Signal)
* P100 = Used to check if 1 Sec has passed)

Used ta chegf 1f l Mlﬁdb9§ passed L i;

IF First_Local_Logic_Sweep THEN (¥ First execution sweep *)
POOL := 0; (* Initialize POO1l to O *)
PO03 := 0: (* Initialize P0O03 to 0 *)
PO04 := 0; (* Initialize P0O04 to 0 *)
END_IF;
PO01:=P001+2; (* Time in Milliseconds *)
P100:= POO1 MOD 1000; (* Check to see if 1 Sec (1000 mSec) Passed)
IF P100 = O THEN (* Remainder of MOD Operation=0 1 Sec Passed
PO03:=PD03+1; (* Time in Seconds *)
CTLO1 := 1;
IF P0O03 = GO THEN (* If Seconds = 60 then start over at 0 *)
P0O03:=0;
END_IF;
END_IF;
IF P100 <> 0 THEN
CTLO1 :=0; (* CTL01=0 when not incrementing sec counter
END_IF;
P101:=P001 MOD &0000; {(* Check to see 1T 1 Min (60000mSec) Passed
IF P101 = O THEN (* Remainder of MOD Operation=0 1 Min Passed
PO04:=P004+1; (* Time in Minutes *)
IF P0O04 = 60 THEN (* If Minutes = 60 then start over at 0 *)
P0O04:=0;
END_IF;
END_IF;

Introduction to Local Logic Programming

)
Y

',".')

',".')
)

266

User Manual Chapter 10
GFK-1742F Jan 2020

The Local Logic program causes CTLO1 to transition from logic 0 to logic 1 every second. For
this simple Motion program example, the motor shaft rotates 1/60 of a revolution for each
CTLO1 transition. The motion program will therefore make the motor shaft act like the
second hand on a quartz clock.

Before writing the Motion Program, you will need to determine axis scaling. The first variable
you need to determine is the user units to counts ratio. The User Units to Counts ratio sets
the number of programming units for each position feedback count. This allows the user to
program the DSM314 in application-specific units. The User Units and Counts values must
be within the range of 1 to 65,535. The User Units to Counts ratio must be within the range
of 8:1 to 1:32. For example, if there is 1.000 inch of travel for 8192 feedback counts, a
1000:8192 User Units: Counts ratio sets 1 User Unit equal to 0.001 inch.

To set the User Units to Counts ratio the first piece of information required is the number of
counts per revolution of the feedback device. This example uses a Beta 0.5 motor. The Beta
0.5 has a feedback resolution of 8192 counts per revolution. Now perform the calculation
to determine the ratio. The basic equation is:

User Units [Load Movement Per Motor Rotation | 1

Counts \ Desired Resolution | Encoder Counts Per Motor Rotation

For this example:

{)
]

User Units |

1 1
|1

8192

Counts |

' 60/

User Units 60
Counts 8192

This ratio is a problem since it violates the rule that the minimum User Units to Counts Ratio

1
is X The problem is easy to fix: change the programming units from 60" of a revolution

1
to a 600" of a revolution. This will make 1 programming unit equal to 00 revolution .

Repeat the above calculation:

User Units 1) 1
Counts 118192
. 600)

User Units _ 600
Counts 8192

L
Thus, to have the motor travel 0 of a revolution, you must enter 10 units in the motion

program. Additional information on setting the User Units to Counts ratio is provided in
Chapter 4.

Introduction to Local Logic Programming 267

Chapter 10

User Manual
Jan 2020

GFK-1742F

The next item you need to determine is the motor top speed. This is a relatively simple

calculation.

TopSpeed - cnrs']. User Units { uu }

= Motor Top Speed{] Enc. Counts per Rev - {
SeC cnts

Iev Counts

(j
TopSpeed - [u) 1000 1‘6*\.'].8192 [f cnrs\‘_ 600 .f' uu)
sec sec \ rev / 8192 | cnts
y 3
TopSpeed - [‘J 3000 - 10-{““J
sec sec
1) uu
TopSpeed - J=30000- —
sec sec

Next, you need to calculate the velocity and acceleration required for the move. In this
example, a triangular velocity profile is chosen to minimize time. The equations to calculate

the parameters are shown below.

Figure 133: Motion Program Editor

" Position = Area

Equations:
Vpk /
| A D
x==V . (t, +1 '
2 el a) Velocity .
E y e S =
. 2(;() time
L=
PO, +1y) Torque =
Td
V
a=_2F
f{!

Applying the numbers from this example to the triangular velocity equations gives the

following:

Introduction to Local Logic Programming 268

User Manual Chapter 10
GFK-1742F Jan 2020

Given:

t, =0.01-sec
t; =0.01-sec

X=—-r1ev
1
2-—-r1EV
60
0.01-sec+0.01-sec
rev
Vpk =1.6667-
sec
rev cnts 600 uu
Vpk =1.6667- 3192 - . -
sec rev 8192 cnfs
MU
Vpk =1000.-—
sec
V
aq=_F%
Id’
i
1000 - —
P sec
0.01-sec
HH
a=10000-
sec

You are now ready to write a motion program. The code for the sample program is as

follows.
(A ARk kKA AR AR KA A AR ARk KA A AR A A AR AR A A Ak kA& A AR A kKA A AKX)
(* Program Name: MPExample *)
(* Description: The following Motion program causes *)
(* the motor to rotate 10 Units (Distance based *)
(* upon scaling) every time CTLO0l transiticns from *)
(* 0 to 1. *)
(E T e i e i T T e e e }
(* Variables *)
(¥ CTLO1l = Program execution trigger *)
(A A AR A A AR R AR AR A A A A A TR AR R AR E A I AT RH AR E AR LN LA TX A AR AR A A A K)
PEOGEAM 1 RXIS] {(* Program Number 1 for Axis 1 *)
ACCEL 10000 (* 10000 uu/sec~2 *)
VELOCZ 1000 (* 100 uu/sec *)
1:
WAIT CTLO1 (* Wait for CTLO1l Signal *)
PMOVE 10, INCR, LINEAR (* Position Move 10 Incr Linear *)
JUMP UNCOND, 1 (* Jump back to start *)
ENDEPROG (* End Program ¥*)

Introduction to Local Logic Programming 269

User Manual Chapter 10
GFK-1742F Jan 2020

When the above program has been typed into the text editor, the editor will look similar to
Figure 134..

Figure 134: Motion Editor MPExample

e R R .l

(* Program Name: MPExample %)

(* Descraption: The following Motion program causes -)

* the motor to rotate 10 Units (Distance baseqQ *)

{* upon scaling) every time CTLOl transitions from *)

(* D o 2. *)

R I Ty

¢ Varaables %)

* CTLO0I = Program execution trigger =)
R T L L P
PROGRAM 1 AXIS1 (* Program Number 1 for Axis 1 %)

ACCEL 10000 (* 2 %)

VELOC 1000 (*

WAIT CTLO1 (* Wazt for CTLO1 Sagnral *
PMOVE 10, INCR, LINEAR (* Position Move 10 Incr Linear *)
JUMP UNCOND, ! (* Jump back to start =)
ENDPROG (* End Program *)
<] 2

Note: When the cursor is in the motion editor window, the line and column numbers appear in the
status bar at the bottom of the Logic Developer window.

At this point, you should check the program to verify correct language syntax. T At this
point, the user needs to check the program to verify correct language syntax. The language
syntax verification is done by selecting Target from the main menu, and then selecting
Validate ‘<Target>’.

The information window displays the output of the syntax check operation. If the sample
program has been entered correctly, you should receive a message indicating zero errors
and zero warnings.

If the information window indicates a syntax error has occurred, press F4 to cycle through
the warnings and errors. While the information window has focus, double click the error
message. This causes the editor window to automatically go to the line in the program that
caused the error.

Chapter 12 contains additional details that cover corrective actions for syntax errors and
warnings. Once the program passes the syntax check, you need to set up the hardware
configuration that will allow the program to be downloaded to the correct DSM314 module.

Introduction to Local Logic Programming 270

User Manual Chapter 10
GFK-1742F Jan 2020

10.9.2 Setting Motion Program Parameters in Hardware
Configuration

The section describes the parameters that must be set in the Hardware configuration to
allow the motion program to function. For details concerning the DSM314 configuration
settings, consult chapter 4.

The order in which the example is done is not typical for most installations. Most users will
first set up their hardware configuration and then generate the programming statements.
However, this example is intended to illustrate the Motion programs and reverses the order
to better illustrate the link between hardware configuration and the Motion program name
in the DSM314 hardware configuration.

The first field you need to edit is the “Motion Program Block Name” on the Settings tab. This
field identifies to the DSM314 the Motion program name to be downloaded to the module.
Type the name of the example program, “MPExample,” into this field.

Note: This example has only one DSM314. However, if you have multiple DSM314s that need to run the
same Motion program, you can indicate that in the configuration for the each DSM314. This
allows the programmer to have one Motion program source file for multiple DSM3 14s. This does
not prevent DSM314s from executing different programs.

Since the example uses the Beta 0.5, set Axis1 Mode to Digital Servo.

Figure 135: Hardware Configuration DSM314 Settings Tab

|} MotionTest (0.2) IC693DSM314 [_ |O] x|
Settings | SNP Port | CTL Bits | Output Bits | A #1 | s H2 | Auis #3 | Turing #1 | Tuni 2 []
Parameters Yalues -

Aeambrar o slwan 4

%l Reference: %100001 e

%] Length: all

%() Reference: 000001

%0 Length: a0

%8| Reference: 22810007

8| Length: &

#41) Reference: ZAL000$1

a0 Length: 12

s F Aada Digital Serva

e 2 Aaata Digital Serva

A Flvaota Auxiliary Axis

Az o Aocta Disabled

Lo L o Mo Enabled

Total Encoder Power [Walts): 0

Motion Program Block Mame: MPE =zample

Local Logic Black Mame: LLE®ample ;]
|M|:|ti|:|n Mate DSMI14 y

Introduction to Local Logic Programming 271

User Manual
GFK-1742F

UserUnits: 600
Counts: 8192

Chapter 10

Jan 2020

You also need to configure the DSM with the values calculated above for User Units to
Counts and top speed. The example also configures Axis direction and high position limit.
These are optional. Consult chapter 4 for information on these configuration fields. To add
these values, type the following into the fields on the Axis#1 tab.

High Position Limit: 599 (Optional, causes position to roll over every revolution)

Velocity Limit: 30000

Axis Direction: Reverse (Optional causes servo to turn clockwise)

Figure 136: Hardware Configuration DSM314 Axis#1 Tab

Settings | SNP Port | CTL Bits | Output Bits | Awis #1 | Ais #2] Awis 14| »
Parameters Values -

Counts; 8192 b

Over Travel Limit Switch: Disabled

Drive Ready Input: Enabled

High Position Limit: 599

Low Position Limit; 0

High Software EOT Lirnit: 8388607

Low Softweare EOT Limit: -8388608

Software End of Travel Dizabled

Yelocity Limit: 30000

Cormand Direction: Bidirectional

Axis Direction: Reverse

Feedback Source: Default

Feedback Maode: Incremental

Reversal Compensation: 0

Drive Dizable Delay [mz): 100

Jog Yelocity: 1000

Jog Acceleration: 10000

Jog Acceleration Mode: Linear

Home Position: 0

Home Offset; 1]

Find Home Yelocity: 2000

Final Home Velocity: 200 ;l

'Motion Mate DSM314

Introduction to Local Logic Programming

272

User Manual
GFK-1742F

To finish the configuration, enter the following values in Tuning#1 tab.

Motor Type: 13

Chapter 10
Jan 2020

Position Error Limit: 200 (Optional. See Configuration information for additional

information.)

In Position Zone: 5 (Optional. See Configuration information for additional

information.)

Pos Loop Time Const: 200 (Note: Based upon application/mechanics. Refer to Chapter

4 and Appendix D)

Velocity FeedForward: 9000 (Note: Based upon application/mechanics. Refer to

Chapter 4 and Appendix D)

The resulting display should be similar to Figure 10-20. .

Figure 137: Hardware Configuration Tuning#1 Tab

|}k MotionTest [0.2) IC693DSM314 -

CTL Bits | Output Bits | Awis #1 | Axis #2 | Asis #3 | Tuning #1 | Tunin ¢ | » |

O]

Parameters Values -
dnalog Serva Command: Yelocity o
Fosition Error Lirnit; 200
In Position Zone:]

Position Loop Time Const 200

Yelocity at Mas Crnd: 28400

Yelocity Feed Forward [0 5000

Acceleration Feed Forwar a

Integrator Mode: rf

Integrator Time Constant | a

Yelocity Loop Gain: 32 j
[Motion Mate DSM314 y

To save your work, select the File from the main menu and then select Save All from the file

menu.

The link between the example Motion program, Local Logic program, and the DSM314
module is now complete. Create any required ladder logic, validate the programs and

download them to the host controller.

Introduction to Local Logic Programming

273

User Manual Chapter 10
GFK-1742F Jan 2020

10.10 Executing Your Motion Program

Once the download operation is complete, the module is ready to execute the Motion and
Local Logic programs. To cause the DSM module to execute the local logic program, set the
Q bit offset to 1 from the host controller, while the host controller is in RUN mode. This
activates the Local Logic program within the DSM. The next thing you need to do is perform
a Set Position command. This references the module and allows it to execute the desired
motion program. To perform this function, open the RVT (RVTExample) created in the Local
Logic section and enter 0023 hexin AQ offset 1. This enters the Set Position command. Then
enter 0in AQ offset 2. Refer to Chapter 5 for additional information concerning entering AQ
commands. The resulting display should be similar to the following figure.

Figure 138: RVTExample Screen

& VersaPro - MotionTest - [RVTExample.rvt] |_[O] x|
EFk Edit View Inset Folder PLC Tools Window Help = ﬂl_ﬂ

S13| Slaia| sele) | -|x] 8| % 0 | alc|[F 1lu| olo|o|elele] ke
28| taloalal[v u colso] B | = |ofE malo| 5SS w2

00000000 00100001 00000000 00000001 00000000 00100000 10000000 00010111 %I00001
" %100065
%Q00001
Q00065

100000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

00000000 00000000 00000000 00000000 00000000 00000100 00010000

100000000 00000000 00000000 00000000 00000000 00000000 00000000 0000000

0000 0000 0 0000
0 5

IAII Function Groups __J |ACUS _I _I
[00003 [00000010 [T Binewy | Addess

0 : 0 21C5 0000 0000 0000 0000] %A10001
| S e
1 " o geoo YT 88370 %AT0021 |
L o S 8208 e G T
L e o PR
| S 2, T
[= ; : ° T
LN S e e
— . e

|4|'|\ General £ Find \ Cross Refi / |« Irﬁ

For Help, press F1 [RunEnsbled Connected | 45msec [Equal | | 7

At this point, if there are no errors, you can execute the motion program. Enter a 1 (or
toggle) Q bit offset 2 (%Q00003). The motor should execute the motion program and
advance 1/60 of a revolution each second.

Additional details concerning the interface between the DSM and the host controller are
contained in Chapter 5.

Introduction to Local Logic Programming 274

User Manual
GFK-1742F

Chapter 11
Jan 2020

Chapter 11: Local Logic Tutorial

11.1

Local Logic Tutorial

The Local Logic programming language supports assignment, conditional statements,
arithmetic, logical, and relational operations. The Local Logic program runs synchronously
with the motion module position loop and therefore is deterministic. The language includes
constructs that allow the Local Logic program to communicate information between the
Logic program, the Motion Program, and the host controller. The tutorial focuses on the
local logic language and its communication with motion programs. Chapter 7 provides
additional information concerning the motion programmer language.

Statements

The Local Logic programming language supports assignment and conditional statements.
Assignment statements permit arithmetic results and bitwise logical operations to be
assigned to a variable. Conditional statements permit conditional local logic code
execution. Conditional execution is based on the value of a constant or variable, or the result
of a relational or bitwise logical expression.

“ ”»

Assignment statements use the “:=” operator. The following example multiplies two
parameter registers and assigns the result to another parameter register.

P001:=P210 * P107;

Note: Assignment statements require a semi-colon terminator as shown above.

Conditional statements use the IF-THEN-END_IF keyword combination. The END_IF
keyword concludes the conditional statement. The following example checks the Block_1
variables value and conditionally sets a value in a parameter register. Specifically, if the
Block_1 variable’s value equals 5 then the parameter PO10 value is set to 100.

IF Block_1=5THEN
P010:=100;
END_IF;

The IF, THEN, and END_IF keywords are case sensitive, and the END_IF statement is
terminated with a semi-colon. IF statements may be nested up to eight levels and the body
of the IF statements may contain one or more statements. Refer to Chapter 12 for a detailed
description of these statements.

275

User Manual
GFK-1742F

11.2

11.3

Local Logic Tutorial

Chapter 11
Jan 2020

Comments

Comments allow the programmer to describe program operation, or any information that
the programmer wishes to embed in the program. Comment text begins with the (*
character pair and terminates with the *) character pair and may appear anywhere within
the program. For example:

(* Valid Comment Structure *)

The DSM during program execution ignores comments. Thus, comment lines do not count
when determining local logic program length.

Variables

Local Logic provides the user access to motion controller data, control and status bits, and
parameters using a fixed set of variables. The language also supports decimal, hexadecimal,
and binary constants. Hexadecimal and binary value representations are unsigned
constantsin program statements, but are ALWAYS interpreted as signed two’s complement
in mathematical expressions. To assign a value to a variable the user would enter the
following

Torque_Limit_1:=5000; (* Sets Torque Limit Axis 1 to 50% *)
or in hexadecimal form
Torque_Limit_1:=16#1388; (* Set Torque Limit Axis 1to 50% *)

When variables are assigned a numeric value they are automatically limit checked to a
signed 32-bit value. For example the following values represent the largest positive and
negative values that are acceptable.

PO01:=16#7FFFFFFF; (* P001=2147483647 *)
or in decimal form
P001:=2147483647; (* PO01=16#7FFFFFFF *)
To assign the maximum negative value the user would enter
P002:=16#80000000; (* P002=-2147483648 *)
or in decimal form
P002:=-2147483648; (* P002=16#80000000 *)

If the user enters a number that exceeds the above numerical limits an error will be
generated indicating that the constant is out of range.

Local Logic variables have a read, write, or read/write “directional” attribute. (Additional
information concerning the variables and their type are contained in chapter 13.) As an
example, the variable Positive End of Travel for Axis 1 (Positive_EOT_1) is a read only
variable. As such, the following is a valid construct:

P001:=Positive_EOT_1; (* POO1 = Positive End of Travel Axis 1 *)

However, the following is an invalid construct:

276

User Manual
GFK-1742F

11.4

11.4.1

Local Logic Tutorial

Chapter 11
Jan 2020

Positive_EOT_1:=1;

The Local Logic Parser generates an error if the program attempts to write to a read only
variable, or attempts to read a write only variable.

In addition, Local Logic variables have a size attribute ranging from Boolean (1-bit) to double
integer (64-bits). The Local Logic Parser generates a warning message when a non-Boolean
value is assigned to a Boolean variable. The warning indicates that data may be lost, due to
truncation, when this assignment occurs. The user should note that double integer variables
(64-bit) variables may only be used as the destination of a multiply operation, or the
numerator of a divide or modulus operation.

Consult chapter 13 for additional information concerning Local Logic variables. Additionally,
the Local Logic Variables Table (LLVT) within the programming software contains the
information on the variables size, type and Read/Write properties.

Operators

Local logic provides three classes of operators. The operators are arithmetic, relational, and
bitwise logical operators. An introduction to each operator follows. A more detailed
discussion of the operators is contained in Chapter 12.

Arithmetic Operators

Local Logic provides the user with the ability to perform basic arithmetic operations. The
language supports 32-bit integer operations and limited use of 64/32 bit operations where
appropriate to maintain precision. All arithmetic functions, except the ABS function, require
two operands.

Local Logic supports addition, subtraction, multiplication, division, absolute value, and
modulus operations.

Example constructs are:

P010 := Commanded_Velocity_1 - P009; (* PO10=Commanded Velocity Axis 1 -
P009™)

The user should note that the following would be an invalid mathematical construct:
Commanded_Velocity_1:=P010 - P009; (* Commanded_Velocity_1=P010-P009*)

The reason this is invalid is that the mathematical expression is attempting to assign the
result (P010-P009) to Commanded_Velocity_1 which is a read-only variable.

Storing intermediate results into parameter registers provides the flexibility necessary to
solve complex mathematical expressions.

For example, the following construct is invalid since it contains more than one operation
(Multiply and Subtraction):

P005: = Torque_Limit_1 *(PO0T1 - PO10);
To achieve the same result, the user can enter the following:

P004: = P001 - PO10;

277

User Manual
GFK-1742F

11.4.2

Local Logic Tutorial

Chapter 11
Jan 2020

P005: = Torque_Limit_1 * P004;

Relational Operators

Relational operators compare two operands in a conditional statement. The < (less than), >
(greater than), <= (less than or equal), >= (greater than or equal), = (equal), and <> (not
equal) operators are valid relational operators. The IF statement body execution takes place
when the conditional expression is a true. In the example, the variable Torque_Limit_1 is set
to 10000 if the variable Block_1 equals 3. If the Block_1 value is not equal to 3 then the
expression evaluates to false and program execution continues after the END_IF program
statement.

Example:
IF Block_1=3THEN

Torque_Limit_1:=10000; (* Set Torque Limit = 100% @ Block 3 *)
END_IF;

Complex relations may be solved by nesting IF statements. For example, to set Axis 1 torque
limit (Torque_Limit_1) to 10000=100% (i.e. same scaling as in AQ command processing)
when the motion program block 3 is active and axis 1 commanded velocity
(Commanded_Velocity_1) is less than 1000, the following construct is valid:

IF Block_1=3THEN
IF Commanded_Velocity_1<1000 THEN
Torque_Limit_1:=10000; (* Set Torque Limit = 100% @ Block 3 *)
END_IF;
END_IF;

278

User Manual
GFK-1742F

11.4.3

Local Logic Tutorial

Chapter 11
Jan 2020

Bitwise Logical Operators

Bitwise logical operators mask orinvert an individual bit or groups of bits. The BWAND (and),
BWOR (or), BWXOR (exclusive or), and BWNOT (ones-complement) operators are valid
constructs. BWAND, BWOR, and BWXOR require two operands. The BWNOT operator
requires one operand.

As an example, the following code segment isolates a copy of several bits in the
CTL_1_to_32 word and assigns them to a parameter register.

Then, the least significant four bits of that value are tested and P002 is assigned a value 4985
if any are set.

PO01 :=CTL_1_to_32 BWAND 16#0000A005;
IF POOT BWAND 16#F THEN

P002 :=4985;
END_IF;

Specifically, the statements perform the following operations. The first statement uses
16#0000A005 as a mask. The mask corresponds to a binary value as follows:

16# 0000A005 = 2#0000 0000 0000 0000 1010 0000 0000 0101
Thus, the statement

P001:=CTL_1_to_32 BWAND 16#0000A005
isolates bits 1,3,14, and 16 from CTL_1_to_32 and places the result in POOT.

The next statement performs a bitwise test to see if any of the bits in the least significant
byte are set. The test value corresponds to a binary value as follows:

16#F =2#1111
Thus the statement
IF POOT BWAND 16#F THEN

performs a bitwise test with the least significant byte of PO01 and if any of the bits in the
least significant byte are set to a logical true (value = 1) then statements in the IF block are
evaluated.

In this example, since CTL_1_to_32 is masked in the previous statement, the IF condition
only tests bit 1 and bit 3 of CTL_1_to_32.

279

User Manual
GFK-1742F

11.5

11.6

11.6.1

Local Logic Tutorial

Chapter 11
Jan 2020

Local Logic [Host Controller | Motion Program
Communication

The Local Logic program or host controller communicates with the motion program using
parameters, CTL bits and Motion Program Block Numbers. These methods are used as
follows:

e Parameter Data - The Parameter data (P000-P255) are accessible from Local Logic,
host controller, and Motion Programs. The Parameter data are similar to variables in
a program. For example, a motion program can DWELL a period of time that is
determined by a parameter. The Local Logic program or the host controller can write
the parameter that determines the DWELL time in motion program.

e CTL Bits — CTL Bits allow the Local Logic program or host controller to signal the
Motion Program to start an event. For example, CTL bits are used to control Motion
Program flow with the JUMP command.

e Motion Program Block Numbers — The Motion Program (when block numbers are
used within the Motion Program) makes the current block number available to the
Local Logic program or host controller. The current Block number can be used within
the Local Logic program or host controller to make an action occur only during a
specific Motion Program section.

The signaling constructs between programs (host controller, Motion, and Local Logic) allow
them to interact and perform operation between programs. These signaling constructs are
important for the programming examples that follow. For additional information on the
host controller-to-motion program communications and program interactions the reader
should consult chapter 5 and Chapter 7.

Local Logic Programming Examples

The preceding sections introduced the base local logic language constructs. To illustrate
these concepts, the following sections contain program examples. These programs are for
illustration only and do not necessarily represent functional applications. Additional details
concerning the available local logic statements, variables and constructs are contained in
chapters 12 and 13.

Torque Limiting Program Example

The following example illustrates a method to use local logic in concert with a motion
program to perform torque limiting based upon a block number within a motion program.
In the example, the servo axis 1 applies a nut on the threaded shaft. At the beginning the
axis moves a little backward to improve the nut and shaft threads engagement. This motion
has the torque limit set to the maximum value. Next the nut is twisted until tight with the
torque limited to 30% of the maximum value. During this operation the motion command
destination point usually is not reached and the axis stops when the load friction is greater
then the torque limit. Subsequently, to release all tension in the mechanics, the torque is
set to 0 and after 0.1 second the signal “screw operation done” is turned “on”. When the

280

User Manual
GFK-1742F

Chapter 11
Jan 2020

“nut gripper released” signal is turned on by the host controller, the axis moves to the initial

position with the full torque.

Torque Limiting Local logic program.

start screw operation - S1gna1 from the host controller®)

- signal from the host controller®)

(*CONTROL BIT ASSIGNMENTS*)

(*CcTLol -

E*CTLOZ - loop the motion program 1*
*CTLO3 - nut gripper release
(*CTL04 -

screw operation done - signal to the host controller®)

(*PARAMETER DATA ASSIGNMENTS®)

(*P001 - acceleration of
(*P0O02 - velocity of the
E*POO3 - distance of the
*p004 - acceleration of
(*P0O0O5S - velocity of the
(*P00G - distance of the
(*P0O0O7 -

(*LOCAL LOGIC CODE™)

IF Program_Active_1 = 1 THEN

IF Block_1 = 10 THEN
POO7:=0;
CTLO4:=0;
Torque_Limit_1:=

END_TIF;

IF Block_1=30 THEN
Tbrque Limit_1:=

END_IF

IF B1nck_1 40 THEN
Torque_Limit_1:=
POOT:=P0O0OY7 + 1;
IF POO7=50 THEN

CTLO4:=1;

END_TIF;

END_IF;

IF B1ﬂck_1 50 THEN
Torque_Limit_1:=

END_TIF;

END_IF;

10000;
3000;

0;

10000;

Torque Limiting Motion Program

(* Torque Limiting Motion

Program 1 AXIS1

10:WATT
ACCEL
VELOC
20: PMOVE
ACCEL
VELOC
30:CMOVE
40 :WATT
50:PMOVE
&0: Jump

CTLO1

POO1

PO02

PO03, INCR,LINEAR
POO4

POOS

PO06 , INCR, LINEAR
CTLO3
0,ABS,LINEAR
CTLO2,10

EndProg

Local Logic Tutorial

the reverse motion®)
reverse motion®)

reverse motion¥)

the nut twist motion®)
nut twist motion®)

nut twist motion®)
counter used for tension release timer¥)

E*ax15 1 motion program active®)

motion prog. waits for start command)
(*reset counter®)

(*clear screw operation done¥*)

(*set torque Timit to maximum value 100%*)

(*main nut twist motion*)
(*set torque Timit to 30%*)

(*mot prog waits for released signal®)
(*set torque Timit =0%)

(*update timer counter®)

(*100 ms elapsed®),

(*set screw operation done®)

(*set torque Timit to maximum value 100%*)

Program *)

(* Wait for start command #)

Set acceleration of the motion #)
set velocity of the motion #)
Backward motion *)

Set acceleration of the motion *)
Set velocity of the motion *)

Main nut tw15t motion *)

wait for Er1pper released signal *)
Move to the initial position *)
Jump to begin if loop program =)

281

User Manual Chapter 11
GFK-1742F Jan 2020

11.6.2 Gain Scheduler Program Example

The following example illustrates a method to use local logic to implement a simple
gainscheduling algorithm. Care should be taken whenever one implements an algorithm
that dynamically changes the control characteristics. In many situations, dynamically
changing the control characteristics can cause the controlled process to go unstable. Note
that the Velocity_Loop_Gain control variable may be written multiple times in the same
sweep in the following program. However, the final value written in a given sweep is the
active value since variables are updated at the conclusion of Local Logic execution. Refer to
Chapters 12 and 13 for a detailed description of the Local Logic control variables and
outputs.

Gain Scheduler Local Logic Program
(* This example shows a way to implement a rudimentary gain

(* scheduling algorithm. The base wvelocity loop gain is
(* set to 12. However, based upon position and commanded

(* velocity the velocity loop gain is adjusted.

velocity_Loop_Gain_1 := 12; Base Velocity Loop Gain *)

(=
IF Actual_Position_1l > 500 THEN (* If Actual Position Axis 1 > 500 *)
IF Commanded_Velocity_1 < 10 (* If Commanded Velocity Axis 1 < 10 *)
velocity_Loop_Gain_1 := 16; (* Velocity Loop Gain Axis 1 = 16 *)
END_IF;
END_IF;

IF Actual_Position_1l > 1000 THEN If actual Position Axis 1 > 1000 *)
IF Commanded Velocity_1 < 10 If Commanded Velocity Axis 1 < 10 *)
velocity_Loop_Gain_1l := 20; (* velocity Loop Gain Axis 1 = 20 *)
END_IF;
END_IF;

PO

IF Actual_Position_1 > 1500 THEN (* If Actual Position Axis 1 > 1500 *)
IF Commanded_Ve10c1ty_1 < 10 THEN (* If Cmd velocity Axis 1 < 10 *)

Ve10c1ty Loop_Gain_1 := 24; (* vel Loop Gain Axis 1 = 24 *)
END_IF;
END_IF;
11.6.3 Programmable Limit Switch Program Example

The following example illustrates a method to use local logic to perform a programmable
limit switch function. This particular programmable limit switch turns on/off an output
based upon the current motor position and block within a motion program

Figure 139: Programmable Limit Switch Example

Digital_Outputi_1

OFF

Actual_Position_1

Y

4000 4500

Local Logic Tutorial 282

User Manual Chapter 11
GFK-1742F Jan 2020

Programmable Limit Switch Local Logic Program

£

T
S e e

(* This example shows a way to cause Axis 1 Digital Output # 1 to
* turn Gn wﬁen Axis 1 Actual Pesition is between 4000 and 4500,
* but only while the program is in Block #4. This demonstrates
(* functionality that is often implemented using a high speed counter
{* (HsC) and PRESET's. This exampElle will achieve a resolution of 2 ms.

L

Digital Outputl_1 := 0; (* Digital Output Axis 1 is off *)
IF Block_1 = 4 THEN (* If current Block number for axis 1 equals 4 *)
IF Actual_Position_1l > 4000 THEN (* If Act Pos Axis 1 > 4000 *)
IF Actual_Position_1 = 4500 THEN (* If Act Pos Axis 1 < 4500 *)
Digital_Outputl_1 := 1; (* Digital Output Axis 1 is On *)
END_IF;
END_TF;
END_IF;
The motion program segment corresponding with the above local logic program is shown

below.
Programmable Limit Switch Example Motion Program Segment

Program 1 Axisl E* Program Number 1 for Axis 1 *)
3: PMOVE 0, ABS, LINEAR * Move to initial position *)

4: PMOVE 8000, ABS, LINEAR (* Move to position 8000 *)

5: PMOVE -8000,ABS,LINEAR (* Move to position -8000 *)
EndProg

11.6.4 Trigger Output Based Upon Position Program Example

The following example illustrates a method to use Local Logic to trigger a timed output
based upon the current motor position. The reader should note that the timer
implementation uses a counter within the program. The counter counts the number of
times the program has been executed since the counter was last reset. Since local logic
programs are executed every position loop sample period, the counter time period is based
upon this period. This example uses digital servos, which have 2 mSec position loop sample
periods. Therefore, the counter will count in 2 mSec increments. For other configurations,
consult Chapter 1 for the position loop sample periods. Additionally, Local Logic allows the
program to write a variable multiple time within a program. The last state that the variable
is in at program completion is the one written to the output (refer to Chapter 12, section on
Local Logic Outputs/Commands). This is important in the following program. The second
IF-THEN-END_IF block turns the digital output for axis 1 (Digital_Output1_1) on when actual
position for axis 1 (Actual_Position_1) is greater than 4000 regardless of the current timer
value (P008). However, the last IF-THEN-END_IF block in the program checks the current
timer value (P008) and turns the digital output 1 for axis 1 (Digitial_Output_1) off if the
timer exceeds 500. The application is shown pictorially in Figure 140.

Local Logic Tutorial 283

User Manual Chapter 11
GFK-1742F Jan 2020

Figure 140: Timer Output Based Upon Position Example

500 ms
&
Digital_Outputi_1
OFF
Actual_Position_1
4000 >

Timer Output Based Upon Position Local Logic Program

(* This examp1e shows a way to trigger a timed output, based on *)
(* Axis 1 Actual Position *
(* when Actual_Position_l exceeds 4000, turn on Digital_oOutputl 1 *)

(* for 500 ms)
IF Block_1 = 4 THEN (* Block 4 in the motion program resets timer *)
POD8 := 0; (* Reset Timer (P0O08) #*)
Di%;ta1_0utputl_l := 0; (* make sure the output i1s off before move #*)
009 := 0; (* PO09 tracks the digital output state *)
END_IF;

IF Block_1=5 THEN o
IF Actual_Position_1l > 4000 THEN (®Actual_Position_1l exceeds 4000 *)

Digital_Outputl 1 := 1; (* turn the Digital_Outputl 1 ON *)
PO09 := 1;
ENMD_IF;
END_IF;
IF POD9 = 1 THEN (* whenever Digital_Outputl_1 is ON *
POOS := PDOB + 2; g* increment the Timer by 2ms *)
IF POO8 > 500 THEN * when the Timer exceeds 500 ms *)

Digital Outputl_1 := 0; (* turn_Digital Outputl_1 OFF *)
POD9 := 0; (* remember only the last write in a Local Logic

sweep actua]]y occurs for the digital output®)
EMD_TF;
END_TF;

The motion program segment corresponding with the above local logic program is shown
below.

Timer Output Based Upon Position Example Motion Program Segment

Program 1 Axisl (* Program Number 1 for Axis 1 =)
4: PMOVED, ABS,LINEAR (* Move to initial position *)

5: PMOVE 12000 ,ABS,5-CURVE (* Move To position 12000 *)
EndProg

Local Logic Tutorial 284

User Manual
GFK-1742F

11.6.5

Local Logic Tutorial

Chapter 11
Jan 2020

Windowing Strobes Program Example

The following example illustrates a method to use local logic to perform a windowing strobe
function. The example ignores the strobe command unless the current motor position is
inside the window (Actual Position > 4000 but less than 5000). If the motor position is inside
the aforementioned window, the first strobe occurrence causes the current motor position
to be captured within the strobe register. The application is shown pictorially in Figure 141.

Figure 141: Windowing Strobes Example

Strobe |_| —l |_| |_|_

4380

Position Capture Register 0

H——
4000 4380 5000

Actual Position

Windowing Strobes Local Logic Program

#*

(* Windowing Strobes- Local Logic Example

(* PO09 is the Strobe Position read from Strobel Position_1 *)

(* CTL13 is_used as the Strobe Occurred Flag - must be configured
for Local Logic Control in Hardware Conf1gurat1on*]

IF Block_1 = 6 THEN
POD9 := 0; 5* Initialize PO09 to O *)

cTLl3 = 0; * reset strobe occurred flag *)
END_IF;
Reset_Strobel_1 :— 0; (* Keep Reset Strobe b1t off by default *)
IF Strobel Flag_l = 1 THEN (* If strobe occurs in "window" range, *)

IF Actual Pas1t1on _1 > 4000 THEN (*set PO09 = strobe position *)
IF Actual_Position_1l < 5000 THEN
PO09 := Strobel_Position_1;
cTLls = 1 ; (* set the Strobe Occurred Flag ON. *)
END_IF;
END_IF;
Reset_Strobel_1 := 1; (* If a strobe occurs, set Reset Strobe bit. *)
END_IF;

The motion program segment corresponding with the above local logic program is shown
below.

Windowing Strobes Example Motion Program Segment

Program 1 AXIS1 (* Program Number 1 for Axis 1 *)
PMOVE 0, ABS, LINEAR (* Move to initial position *)
6: DWELL 10

7: PMOVE 10000,ABS,5-CURVE (* Move to position 10000 *)
EndProg

285

User Manual Chapter 12
GFK-1742F Jan 2020

Chapter 12: Local Logic Language Syntax

This chapter describes the Local Logic programming language syntax, rules, and language
elements. The language uses free-format text-based constructs derived from the IEC 1131
structured text standard. The sections that follow describe the available commands and the
command syntax.

12.1 Syntactic Elements

The local logic language syntax is described in the following sections. The syntax is easy to
learn and provides a rich feature set that allows the user to accomplish the programming
task. Chapter 11 contains many examples that will further aid the reader in understanding
the syntax and its application. The first-time user may also wish to consult the section on
“Building Your First Local Logic Program” program contained in chapter 10 and the sample
programs in the Chapter 11 tutorial as additional aids.

12.1.1 Numeric Constants

The local logic programming language supports decimal, hexadecimal, and binary
constants. The DSM treats all constants as 32-bit signed twos-complement integer values.
Single underline characters (i.e. 16#7fff_ffff) may be inserted between digits to improve the
readability of large numbers.

Decimal constants must be in the range of -2147483648 to 2147483647. Only integer
values are supported, therefore constants do not have a decimal point. Thus, as in all
integer-based systems the decimal points are implied and the programmer must keep track
of them if fractional math is needed.

Examples:
523 Positive decimal constant
-1048 Negative decimal constant
1_745_245 Positive decimal constant with embedded underscores

Hexadecimal (base 16) constants are identified by a 16# prefix and must have a value that
can be represented in 32-bits (8 hexadecimal digits). Hexadecimal constants cannot have a
sign (+/-) prefix. Hexadecimal digits A-F are not case sensitive, upper or lower case may be
used.

Examples:
16#FFFF Hexadecimal constant
164#7fff_ffff Hexadecimal constant with embedded underscores

Binary (base 2) constants are identified by a 2# prefix and must have a value that can be
represented in 32-bits (32 binary digits). Binary constants cannot have a sign (+/-) prefix.

Local Logic Language Syntax 286

User Manual Chapter 12
GFK-1742F Jan 2020

Examples:
2#1010 Binary constant

2#11111110_11101101_10111110_11101111 Binary constant with embedded
underscores

A local logic program may have a maximum of 50 unique constants whose value is greater
than 2047 or less than -2048. If a local logic program declares more than 50 unique
constants, the build process generates an error. Most programs use much less than 50
constants, so this is generally not a constraint.

12.1.2 Local Logic Variables

The local logic language supports a number of predefined variables that allow access to the
DSM I/O data, CTL bits, and other status and control information. A detailed description of
the local logic variable set is contained in chapter 13 Each variable has two attributes, size
and direction. Local Logic variables range in size from 1 Bit (Bit Operands) to 64 bits.

All Local Logic parameter registers are one of the following types.

e Double integer variables hold signed 32 bit values (-2147483648 to 2147483647).
There are 256 Parameter registers (P000-P255).

e Longinteger variables hold signed 64 bit values (+/-9.22 x 1018). The long integer
variables are unique in that they may only be used for the result of a multiply or as
the numerator in a divide or modulus operation. There are 8 long integer registers
(D00-DO7).

All Local Logic variables have one of the following directional attributes.
e Read-only variables may not be used as the destination of an assignment operation.
e Write-only variable may only be used as the destination of an assignment statement.
e Read-write variables may be used as a source or destination.

Refer to Chapter 13 for a list of all the Local Logic variable size and direction attributes.

Local Logic Language Syntax 287

User Manual
GFK-1742F

12.1.3

Chapter 12
Jan 2020

Local Logic Statements

The Local Logic language supports two kinds of statements: Assignment and Conditional. A
Local Logic program supports 150 statements. The Local Logic check block will generate an
error message when the 150 line limit is exceeded. Warnings are issued when the Local Logic
program exceeds 100 lines. The warning message can be turned off with the #pragma
directive. Reference the #pragma sections for additional details. Semicolons separate
program statements.

Local Logic Assignment Statements

Assignment statements permit simple arithmetic and bitwise operations to be performed
with the result being assigned to a variable. An assignment statement has the following
format.

<destination> := <expression>;

The <destination> operator may consist of any read-write or write-only variable. The
<expression> may be a simple constant or variable, a mathematical or bitwise logical
operation on two operands, an ABS function, or a bitwise NOT operation. Write-only
variables can not be the expression for an assignment operation.

Examples:
P032 :=Strobe1_Position_1 + 5000; € This construct is okay.
P001 := ABS(Analog_Input1_1); € This construct is okay.

Reset_Strobe1_1:=BWNOT Strobe1_Flag_1; <€ This construct is okay.
P040:=2#11111010_1011000; € This construct is okay.

P0O11 :=3 * Strobe1_Position_1 + 20; € This construct is ILLEGAL - too
many operations.

If complex operations are required, perform the operation using a series of steps that use
parameter registers to store intermediate results.

Examples:

To set Velocity_Loop_Gain_2 equal to (1+75000/Actual_Velocity_2), the programmer uses
a series of statements similar to the following...

P012 :=75000 [Actual_Velocity_2;
Velocity_Loop_Gain_2:=1+P012;

The build process will issue a warning if a Boolean variable is used as the destination for an
expression containing non-Boolean variables or a constant whose value is not zero or one. A
warning is generated because the DSM will assign the Boolean variable the value of the least
significant bit of the expression.

Local Logic Language Syntax

288

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Conditional Statements

Conditional statements permit conditional code execution based on simple relational and
bitwise logical operations. A conditional statement has the following format.

IF <expression> THEN
Local Logic Statements
END_IF;

The <expression> may consist of a constant, a variable, a relational or bitwise logical
operation on two variables, or a bitwise complement of a constant or variable. Write-only
variables are not allowed in the expression. If the relational expression is true, or if a bitwise
operation, variable or constant has a non-zero value, the Local Logic statements in the body
of the IF statement are executed. Any number of program statements may appear in the
body of an IF statement (subject to the total limit). Each IF-THEN statement must have an
accompanying END_IF.

Examples:
IF P226 THEN € This construct is okay.
IFCTL_1_to_32 BWAND 2#1010 THEN € This construct is okay.
IF Strobe1_Level_1 = TRUE THEN € This construct is okay.
IFBWNOT P100 THEN € This construct is okay.
IF BWNOT P001 <>P002 THEN € This construct is ILLEGAL - too

many operations.

If statements may nest up to 8 levels deep. When counting the number of program
statements, the IF-THEN and END_IF statements count as two separate statements.

Table 54: Valid Operators

Statement Type Valid Operators
Conditional Relational <, >, <=,>= <> =
Bitwise Logical BWAND, BWOR, BWXOR, BWNOT
Assignment Arithmetic +,-,/,*,MOD
Bitwise Logical BWAND, BWOR, BWXOR, BWNOT
Abs Function ABS ()

12.1.4 Whitespace

Blanks, end-of-lines, and tabs are considered whitespace. Whitespace is ignored, except
when used to separate adjacent syntactic elements, and may be used to improve program
readability by the use of indention and blank lines.

Local Logic Language Syntax 289

User Manual
GFK-1742F

12.1.5

Chapter 12
Jan 2020

Comments

Comments may be used to add information to the program that is ignored by the Local
Logic program execution engine. Two types of comments are supported.

The (* character pair introduce a normal comment, which terminates with the *) character
pair. These comments may appear anywhere whitespace can, for example within or
following a local logic statement, alone on a line, or spanning several lines. These comments
do not nest.

The /[character pair introduces a single line comment. All text following the /[to the end of
the line is ignored by the Local Logic execution engine.

Note: You should be aware that one can enter a local logic program and inadvertently comment out the
code that one wants to execute. The common scenario that causes this to happen is as follows:

(* This example shows a way to cause Axis 1 Digital Output # 1 to)
(* turn on when Axis 1 Actual Position is between 4000 and 4500, *)
(* but only while the program is in Block #4. This demonstrates *)
(* functionality that is often implemented using a high speed counter *)
(* (HSC) and PRESET's. This example will achieve a resolution of 2 ms.)
Digital_Qutput1_1 :=0; (* Digital Qutput Axis 1 is Off *)
IF Block_1=4 THEN (* If current Block number for axis 1 equals 1 *)

In the above code segment, the end comment structure, line shown in bold/italic for
illustrative purpose, is incorrect because the asterisk in the close comment structure is
absent. The error causes the following line to be considered a comment as well. Thus, the
statement Digital_Output_1:=0 is considered a comment and not executed. The color
scheme within the Local Logic editor can be very useful to help find these types of problems.
The coloring scheme by default will color the comments a different color than the
programming statements. Thus, the user will have a visual method to help find these errors.
Please consult chapter 2 for information on how to change the default color scheme for the
editor.

Local Logic Language Syntax

290

User Manual Chapter 12
GFK-1742F Jan 2020

12.1.6 PRAGMA Directive

The #pragma directive is used to configure the Local Logic parser. The directive is NOT
required for the parser to operate. However, if the user wishes to turn off warning messages
the #pragma directive allows this to occur. The #pragma directive MUST be the first line of
the program. Additionally, no white space should be present prior to the directive.

To turn ALL Local Logic warnings off, issue the following command:
#pragma errorsonly 1
or
#pragma errorsonly ON

To turn warning messages back ON either delete the directive or change the directive as
follows:

#pragma errorsonly 0
or

#pragma errorsonly OFF

12.1.7 Local Logic Keywords and Operators

The following keywords and operators have special significance in the Local Logic
programming language. Keywords are case-sensitive and use only upper-case letters.
These are discussed in further detail in the following sections.

Table 55: Local Logic Keywords

ABS TRUE + >
BWAND FALSE - <
BWOR IF / >=
BWXOR THEN * <=
BWNOT END_IF 16# =
ON MOD 24 <>
OFF ; =

Local Logic Language Syntax 291

User Manual
GFK-1742F

12.2

12.3

Chapter 12
Jan 2020

Enabling and Disabling Local Logic

Local Logic execution is enabled using a host controller Q bit. For example if a DSM is
configured with a starting %Q reference of %Q0001 then the Local Logic enable bit is
%Q0002 (beginning reference + offset of 1). The Local Logic program name must be
specified in the hardware configuration software and the field for Local Logic
Enabled/Disabled must be set to Enabled. Refer to Chapter 10 for a detailed description of
configuring Local Logic in hardware configuration.

Local Logic executes only while the host controller is in RUN mode. If The host controller is
switched to STOP mode or if the enable Local Logic Q bit is turned off, Local Logic execution
is halted and all Digital Outputs, Control bits (Jog, Feedhold, Strobe Resets, Follower Enable)
and CTL bits that are under the control of Local Logic are disabled.

Attempting to execute Local Logic in the First CPU Sweep will result in an error being
reported. For example, switching from Stop Mode to Run Mode while the Local Logic Enable
bit is on will generate an error and the Local Logic program will not execute. Toggle the
Enable Q bit to run the Local Logic program.

Note: The Local Logic Engine will not run if any custom Local Logic functions are enabled via the
Advanced Parameters in Hardware Configuration. The custom function will normally not be
available and is developed for application specific use only by Emerson.

Local Logic Outputs/Commands

DSM command bit outputs (Jog, Feedhold, Follower Enable and Strobe Resets) are OR’ed
between the host controller command and the Local Logic command. Therefore, either the
host controller or Local Logic can control them i.e. the command bit output is active if either
the host controller or Local Logic has turned it on.

AQ commands are accepted on a last-write basis. For example, if both the host controller
(%AQ) and Local Logic issue a Follower Ratio command the last value written will be active.

DSM faceplate digital outputs (real outputs switched by the DSM) are individually
configurable to be either under Local Logic control or host controller control, but not both
simultaneously. Refer to Chapter 14 for a detailed description on configuring the Digital
Outputs.

Local Logic digital outputs, immediate commands and command bits are updated at the
end of each Local Logic Sweep (refer to Chapter 13 for a list of the command Variables and
digital output variables). Therefore if the Local Logic program writes to the same command
variable or digital output variable multiple times in the same sweep, the last value written
will be the effective command.

For example, the sample code below shows the Jog_Plus variable, the Strobe_Reset variable
and the Follower_Ratio being written multiple times within the same sweep. In all cases the
final value written is the active value.

Local Logic Language Syntax

292

User Manual Chapter 12
GFK-1742F Jan 2020

Example:

Jog_Plus_1:=TRUE; (* Turn on Jog Plus for Axis 1 *)
Strobe_Reset1_3:=0; (* Turn off the Strobe 1 reset bit for Axis 3 *)

(* Some more code here *)

Follower_Ratio_A_1:=10; (* Set the Follower Ratio A for Axis 1to 10 *)
Jog_Plus_1:=FALSE; (* Turn off Jog Plus for Axis 1*)
Strobe_Reset1_3:=1; (* Turn on the Strobe 1 reset bit for Axis 3 *)
Follower_Ratio_A_1:=20; (* Set the Follower Ratio A for Axis 1 to 20 *)

For each of the output commands shown above, the last value written is acted upon by the
Logic Engine at the end of each sweep. Thus Jog_Plus_1 is turned OFF, Strobe_Reset1_3 is
turned ON and Follower_Ratio_A_1 is set to 20.

12.4 Local Logic Arithmetic Operators

The Local Logic language contains familiar constructs to perform basic signed integer
arithmetic computations. The language supports 32-bit arithmetic in the Local Logic
program and limited use of 64/32-bit arithmetic. All operations require two operands
except for the ABS function, which returns the absolute value of a variable or numeric
constant.

Table 56: Arithmetic Operators

Operator | Meaning

+ Addition

- Subtraction

* Multiplication
/ Integer Division
MOD Modulus

ABS Absolute Value

Arithmetic expressions may only be used in assignment statements with one operation per
statement.

The arithmetic operations do not require data type conversion functions since the motion
module automatically does this operation.

Local Logic Language Syntax 293

User Manual
GFK-1742F

12.4.1

12.4.2

Chapter 12

Jan 2020
Operator +
Adds source1 to source2 and stores the result in destination
Syntax
destination := sourcel + source2;

The + operator syntax has these parts:

Part Description

Destination Any writeable local logic variable except Dxx registers.

source1 Any readable local logic variable/constant except Dxx registers.

source2 Any readable local logic variable/constant except Dxx registers.

Overflow - Set if the result of an addition is greater than 2,147,483,647 or less than -
2.147,483,648. The Module_Status_Code is set to a value of 16#0095, which is a status-
only error.

Operator -

Subtracts source2 from source1 and stores the result in destination
destination := source1 - source2;

The - operator syntax has these parts:

Part Description

Destination Any writeable local logic variable except Dxx registers.

source Any readable local logic variable/constant except Dxx registers.
source2 Any readable local logic variable/constant except Dxx registers.

Overflow - Set if the result of a subtraction is greater than 2,147,483,647 or less than -
2,147,483,648. The Module_Status_Code is set to a value of 16#0095, which is a status-
only error.

Remarks

The - operator may not be used as a unary operator except with a decimal (base 10)
constant (e.g. P001 :=-P003; isillegal). To negate a variable, subtract it from zero, e.g. P001
:=0-P003;.

Local Logic Language Syntax

294

User Manual
GFK-1742F

12.4.3

12.4.4

Chapter 12
Jan 2020

Operator *

Performs a signed multiply of sourcel and source2 generating a signed 64-bit result. The
result may be stored to a 32-bit or 64-bit destination.

Syntax 1

destination := source1 * source2;
Syntax 2

double destination := source1 * source2;

The * operator syntax has these parts:

Part Description

Destination Any writeable logic variable

double destination Any of the 84-bit local logic parameter variables (Dxx registers).
source1 Any readable local logic variable/constant except Dxx registers.
source2 Any readable local logic variable/constant except Dxx registers.

Overflow - Never set.
Remarks

If the result is assigned to a 32-bit variable, the least significant 32-bits are stored. Any
excess is truncated.

The second syntax may be used for multiplication operations where the result will fall
outside the range of +/- 2 billion.

Operator MOD

The MOD operator returns the remainder resulting from the signed integer division of
sourcel by source2. A double precision (64-bit) parameter register may be used as the
numerator.

Syntax 1

destination := source1 MOD source2;
Syntax 2

destination := double source1 MOD source2;

The MOD operator syntax has these parts:

Part Description

Destination Any writeable local logic variable except Dxx registers.

source1 Any readable local logic variable or numeric constant.

double source1 Any of the 64-bit local logic parameter variables (Dxx registers).
source2 Any readable local logic variable/constant except Dxx registers.

Overflow - See remarks below.
Remarks

In case of a divide by zero, the Module_Status_Code is set to 16#2093. In case of a divide
overflow, the Module_Status_Code is set to 16#2094.

Local Logic Language Syntax 295

User Manual Chapter 12
GFK-1742F Jan 2020

The modulus (remainder) is calculated by performing an integer division, therefore the
MOD operator has the same error conditions as the divide operator.

A divide overflow occurs when the quotient of a divide operation cannot be correctly be
represented as a signed 32-bit value. This can only occur when using a double operand as
the numerator. A divide by zero occurs when the denominator of the divide has a value of
zero.

A divide overflow or divide by zero are Stop Fast errors. Local Logic is immediately aborted,
and motion is aborted by setting the servo velocity command to zero.

12.4.5 Function ABS

The ABS function returns the unsigned magnitude of the variable or constant parameter.
Syntax
destination := ABS(parameter);

The ABS operator syntax has these parts:

Part Description
Destination Any writeable local logic variable except Dxx registers.
Parameter Any readable |ocal logic variable/constant except Dxx registers.

Overflow - Set if the operand has a value of -2,147,483,648. The Module_Status_Code is
set to a value of 16#0096, which is a status-only error.

12.5 Local Logic Bitwise Logical Operators

All logical operations are performed on a bit-by-bit basis, for example the result of a
BWAND operation is composed of 32 and operations between each of the corresponding
bits of the operands. The logic operators are prefixed with ‘BW’ to highlight the fact that
they are not Boolean operators.

Table 57: Bitwise Logical Operators

Operator Meaning

BWAND Bitwise Logical AND

BWOR Bitwise Logical OR

BWXOR Bitwise Logical Exclusive OR

BWNOT Bitwise Logical NOT (one’s-complement)

Expressions using bitwise logical operators may be used in assignment or conditional
statements. Only one bitwise logical operator may be used per expression.

Local Logic Language Syntax 296

User Manual
GFK-1742F

12.5.1

12.5.2

Chapter 12

Jan 2020
Operator BWAND
Performs a bitwise and of source1 and source2.
Syntax 1
destination:= source1 BWAND source2;
Syntax 2
IF source1l BWAND source2 THEN
The BWAND operator syntax has these parts:
Part Description
Destination Any writeable local logic variable except Dxx registers.
source1 Any readable local logic variable/constant except Dxx registers.
source2 Any readable local logic variable/constant except Dxx registers.
Remarks
Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.
Operator BWOR
The BWOR operator returns the bitwise or on source1 and source2.
Syntax 1
destination:= source1 BWOR source2;
Syntax 2
IF source1 BWOR source2 THEN
The BWOR operator syntax has these parts:
Part Description
Destination Any writeable local logic variable except Dxx registers.
source1 Any readable local logic variable/constant except Dxx registers.
source2 Any readable local logic variable/constant except Dxx registers.
Remarks
Syntax 1is used for assignment, syntax 2 is used in a conditional evaluation.
297

Local Logic Language Syntax

User Manual
GFK-1742F

12.5.3

12.5.4

Chapter 12

Jan 2020

Operator BWXOR
The BWXOR operator returns the bitwise exclusive or of source1 and source2.
Syntax 1
destination: = source1 BWXOR source2;
Syntax 2
IF source1 BWXOR source2 THEN
The BWXOR operator syntax has these parts:

Part Description

Destination Any writeable local logic variable except Dxx registers.

source1 Any readable local logic variable/constant except Dxx registers.

source2 Any readable local logic variable/constant except Dxx registers.
Remarks
Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.
Operator BWNOT
The BWNOT operator returns the one’s complement of the source parameter.
Syntax 1
destination:= BWNOT source;
Syntax 2
IF BWNOT source THEN
The BWNOT operator syntax has these parts:

Part Description

Destination Any writeable local logic variable except Dxx registers.

source Any readable local logic variable/constant except Dxx registers.
Remarks
Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.

298

Local Logic Language Syntax

User Manual
GFK-1742F

12.6

Chapter 12
Jan 2020

Comparison Operators

The comparison operators form a relational assertion between two operands. The
comparison expression evaluates the conditional based on the operands signed integer
value.

Table 58: Relational Operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
= Equal to

<> Not Equal to

Comparison operators may only be used as expressions in conditional statements, and only
one comparison operator may be used per expression.

IF source1 ComparisonOp source2 THEN

Comparison operators have these parts:

Part Description

source1 Any readable Boolean or 32-bit local logic variable or numeric
constant.

source2 Any readable Boolean or 32-bit local logic variable or numeric
constant.

ComparisonOp Any relational operator / Logical operator.

Remarks

The following table contains a list of the comparison operators and the conditions that
determine whether the result evaluates to True or False:

Table 59: Local Logic Comparison Operators

Relational Operator True if False if
Less than < sourcel <source2 |sourcel>=source2
Less than or equal to <= sourcel <=source2 |sourcel>source2
Greater than > sourcel >source2 |sourcel <=source2
Greater than or equal to >= sourcel >=source2 |sourcel <source2
Equality = sourcel =source2 |sourcel <>source2
Inequality <> sourcel <>source2 |sourcel =source2
Null Operator (IF Variable | N/A Variable is Non-Zero | Variable is Zero
THEN....)
Bitwise Logical Operators | BWAND, BWOR,BWXOR, |Resultis Non-Zero |Resultis Zero
BWNOT

Local Logic Language Syntax

299

User Manual
GFK-1742F

12.7
12.7.1

Chapter 12
Jan 2020

Local Logic Runtime Errors

Overflow Status

Some arithmetic operations may have results that cannot be correctly represented as a
signed 32-bit value. An example is shown in the following code segment.

PO01 := 16#7FFF_FFFF; // (1) POO1l € 2,147,483,647 (maximum positive 32 bit value)

PO03 := POOLl + 1; /7 (2) ! Ooverflow !

Inthefirstline, PO01 isloaded with 2,147,483,647, the largest value that can be represented
as a 32 bit signed two’s-complement value. In the second line, one is added to that value.
The total, represented in hexadecimal, is 16#8000_0000. This value, interpreted as a 32-bit
signed two’s complement number represents the negative value — 2,147,483,648, not the
positive value 2,147,483,648! In many situations, this result would be unexpected and have
undesirable effects in subsequent program statements.

Three variables are available to the Local Logic program to detect overflows. The Overflow
variable is a read-write Boolean variable available only to the local logic program (refer to
Chapter 13, Section on “Local Logic System Variables”). When an overflow error occurs, and
the Overflow variable is not cleared before the end of the Local Logic sweep, the DSM’s
Module Status Code %Al word (local logic variable Module_Status_Code) is set. The error
code indicates the type of overflow and the Module Error Present %I bit (local logic variable
Module_Error_Present) is set. The Module Status Code %Al word and the Module Error
Present %l bit are not set until the current Local Logic sweep has finished executing. In
contrast, the Overflow variable is set immediately following an instruction which causes an
overflow. The Local Logic program may clear the Overflow variable by assigning it a value of
zero. The Module Status Code must be cleared by the host controller by setting the
module’s Clear Error %Q bit.

Overflow and computation errors are Status Only errors with two exceptions. A divide by
zero or divide overflow (the quotient cannot be represented in 32 bits) are Stop Fast errors.
In the case of status only errors, Local Logic processing and path generation continue
normally. A stop fast error will cause Local Logic processing to be aborted before proceeding
to the next instruction, and any motion will be aborted by setting the servo velocity
command to zero. Note: Clearing the Overflow variable has no effect on Stop Fast errors.

Refer to Table 63 for a listing of all Runtime Local Logic error codes.

Divide By Zero

The Logic Engine flags Divide By Zero operations as a Fast Stop Error, since the result of the
operation is undefined. Local Logic execution and servo motion is halted. An error code
16#2093 is reported in the module status code and 16#2x9A in the Per-Axis error codes if
the drives were enabled.

Local Logic Language Syntax

300

User Manual Chapter 12
GFK-1742F Jan 2020

Watchdog Timeout Warning | Error

Local Logic programs are constrained to complete execution within 300 microseconds in
the Logic Engine. This is to allow sufficient processing time in the module for Path
Generation and other tasks. Refer to Appendix E for a detailed listing of the execution times
for all valid Local Logic operations. The user can compute the execution time required for a
given program using the data tables supplied in Appendix E. The Logic Engine reports a
warning (Status Only) error code if the execution time takes more than 275 microseconds
but less than 300 microseconds. A Fast Stop error is generated if the program execution
time exceeds 300 microseconds. Refer to Table 63 for a list of the runtime warnings and
error codes.

Note: Local Logic execution is halted if there are any Local Logic Fast Stop errors (see Table 61) and all
Digital Outputs, Control bits (Jog, Feedhold, Strobe Resets, Follower Enable) and CTL bits that are
under the control of Local Logic are disabled. Local Logic execution resumes from the start when
the user clears the error (via the error clear %Q bit).

12.8 Local Logic Error Messages

12.8.1 Local Logic Build Error Messages

The local logic program build process communicates the build status through the local
logic, editor error log window. In the event an error occurs, the build process reports the
error and attempts to continue the build process.

Error messages generated by the local logic build process fall into three categories; syntax
errors, parse errors, and parse warnings.

Parser error messages have several common elements.
Filename (Line): [Severity] [error message]

Filename is the filename of the current file being built.

Line is the line number in the file that the error was detected on.

Severity describes error severity. Errors prevent a binary creation. Warnings are
informational.

Error Message is a short, general description of the error

Local Logic Language Syntax 301

User Manual Chapter 12
GFK-1742F Jan 2020

12.8.2 Local Logic Syntax Errors

The build process enforces the local logic syntax. If the source program fails to meet this
criterion, the build process reports a syntax error. The error message identifies the error as
a syntax error. The syntactic element type found followed one or more of the syntactic
elements the parser was expecting is contained within the error message. It is common for
syntax errors to actually be reported on a line following the line with the actual error. Missing
semi-colons are a typical example.

Example:
scratch.llp (3): Error :syntax error
actual: IF expecting: ;

In this case, line 2 is actually missing the semicolon. Since the semi-colon may actually follow
on another line, the parser does not report the error until it sees a meaningful syntactic
element thatisn’t a semi-colon.

Because of their nature, a single syntax error can cause “cascading errors.” Correcting one
syntax error may eliminate several syntax error messages. To avoid confusion, when
debugging Local Logic programs with syntax errors, correct the first error and rebuild the
program to refresh the list of errors before proceeding.

12.8.3 Local Logic Parse Errors

Parse errors occur when the program syntax is correct, but there is a semantic problem. For
example, itis invalid to assign a value to a double precision variable except as the result of a
multiplication operation.

Examples:

Error (P203) Invalid assignment to Double precision var: D00

In this case the error message is followed by a string that identifies the token that caused
the error. A list of Parse errors and typical causes follows:

Table 60: Local Logic Parse Errors

Error Number | Error Description

(P200) Undefined identifier

The program contains an unrecognized variable or keyword. Check spelling and
command syntax.

(P201) Parameter register must be in range of PO00 - P255

This error is generated when the program specifies an undefined parameter
register, for example P278.

(P202) CTL variable must be in range CTLO1 - CTL32
This error is generated when the program specifies an undefined CTL variable,
for example CTL35.

(P203) Invalid assignment to Double precision var

Local Logic Language Syntax 302

User Manual
GFK-1742F

Chapter 12
Jan 2020

Error Number

Error Description

The program has attempted an invalid usage of one of the double precision
registers. Double precision registers may only be assigned values as the result of
a multiply operation.

(P204)

Invalid use of Double precision var

The program has attempted an invalid usage of one of the double precision
registers. Double precision registers in expressions may only be used as the
divisorin a divide or MOD operation.

(P205)

Assignment to read-only variable

The program has attempted to assign a value to a read-only variable.

(P206)

Attempt to read write-only variable
The program has attempted to use a write-only variable as one of operands in an
arithmetic, logic, or relational expression.

(P207)

Subscripted variables are not supported

Variables of the form Data_Table_Int[xx] are not supported. Data table
operations require the use of the Data_Table_Ptr variable.

(P208)

Identifier name exceeds 50 chars

The program has used attempted to reference a variable with an identifier length
in excess of 50 characters.

(P209)

Double Precision register must be in range D00 - D07
This error is generated when the program specifies an undefined double
precision register, for example D08.

(P220)

Hexadecimal constants must be in range of 16#0 - 16#FFFFFFFF

The program has defined a hexadecimal constant that cannot be represented in
32 bits

(P221)

Binary constants must be in range of 0 to (2°32)-1
The program has defined a binary constant that cannot be represented in 32 bits

(P222)

Integer constants must be in range of -2147483648 to 2147483647

The program has defined a decimal constant that cannot be represented in 32
bits

(P223)

Constant table overflow

A program can contain a maximum of 50 unique constants greater than 2047 or
less than -2048 (i.e. numbers that cannot be represented in less than 12 bits). A
program may contain any number of constants in the range of —-2048 to 2047.

(P230)

IF nesting limit of 8 levels exceeded.
IF statements cannot nest more than 8 levels deep.

(P231)

lllegal term in IF statement
The program has an arithmetic operator in an IF statement.

(P232)

Missing END_IF statement

There is an IF statement that is missing a matching END_IF statement. This error
is only detected at the end of the program.

(P233)

Unmatched END_IF encountered

An END_IF statement has been found that doesn’t have a corresponding IF
statement.

Local Logic Language Syntax

303

User Manual
GFK-1742F

Chapter 12
Jan 2020

Error Number

Error Description

(P240)

Assignment to constant

The program has attempted to use a constant as the destination of an
assignment statement.

(P241)

Invalid operator, assignment expected
Another operator was encountered where the assignment operator (:=) was
expected.

(P242)

Relational operator not allowed in assignment statement

A comparison operation was attempted in an assignment statement. An
assignment based on a relational may be performed by assigning a Boolean
valuein an IF statement.

(P260)

Invalid logic operator. Use BWAND, BWOR, BWXOR, or BWNOT - <operator>
The program has used AND, OR, XOR, or NOT keywords, rather than BWAND,
BWOR, BWXOR, or BWNOT, respectively.

(P280)

Instruction limit exceeded, max 150

Alocal logic program may be a maximum length of 150 statements. This error is
reported if the program exceeds that length.

(P290)

Address out of range in direct memory access reference
A direct memory variable has specified an invalid offset.

(P291)

Invalid direct memory address variable
An invalid direct memory variable has been specified.

(P292)

Direct memory access var requires subscript

The program has referenced a direct memory variable without specifying an
offset

(P293)

Maximum error count exceeded.

The Local Logic parser will report a maximum of 30 errors. When that limit has
been exceeded this message is displayed and no further errors are reported.

298-(P299)

Internal Error. Contact Emerson Technical Support.

If the parser reports error 298 or 299 for a user program, please notify Emerson
technical support. Provide a copy of the program and error log.

(P300)

Parse directives must precede any executable statements.

#pragma directives must appear before any executable statements in the Local
Logic program block.

(P301)

Invalid directive option
The specified #pragma directive is not recognized by the Local Logic Parser.

(P302)

Invalid directive parameter
An invalid argument to the #pragma errors only directive was specified. The
argument must be 1, ON, 0, or OFF.

Local Logic Language Syntax

304

User Manual
GFK-1742F

Chapter 12
Jan 2020

12.8.4 Local Logic Parse Warnings

Parse warnings are generated for conditions that may have unexpected results orindicate a

possible oversight in the Local Logic Program.

Table 61: Local Logic Parse Warnings

Error
Number

Error Description

(P400)

Assignment to binary variable may result in loss of data

This message is generated when a Boolean variable is assigned from a non-Boolean
variable or constant, or an expression containing non-Boolean variables.

(P410)

Check instruction execution time

This warning is generated for programs exceeding 100 statements. While there is a
maximum instruction limit of 150 statements, it is possible to write a Local Logic
program that takes too long to execute.

For instruction times, refer to appendix A in the PACSystems CPU Reference Manual,
GFK-2222 or Series 90-30 CPU Reference Manual, GFK-0467

(P481)

Obsolete syntax: function parameter requires parentheses
The parameter of an ABS function call is not enclosed in parentheses.

(P482)

Unexpected end of program: unclosed comment

A comment initiated with the “(*” character pair was not closed when the end-of-
program was encountered.

(P483)

Nested comments
This warning is generated if a Local Logic program has defined comment text within
another comment.

(P490)

Program contains no executable statements
The program contains only white space and/or comments.

12.8.5 Local Logic Download Error Messages

The following errors may be reported in the Module Status Code when a Local Logic
program is downloaded into the module.

Table 62: Local Logic Configuration Error Codes

Error Code Response Description Error Type
(Hexadecimal)

0A System Error | Invalid Digital Output Configuration Module

0B System Error | Invalid CTL Bit Configuration Module

Note: Referto Chapter 14 for a detailed description on configuring CTL bits and Digital Outputs for
Local Logic.

Local Logic Language Syntax

305

User Manual

GFK-1742F

Chapter 12
Jan 2020
Table 63: Local Logic Preprocessing Error Codes

Error Code Response Description Error

(Hexadecimal) Type

FOAO System Error | Local Logic Program Header Error Module
FOAT1 System Error | Local Logic Program Terminator Error Module
FOA2 System Error | Local Logic Program Constant Header Error Module
FOA3 System Error | Local Logic Program Constant Terminator Error Module
FOA4 System Error | Local Logic Program Constant Pointer Error Module
FOAS5 System Error | Local Logic Program Compiled Code Limit Exceeded | Module
FOA6 System Error | Local Logic Program Unmatched IF_THEN Error Module
FOA7 System Error | Local Logic Program Unmatched END_IF Error Module
FOAS8 System Error | Local Logic Program Nesting Limit Exceeded Module
FOA9 System Error | Local Logic Program Scan Error Module
FOAA System Error | Local Logic Program Reserved Class Error Module
FOAB System Error | Local Logic Program Invalid Parameter Register Module
FOAC System Error | Local Logic Program Invalid Double Precision Module

Register

FOAD System Error | Local Logic Program Digital Output Error Module
FOAE System Error | Local Logic Program CTL Bit Error Module
FOBO System Error | Local Logic Program Invalid Primary Operator Module
FOB1 System Error | Local Logic Program Invalid Secondary Operator Module
FOB2 System Error | Local Logic Program Invalid Secondary Source Module
FOB3 System Error | Local Logic Program Invalid Primary Source Module
FOB4 System Error | Local Logic Program Invalid Source Module
FOB5 System Error | Local Logic Program Source Write Only Error Module
FOB6 System Error | Local Logic Program Direct Memory Address Error | Module
FOB7 System Error | Local Logic Program Invalid Destination Module
FOB8 System Error | Local Logic Program Destination Read Only Module

Local Logic Language Syntax

306

User Manual Chapter 12

GFK-1742F

12.8.6 Local Logic Runtime Errors

Jan 2020

The following errors and warnings may be reported when a Local Logic program is executed

in the module.

Table 64: Local Logic Runtime Error Codes

Error Code Response Description Error Type
(Hexadecimal)

91 Fast Stop Local Logic Program System Halt Commanded Module

92 Fast Stop Local Logic Execution Time Limit Exceeded Module

93 Fast Stop Local Logic Divide By Zero Module

94 Fast Stop Local Logic Divide Overflow Module

95 Status Only Local Logic Add/Subtract Overflow Module

96 Status Only Local Logic Absolute value (ABS) overflow Module

97 Status Only Local Logic Execution Time Limit Warning Module

98 Status Only Local Logic Execute on First Sweep Error Module

99 Status Only Local Logic Invalid Program Name or Not Enabled in | Module

Hardware Configuration
9A Fast Stop Local Logic Stop Error Per-Axis
Local Logic Language Syntax 307

User Manual
GFK-1742F

Chapter 13
Jan 2020

Chapter 13: Local Logic Variables

13.1

Local Logic Variables

This chapter describes the local logic variable types, identifies the local logic system
variables, double precision 64-bit registers, the local logic user data table, and digital
outputs/CTL variables.

Local Logic Variable Types

Local Logic accesses the motion controller variables and parameter registers using pre-
defined variable names. Refer to Table 15H13-1 through Table 20H13-6 for a complete
listing of all Local Logic variables.

Examples:
IF Actual_Position_2 > 5000 THEN ...;
IF Strobe1_Level_2 =ON THEN. ...;
Storing values to variables is performed by using the “:=" assignment operator:
Examples:
Torque_Limit_2:=8500; (* SetTorque Limitto 85% *)
Position_Loop_TC_1 := 2500 | Actual_Velocity_1;

Local Logic variables are broken down into two categories: Global Variables and Per-Axis
Variables. There are four sets of axis variables (Axis1 - Axis4). Each set of variables is
subdivided into Control variables, Status variables and Faceplate 1/0 (refer to Table 65
through Table 70). A description of the terms used in the Variable Tables follows:

Variable Attribute

The attribute for each Local Logic variable is listed in Table 65 through Table 70. Variables
can be Read-Only, Write-Only or Read-Write. The Parser reports an error if the user attempts
to write to a Read-Only variable or read from a Write-Only variable.

Variable Size

Local Logic variables range in size from 1 bit (Bit Operands) to 64 Bits (for the Double
Precision Dxx registers). Refer to Table 69 through Table 70 for a listing of the size of each
Local Logic variable. Attempting to write a value larger than a given variable size will result
in the value being truncated. For example, if the result of a math operation is 32 bits long
and is assigned to a 16-bit variable only the low 16 bits will be stored. The Parser reports a
warning if a Bit Operand is used as the destination variable in a non-Boolean Math operation
(only the least significant bit of the result would be stored).

Note: The AQ command variables (Torque Limit, Velocity Loop Gain, Follower Ratio, Position Increment
and Position Loop Time Constant) may have an allowed range that is smaller than the Local Logic
variable size. The module reports a warning error code and rejects any invalid values if the
program attempts to write a value outside the valid range of an AQ command. Refer to Chapter 4
for a description of the allowed %AQ command ranges.

308

User Manual
GFK-1742F

13.2

13.2.1

13.2.2

Local Logic Variables

Chapter 13
Jan 2020

Variable Sign

Local Logic variables that are less than 32 bits long are either Signed or Unsigned (except Bit
Operands, which are always Unsigned). All Math/Logic operations in the Logic Engine are
signed 32 bit operations (except the 64 bit signed Divide and Modulus operations). Signed
variables that are less than 32 bits long are automatically sign extended to 32 bits when they
are loaded by the Logic Engine. Unsigned variables are not sign extended. Thus the Logic
Engine handles all data conversion and limit checking automatically.

Local Logic System Variables

The First_Local_Logic_Sweep, Overflow and System_Halt variables are used exclusively in
the Logic engine and are described below.

First_Local_Logic_Sweep Variable

The First_Local_Logic_Sweep variable is a Read-Only Bit Operand (refer to Table 69). It is set
by the Logic Engine during the first execution sweep when Local Logic is enabled and the
host controlleris in RUN mode. Itis reset to zero for subsequent sweeps. Thus it can be used
in the Local Logic program to initialize some variables. For example, the code below
initializes some parameter registers and Control variables in the first sweep using the
First_Local_Logic_Sweep variable.

IF First_Local_Logic_Sweep THEN (* Ifit’s the First execution sweep then *)
P001:=0; (* Initialize PO01to 0 *)
PO15 :=1000; (* Initialize PO15 to 1000 *)
Velocity_Loop_Gain_1:=20; (* Set the Velocity Loop Gain for Axis 1 to 20 *)
END_IF;

Overflow Variable

The Overflow variable is a Read-Write Bit Operand (refer to Table 69). It is set by the Logic
Engine when an Addition, Subtraction or Absolute value (ABS) overflow occurs. A warning
error code is also reported in the Module Status Code if the Overflow flag is set and an
overflow error occurs (refer to Chapter 12). Note that the user can prevent
Add/Subtract/ABS overflow warnings from being reported by setting the Overflow variable
to zero at the end of the Local Logic program. Similarly the user can test for Overflow errors
within the Local Logic program by reading the Overflow variable and performing some
appropriate action. The Overflow variable is cleared under the following circumstances:

1. Itis automatically cleared when Local Logic starts running, before the first execution
sweep.

2. ltcanbe cleared by the userin the Local Logic program (by setting Overflow :=0;).

3. Itiscleared when the user toggles the error clear Q bit.

309

User Manual
GFK-1742F

13.2.3

13.3

Local Logic Variables

Chapter 13
Jan 2020

System_Halt Variable

The System_Halt variable is a Write-Only Bit Operand (refer to Table 69). If the Local Logic
program writes a 1 to the System_Halt variable servo motion and Local Logic execution is
halted. An error code is also reported in the Module Status Code (refer to Chapter 12). Thus
the System_Halt variable can be used to trap for fatal error conditions and perform error
recovery. The sample code below shows a possible scenario in which the System_Halt
variable might be used:

IF Overflow THEN (* Trap for an overflow *)
System_Halt:=TRUE; (* Halt Local Logic Execution and Servo Motion *)
END_IF;

Double Precision 64 Bit Registers

Local Logic provides eight 64-bit registers (D00-D07) in addition to the 255 32-bit registers
(refer to Table 69). This is to allow the user to store the result of multiplying two 32-bit
numbers in a Dxx register and then perform a Divide/Modulus operation on the result.

Thus the 64 bit registers may be used under the following circumstances:

1. Asthe Destination register for a multiply operation.
2. Asthe Dividend (numerator) in a Divide/Modulus operation.

The Parser will flag an error if it is used in other operations. Example code for the use of the
Dxx registers is shown below:

D01:=P001 * 2147483647; (* Perform a Multiply operation and store in a 64 bit register
%)
P010:= D01/ 12500; (* Divide the result and store in a 32 bit register *)

Note that the above scenario may result in a Divide Overflow, if the result does not fit in a
32-bitregister. A Divide Overflow will halt Local Logic execution and servo motion, since the
result of the operation is undefined (refer to Chapter 12). An error code will also be reported
in the Module Status Code.

Note: The contents of the 64-bit data registers (D00-D07) and 32-bit writeable data registers (POOO-
P255) are not automatically initialized by Local Logic when it starts running. The user should
initialize any required variables using a separate Local Logic program or the
First_Local_Logic_Sweep variable or host controller ladder program.

310

User Manual
GFK-1742F

13.4

Local Logic Variables

Chapter 13
Jan 2020

Local Logic User Data Table

Local Logic provides an 8192 Byte Circular Buffer which can be used to store and retrieve
data by the Local Logic program. Refer to Table 69 for a listing of the Data_Table variables.
The data table is accessed using indirect memory addressing. The Data_Table_Ptr variable
(the “Pointer”) is used to point to the correct Byte location in the 8192 Byte buffer.
Therefore, the Data_Table_Ptr variable size is 13 bits (0-8191 allowed range). The Pointer is
automatically incremented when a value is read from or written to the Circular Buffer. The
amount by which the pointer is incremented depends on the size of the variable accessed.
The Data_Table_Ptr is automatically initialized to 0 when Local Logic starts, before the first
execution sweep. Thus, the Data Table variables can be used to access a large pre-loaded
block of data in the Local Logic program. The following variables are used to access the
Circular Buffer:

Data_Table_Ptr : Data Table Pointer- valid range 0-8191.
Data_Table_sint : Signed 8 Bits (Pointer auto-incremented by 1 for Read/Write)

Data_Table_usint : Unsigned 8 Bits (Pointer auto-incremented by 1 for Read/Write)

Data_Table_int : Signed 16 Bits (Pointer auto-incremented by 2 for
Read/Write)

Data_Table_uint : Unsigned 16 Bits (Pointer auto-incremented by 2 for
Read/\Write)

Data_Table_dint : 32 Bits (Pointer auto-incremented by 4 for
Read/\Write)

The sample code below shows how a specific memory location can be accessed in
the circular buffer:

Data_Table_Ptr := 100; (* Point to Byte offset 100 in the buffer *)
P001 := Data_Table_int; (* Read a signed 16 bit number from the buffer *)

(* The Data_Table_Ptr is auto-incremented to 102 *)
Data_Table_sint := -120; (* Write an 8 bit signed number to Byte 102 *)
Data_Table_Ptr := 0; (* Point to Byte offset 0 in the Buffer *)

311

User Manual

GFK-1742F

13.5

Local Logic Variables

Chapter 13
Jan 2020

Digital Outputs | CTL Variables

The eight Digital Outputs in the module (2 per axis) are individually configurable to be either
under host controller control (PLC Control - default) or under Local Logic (DSM) control. If
the Local Logic program writes to a particular Digital_Output variable (refer to Table 15H13-
1 through Table 20H13-6) it must be configured for DSM control. The DSM module will
reject any Local Logic programs that are downloaded with an incorrect Digital Output
configuration. Refer to Chapter 14 for a detailed description on configuring the Digital
Outputs.

CTLO1-CTL24 are also individually configurable to have different input sources. Refer to
Chapter 14 for a detailed description of the configuration options. CTL25 through CTL32 are
not configurable and are always under Local Logic Control. The DSM module will reject any
Local Logic programs that are downloaded with an incorrect CTL configuration. For
example, if the Local Logic program has a statement that writes to CTL16 (e.g. CTL16 :=1;),
then CTL16 must be configured as “Local Logic Controlled” in Hardware Configuration.
CTLO1 through CTL32 and the Motion program Block Numbers (variables Block_1, Block_2,
Block_3, Block_4) can be used to synchronize the Motion Program and the Local Logic
program.

Table 65: Axis 1 Variables

Local Logic Variable Name Attribute Size
FacePlate I/O

Strobe1_Level_1 Read Only Bit Operand
Strobe2_Level_1 Read Only Bit Operand
Positive_EOT_1 Read Only Bit Operand
Negative_EOT_1 Read Only Bit Operand
Home_Switch_1 Read Only Bit Operand
Digital_Output1_1 (1) Write Only Bit Operand
Digital_Output3_1 (1) Write Only Bit Operand
Analog_Input1_1 Read Only Signed 16 Bits
Analog_lnput2_1 Read Only Signed 16 Bits
Control Variables

Velocity_Loop_Gain_1 Read/Write Unsigned 8 Bits
Position_Loop_TC_1 Write Only Unsigned 16 Bits
Torque_Limit_1 Write Only Unsigned 16 Bits
Follower_Ratio_A_1 Write Only Signed 16 Bits
Follower_Ratio_B_1 Write Only Signed 16 Bits
Position_Increment_Cts_1 (2) Write Only Signed 16 Bits
Reset_Strobe1_1 Write Only Bit Operand
Reset_Strobe2_1 Write Only Bit Operand
Enable_Follower_1 Write Only Bit Operand
Jog_Plus_1 Write Only Bit Operand

312

User Manual Chapter 13

GFK-1742F Jan 2020
Local Logic Variable Name Attribute Size
Jog_Minus_1 Write Only Bit Operand
FeedHold_1 Write Only Bit Operand
Status Variables
Error_Code_1 Read Only Unsigned 16 Bits
Block_1 Read Only Unsigned 16 Bits
Actual_Position_1 Read Only 32 Bits
Commanded_Position_1 Read Only 32 Bits
Position_Error_1 Read Only 32 Bits
Strobe1_Position_1 Read Only 32 Bits
Strobe2_Position_1 Read Only 32 Bits
Actual_Velocity_1 Read Only 32 Bits
Commanded_Velocity_1 Read Only 32 Bits
Commanded_Torque_1 Read Only 32 Bits
User_Selected_Datal_1 Read Only 32 Bits
User_Selected_Data2_1 Read Only 32 Bits
UnAdjusted_Actual_Position_Cts_1 Read Only 32 Bits
UnAdjusted_Strobe1_Position_Cts_1 Read Only 32 Bits
UnAdjusted_Strobe2_Position_Cts_1 Read Only 32 Bits
Axis_OK_1 Read Only Bit Operand
Position_Valid_1 Read Only Bit Operand
Strobe1_Flag_1 Read Only Bit Operand
Strobe2_Flag_1 Read Only Bit Operand
Drive_Enabled_1 Read Only Bit Operand
Program_Active_1 Read Only Bit Operand
Moving_1 Read Only Bit Operand
In_Zone_1 Read Only Bit Operand
Position_Error_Limit_1 Read Only Bit Operand
Torque_Limited_1 Read Only Bit Operand
Servo_Ready_1 Read Only Bit Operand
Follower_Enabled_1 Read Only Bit Operand
Follower_Velocity_Limit_1 Read Only Bit Operand
Follower_Ramp_Active_1 Read Only Bit Operand

Note:

1. These Digital Outputs must be configured for Local Logic control in Hardware Configuration in

order to be write-able by Local Logic.

2. The Position_Increment_Cnts_n variable has a maximum range of + 1023 counts.

Local Logic Variables

313

User Manual
GFK-1742F

Local Logic Variables

Chapter 13
Jan 2020
Table 66: Axis 2 Variables
Local Logic Variable Name Attribute Size
FacePlate I/O
Strobe1_Level_2 Read Only Bit Operand
Strobe2_Level_2 Read Only Bit Operand
Positive_EOT_2 Read Only Bit Operand
Negative_EOT_2 Read Only Bit Operand
Home_Switch_2 Read Only Bit Operand
Digital_Output1_2 ™ Write Only Bit Operand
Digital_Output3_2 ™ Write Only Bit Operand
Analog_Input1_2 Read Only Signed 16 Bits
Analog_Input2_2 Read Only Signed 16 Bits
Control Variables
Velocity_Loop_Gain_2 Read/Write Unsigned 8 Bits
Position_Loop_TC_2 Write Only Unsigned 16 Bits
Torque_Limit_2 Write Only Unsigned 16 Bits
Follower_Ratio_A_2 Write Only Signed 16 Bits
Follower_Ratio_B_2 Write Only Signed 16 Bits
Position_Increment_Cts_2 ? Write Only Signed 16 Bits
Reset_Strobel1_2 Write Only Bit Operand
Reset_Strobe2_2 Write Only Bit Operand
Enable_Follower_2 Write Only Bit Operand
Jog_Plus_2 Write Only Bit Operand
Jog_Minus_2 Write Only Bit Operand
FeedHold_2 Write Only Bit Operand
Status Variables
Error_Code_2 Read Only Unsigned 16 Bits
Block_2 Read Only Unsigned 16 Bits
Actual_Position_2 Read Only 32 Bits
Commanded_Position_2 Read Only 32 Bits
Position_Error_2 Read Only 32 Bits
Strobe1_Position_2 Read Only 32 Bits
Strobe2_Position_2 Read Only 32 Bits
Actual_Velocity_2 Read Only 32 Bits
Commanded_Velocity_2 Read Only 32 Bits
Commanded_Torque_2 Read Only 32 Bits
User_Selected_Datal1_2 Read Only 32 Bits
User_Selected_Data2_2 Read Only 32 Bits
UnAdjusted_Actual_Position_Cts_2 Read Only 32 Bits

314

User Manual
GFK-1742F

Local Logic Variables

Chapter 13
Jan 2020

Local Logic Variable Name Attribute Size
UnAdjusted_Strobe1_Position_Cts_2 Read Only 32 Bits
UnAdjusted_Strobe2_Position_Cts_2 Read Only 32 Bits
Axis_OK_2 Read Only Bit Operand
Position_Valid_2 Read Only Bit Operand
Strobel1_Flag_2 Read Only Bit Operand
Strobe2_Flag_2 Read Only Bit Operand
Drive_Enabled_2 Read Only Bit Operand
Program_Active_2 Read Only Bit Operand
Moving_2 Read Only Bit Operand
In_Zone_2 Read Only Bit Operand
Position_Error_Limit_2 Read Only Bit Operand
Torque_Limited_2 Read Only Bit Operand
Servo_Ready_2 Read Only Bit Operand
Follower_Enabled_2 Read Only Bit Operand
Follower_Velocity_Limit_2 Read Only Bit Operand
Follower_Ramp_Active_2 Read Only Bit Operand

Note:

1. These Digital Outputs must be configured for Local Logic control in Hardware Configuration in

order to be write-able by Local Logic.

2. The Position_Increment_Cnts_n variable has a maximum range of +1023 counts.

315

User Manual
GFK-1742F

Local Logic Variables

Chapter 13
Jan 2020
Table 67: Axis 3 Variables
Local Logic Variable Name Attribute Size
FacePlate I/O
Strobe1_Level_3 Read Only Bit Operand
Strobe2_Level_3 Read Only Bit Operand
Positive_EOT_3 Read Only Bit Operand
Negative_EOT_3 Read Only Bit Operand
Home_Switch_3 Read Only Bit Operand
Digital_Output1_3 * Write Only Bit Operand
Digital_Output3_3 * Write Only Bit Operand
Analog_Input1_3 Read Only Signed 16 Bits
Analog_Input2_3 Read Only Signed 16 Bits
Control Variables
Reset_Strobe1_3 Write Only Bit Operand
Reset_Strobe2_3 Write Only Bit Operand
Status Variables
Error_Code_3 Read Only Unsigned 16 Bits
Actual_Position_3 Read Only 32 Bits
Strobe1_Position_3 Read Only 32 Bits
Strobe2_Position_3 Read Only 32 Bits
Actual_Velocity_3 Read Only 32 Bits
Axis_OK_3 Read Only Bit Operand
Position_Valid_3 Read Only Bit Operand
Strobe1_Flag_3 Read Only Bit Operand
Strobe2_Flag_3 Read Only Bit Operand

*

in order to be write-able by Local Logic.

These Digital Outputs must be configured for Local Logic control in Hardware Configuration

Note: For Axis 3, the DSM314 Version 2.0 only supports the variables in Table 67.

316

User Manual
GFK-1742F

Local Logic Variables

These Digital Outputs must be configured for Local Logic control in Hardware Configuration,

in order to be writeable by Local Logic.

Note:

For Axis 4, the DSM314 Version 2.0 only supports the variables in Table 68.

Table 69: Global Variables

-

Refer to the Section on “Local Logic System Variables”.

Refer to the Section on “Local Logic User Data Table”.

Local Logic Variable Name Attribute Size
Overflow Read | Write Bit Operand
System_Halt ¥ Write Only Bit Operand
Data_Table_Ptr @ Read [Write 13 Bits
Data_Table_sint @ Read [Write Signed 8 Bits
Data_Table_usint @ Read | Write Unsigned 8 Bits
Data_Table_int @ Read | Write Signed 16 Bits
Data_Table_uint @ Read/ Write Unsigned 16 Bits
Data_Table_dint @ Read [Write 32 Bits
Module_Error_Present Read Only Bit Operand
New_Configuration_Received Read Only Bit Operand
First_Local_Logic_Sweep (" Read Only Bit Operand
Module_Status_Code Read Only Unsigned 16 Bits
CTL_1_to_32© Read Only 32 Bits
P000-P255 Read [Write 32 Bits
D00-DO7 ¥ Read [Write 64 Bits

Note:

2
3. The(CTL_1_to_32 variable can be used to read all 32 CTL bits into a register.
4

Refer to the Section on "Double Precision 64 Bit Registers”.

Chapter 13
Jan 2020
Table 68: Axis 4 Variables
Local Logic Variable Name Attribute Size
FacePlate 1/O
Strobe1_Level_4 Read Only Bit Operand
Strobe2_Level_4 Read Only Bit Operand
Positive_EOT_4 Read Only Bit Operand
Negative_EOT_4 Read Only Bit Operand
Home_Switch_4 Read Only Bit Operand
Digital_Output1_4 * Write Only Bit Operand
Digital_Output3_4 * Write Only Bit Operand
Analog_lnput1_4 Read Only Signed 16 Bits
Analog_lnput2_4 Read Only Signed 16 Bits

317

User Manual
GFK-1742F

Local Logic Variables

Chapter 13
Jan 2020
Table 70: CTL Bits

Local Logic Variable Name Attribute Size

CTLOT ** Read [Write Bit Operand
CTL02 ** Read [Write Bit Operand
CTLO3 ** Read [Write Bit Operand
CTLO4 ** Read [Write Bit Operand
CTLO5 ** Read [Write Bit Operand
CTLO6 ** Read [Write Bit Operand
CTLO7 ** Read [Write Bit Operand
CTLO8 ** Read [Write Bit Operand
CTLO9 ** Read [Write Bit Operand
CTL10 ** Read [Write Bit Operand
CTL11 ** Read [Write Bit Operand
CTL12 ** Read [Write Bit Operand
CTL13 ** Read [Write Bit Operand
CTL14 ** Read [Write Bit Operand
CTLI5 ** Read [Write Bit Operand
CTLie ** Read [Write Bit Operand
CTL17 ** Read [Write Bit Operand
CTL18 ** Read [Write Bit Operand
CTL19 ** Read [Write Bit Operand
CTL20 ** Read [Write Bit Operand
CTL21 ** Read [Write Bit Operand
CTL22 ** Read [Write Bit Operand
CTL23 ** Read [Write Bit Operand
CTL24 ** Read [Write Bit Operand
CTL25 Read [Write Bit Operand
CTL26 Read [Write Bit Operand
cTL27 Read [Write Bit Operand
CTL28 Read [Write Bit Operand
CTL29 Read [Write Bit Operand
CTL30 Read [Write Bit Operand
CTL31 Read [Write Bit Operand
CTL32 Read [Write Bit Operand

* %

CTL bits 1 through 24 are individually configurable in Hardware Configuration (refer to the

Chapter 14 “Local Logic Configuration”). CTLO1-24 can be written by Local Logic only if

configured as “Local Logic Controlled” in Hardware Configuration.

318

User Manual
GFK-1742F

Chapter 14: Local Logic Configuration

14.1 CTL Bit Configuration

The programming software environment allows you to configure the input source for CTL
bits (CTLO1-CTL24) using the Hardware Configuration screen. From the Hardware
Configuration screen, select the DSM314 module you wish to configure. Refer to chapter 4
for information on using Hardware configuration. The DSM314 configuration screens
contain a tab called CTL Bits. Selecting this tab results in a display similar to the one shown

in Figure 142.

Chapter 14
Jan 2020

Figure 142: CTL Bits Configuration

|} MotionT est (0.2) IC693DSH314

Seftings | SNP Port | CTL Bits | Output Bis | asis #1 | Axis 82| awis 3] T/ [0 |
Parameters Values -

CTLOT Caonfig: Local Logic Controlled

CTLOZ Config IN10_A [Awis 1 - OT) b

CTLO3 Config: IMNT1_A [Axis 1 Home 5%

CTLO4 Config: Strobe 1 Level [&xis 1)

CTLOS Canfig: ING_B [Axis 2+ 0T

CTLOE Canfig: INT0_B [Axis 2- 0T)

CTLO? Config: INT1_B [Axis 2 Home 5]

CTLOZ Config: Strobe 1 Level [&xis 2)

CTLO3 Config: %0 Bit Offset 12

CTL10 Canfig: %0 Bit Offset 13

CTL11 Config: %0 Bit Offset 14

CTL12 Canfig: %0 Bit Offset 15

CTL13 Config: IN9_C [z 3+ 0T)

CTL14 Config: IN10_C [Axis 3-0T)

CTL15 Config: IM11_C [Axis 3 Home S']

CTL1E Config: Strobe 1 Level [Axis 3)

CTL17 Canfig: %0 Bit Offset 24

CTL18 Canfig: %0 Bit Offzet 25

CTL19 Canfig: %0 Bit Offset 40

CTL20 Config: %0 Bit Offset 41

CTL21 Canfig: %0 Bit Offset 56

CTL2Z Canfig: %0 Bit Offset 57

CTL23 Canfig: %0 Bit Offset 72 ;]

Motion Mate DSM314 y

The configuration screen allows the user to select the CTL bit configuration that
corresponds with the Motion Program and Local Logic program. The sections that follow

provide additional information concerning the CTL bit configuration process.

Local Logic Configuration

319

User Manual

GFK-1742F

14.2

Table 71: CTL Bit Summary for DSM314

CTL bits CTLO1-CTL32

e CTLO1 - CTL24 are configurable CTL bits.

Chapter 14
Jan 2020

e (CTL25-CTL32 are non-configurable CTL bits providing Local Logic read and Local

Logic write.

Identifier %I Bit | Faceplate |%Q bit Local Logic |Local Logic | SNAP' Write | SNAP' Read
Inputs Read Write

CTLOT1-CTLO8 X Config Config X Config Config X

CTLO9-CTL12 Config Config X Config Config

CTL13-CTL16 X Config Config X Config Config

CTL17-CTL24 Config Config X Config Config

CTL25-CTL32 X X

! Series 90-30 only feature. SNAP is equivalent to Fast Backplane Status Access (FSBA). See GFK-0467L or later for

details.

The figure below illustrates the sources that write to CTL bits and the destinations that

read CTL bits:

Figure 143: CTL Bit Source/Destinations

CTLO1-CTL24 Source

Source for each bit
configurable as:

1. Faceplate Input CTL25-CTL32 Source

2. PLC %Q bit

3. Local Logic Write
4 lLocal Logic Active
5. FBSA Write bit

Source has fixed
assignment to Local
Logic Write

CTLO1-CTL32

-

CTLO1-CTLO&

PLC %I Bits and
SNAP Read Bits

.

CTL13-CTL16
PLC %l Bits

CTLO9-CTL12

=

CTL17-CTL32

~
Local Logic Read,
Follower Enable/Disable Trigger,
Motion Program Jump,
and Wait Control

Local Logic Configuration

320

User Manual
GFK-1742F

14.3

Chapter 14
Jan 2020

CTLO1-CTL24 Bit Configuration Selections

Each of the bits CTLO1-CTL24 are individually configurable. CTL17-CTL24 default to the %Q
digital output control bits for axis 1 - axis 4. The configuration choices are shown in the

following table.

Table 72: CTL Bit Configuration Selections

CTL Bits Allowed Configuration Values | Description
for Bit Source

CTLO1-CTL24 |IN9_A Overtravel (+) Axis 1
INTO_A Overtravel (-) Axis 1
INTT_A Home Switch Axis 1
IN9_B Overtravel (+) Axis 2
INT0_B Overtravel (-) Axis 2
INT1_B Home Switch Axis 2
IN9_C Faceplate 24v Input Axis 3
INT0_C Faceplate 24v Input Axis 3
IN11_C Home Switch Axis 3
IN9_D Faceplate 24v Input Axis 4
INT0_D Faceplate 24 v Input Axis 4
INT1_D Faceplate 24 v Input Axis 4

Strobe1 Level Axis1

Input Strobe1 Level Axis 1

Strobe?2 Level Axis1

Input Strobe 2 Level Axis 1

Strobe1 Level Axis2

Input Strobe 1 Level Axis 2

Strobe2 Level Axis2

Input Strobe 2 Level Axis2

Strobe1 Level Axis3

Input Strobe 1 Level Axis 3

Strobe?2 Level Axis3

Input Strobe 2 Level Axis 3

IN5_D

Faceplate 5v Input Axis 4

IN6_D

Faceplate 5v Input Axis 4

Local Logic Write

CTL bit under Local Logic control

Local Logic Active Flag

Local Logic Program Active

SNAP Write Bit 1 Serial Non-Acknowledge Protocol (FBSA) Bit 1
SNAP Write Bit 2 Serial Non-Acknowledge Protocol (FBSA) Bit 2
SNAP Write Bit 3 Serial Non-Acknowledge Protocol (FBSA) Bit 3
SNAP Write Bit 4 Serial Non-Acknowledge Protocol (FBSA) Bit 4
%Q bit Offset 12 CTLO9 Program Control

%Q bit Offset 13 CTL10 Program Control

%Q bit Offset 14 CTL11 Program Control

%Q bit Offset 15 CTL12 Program Control

%Q bit Offset 24 Faceplate 24v Output Control Axis 1 (OUT1_A)
%Q bit Offset 25 Faceplate 5v Output Control Axis 1 (OUT3_A)

Local Logic Configuration

321

User Manual
GFK-1742F

Chapter 14
Jan 2020
CTL Bits Allowed Configuration Values | Description
for Bit Source
%Q bit Offset 40 Faceplate 24v Output Control Axis 2 (OUT1_B)
%Q bit Offset 41 Faceplate 5v Output Control Axis 2 (OUT3_B)
%Q bit Offset 56 Faceplate 24v Output Control Axis 3 (OUT1_C)
%Q bit Offset 57 Faceplate 5v Output Control Axis 3 (OUT3_C)

14.4 FBSA Function and CTL Bit Assignments

The backplane Fast Backplane Status Access (FBSA) function will write 4 bits to the DSM and
read 8 bits. The FBSA function is mapped as shown in the following table.

FBSA is a Series 90-30 only feature. For information on the FBSA service request, refer to the
Series 90-30/20/Micro PLC CPU Instruction Set Reference Manual, GFK-0467L (or later).

Table 73: FBSA Bit CTL Bit Assignments

FBSA Read

CTLO1-CTLO8

CTLO1-CTLO8 each have an individually configurable source that
includes Local Logic or any DSM faceplate input. The bits are
always readable as PLC %l bits and FBSA inputs.

FBSA Write

CTLO1-CTL24
(Configurable)

FBSA Write Bits 1-4 can be configured as the source for any of the
bits CTLO1-CTL24.

FBSA Write Bits 1-2 are the default source for CTL23-24.

14.5 Faceplate Output Bit Configuration

The programming environment, through Hardware configuration, allows you to configure
the DSM314 faceplate digital outputs for either Local Logic program control or host
controller program control. The DSM314 configuration screens contain a tab (Output Bits).
Selecting this tab results in a display similar to the one shown in Figure 144,

Figure 144: Output Bit Configuration

| MotionTest (0.2) IC693DSM314 _ O] x]

Settings | SNF Port | CTL Bits | Output Bits | Auis #1 | Asis #2 | &uis 2.4 |

Parameters Values -
0OUT1_A Conlfig: D5SM Control
OUT3_A Config: PLC Contral e
OUT1_B Conlfig: PLC Control
0OUT3_B Conlfig: PLC Control
OUT1_C Config: PLC Contral
OUT3_C Config: PLC Contraol
0UT1_D Config: PLC Contraol
0OUT3 D Config: FPLC Control _I

|Motion Mate DSM314

Local Logic Configuration

322

User Manual
GFK-1742F

Chapter 14
Jan 2020

The following table describes the faceplate outputs that can be controlled from Local Logic

or the host controller.

Table 74: Faceplate Output Bit Description

Signal Name Description

OUT1_A Faceplate 24v (SSR) Output Axis 1
OUT3_A Faceplate 5v Output Axis 1
OuT1_B Faceplate 24v (SSR) Output Axis 2
OUT3_B Faceplate 5v Output Axis 2
OuT1_C Faceplate 24v (SSR) Output Axis 3
OUT3_C Faceplate 5v Output Axis 3
OUT1_D Faceplate 24v (SSR) Output Axis 4
OUT3_D Faceplate 5v Output Axis 4

Local Logic Configuration

323

User Manual
GFK-1742F

Chapter 15
Jan 2020

Chapter 15: Using the Electronic CAM

15.1

Feature

This chapter describes the electronic CAM function, which was introduced in DSM314
release 2.0. An electronic CAM is analogous to a mechanical CAM. In most cases, an
electronic CAM not only can replace the traditional mechanical CAM but also performs many
functions not achievable with its mechanical counterpart. For example, an electronic CAM
never mechanically wears out.

Electronic CAM Overview

Electronic CAMs are used in the machine industry to perform complex motions that require
tight coordination between axes. There are many examples of applications that fit these
requirements. Some examples are a simple rotary knife application shown in Figure 145 and
Figure 146. In this application, the conveyor belt position serves as the master position,
while the cutting knife is the slave. Since the knife position is linked to the master position,
the knife always tracks the master position even when the line is accelerating or
decelerating.

Figure 145: Rotary Knife Position to Position table

A
g8
E= I
p?. Cut Zone:
5 Blade Velocity =
E Web Velocity
>

Master Position

Figure 146: Rotary Knife Application

pr—
C““erl‘— -
L

Motor

/—{ Blade
Product ——

Master lEI
Encoder

Using the Electronic CAM Feature

324

User Manual Chapter 15
GFK-1742F Jan 2020

Another example application is a bottle filling line (reference Figure 147 and Figure 148). In
this case, the lift that raises and lowers the bottles serves as the CAM master. The slave is the
plunger that pushes the fluid into the bottle. In this example, the bottles have a curved
shape. Thus the fill rate must be varied to account for this shape

Figure 147: Filling Application Position to Position Table

Top of
Fill TAMK feeeeeeoemeoeoeo X, Yi)
Slow Down
Plunger Near the Top
Position of the Bottle
(Slave) S
Fill Quickly in Return to
Bottom of the Beginning Position
Fill Tank
Master
Encoder
Figure 148: Filling Application
. B £ —
Fill Tank =~ X
\l ||I I\I| |'Ilf \| |Illf | I/ I\l"| fl
ST T 9
| | | | in | l
— /
i=- Tadhd
I .
Plunger Axis
(Slave)
in= Master
— Encoder

Using the Electronic CAM Feature 325

User Manual Chapter 15
GFK-1742F Jan 2020

15.2 Basic Cam Shapes/Definition

Electronic Cams duplicate the behavior of their mechanical counterparts. The following
figure illustrates the elements of a basic mechanical cam system and shows the Slave
Position for two positions of the Master Cam. As the Master Shaft rotates, the Master Cam,
which is fastened to the Master Shaft, rotates as well. The Cam Follower (which is a ball
bearing mounted to the Offset Link Arm) rolls on the Master Cam as the Master Cam rotates.
The Cam Follower either pushes up or pulls down on the Offset Link Arm, depending on the
position of the Master Cam. The Lever Arm, which is coupled to the Offset Link Arm, moves
up and down in turn, pivoting on the Fulcrum as the Offset Link Arm moves. Besides the
Master Cam shape, additional parameters that affect slave motion are the Cam Phase value
(the amount that the Master Cam position is offset from the Master Shaft position), the
Offset Length of the Offset Link Arm, and the Follower Amplitude (based on the Fulcrum
position). These mechanical parameters all have Electronic Cam counterparts.

Figure 149: CAM Model
Fulcrum E
Offset > =
Link Arm Lever Arm =
_____________ K =| Slave
Offset TNy Cam = | Position
Lengt_h__l ____________ « Follower < =
| | E
Master. Follower _E:_
Shaft Amplitude —
1
|
|
!
Cam : Master Cam
Phase |
Offset —
Link Arm =
_______________ Fulcrum =
Offset Lever Arm =
Le”?Erl ____________ Cam =| Slave
Follower = | Position
! ! EE
Master Follower =
Shaft Amplitude _

Master Cam

Using the Electronic CAM Feature 326

User Manual Chapter 15
GFK-1742F Jan 2020

15.3 CAM Syntax

This section covers some critical features of the CAM feature and introduces the CAM
Motion Program statements and error codes.

15.3.1 CAM Types

An important concept concerning the CAM function is the different CAM types available.
The CAM profiles can be one of the following types:

1. Non-Cyclic CAM
2. Linear Cyclic CAM
3. Circular Cyclic CAM

The following sections describe each of these CAM types.

Non-Cyclic CAM

A Non-Cyclic CAM has a unique non-repeating profile for the whole range of Master position
values. The CAM exits when either boundary of the CAM profile is reached. The CAM can also
exit if an external event is configured to trigger a conditional Jump. The User Units to Counts
ratio specified for the Master and Slave axes when configuring a Non-Cyclical CAM must
match the User Units:Counts ratio specified for the corresponding axes in Hardware
Configuration. Also, the maximum and minimum position values for the slave and master
axes must lie within the High/Low position limits specified for the corresponding axes in
Hardware Configuration.

Linear Cyclic CAM

A Linear Cyclic CAM has a profile that keeps repeating until an event causes it to exit.
Furthermore, the numerical and physical end points of the CAM slave axis are the same as
the starting point of the cycle. A reciprocating crankshaft is an example of a Linear Cyclic
CAM. The User Units to Counts ratio specified for the master and slave axes when
configuring a CAM profile must match the User Units per Counts value for the corresponding
axes in Hardware Configuration. Figures 145 and 146 show an example of a Linear Cyclic
CAM application.

Constraint: The first and last slave point must be the same for a Linear Cyclic CAM. The CAM
Editor will not display the option for “Linear Cyclic” in the “Cam Type” field unless this
constraint is satisfied by the data in the CAM table.

Using the Electronic CAM Feature 327

User Manual
GFK-1742F

Chapter 15
Jan 2020

Note:

1. For any Cyclic CAM, the master High/Low Position limits in Hardware Configuration must be set
up according to the master rollover points in the CAM profile. The master axis Low Limit must
equal the first master position in the profile. The master High Position Limit must be equal to the
(Last Master Position - 1) in user units. This is because a cyclic profile's first and last point are the

same on the physical device.

2. For any Cyclic CAM, the master High/Low Position limits in Hardware Configuration must be set
up according to the master rollover points in the CAM profile. The master axis Low Limit must
equal the first master position in the profile. The master High Position Limit must be equal to the
(Last Master Position - 1) in user units. This is because a cyclic profile’s first and last point are the

same on the physical device.

Figure 150: Linear Cyclic CAM

A
" 1500
R
<
2
&
w
500
0° 1800 360° i
Master Axis -»
Circular Cyclic CAM

A Circular Cyclic CAM has a profile that keeps repeating until an event causes it to exit.
Furthermore, a Circular Cyclic CAM has different numerical start and end slave axis positions
(see Figure 151). Both the master axis and the slave axis roll over at the profile end points. A
rotary knife is an example of a Circular Cyclic CAM.

Constraint: The entire slave profile (including interpolated values) must lie between the
minimum and maximum slave position limits, where the minimum and maximum slave

limits are defined as follows:

Minimum Slave Value

Maximum Slave Value

Condition

First Slave Point

Last Slave Point

Last Point > First Point

Last Slave Point

First Slave Point

Last Point < First Point

Using the Electronic CAM Feature

328

User Manual Chapter 15
GFK-1742F Jan 2020

Note:

1. The Editor will not display “Circular Cyclic” as an option in the “CAM Type” field unless the
constraint described above is satisfied.

2. For Cyclic CAMs, the master High/Low Position limits in Hardware Configuration must be set up
according to the master rollover points in the CAM profile. The master axis Low Limit must equal
the first master position in the profile. The master High Position Limit must be equal to the (Last
Master Position - 1) in user units. This is because a cyclic profile’s first and last point are the same
on the physical device. (for example, 0° and 360° on a circular knife).

3. For a Circular Cyclic CAM, both the master axis and the slave axis rolls over at the profile's end
points. The High and Low position limits for the slave axis are set (in Hardware Config.) as follows:

— Ifthe minimum slave position is the profile's first point and the maximum slave position is
the last point, set the Low Position Limit to the first point's slave value and the High Position
limit to the (last point's slave value - 1).

— If the minimum slave position is the profile's last point and the maximum slave position is
the first point, set the Low Position Limit to the (last point's slave value + 1) and the High
Position Limit to the first point's slave value.

Figure 151: Circular Cyclic CAM

'y

360°
¢
n
-
<
@
5 180
()]

oe 180° 360° -

Master Axis -=

Using the Electronic CAM Feature 329

User Manual Chapter 15
GFK-1742F Jan 2020

15.3.2 Interpolation and Smoothing

One key CAM feature is the interpolation scheme used to define the CAM profiles. The
following is a reprint of a section from the CAM Editor help system. It is included in this
section to not only introduce these important concepts, but also to encourage you to
explore the CAM Editor on-line help for additional information.

The CAM editor employs spline polynomial interpolation to define regions of a profile that
fall between user-defined points. This approach reduces the memory required for profile
storage on the target motion module while providing accurate and smooth motion
trajectories. Without this interpolation scheme, a large number of data points, thus a large
amount of memory, would be needed to define each profile.

A CAM profile is defined with a minimum number of actual data points. After these points
are defined they are grouped into sectors; a profile is composed of one or more sectors. For
each sector, you specify the curve-fit order (1, 2 or 3). The higher the order, the smoother
the curve-fit. The curve-fit order is the order of the polynomial curves used to define the
regions of the sector not specified by user-defined points. Unique curve-fit polynomial
coefficients are generated for each segment of a sector (that is, between each pair of user-
defined points). The coefficients of the polynomials are calculated to include the user-
defined points and to match the slope of the profile on either side of a user- defined point
(except for 1st order sectors).

Figure 152: Windowing Strobes Example

.

for points between
A n-(inclusive) and
¥ (non-inclusive).

(%, ¥]
. - [3, Y3 Az Bs, Csl
= [X2, Yo, Ag, By, Tyl i ‘*~\$L[: Notes
c | Ha, Vg, Ay Ba C
= | | 'H=4_ oo e [¥n, ¥n] = Master/Slave
@ | | TT—— coordinates
o | | of the point "n".
D—f [%1. Y1, A1, By, Cal | : [An, Br, Cn] = curve fit coefficients
| |
| |

Ant Xn Master Paosition () —=

The polynomial curves for a position profile are described by the following function:
Y(X) = Ant(Xn-Xn1)? + Bot (Xa-Xn1)? + Cot(Xn-Xn1) + Yo

Where:
Y = slave position value for a master position X.
Xn.1=master position value at point n-1.

An-1, Bn1, Cor = curve-fit coefficients at point n-1.

Using the Electronic CAM Feature 330

User Manual
GFK-1742F

Chapter 15
Jan 2020

Note:

e Foragiven master position X, that lies between X1 and X», the coefficients A, B and C are selected
for the point corresponding to Xa.1.

e forasecond order curve-fit, the A coefficient is always zero, and for a first order curve-fit, both the
A and B coefficients are always zero.

Blending Sectors

The process applied to blend adjacent sectors depends on their curve-fit order. The
following descriptions cover the possible scenarios.

1 order to 1 order

No action is taken to smooth the transition between successive linear sectors (that is, with
curve-fit order of 1). The profile simply connects the end point of one sector to the start
point of the next with a straight line.

1*t order to 2™ order

When a quadratic (2" order) sector follows a linear (1** order) sector, the polynomial
coefficients for the first segment of the quadratic sector are calculated so that the slope of
the profile is equal on either side of the starting point of that sector. That is, the initial slope
of the quadratic sector is made equal to the final slope of the linear sector.

2" order to 1%t order

When a linear (1°t order) sector follows a quadratic (2" order) sector no action is taken to
smooth the transition. This type of transition is not recommended (if it is avoidable) as it
may result in drastic velocity or acceleration changes on the controlled servo.

2" order to 2™ order

When a quadratic (2" order) sector follows another quadratic (2" order) sector the
polynomial coefficients for the first segment of the second quadratic sector are calculated
so that the slope of the profile is equal on either side of the starting point of that sector. That
is, the initial slope of the second quadratic sector is made equal to the final slope of the first
quadratic sector.

2" order to 3 order

When a cubic (3 order) sector follows a quadratic (2" order) sector the polynomial
coefficients for the first segment of the cubic sector are calculated so that the slope of the
profile is equal on either side of the starting point of that sector. That is, the initial slope of
the cubic sector is made equal to the final slope of the quadratic sector.

3" order to 2™ order

When a quadratic (2™ order) sector follows a cubic (3™ order) sector the polynomial
coefficients for the first segment of the quadratic sector are calculated so that the slope of
the profile is equal on either side of the starting point of that sector. That is, the initial slope
of the quadratic sector is made equal to the final slope of the cubic sector.

Using the Electronic CAM Feature

331

User Manual Chapter 15
GFK-1742F Jan 2020

3" order to 3" order

When two cubic (3" order) sectors are adjacent, the slopes of the profile before and after
the point they meet are made equal. Also, the 2" derivatives of the profile before and after
the point the sectors meet are made equal. The curve-fit polynomial coefficients for the two
adjacent segments are calculated simultaneously.

Boundary Conditions

For non-cyclic profiles it is necessary to define some condition at the start and end of a
profile for the purpose of calculating curve-fit polynomial coefficients. The start or end
boundary condition can be:

e The numerical value of the profile's 1° derivative (slope).
e The numerical value of the profile's 2™ derivative.
e Based on a default calculation.
The default calculations are as follows:
e Start Boundary. The slope at the start point of the profile is calculated by temporarily

fitting a polynomial curve to the first three (2™ order sector) or four points (3 order
sector) and calculating the slope of the temporary polynomial at the first point.

e End Boundary. The slope at the end point of the profile is calculated by temporarily
fitting a polynomial curve to the last four points (3 order sector) and calculating the
slope of the temporary polynomial at the end point.

15.3.3 Interaction of Motion Programs with CAM

CAM motion shall be initiated in the DSM314 using instructions in the motion program. The
following new motion instructions are required to support CAM motion programming:
1. CAM: Used in the motion program to start CAM motion and specify exit conditions.

2. CAM-LOAD: Used to load a parameter register with the starting location for a CAM
slave axis. The PMOVE command can be used in conjunction with the CAM-LOAD
command to move a slave axis to the starting point.

3. CAM-PHASE: Used to specify a Phase for CAM commands. The phase value may be
specified either through a parameter register or as a constant.

The following sections describe the syntax and functionality of each of the above
instructions in more detail. The convention used to specify the command syntax is as
follows:

‘<>’ brackets- indicates a required field.
‘[I’ brackets- indicates an optional field.

‘{}’ brackets- indicates a field that is required for multi-axis programs and subroutines
butis illegal for single axis programs and subroutines.

Using the Electronic CAM Feature 332

User Manual Chapter 15
GFK-1742F Jan 2020

15.3.4 CAM Command

The CAM command is used to program a CAM move using the specified CAM profile.
Syntax:

CAM <”CAM Profile Name”>, <distance>, <master mode>, [Cyclic Exit Condition]

Parameter Description

<”CAM Profile Name”> Name of the CAM Profile from the CAM Library (the profile must be
linked to the CAM Download block). This name is limited to 20
characters maximum (also, see Note 3 below). Note that the quotes
around the name are required.

<distance> Maximum distance the master axis can travel once the CAM is active
(in user units)
Distance can be a constant , a parameter or the keyword NONE.
Allowed Range: -MaxPosn (MaxPosn-1) uu/cts

<master mode> Master mode can be declared as ABS (absolute) or INCR (incremental);
this indicates how the master position data is interpreted.
In ABS mode, an absolute master axis position is used to determine a
slave value from the CAM table. In INCR mode, the master value at the
starting point of a CAM command is assumed to be equal to the
“CAM-phase” value, and the slave values calculated during CAM
motion are relative to this start master value.

[Cyclic Exit Condition] Specifies an exit condition for Cyclical CAMs. The allowed range is
CTLO1-CTL32. If the CTL bit evaluates to True, the Cam exits at the end
of the current cycle. Note that this parameter must not be used for a
Non-Cyclic CAM profile.

Note:
1. The CAM instruction is not permitted in a Multi-Axis motion program.

2. A CAM command counts as two instructions towards the 1000 instruction limit in a motion
program.

3. The Profile Names UDT_CAM_1, UDT_CAM_2, UDT_CAM_3 and UDT_CAM_4 are reserved for
future usage.

The <distance> argument in the CAM command is used to define the maximum distance
the master can travel through the profile before exiting. For Cyclic CAMs, the distance can
be either greater than or less than the length of the CAM table (defined as the absolute
difference between the first and last master positions in the CAM table). If the distance is
less than the length of the table, the CAM command exits once the distance has been
traversed. If the distance is greater than the length of the table, the CAM will cycle through
the CAM table until the distance is reached. Thus, the user may set up the number of times
a Cyclic CAM should be executed. For example, a distance of 2.5 times the length of the CAM
Table Master Position will cause the CAM profile to execute two and one-half times and then
exit. For non-Cyclic CAMs, the specified distance cannot exceed the length of the table.

The distance can also be specified as “NONE”. For a Cyclical CAM, this will result in
continuous CAM motion until a CTL bit triggers an exit or motion is aborted. For a non-

Using the Electronic CAM Feature 333

User Manual
GFK-1742F

15.3.5

Chapter 15
Jan 2020

cyclical CAM, specifying “NONE” means the CAM will exit when it reaches either the
minimum or maximum master position of the profile.

The [master mode] is used to specify whether the master axis operates in Absolute or
Incremental mode. The master axis may be operated in absolute or incremental mode for
both Cyclic and Non-Cyclic CAMs. In Absolute mode, the master positions in the table
represent the absolute positions of the master axis. In Incremental mode, the slave axis
positions in the table are relative to the master axis position when the CAM instruction is
initiated.

The [Cyclic Exit Condition] is used to specify an exit condition for a Cyclic CAM profile. If the
CTL condition evaluates to TRUE, the CAM will exit at the end of the current cycle.

Bi-directional and Unidirectional CAMs can be defined by using the +VIim and -Vlim master
axis velocity limit parameters. For Unidirectional operation, the appropriate velocity limit
must be set to zero for the direction in which motion is prohibited. For example, if motion
in the negative direction is prohibited, then —VIim must be set to zero.

CAM-LOAD Command

The CAM-LOAD command is used to load the slave axis position into a parameter register.
A regular PMOVE command can then be used to move the slave axis to the loaded position.
The CAM-LOAD command uses the CAM profile name, actual master position and phase
(specified using the CAM-PHASE command) to determine the starting point for the slave
axis.

Syntax:

CAM-LOAD <”CAM profile name”>, <Parameter Number>, <master mode>

Parameter Description

<”CAM Profile Name”> Name of the CAM Profile from the CAM Library (the profile must be
linked to the CAM Download block). This name is limited to a
maximum length of 20 characters (also, see Note 3 below). Note that
the quotes around the name are required.

<Parameter Number> Specifies the Parameter Number to load.

<master mode> Master mode can be declared as ABS (absolute) or INCR (incremental);
this indicates how the master position data is interpreted in the slave
start position calculation.
In ABS mode the absolute master axis position is used to determine
the corresponding slave starting position value from the CAM table.
In INCR mode, the master value is assumed to be equal to the CAM-
Phase in the calculations.

Using the Electronic CAM Feature

334

User Manual Chapter 15
GFK-1742F Jan 2020

Note:

1. A CAM-LOAD command counts as two instructions towards the 1000 instruction limit in a
motion program.

2. When a CAM-LOAD command is executed, the following sequence of actions is performed:
A. The current master position is read.

B. Using the master position, CAM-Phase value, the CAM profile table, and CAM configuration
table, the appropriate position of the slave axis is calculated and loaded into the designated
parameter register.

C. The motion program can use a PMOVE instruction to move the slave axis to the position
calculated in step B.

3. Thenames UDT_CAM_1, UDT_CAM_2, UDT_CAM_3 and UDT_CAM_4 are reserved for future
use and cannot be used for CAM Profile Names.

15.3.6 CAM-PHASE Command

The CAM-PHASE command is used to specify a phase for CAM commands. This command
lets you offset or shift the phase relationship between the master position and follower
position. The phase value may be specified either through a parameter register or as a
constant. Note that a phase value is active for all CAM instructions that follow it, until
modified by another CAM-PHASE command. The default Cam Phase value for a motion
program is 0.

Syntax:
CAM-PHASE <Phase>

Parameter Description

<Phase> The CAM phase value specified as a constant or a Parameter Register.
Allowed Range for constant: —MaxPosn (MaxPosn-1)

15.3.7 CAM and MOVE Instructions

A series of CAM commands may execute without any dwells or interruptions. To obtain
smooth motion you must ensure that the starting point on each subsequent CAM profile is
the same as the ending point of the preceding CAM profile. This ensures a continuous
position and velocity trajectory. For a sequence of Non-Cyclic CAMs, the starting and ending
points may be adjusted in the CAM Editor to obtain smooth transitions. Transitions between
CAM and MOVE commands while the slave axis is moving are not permitted at this time.
Consequently, the slave axis must have a start velocity equal to 0 at the transition point
between a CAM and MOVE command. When a CAM command exits, if it is not immediately
followed by another CAM command, the axis will use the programmed acceleration rate to
decelerate to a stop.

Using the Electronic CAM Feature 335

User Manual
GFK-1742F

15.3.8

15.3.9

Chapter 15
Jan 2020

Time-Based CAM Motion

The implementation of a time-based CAM profile employs the same mechanism as a reqular
CAM (position-based master). In order to program a time-based CAM profile, the CAM
master source should be configured as “Commanded Position” of Axis 3 in the DSM314
module hardware configuration, with the Axis 3 mode set to “Auxiliary Axis.” A constant
velocity command is then initiated on Axis 3. The effective time scale of the CAM motion is
determined by the scaling of the master in the profile source file and the User Units-to-
Counts conversion factor defined in Hardware Configuration. A time-based CAM motion
command can be executed simultaneously on multiple axes.

CAM Scaling Editor and Hardware Configuration

The DSM module allows the user to scale the position feedback device resolution versus the
module programming units. For example suppose 1 motor revolution corresponded to 1
inch of travel for the driven load. In this example, the motor connected to the driven load
has an encoder that produces 8,192 counts per motor revolution. Thus, 8,192 feedback
counts equals 1 inch of load travel. Some users would find it easier to program motion in
inches rather than in feedback counts. In this case, you could set up the scaling to program
motion in thousandths of an inch. To obtain this result, set the User Units to

Counts ratio to be 1000 to 8192 in the DSM hardware configuration. Additional information
on specifying these values is located in Chapter 5.

The CAM feature also supports application-specific units. However, you are required to
manually transfer the values entered in hardware configuration to the appropriate area
within the CAM editor.

Note: You must transfer these values for both Master and Slave axes. Building on the prior example,
suppose both the master and the slave axes had equivalent motors. Therefore, each feedback
device has the same 8,192 counts per revolution. However, for the master, one motor revolution
equals 1 inch of load travel, while for the slave, one motor revolution equals .5 inches of load
travel. To make the programs easier to understand, you should program the master and slave in
the same units. In this example, units of 0.007 inch are used. To obtain this result, first determine
the correct user units to counts ratios for the master and the slave.

To determine the ratio, apply the following equation

Using the Electronic CAM Feature

336

User Manual
GFK-1742F

User Units (Load Movement per Motor Rotation |

1

Chapter 15
Jan 2020

Counts Desired Resolution

For the master axis in the example:

UserUnits | 11n 1
Counts | 1 | 8192 Counts
1000
User Units (1000 in
Counts _(8192_].Counts

For the slave axis in the example:

UserUnits | .5 in 1
Counts | 1 8192 Counts
1000
User Units (500 in
Counts _(8192_]. Counts

J ' Feedback Counts Per Motor Revolution

You then need to enter these values in the appropriate locations in hardware configuration.
In this example, Axis #2 is the master and Axis #1 is the slave. Therefore, enter the User Units
and Count values into hardware configuration for the slave as shown in Figure 153.

Figure 153: Slave User Units/Counts Hardware Configuration

Settings | SNP Port | CTL Bits | Output Bits Asis #1 | ais 2| <[»
Parameters Yalues -

User Units: 500 |

Counts: 8192

Ower Travel Limit Switcl Dizabled

Drive Ready Input: Enabled LI

The Master User Units/Counts value would be entered as shown in Figure 154

Figure 154: Windowing Strobes Example

Settings | SNP Port | CTL Bits | Output Bits | Asis 1 Awis #2 | ais < | v |

Parameters Values -
User Unrits: 1000 [
Counts: 8192
Ower Travel Limit Switch: Dizabled
Drive Ready nput: Dizabled
Hiah Position Limit; 43999 =l
Moation Mate DSM314 7

Using the Electronic CAM Feature

337

User Manual Chapter 15
GFK-1742F Jan 2020

This tells the module the correct scaling to use when it runs motion programs. However, the
CAM Editor also needs to know the correct scaling to perform the proper transformations
from user units to counts. For this example, this data must be entered into any CAM profiles
that are to run on these axes. An example is shown in Figure 155.

Figure 155: Slave and Master User Units|/Counts CAM Editor

- Profile Link
Profile Mame Scale_Mon_Cyc
CaM Type MNon-Cyclic CAM
Start Type lgnored
End Type Ignored

Master Device Counts 8132
Master User Counts 1000
Slave Device Counts 8132
Slave User Counts 500

Inspectar |

It is recommended that the scaling operations be performed before programming any
CAMs that do not have one-to-one scaling. This is suggested is to avoid the need to reenter

data. The CAM editor displays the master/slave data in User Units. Therefore, if you do not
define your scaling and enter all the CAM data, by default you have chosen 1 to 1 scaling.
When you finally correct this error and enter the correct scaling, you will note that all non-
zero numbers in the CAM data tables have changed to reflect the new User Units values.

The following section discusses how the CAM editor rounds values when you are entering
data. This function is performed automatically and does not require you to perform or
configure the editor in any special way.

Note that, internally, the DSM works in native feedback units and converts the native units
to User Units automatically for the user. The module performs this operation to take full
advantage of all the available feedback resolution. This includes when a user has chosen to
program motion in units that are not the full resolution of the feedback device. The CAM
Editor also seeks to maintain all the resolution that is available (without showing false
resolution) for a given motor/feedback set. Therefore, when you specify scaling within the
CAM editor, the editor will, in some cases, add decimal places to the data table. Additionally,
it automatically rounds numbers to values that can be represented as integer numbers of
feedback unit counts. The sample cam table in Table 75 is based on the previous example.
Note that the CAM Editor displays values in User Units, but always rounds them to an integer
value in counts.

Using the Electronic CAM Feature 338

User Manual
GFK-1742F

Chapter 15
Jan 2020

Table 75: CAM Example Data Scaled in Inches

Master Position (Inches) | Slave Position (Inches)
0 0

0.075 0.075

0.5 0.25

1 0.5

The table above is shown in inches. In this example, the CAM is programmed in 1000 of an
inch. Therefore, convert the values and enter the data into the CAM Editor as shown in Table

76.

Table 76: CAM Example Data Scaled in .001 Inches

Master Position (1000 of In)

Slave Position (1000 of In)

0in =0 thousandth of in

0in =0 thousandth of in

.075in = 75 thousandth of in

.075in =75 thousand of in

.5in =500 thousandth of in

.25in = 250 thousandth of in

1in=1000 thousandth of in

.5in =500 thousandth of in

When you enter the data into the CAM editor (Figure 156), some values are automatically

changed by the CAM editor.

Figure 156: CAM Data Table User Units Example

Master Slave BI@-I"H 100% | [— Posttion | O
Position Position 500
3r |00 0.00 400
75.0 75.01 300
a00.0 250.00 200
L | 1000.0

200 400 500 800 10

| — Yelocity Accel — Jerk I m
01
0.05 -
U AL E e | B | LA B
0 200 400 600 800 1,0

Using the Electronic CAM Feature

339

User Manual Chapter 15
GFK-1742F Jan 2020

The CAM Editor automatically changes the values to correspond to an integer number of
feedback counts. The Editor also rounds the displayed values to limit clutter within the table.
Note that the editor maintains the variable’s precision and it is only the display that is
rounded. The functions that are automatically performed by the CAM editor are illustrated
below. First determine the integer feedback counts that are the closest to the desired
values. For this example, only two numbers cannot be exactly represented. These are the
Master Position of 75 and the Slave Position of 75. The closest integer count value to these
valuesis 614 countsand 1,229 counts for the master and slave respectively. The relationship
between the Master Position and Slave Position with respect to User Units and Counts is
shown in Table 77.

Table 77: Relationship Between User Units and Counts in Scaling Example

Master Position| Master Position| Slave Position (User| Slave Position
(User Units) (Counts) Units) (Counts)

0 0 0 0

74.951171875 614 75.01000000000001 | 1229

500 4096 250 4096

1000 8192 500 8192

This agrees with the functions that where automatically performed by the editor. Note that
for the Master Position of 74.951171875, the editor rounds to 75.0. For the Slave Position
of 75.01000000000001, the editor rounds to 75.01.

15.3.10 Synchronization of CAM Motion with External Events

The following mechanisms allow the programmer to synchronize CAM motion with external
events:

e The start of CAM motion can be synchronized with an external event by using the
existing WAIT command in a motion program.

e ACyclic CAM can be synchronized with a strobe using Local Logic variables. Refer to
Chapter 11-14 for additional information concerning Local Logic.

Using the Electronic CAM Feature 340

User Manual
GFK-1742F

15.3.11

Table 78: CAM Specific Error Codes

CAM-Specific DSM Error Codes

Chapter 15
Jan 2020

Error |Response Description Error |Possible Cause
Code Type
(hex)
Cam Program Error Codes
2A Normal Stop | Cyclic CAM CTL Exit Axis CTL exit conditions are permitted
condition specified for for Cyclic CAMs only. The motion
Non-Cyclic CAM program contains a non-cyclic CAM
instruction with a CTL exit
condition.
2B Normal Stop | CAM Phase outofrange | Axis The CAM PHASE value is outside the
axis position range.
CAM Configuration Error Codes
2D Normal Stop | CAM Master Axis Config Axis The User-Units:Counts ratio
Error — master profile does specified for the master axis in the
not match master axis Editor and Hardware Config are not
configuration compatible and/or
The High/Low Position Limit
specified for the master axis in
Hardware Config is not compatible
with the profile. Refer to the section
on CAM Types for a detailed
description on setting up the
High/Low Position Limits.
2E Normal Stop | CAM Slave Axis Config Axis The User-Units : Counts ratio
Error - slave profile does specified for the slave axis in the
not match slave axis Editor and Hardware Config are not
configuration compatible and/or
The High/Low Position Limit
specified for the slave axis in
Hardware Config is not compatible
with the profile. Refer to the section
on CAM Types
for a detailed description on setting
up the High/Low Position Limits.
2F Normal Stop | CAM Slave Axis SW EOT Axis
mode cannot be enabled
for Cyclic Circular CAM
Configuration Parameter Error Codes
1D Normal Stop | Attempt to use CAM, Axis If using CAM, ensure that Follower
CAM-Load, or CAM- Phase Mode is not configured (Follower
commands with Follower Mode cannot be used when using
Mode CAM).

Using the Electronic CAM Feature

341

User Manual Chapter 15
GFK-1742F Jan 2020
Error |Response Description Error |Possible Cause
Code Type
(hex)
If using Follower Mode, ensure that
CAM commands are not presentin
motion program (CAM cannot be
used when Follower Mode is
configured).
CAM Execution Error Codes
66 Normal Stop | CAM Profile not foundin | Axis The Cam profile was not linked to
CAM Download Block the CAM Download block in the
CAM Editor and/or the CAM
Download block name was not
specified in Hardware Config.
67 Normal Stop | CAM Exit Distance out of | Axis The exit distance for a Non-Cyclic
range (Non-Cyclic CAMs) CAM was greater than the modulus
for the CAM.
68 Status Only (Correction Enabled) Axis
Velocity Command
Limited due to Velocity
Limit violation or Position
Error Limit violation
68 Normal Stop | (Correction Disabled) CAM | Axis
velocity command above
configured axis velocity
limit
6A Normal Stop | CAM Position Error Limit | Axis
Violation (with Correction
Disabled)
6B Status Only CAM commanded position | Axis
at the exit different from
CAM profile value due to
position error or velocity
limit
6C Normal Stop | CAM master value out of | Axis
profile master range for
Non-Cyclic profile (CAM
and CAM-LOAD
commands)
6D Normal Stop | Absolute mode CAM after | Axis
incremental mode CAM in
the sequence
6F Fast Stop CAM trajectory calculation | Axis Contact Emerson
error

Using the Electronic CAM Feature

342

User Manual Chapter 15
GFK-1742F Jan 2020

15.4 Electronic Cam Programming Basics

This section contains an introduction to the basic electronic CAM programming concepts.
The Local Logic function, and motion programming are not discussed in detail in this
section, since they are discussed in other chapters in this manual.

15.4.1 Requirements

The Local Logic, CAM editor, and Motion Program editors are integrated within the
programming software environment. You need one of the following software packages:

e CIMPLICITY Machine Edition Logic Developer — PLC version 2.1 or later

e VersaProversion 1.1 or later (Series 90-30 only. For details, refer to Appendix H.) The
CAM feature requires DSM314 firmware release version 2.0 or later.

15.4.2 Introduction to Electronic Cam Programming

The electronic CAM function works with the DSM314 motion program, DSM314 Local Logic
program, and the Host Controller programming environment. Specifically, the electronic
CAM function allows you to specify precise position-to-position relationships between a
master axis and a slave axis. This ability is critical to many applications where very tight
synchronization between axes is an absolute requirement.

The CAM Editor tool allows you to specify these position-to-position relationships, called
profiles, graphically, in tabular form, or a combination of both. These profiles are stored to
the DSM module where they are accessed through the DSM motion programs.

CAM Profiles must be linked to their associated CAM block. The CAM block is linked to the
DSM via the CAM Block entry in Hardware configuration.

A CAM block can contain numerous CAM profiles. The DSM has two limits that affect the
number of profiles. The maximum CAM block size is 50Kbytes, and the maximum number
of linked profiles for an individual block is 100. The CAM Profile library is only limited by
available disk space on the host computer.

The basic CAM concepts are illustrated with a simple example.

Creating a CAM Application Example
Basic Steps

1. Open the project folder or create a new one
Create a CAM block
Create a CAM profile
Link the CAM profile to the CAM block
Configure the CAM profile
Specify the CAM Type
Specify the Correction Property
Save the CAM profile

o N o v A~ W N

Using the Electronic CAM Feature 343

User Manual Chapter 15
GFK-1742F Jan 2020

9. Generate motion and Local Logic programs
10. Set up hardware configuration in the configuration/programming software
11. Execute (test) the application
Step 1: Create a Project
For details on creating a project, refer to the on-line help or the software user’s manual.

PAC Machine Edition Logic Developer-PLC Getting Started, GFK-1918

Figure 157: New project

x

Project Mame: IEAMExample

Project Template: | PACSystems RX3i ~| Setas defaul |

Project Location; IM_I; Computer j

A |

Al
PACSystems RX3i
& project with one Fanuc PACSystems RX3i target preconfigured
with default settings.
1%
E|" Sample Targetl: PACSysterns RX3i
- Targetl Data Watch Lists: Empty
) % Data Watch Lists Hardware Default PACSystems
ﬁ'ﬁ Hardware Configuration tonfiguration: RY3 .
FJ D Logic Logic Program Contains empty
=g Program Blocks Blocks: _MAIN LD Block
’ -H— MAIN Reference Wiew Contains Default
- Reference View Tables Tablacs RUTs
- Supplemental Files Supplemental Contains empty
Files: folders
E

| (1].8 I Cancel

Using the Electronic CAM Feature

344

User Manual Chapter 15
GFK-1742F Jan 2020

Step 2: Create a CAM Block Using the CAM Editor

The CAM editor is integrated into the Logic developer environment. The editor allows you
to easily create, edit, store, and download CAM blocks.

From the Target menu, select Add Component to Target1, then select Motion. This adds the
Motion Target to the Navigator portion of the Logic Developer window. If Motion programs
or Local Logic programs have already been defined, this step is not necessary.

Figure 158: Create CAM Program

o CAMExample - CIMPLICITY Machine Edition

File Edit Search Pruja:tlT.arget Variables Tools ‘Window Help
@ bﬁ H % v Fij Add Component to "Target1" Ethernet Global Data

334 Al Componerts

h. 1F # O 7 1 Remove Component From “Target1"

Set Active Target

‘alidate "Target1"
=8 CAMExample Download "Taraetl” ko PLC, .,
=4 Targetl Upload "Targett™ From PLE, .

‘% Data Watch Li Download and Start "Targeti”
= ffip Hardware Cor o Online with "Target1"
#-fill Rack 0 (1€ offline Commands

4 Show Runtinme
. Report
Diagnostics
Show Documentation
Target
Clean Build Folders "Target1"
MName
Irmport
Type Expork Binaties: ..
Description
Documentation Address LI
Inspector I

In the Navigator window right-click “CAM blocks” and select “New Block.”

Using the Electronic CAM Feature 345

User Manual Chapter 15
GFK-1742F Jan 2020

Figure 159: Create New CAM Block

A

EEE
: % Drata Wwatch Lists :]

J ﬁ“ Hardware Configuration
L ﬁ] Rack 0 (ICE9SCHS012)
B I Logic

: = -£8 Program Blocks

=- % Motion Program

P CAM Profiles —
J
i‘] local MNew Block Ins
L@ Motic Import From File -
4| | Paste Block Chrl+y I_I

R u 2. @Ee. [Bv. 2.

Creating the new block opens up an edit field that allows you to name the block. The rules
for naming a CAM block are:

e Only the characters A-Z, a-z, 0-9, and _ (underscore symbol) are allowed.
Consecutive underscores are not allowed.

e Theblock name must begin with a letter or underscore symbol.
e Ablock cannot have the same name as another block that exists in an open folder.

e A CAM block name may contain up to twenty characters.

Figure 160: CAM Block Screen

sl
&8 Data Watch Lists -
i;l fli Hardware Configuration
&1-ffii) Rack 0 (1C695CHS012)
_I :D Logic
?:E Program Blocks
ZI %} Motion Program
5 CAM Profiles =
B g CAM Blocks

R=]combl

@ Lucalloglc -
| | »

R u. (2. FEe. [Bv. [21

Using the Electronic CAM Feature

346

User Manual
GFK-1742F

Step 3: Create a CAM Profile

Chapter 15
Jan 2020

The next step is to create a simple CAM profile. The CAM profiles are linked to CAM blocks.
Additional information on this interlinking is contained within the on-line help. To create a
CAM profile, right-click the CAM Profiles icon in the Navigator window and select New Profile

as shown in the following figure.

Figure 161: Create New CAM Profile

2] x|

il g
b @ Data Watch Lists
F fijis Hardware Configuration
- = ffiii) Rack 0 (1CE95CHS012)
[=- 10 Logic
- #-18 Program Blocks
I; Q} Mation Program
= B

= g CAMB Mew F'l":'FilEf

1 I I GOt Al Prafiles

Copy &l Profiles

Paste

Lelete all ProfilEes. ..

GERIH-
Chel-E
ZErIHY
el

Import From File

Export All Profiles to File

Properties

Alt+Enter

This inserts a new profile named “Profile1” into the library as seen in the following figure.

Figure 162: New Profile Creation

1]

=-fjip Hardware Configuration

il Rack 0 {1CE95CHS012)
=10 Logic

=+ -T2 Program Blocks
EI"-E) Maotion Program

=€ CAM Profiles

=€ CAM Blocks

Camlk

() Local Logic

g8 Motion Blocks
=g Reference View Tables

[+ Default Tables
= Supplemental Files

4 |

——

il

R, U B Ee. [Bv.

2.

Using the Electronic CAM Feature

347

User Manual Chapter 15
GFK-1742F Jan 2020

You can rename this profile to a name more suitable to the application if desired. The
naming rules are:

e Anyalpha-numeric character or the underscore (_) symbol may be used.
e Thefirst characterin a profile name must be a letter.
e Aprofile name cannot be more than 20 characters long.

e Anprofileis referenced by name in a motion program. NOTE: Logic Developer is not
case-sensitive when referencing a profile name.

To rename the profile, right-click the profile name in the Navigator window and choose
Rename Profile from the short-cut menu. Type a name for the profile and press ENTER to
finish. The profile and any CAM profile links to it are renamed. For this example, the profile
is renamed to ExCamProfile. Refer to the on-line help for additional information.

Step 4: Link the CAM Profile to the CAM Block

Although there is more than one way to link a CAM profile to a CAM block, the easiest
method is to click the desired CAM profile in the Navigator, then drag it and drop it on the
applicable CAM block. The result is shown in the next figure.

Note: Logic Developer limits the download block total size (Motion, Local Logic, and CAM combined) to
32K.

Figure 163: Linking a Profile to a CAM Block

e

=R
- £3 Data Watch Lists -
=-ffilp Hardware Configuration
= ffjiil Rack 0 (1C695CHSD12)
F I Logic
'f:g Program Blocks
E % Motion Prograrn
. =€ CAM Profiles
{8 ExCamProfile
=P CAM Blocks
' =- {5 CamBlk
; D ExCamProfile
g Local Logic
g3} Motion Blocks

I: S Reference View Tables -
4| | >

2. ou (B Ee. [Bv. 9]

Using the Electronic CAM Feature

348

User Manual Chapter 15
GFK-1742F Jan 2020

Step 5: Configure CAM Profile Data Points

Once these operations are complete, you must configure the CAM profile. A CAM profile is
composed of a series of Points that defines the relationship between the master position
and the slave position. Each point s defined by two coordinates. When viewing the graphical
representation, the Master coordinate represents the horizontal axis and the Slave
coordinate represents the vertical axis, as shown in the next figure.

Begin by double-clicking the profile to open it in the Profile Editor window (see next figure),
which has two editors:

o Table Editor is similar to a spreadsheet. In the table, each point has its own row with
two columns, one for the Master position and one for the corresponding Slave
position. When a new profile is opened, there are, by default, only two points, a start
point and an end point. The start point is the top point of the table and the end point
is at the bottom.

e To edit points with the Graphical Editor, click the point on the graph and drag it to
the desire location. (NOTE: The point data in the table editor will update to the new
position.) To perform other tasks in the graphical editor, right-click in the graph and
select the applicable task from the short-cut menu.

The next step is to edit the end point (the bottom point in the table) for the Master and
Slave. In the Table Editor, click in the end point’s Master column and enter the value 50000;
then click in the end point’s Slave column and enter the value 0. (NOTE: As points are added
or changed in the Table Editor, the graph in the Graphical Editor will update accordingly.)

Next, insert an additional point into the Editor table. Right-click in the Master column of the
end point and choose Insert Point from the short-cut menu (shown it the next figure). A new
row is added above the end point row, specifying a new point with master and slave values,
by default, midway (25000 and 0, respectively) between the values of the two existing
adjacent (above and below) points. Change the values for this point to 47500 for the Master
and 11000 for the Slave. To change a point value, click it, type in the new number, then
either press the Enter key, or click outside of the table.

To change the Curve-Fit order, click the Curve-Fit column, then select the Curve-Fit Order
in the Property Inspector window. Also, a profile can be splitinto multiple sectors or
multiple sectors merged into one by right clicking on the Curve-Fit display and choosing
from the short-cut menu.

Note: A CAM profile is limited to 400 points if it contains second or third order sectors. A CAM profile is
limited to 5000 points if it only contains first order sectors.

Using the Electronic CAM Feature 349

User Manual
GFK-1742F

Chapter 15
Jan 2020
Figure 164: Inserting a Point in the Profile Editor Window
£ CAMExample - CIMPLICITY Machine Edition - [ExCamProfile] o Dlﬁl
%Filc Edic Scarch Projoct Target Wariables Tools ‘Window Help . 1 - Elll
|[pmm=—mo lywme< x| |oem ShotCit LoBaal
”,H Curve-Fit {R}&&@FE%MM Menu ‘,,O : :
Column CAM Profile
C . Master | Slave F — Posti Graphical
= E - Position | Pogsilion 1 ITTG _______ _____ j
%Data IMakch Lisks A [/: Edltor
-l Hardware Corfiguraticn - r s :
@) Rack 0 {1ce5CHS012) J Insert Pairt o i
. o Deleze: Point 1‘5 ; ;
CAM F’roflle i 40000 20000 30000 40,000 50,0
Table Editor o — welocity — &ooel — etk |]
0.000CH
a e E . - ‘QI [e o LR
]
=l =l 0000005 4 - b
= -0.00001 T T
e =ity 2 0 10,000 20,000 30,000 40,000 S0,
Curva Fit Order 2id Ohder [Spli;l Ly
Inspector | . ECanPoile |
i A L A b T e B T Pect tet
7| Master Fosition @ Gop 14, 2004 13:01:11 _ Prafils Profilsl ore
A signed decimal number (in User Units) that
specifies the independent coordinate of a pointan —
a CaM profile. For each mastar position a
curre_spcll:lndifnu%l slave position coordinate is
t 1
_r_e?wie ,D ,vspe?fvanlmn . . = LA™ M Build o Tmpor p, Messal 4] o
Cone _T Offline [Adi 2

Since the Slave Position end point is the same value (0) as the initial Slave Position point, this
CAM meets the requirements for a Linear Cyclic CAM. (For more information on the different
CAM types, refer to “CAM Types” on page 326.) Note that the CAM Editor has several
“Smart” edit fields that will ONLY display the choices that are valid for a given data set. For
example, since a requirement for a Linear Cyclic CAM is that the Slave Position start point
and Slave Position end point are the same, the editor only allows the Linear Cyclic CAM
choice if these criteria is met.

Next, insert a new point into the profile and then edit the point. The point can be edited
either in the profile table or graphically on the plot. Insert the point as shown above and in
Figures 165 and 166 by right clicking the point below the insertion position and selecting
Insert Point from the menu. Then change the default values to 2500 for the Master and
10000 for the Slave.

Figure 165: CAM Profile Table Data

Slave
Position

Master
FPosition

11000
50000 0

Using the Electronic CAM Feature

350

User Manual Chapter 15
Jan 2020

GFK-1742F

Figure 166: CAM Editor Example (Linear Cycle CAM)

=lo| x|
=181
[smrocxy | Dapergoes [¢cs00aa)
|f-« rS R 00!

& CAMEstample - CIMPLICITY Machine Edition - [ExCamProfile]
"® Ele Edt Search Project Target Yagables Tooks Window Help

|gswav2s .
(R MtHOoP D OO RLLPBL ILHT ME R

S
Master | Slav_e Es ﬂ l"""l o
60,000

P

3] 0
! &0,
EEINI 10000 40
47500 11000 20,2500, 100 -
Sl
| L] 50000 0 0 Coordinates of

D 10000 20000 30000 4000Selected Point

ERE
£3 Data Watch Lists
= 8l Hardware Configuration
=- il Rack 0 {1Ce9sCHs01Z

Toqgram Blacks
=] % Motion Program

Selected Point g P > [wvelocty —pccel —derk |y
! B
o 0 T
== ! \\j
-5 L | T
CAM Type Linear Cye =] 4] 0 10000 20000 30000 40000 50
Master Counts 1 ﬂ 1
Inspector ExCamProfie
ﬂ - ﬂ Destroyed FrameworX/CAMEzample SwxCE.
« - d|Sep 14, 2004 12:50-04 — Profile Profilel ci
Master Posifion @ Sep 14, 2004 13:01:11 - Profile Profilel ci

A signed decimal number (in User Units) that
specdifies the independent coordinate of a point
on a CAM profile. For each master position a Ll

rorrecnnndinn slave nnsitinn Ponrdinate s

AT T Buid A _Tmport b Messal| 4] |
["[4 [offine

There are numerous other features in the editor. These include being able to define
additional sectors that each have a different curve fit method. These editor features are
discussed in the programming software’s on-line help. Please refer to this source for

additional information.
Step 6: Specify the CAM Type

For this example, the CAM will be Linear Cyclic, as discussed previously. Use the following

procedure:
e In the Project tab of the Navigator, right-click a CAM profile. The short-cut menu
appears.
e From the short-cut menu, choose Properties. The Inspector opens showing the CAM
profile's properties.
e Inthelnspector, click the arrow in the CAM Type field. The CAM Type drop-down list

appears.
e Choose ‘Linear Cyclic CAM’ from the list (Figure 167).

Using the Electronic CAM Feature

351

User Manual
GFK-1742F

Chapter 15
Jan 2020
Figure 167: CAM Editor CAM Type Selection
» CAMExample - CIMPLICITY Machine Edition - [ExCamProfile] =100 x|
"B File Edit Search Project Targst Variables Tools Window Help &l =l

L EREES S PR =k

i marEssws|-s0m aE

. NI HOD O DO RELETL o[n[[furbuuno
Curve-Fit . B
Order —F ;ﬂas_ai_er | Pmav_e [@t 1003 | o
nsition
| €2 Data Watch Lists w3 [0] i - i
Iflmn,HardwareConF\guration T- - -WDDUD wpw e el =il
Sector - o) ff) Rack 0 (cevsCHEN1Z = %" 17000 400004 -~
Bracket —— sonon—To 20| 2500 10800
.) ? 1] . .
2 B @B 3] 0 10000 20000 30000 40000 S0
12] % |—VE\acny Aocel — Jerk] ™
Profll Name ExCanProfle =] s /\\ i
CAM Type ILineer Cy(ﬂ] :
Master Counts [Nor Cpclic C4 : ! 1
Linear Cyche (| =5 £ 2 2
Masta L ! 0 10000 2000 30000 40000 500
lave Counts 1 ;I | 0 - -) -
CAM Type Inspector | ExCanFrofie |
Drop-Down [T, dF % CANExample SweCE
H - estroye rameworis Eanple . owE!
Menu -/ CAM Profile Alias @ :| 3llSep 14 2004 12:50:04 - Profile Profilel c

reference to a CAM profile
that exists in the CAM
Profiles folder. You edit Iam:l

e =l

Sep 14, 2004 13:01:11 - Profile Profilel c

AR B imgor) Messd| «|_| »l

[o

Step 7: Specify the Correction Property

The last item to be specified for this example is the correction status. The Correction
property determines whether the motion module will permit an online correction for a

specific sector. A sector is a region of a CAM profile

defined by at least two adjacent user-

defined points. The sectorincludes the user-defined points, the curve connecting them and
also up to, but not including, the first point defined for the next adjacent sector. The points
included in a given sector are denoted by the Sector Bracket, are shown in the figure above.

Each sector is assigned a curve-fit order number,

also shown in the figure above. The

segments of the profile between user-defined points are defined by polynomials of the
curve-fit order specified. A unique polynomial is used to interpolate between each pair of
adjacent user-defined points. Although the actual polynomial coefficients can be different
for each segment, the curve-fit order is the same throughout the sector. A sector is
indicated in the CAM profile table as a bar spanning the user-defined Master Position values

included in the sector. Initially, all points defined in a

profile are included in a single sector.

This single initial sector can be subdivided as required to facilitate smoothing a CAM profile.
When the Correction property is Enabled, the motion module reports a warning if there is a
velocity limit violation. When the Correction property is set to Disabled, the motion module
reports an error for these violations and stops the slave axis.

For this example, correction should be enabled. To enable correction, select the sector from

the CAM profile table by clicking it. This will cause the

Inspector window to display the sector

properties and allow them to be edited. Select the Correction drop down box and choose

Enabled (Figure 168).

Using the Electronic CAM Feature

352

User Manual Chapter 15
GFK-1742F Jan 2020

Figure 168: CAM Editor Correction Enable

» CAMExample - CIMPLICITY Machine Edition - [ExCamProfile] =101 x|
3 File Edt Search Project Target VYariables Tools ‘Window Help = |ﬁ'|5|

[EzaEviss||ierccxn|EnrEEoen||cs0Eab
ANt H O WD DR LTI | [AEN[fu B e

=
1T e | oo ol o) 2
) ition
2 Data Watch Lists - el : | :
=-fji§i Hardware Configuration BOD00 § - - B
+ !T' Rack 0 (ICE95CHS012) 410,000] : f ‘
. - S _ 20,000 | : E I4? 1
2. B & > 0 : : "
i Zo E; E = 1} 10,000 20,000 30000 40,000 50,0
1= xi | — Welocity — Accel — Jerk I ™
Curve Sector
Curve Fit Order 3rd Order [Spline]
Camection Dizabled - I

Disabled | 1 1 ; J
0 10000 20000 30,000 40000 S50,
Inspector | E xCamProfile I

l“l Correction

The Correction property determines whether
the motion module will permit an online
correction for the sector.

| [#|Destroyed FraneworZ/CiNEzample . SwxCE.

Al|lSep 14. 2004 12:50:04 — Profile Profilel ¢
| Sep 14, 2004 13:01:11 - Profile Profilel c
=]

When Enabled, the motion module reparts a
2 2l

l | AT DT Buid } Import) Messal| <] |]
D [% off

e i e e ettt et e Ao e s e e

Step 8: Save the CAM Profile

At this point, a simple CAM profile is defined. To save the CAM blocks/profiles, select the File
main menu item followed by the Save Project submenu selection. The CAM editor has many
more additional features and functionality. Refer to the online documentation for a detailed
description of these features.

Step 9: Generate Motion and Local Logic Programs

The next items to be generated are a motion program and Local Logic program that will
work with this CAM profile. For this example, the logic must work with a DSM3214
controlling two axes. Axis #1 will be the slave, and Axis #2 will be the master. Therefore,
there will be two motion programs. The Axis 1 program, for the slave, will do some base
initialization, load the slave starting point for the given CAM profile, and then execute the
CAM command. The Axis 2 program, for the master source, is a simple program that will
initialize and then wait for the slave to be ready. It will then execute a series of moves.

The program stops at points described within the CAM master such that it is easy to verify
that the slave axis is correctly executing the CAM profile. This example also requires a Local
Logic program. In this example the Local Logic program serves a supervisory role over the
CAM slave and CAM master motion programs. Thus, the Local Logic synchronizes the two
programs.

Consult the applicable chapters in this manual for additional details on these features. The
motion program and Local Logic programs for this example are as follows:

Using the Electronic CAM Feature 353

User Manual
GFK-1742F

Chapter 15

|| Motion program for example CAM block

|| Slave Axis

Program 1 AXIS1
VELOC 10000
ACCEL 10000

| Set Velocity
| Set Acceleration

/
/
|| Wait For LL to Say Master is ready
/

100: WAIT CTLO1
110: CAM-LOAD "ExCamProfile", P006, ABS | Load Param. Reg. with Slave Pnt that
corresponds to current Master Position
120: PMOVE P006, ABS, LINEAR || Move Slave Axis to the Position that
corresponds to Start of Table
130: CAM "ExCamProfile", 50000, ABS || Execute CAM Statement
140: PMOVE 0,ABS,S-CURVE || Move back to zero
150:
ENDPROG
|| Master Axis Program
Program 2 AXIS2
VELOC 10000 [[Set Velocity
ACCEL 10000 || Set Acceleration
200: PMOVE0,ABS,S-Curve || Start at zero
210: WAITCTLO8 |[Master Waits Until Slave in Position
220: PMOVE 2500,ABS,LINEAR /| Move 1st Master Point in Table
230: DWELL 5000 /] Wait 5 Sec
240: PMOVE47500,ABS,LINEAR |/ Move to 2nd Point
250: DWELL 5000 /] Wait 5 Sec
260: PMOVE 2500,INC,LINEAR |/ Finish Distance Specified in CAM Cmd 1st CAM
Complete
270: PMOVE 0,ABS,LINEAR || Move back to zero
280:

ENDPROG

Using the Electronic CAM Feature

Jan 2020

354

User Manual Chapter 15
GFK-1742F Jan 2020

|| Local Logic Program for CAM Example

CTLO1 :=0; /I Outputs written when logic completes initialize to
zero to allow toggle to true
CTLO8 :=0; /I Outputs written when logic completes initialize to

7ero to allow toggle to true
/I Control Logic for Program 1 and 2
/ Program 1 = Slave
/l Program 2 = Master

IF PROGRAM_ACTIVE_2=1 THEN /I Make sure Program 2 is active
IF BLOCK_2=210 THEN /I Indicates Master is Ready to Start CAM
IF PROGRAM_ACTIVE_1=1 THEN /I Check that Program on Axis 1 is active
IF BLOCK_1=100 THEN /I Block indicates Slave ready for CAM-Load
Sequence
CTLOT:=1; /1 Signal Slave to perform CAM Load sequence
END_IF;
IF BLOCK_1=130 THEN /I Block indicates Slave has completed initialization
and CAM-Load Sequence
CTLO8:=1, /I Signal Master and Slave that both Axes are ready
to start CAM sequence
END_IF;
END_IF;
END_IF;
END_IF;

/l End Control Logic for Program 1 & 2

After completing the program entry, the resulting Logic Developer screen should look
similar to Figure 169.

Figure 169: CAM Editor Correction Enable

» CAMExample - CIMPLICITY Machine Edition - [CamExMotPgm] -3l x|
File Edt Search Project Target Variables Tools Window Help - & x|

[ms@evity|reeacxn | [BaEreo=s | «s0maan |
¥t #Hovovene BB E;&nﬁmﬁ.ﬁ‘h [Fwrmmne: ‘

2lx
L] E
i 4/ Motion program for example CAM block
o ?MEP"CD e: il d // Slave Axis
: Xi-amerorle Program 1 AXIS1
£ P CAM Elocks , -
] ﬁ-@CamBIk VELODC 10000 S/ Set Velocaty
i a ExCamProfile ACCEL 10000 // Set Acceleration
E--_@Locallogic 100:WAIT CTLO1 S/ Wait For LL to S
. fi] CAMEXLLPGM — 1103; CAM-LOAD "ExCamProfile", PO06, ABS // Load Pzaram. Reg.
£ 43 Motion Blocks 1Z0:PMOVE POO6, ABS, LINEAR J¥ Move Slave Axis
i %CamExMotPgrﬂ = 130:CAM "ExCamProfile", 50000, ABS // Execute CAM Stat
4 » 140:PMOVE 0O, ABS, $-CURVE // Move back to zer
€ ENDPROG
2 B B [E]7.]
21 /4 Master Axis Program
Black Properties Program > AXIS2
VELOC 10000 // Set Velocity -
Mame CamE et otPgm q | _’I—I
Inspector | E+CanProfie] (0.4110834..] (0.21106%..] (0.5)/059..] (06]1C694.. CamEsdo.. | CAMERL.. |
x| «| | ®|Targetl — CAM Editor =
| cam (2.] j Al Targetl - Logic PIC ﬂ
Starts CAM motion and specifies exit conditions. ﬂ
CAM parameterl, parameter2, parameter3, hd| D

Ln17,Col29 (&

Using the Electronic CAM Feature 355

User Manual
GFK-1742F

Chapter 15
Jan 2020

Step 10: Set up Hardware Configuration in Logic Developer

Once a successful syntax check is completed for the local logic and motion programs, you

need to set up the hardware configuration that will allow the example program to be
downloaded to the DSM314 module. Most users will first set up their hardware
configuration and then generate the programming statements. However, because this
example is intended to illustrate the CAM feature the order is reversed to better illustrate
the link the CAM block name and the DSM314 hardware configuration.

Configure the power supply, CPU, and DSM314 module that are appropriate for your
installation. For general information on hardware configuration, refer to chapter 4.

Change the following Settings tab parameters to the values shown. (Axis 1 and Axis 2 modes
are set to digital servo because this example uses the Bis 0.5 digital servo.)

Axis 1 Mode Digital Servo
Axis 2 Mode Digital Servo
Local Logic Block Name CamExLLPgm
Cam Block Name CamBlk
Local Logic Mode Enabled

The resulting Settings tab will be as shown in Figure 170.

Note:

This example uses only one DSM314.The DSM314 executes the files (CAM, Local Logic, and Motion
Program) pointed to by the configuration. Multiple DSM314 modules can run the same Local
Logic program, motion programs, or CAM Blocks. This allows you to have one source file for
multiple DSM314 modules. Note that this does not prevent DSM314s from executing different
programs.

Figure 170: Hardware Configuration 90-30 rack DSM314 Settings Tab

« DSM314 Example - CIMPLICITY Machine Edition - [(0.4) ICES94DSM314 [Tar 1Ol x|
"B Fle Edt Search Project Target Vapiables Parameter Tools ‘Window Help ~ |5|5|
[@s@Ev ity |t meocxs | [DaREEeR®| |00
xtHovwwoweemB thd|(|aam||[fardnny

_ixd N :
e T Settings | SNP Port | CTL Bits | Output Bits | Avis #1 | Avis 2] 24 [+
= Targetl =l Parameters Values =
£a Data'watch Lists % Reference 100001
= !ﬁﬁ Hardware Configuration %I Length
£l Reck 0 (CEIECHSM2) %0 Reference Q00007
fly 5lot 0 [ICE35PSADAN) 0 Length
| g:zt;{ﬁ;ﬁ?ﬁ?;ﬁ;‘g; 0 %4 Reference 4100001
Slet 3 [Used With Slat 2) ;:"':'Q";"f‘h s
B Slot4(ICEIDSMIN4) SIErEEE
g sits %40 Length
g siots) A 7 Afasts Digital Servo
u Slot 7 () e P vt Digital Servo
@ sitzn A Mot Auxiliary Auis
@ skt e F Afeacts
@ Slket1ag Lol cumi Moz Enabled
@ Shkt11(| Total Encoder Power [Amps) (0.000
@ skt12(Mation Program Block Name | CamE =MotP'gm
#-1r Logic Local Logic Block Name CamE xLLPgm |—
@ Motion Frogiam _|;I Cam Block Name CamBlk -

4 »

ER B2 = |@ 9 . | [0.4)ICE34DSM. .

Done | | & Dfftine Administrator |LOCAL ~

Using the Electronic CAM Feature

356

User Manual
GFK-1742F

Chapter 15
Jan 2020

In this example, the Local Logic program will control CTLO1 and CTLO8. Because CTLO1 and
CTLO8 are used to signal the Motion Programs, you must configure these CTL bits to be
under Local Logic Control. To do this, access the CTL Bits tab in the hardware configuration
and set CTLO1 Config and CTLO8 Config to Local_Logic_Controlled. The resulting Hardware
Configuration screen is shown in Figure 171.

Figure 171: Hardware Configuration 90-30 rack DSM314 CTL Bits Tab

=1l
sl Settings | SNP Port CTL Bits | Qutput Bits | s #1 | Awis 2] 24|]
-4 Targetl = Parameters Values =
£8 DataWatch Lists CTLOI Config | Local Logic Contralled
= il Hardware Configuration CTLO2Config |IN10_A [Axis 1-0T)
=il Rack 0(ICEI5CHSM2) CTLO3 Config |IN11_A [Axis 1 Horme St
B Slat 0 (ICBI5PSA4D) CTLO4 Config | Stiobe 1 Level [&is 1)
Slot 1 Used With Slot 0) CTLOS Config |IN9 B [bsis 2 + OT)
B Slot2 (ICESSCPU0) . :
Slat 3 [Used With Slot 2) CTLOBConfig |IN10. 8 (s 2- 01T
Wit & (1CE94D5M14] CTLO7 Can[!g IN11_B [Az:vus 2 Home S
u Slat 5) CTLOB Config Local Logic Controlled
g Slts) CTLOSConfia [%0 Bit Offset 12
g Siet7) CTL10 Confia [%0 Bit Dffset 13
g sktag CTL11 Config %0 Bit Dffset 14 |
g Slot3g) CTL12 Conlig %0 Bit Offzet 15
B sltioq CTL13Config |IN9 C [&xis 3 + OT)
g slt11() — CTL14 Config |IN10_C [Axis 3-0T)
u Slat12() CTL15 Config IM11_C [Awiz 3 Home S'w]
+-Lr Logic CTL1E Config Strobe 1 Level [Axis 3)
. @ 8 Motion Program Llj CTL17 Config %0 Bit Dffset 24 -

B 2. B9]

" [0.4)ICE34DSM...

Using the Electronic CAM Feature

357

User Manual
GFK-1742F

Chapter 15
Jan 2020

You also need to indicate to Axis #1 that it will use the Axis #2 commanded position as its
CAM Master source. To do this select, the Axis #1 tab in hardware configuration. Go to the
CAM Master Source data entry field. From the drop-down box, select Cmd Position 2. This
will configure Axis #1 to use the Axis #2 commanded position as its CAM master source
(Figure 172). While in this tab, change the Home Mode to Move + and OverTravel Switch to
Disabled.

Settings | SNP Port | CTLBits | Dueput Bits 205 #1 | Az 182 | Asiz B3| Turing 4

Figure 172: CAM Slave Master Source Selection

Paiameters Values
Owver Trawal Limit Swich Digabled
Drive Ready Input Enabled
High Postion Limi R
Low Position Lt |WeSm®
High Saftware EOT Limit gs@eO7
Low Scftware EOT Limit 433508
Soltwaie End of Travel Disabled
Velocdy Limit wew
Command Drection Bichiechonal TR
iz Diection Nowmd
Feadback Source Defak
Feacback Made Incremental :
RAevaizd Comparsation D
Drtve Disable Delay (ms) 100
Jog Velocty 1000
Jog Acceleration 100000
Jog Acceleration Mods Linear
Home Position e
Home Offset e een e e
Find Herme Yelocily 2000
Final Home Velocihy 500
Home Mads Move +
Retuin Dala 1 Mods Oh__
Ratun Data 1 Difset O e
Fletun Data 2 Mode 0h |
Aelun Dala 2 Difset 0
Cam Master Source CmdPosiion2
Loy Conbafcan

'_ [0.4) IEESI!DSM_._I

Using the Electronic CAM Feature

358

User Manual
GFK-1742F

Chapter 15
Jan 2020

You also need to indicate to Axis #2, the rollover points for the Master axis position
reference. To do this, select the Axis #2 tab in hardware configuration. Input 49,999 into the
High Position Limit and 0 into the Low Position Limit data entry fields. Note that since this is
a Cyclic CAM, the master source high limit, by definition, must be one less than the last point
in the master data table. In this example, this is point 50,000. Thus, the high limit is equal to
49,999. One way to envision this principle is to think of a Cyclic CAM Master as a continuous

circular strip where the first point on the strip is the same as the last point on the strip.
Therefore, in this example, 50,000 is the same point as zero. While in this tab, change the

Home Mode: to Move + and OverTravel Switch to Disabled.

Figure 173: CAM Master Axis Scaling

Settings | SNP Port | CTL Bits | Output Bits | Awis #1 Ais #2 | wis #3] Tu | >
Parameters Values IL

User Units 1 ...---......-.....-.-......-.....-.-....---.....-m...---.....--.....---.....--.....--.....---......-....J

Counts 1

Ower Travel Limit Switch Disabled

Drive Ready Input Enabled

High Position Limit 49999

Low Position Lirnit 0

High Software EQT Limit gaggeO7

Low Software EOT Limit ‘8388608

Software End of Travel Disabled

Welocity Limit 1000000 e

Command Direction Bidirectional

Auiz Direction Marmal v

(0.4) ICEI4DSM...

To finish the configuration, go to the Tuning#1 and Tuning #2 tabs and enter the following
values:

Motor Type: 281

Position Error Limit: 200 (Optional; see Configuration information for additional
information)

In Position Zone: 20 (Optional; see Configuration information for additional
information)

Pos Loop Time Const: 200 (Note: Based upon application/mechanics reference
Chapter 4 and Appendix D)

Velocity FeedForward: 9000 (Note: Based upon application/mechanics reference
Chapter 4 and Appendix D)

Vel Loop Gain: 32 (Note: Based upon inertia attached to motor. Typical demo cases
have a indicator wheel attached that represents approximately this inertia to the
motor

Using the Electronic CAM Feature

359

User Manual Chapter 15
GFK-1742F Jan 2020

The resulting display should be similar to Figure 174.

Figure 174: Hardware Configuration Tuning#1 Tab

CTL Bits | Output Bits | Asis #1 | Asis #2 | Asis #3 Turing H1 | i
Parameters Yalues |

Motor Type 281 . :

Position Error Limit 200

In Position Zone 20

Pos Loop Time Constant (0.1ms] [200

Velocity at MagCmd | 100000

Velocity Feed Forward [01%) 000

Acceleration Feed Forward (01%) (0

Integrator Mode Oif

Integrator Time Constant [ms] 0

Welocity Loop Gain 32

ExCamProfile | (0.2]1CE95C...| CamExMo.. CAME=L... [0.4]1CE94D...

The Tuning tab for Axis #2 should also be set up as shown for Axis #1.
This completes the configuration changes necessary for the example.

The link between the sample CAM Block, Motion program and Local Logic program, and the
DSM314 module are now complete. Create any required Host Controller ladder logic
programming, then Validate the programs and download them to the Host Controller.
Additional information concerning the download operation is shown in the Logic Developer
on-line help.

Step 11: Execute (Test) Your CAM-Based Motion Program

Before testing your application on actual machinery, you must first verify that it is safe to do
so. This includes insuring that all devices are securely mounted, all safety equipment is
installed and operational, and personnel in the area have been notified. Failure to address
all safety-related issues could result in injury to personnel and damage to equipment.

Once the download operation is complete, the module is ready to execute the CAM Blocks,
motion programs and Local Logic program. Use the following procedure:
1. Place the Host Controller in run mode.

2. Enable the servo drives. To enable Axis #1, toggle the %Q offset 18 bit. To enable
Axis #2, toggle The %Q offset 34 bit. Based upon the current module error status,
you may also have to initiate a clear error routine by toggling the %Q offset 0 bit.

3. Have both axes perform a find home routine by toggling the %Q offset 19 bit (find
home Axis #1) and the %Q offset 35 bit (find home Axis #2). At this point, both axes

Using the Electronic CAM Feature 360

User Manual
GFK-1742F

will perform a find home cycle. Wait until this completes for both axes and the
Position Valid %I bits turn on. The Position Valid %l bit for Axis 1 is the %I offset 17 bit
(the 18th %I bit), and for Axis 2 is the %l offset 33 bit (the 34th %l bit). The resulting

display is shown in the following figure.

Chapter 15
Jan 2020

Figure 175: RVTExample Screen

Axis 2 Position
Valid Bit

Axis 1 Position
Valid Bit

[Eoawy 00000000 SR00002 | Addwss
gopopoooOe QOlO0001 COOOClO0 DOLlDOLLlL I[J1f:17|'l CIII'EIJ"‘J. ;_E)I'IEJ.J. (IIZIFIEJ.I'IL' 3I0Q001
EZIIJIIU)-IIE‘ ZIIIIIZZI:'JCEZIIEDZIICIIIL pooooo IIZIIJLEJI pooooDao O0OD0DODDD COOODOOL%IOD0DSS
E:IJI[I)LE. IILjJLEJIrEI:IIC:II JJIE)_FD llZZIJLEIl [lIlrEl]1_r [a] l)lrﬂﬂ.(JJLEWHI-\JCﬂDDl

"""""""""" o 4o o 1esooon w0 40 40 iesoo00sATosor
S |l_ - _;::I o R _"_I‘ o T _|‘ T "_r_l'-‘n.h‘[tlﬂll
"""""""""" w40, o 1esooon e3 azsaroozl
_____II:_____;;__ _-_-_I _"__“r______;l:‘uranzl
"""""""""" w. s o 1esooon, <14, 141 %AI004L
"""""""""" o s e, s iosateosy
"""""""""" W, s o 1esooen a0, +0%AT0081
"""""""""" W s w e T s
- +0 u]_L 1 L&a0nnn 4[_ + ‘ai.IEnlej
- +0 +0) +|: 0 +I."%i.IEIIII'?1
_______ ’_’__’_"-‘E_______________?H__l_’_'_‘_‘__{___________*_*_'J_J}_'J__L_“E'_“_'__________________*_‘____'_’_"_E'P_":*_’!L_C!”_':ll_
+l + + +J, + +0 =l +l +12 Iiﬁlll:lllll

4. Enable Local Logic by setting the %Q offset 1 bit from the Host Controller. If there

are no errors, you can then execute the motion programs.

5. Execute Program 1 by toggling %Q offset 2 bit. The motor connected to Axis #1

should then begin to execute Motion Program #1.

6. Execute Program 2 by toggling %Q offset 3 bit. The motor connected to Axis #2

should begin to execute Motion Program #2.

7. The motors will execute the statements until they reach the first DWELL, where you
can visually verify that it followed the CAM profile correctly. The display should be
similar to the following figure. Note that the commanded position for Axis#2 equals
2500, while the commanded position for the slave corresponds to the CAM table

and has the value 10,000.

Using the Electronic CAM Feature

361

User Manual
GFK-1742F

Chapter 15
Jan 2020

Figure 176: RVTExample Screen First Dwell

AXis 1
Axis 1 Actual Commanded
osition Position

| Sipned Dacimg” | 000000D0000C000000T0011100010000 | %AI0007 | Addrass |
, 00000100, lZl-JliJ.ll_ L00000L1 ODOOO1L10:4I00001!
__'_J_E_?_FE‘___'5'_3_.__'?__0__"_9_?_?'_”__;________________ ______:4-__0__'?_"19_5__”__?_':' __'?_'J_E_'?F'_E_‘_'E‘ :F_'___E’_?_?_'?E'_”_.__?__D_“_'__f?.?.?'.%.il__"_’??_‘_‘?_'
gopopoooo. aooo . L a1, © a0 . X . lL'JiUUD\'IUJ‘
——— }(foam‘
+0/3AT0011
__TZajatooz|

+0 uma:u
-21 & thIﬂud]

gooooaoo I_'II.'JZLDDE-L'IL :rl.fljluLl LIZIlLIlI

10 AT0061 |

+l %AIQO'J] !

1664027 2400001 |
+12'4A00011 |

+0,

ey

Axis 2 Actual Axis 2 Commanded
Position Position

Once the dwell time is finished, the motors will continue executing the statements until they
reach the second DWELL where you can visually verify that it followed correctly. The display
should be similar to Figure 177. Note that the commanded position for Axis#2 equals
47500, while the slave commanded position corresponds to the CAM table and has the

value 11,000.

Using the Electronic CAM Feature

362

User Manual
GFK-1742F

Chapter 15
Jan 2020

Figure 177: RVTExample Screen Second Dwell

Axis 1 Actual Axis 1 Commanded

/ Poqlhnn/ Position

| Signed Druml/[D00000C00000000T 01 01011117000 |muuu? lm:m|

oogaal |f 1‘|

00000000, 00100001

0O00LL10| 1umum |

+0 +0 O'K 168000 ']l'n).'[ﬂﬂl];l

St W e T———V—

+2 ‘.111002‘ i

.:.umnz. :

bl histaiaed
+0] AI00S5L |
+0|5ATODSL |

Axis 2 Actual Axis 2 Commanded
Paosition Position

When the master axis reaches 50000 (47500 +2500), the CAM command will exit, the slave
axis will decelerate at the programmed acceleration rate and come to a halt, and both axes

will return to zero.

Details on the DSM314’s %Al, %AQ, %I, and %Q memory are provided in Chapter 5.

Using the Electronic CAM Feature

363

User Manual Appendix A
GFK-1742F Jan 2020
Appendix A: Error Reporting
A-1 DSM314 Error Codes
The DSM314 reports error codes in these %Al table locations:

%Al Table Location Data Reported Usage

00 Module Status Code Errors not related to a specific axis

04 Axis 1 Error Code Errors related to Axis 1

24 Axis 2 Error Code Errors related to Axis 2

44 Axis 3 Error Code Errors related to Axis 3

64 Axis 4 Error Code Errors related to Axis 4

A-1.1

A-1.2

Error Reporting

Each error code is a hexadecimal word that describes the error indicated when the Module
Error Present %l status bit is set.

Module Status Code Word

The Module Status Code %Al status word reports the following two categories of errors:

e Module errors that are not related to a specific axis. Examples of such errors would
be a self-test detected hardware failure or a request to run an empty or invalid
program. A new Module Status Code will not replace a previous Module Status Code
unless the new Module Status Code has Fast Stop or System Error priority. These can
be cleared with the %Q Clear Error bit.

e System Status Errors. These are of the format Dxxx, Exxx, and Fxxx. If one of these
codes is present, the module will not operate and the %Q Clear Error bit will not clear
the error. See the section “System Status Errors” later in this appendix for details.

Axis Error Code Words

All axis-specific motion related errors are reported in the proper Axis Error Code %Al status
word. Whenever the Module Error Present %I status bit is set, all error words (including
Module Status Code) should be checked for a reported error. A new Axis Error Code will
replace a previous Axis Error Code if it has equal or higher priority (Warning, Normal Stop,
Fast Stop) compared to the previous Axis Error Code.

Error codes that stop the axis will clear the Axis OK %l bit for that axis. User logic that sends
%Q or %AQ commands to an axis should normally be qualified by the applicable %I Axis OK
bit. If Axis OK is off, the axis will not respond to any %Q bit or %AQ commands other than
Clear Error or Load Parameter. The %Q Clear Error bit will always clear the Axis Error Code;
however, if the condition that caused the error still exists, the error will immediately be
reported again.

Note: The STAT LED on the faceplate of the module flashes slow (four times/second) for Status Only
errors and fast (eight times/second) for errors that cause the servo to stop. In the case of a fatal
hardware error being detected at power-up, the STAT LED will flash an error code, which should
be reported to Emerson. See “LED Indicators” later in this chapter for more details.

364

User Manual Appendix A
GFK-1742F Jan 2020

A-1.3 Error Code Format

All error codes are represented as hexadecimal data with the following format:

Figure 178: Status Code Organization

HighByte | LowByte |

Bits 0-7 Error Number (0-FFh)
Bits 8-11 Axis Number
(low nibble) 0 - Axis Independent
1- Axis 1
2-Axis 2
3-Axis 3
4-Axis 4
Bits 12-15 Response Method
(high nibble) 0 - Status Only
1 - Stop Normal
2 - Stop Fast

D,E,F - System Error

A-1.4 Response Methods

1. Status Only Errors: Set the Module Error Present %l bit and Module Status Code or
Axis Error Code %Al word, but do not affect motion.

Note: Unless otherwise noted, any command that causes a Status Only Error is ignored.

2. Stop Normal Errors: Perform an internal abort of any current motion using current
Jog Acceleration and Jog Acceleration Mode (LINEAR or S-CURVE). The Drive
Enabled and Axis Enabled %I bit are each turned OFF after the configured Drive
Disable Delay.

3. Stop Fast Errors: Instantly abort all motion by setting the servo velocity command to
zero. The Drive Enabled and Axis Enabled %I bits are each turned OFF after the
configured Drive Disable Delay.

System Errors (displayed in Module Status Code only): The DSM is disabled and will
not respond to PLC control. System errors cannot be cleared until a new
configuration is sent to the DSM.

Error Reporting 365

User Manual Appendix A
GFK-1742F Jan 2020
Table 79: DSM314 Error Codes
Error Code | Response |Description Error Type |Possible Cause
(hex)
00 None No Error All
Configuration Errors
02 Status Only [Scaled data too big, Axis Check DSM axis configuration in HWCFG
maximum value in range used
03 Status Only [Home Position > Positive EQT, | Axis Check DSM axis configuration in HWCFG
Positive EOT used
04 Status Only [Home Position < Negative Axis Check DSM axis configuration in HWCFG
EOT, Negative EOT used
05 Status Only | Tuning parameter row 1 Axis Check DSM tuning configuration in HWCFG
invalid; data ignored Advanced Tab Row 1
06 Status Only | Tuning parameter row 2 Axis Check DSM tuning configuration in HWCFG
invalid; data ignored Advanced Tab Row 2
07 Status Only | Tuning parameter row 3-16 | Axis Check DSM tuning configuration in HWCFG
invalid; data ignored Advanced Tab One or more than one
parameterin row 3-16is invalid
0A System Error | Output written by Local Logic | Module A Local Logic block name is specified in the
is not configured for Local configuration and the Hardware
Logic control Configuration (Output Bits Tab) for the
module does not have the required output
configured for Local Logic control.
0B System Error | CTL bit written by Local Logic | Module A Local Logic block name is specified in the
is not configured for Local configuration and the Hardware
Logic control Configuration (CTL Bits Tab) for the module
does not have the required CTL bit
configured for Local Logic control.
Configuration Parameter Errors
17 Status Only | EOT Adjust Error Axis Software End of Travel is enabled in
configuration and the High or Low Software
End of Travel values are set outside the High
or Low Count Limits. Configuration should
be changed by either disabling the Software
End of Travel or setting the End of Travel
values within the Count Limits.
18 Status Only [(Aux only) Scaled rotary EOT | Axis Check DSM axis configuration in HWCFG.
count modulus is not an
integer
19 Status Only [Scaled rotary HifLo limit Axis Check DSM axis configuration in HWCFG.
count modulus is not an
integer
1C Status Only | Unsupported AQ command | Axis The AQ commands that configure Torque
mode Mode variables are not available in Analog

Velocity Mode.

Error Reporting

366

User Manual Appendix A
GFK-1742F Jan 2020

Error Code [Response |Description Error Type |Possible Cause

(hex)

1D Normal Stop [Attempt to use CAM, CAM- [Axis If using CAM, ensure that Follower Mode is
Load, or CAM-Phase not configured (Follower Mode cannot be
commands with Follower used when using CAM).

Mode If using Follower Mode, ensure that CAM
commands are not present in motion
program (CAM cannot be used when
Follower Mode is configured).

1E Status Only | Immediate command Jog Axis The AQ immediate Jog Velocity command
Velocity out of range, that was sent is too large. Re-enter the
command ignored command using a smaller value

1F Status Only | Immediate command Jog Axis The AQ immediate Jog Acceleration
Acceleration out of range, command that was sent is too large. Re-
command ignored enter the command using a smaller value

Program Errors

20 Status Only | Program Acceleration over- | Axis The acceleration programmed in the motion
range, acceleration set to program currently executing is too large.
maximum value Maximum value (1,073,741,823 cts/sec/sec

at 1:1 scaling) is being used in the motion
program.

21 Status Only | Program Acceleration too Axis The acceleration programmed in the motion
small, defaulted to 32 program currently executing is too small.
cts/sec/sec Default value (32 cts/sec/sec) is being used

in the motion program

22 Status Only | Scaled Velocity greater than 1| Axis Check scaling in configuration, velocity in
million cts/sec, 1 million program
cts/secis used

23 Status Only [Program Velocity is zero, set | Axis The program velocity in the motion program
to minimum value of 1 currently executing is zero. The minimum
count/sec. value (1 count/sec) is being used

24 Status Only | Motion Program Velocity> | Axis The programmed velocity in the currently
Configured Velocity Limit, executing program is greater than the
limit value used Velocity Limit set in axis configuration.

25 Reserved - not used in Axis
DSM314

26 Stop Normal | Jump Mask error Axis Contact Emerson

27 Stop Normal | Wait Mask error Axis Contact Emerson

28 Stop Normal | Parameter Position too large | Axis The position contained in the parameter

referenced by the current PMOVE or CMOVE
was greater then the maximum position
range (-536,870,912 to +536,870,911 at 1:1
scaling)

29 Status Only | Dwell time greater than 60 Axis The executing motion program

seconds, 5 seconds used

encountered a DWELL statement where the
DWELL time is greater than 60 seconds. This

Error Reporting

367

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
value is larger than allowed. The DWELL time
used for the program is 5 seconds. The user
should open the motion program and
correct the DWELL time statement to be less
than 60 seconds. If more DWELL time is
needed, consider multiple DWELL
statements
2A Normal Stop | Cyclic CAM CTL Exit condition | Axis CTL exit conditions are permitted for Cyclic
specified for Non-Cyclic CAM CAMs only. The motion program contains a
non-cyclic CAM instruction with a CTL exit
condition.
2B Normal Stop | CAM Phase out of range Axis The CAM PHASE value is outside the axis
position range.
Position Increment Errors
2C Status Only | Position Increment Over- Axis Position Increment in AQ command must be
range error, increment inrange —-128 to 127 user units
ignored
2D Normal Stop [CAM Master Axis Axis 1) The User-Units:Counts ratio specified
Configuration Error — master for the master axis in the Editor and
profile does not match Hardware Configuration are not
master axis configuration compatible and/or
2) The High/Low Position Limit specified
for the master axis in Hardware
Configuration is not compatible with
the profile. Refer to the section on CAM
Types for a detailed description on
setting up the High/Low Position Limits.
2E Normal Stop [CAM Slave Axis Configuration [Axis 1) The User-Units : Counts ratio specified
Error - slave profile does not for the slave axis in the Editor and
match slave axis Hardware Configuration are not
configuration compatible and/or
2) The High/Low Position Limit specified
for the slave axis in Hardware
Configuration is not compatible with
the profile. Refer to the section on CAM
Types for a detailed description on
setting up the High/Low Position Limits.
2F Normal Stop [CAM Slave Axis SW EOT mode [Axis
cannot be enabled for Cyclic
Circular CAM
Find Home Errors
30 Status Only | Find Home while Drive Not | Axis The Find Home command was executed
Enabled error when the Drive Enable bit was not on. The
user should enable the drive and re-execute
the command.

Error Reporting

368

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
31 Status Only | Find Home while Program Axis The Find Home command was executed
Selected error while a Motion Program was selected for
execution. The motion program must be
halted (Program Active | bit off) prior to
executing the Find Home command.
32 Status Only | Find Home while Force Digital | Axis The Find Home command was executed
Servo Velocity or Force while the user was sending the Force Digital
Analog Output Servo Velocity (34h) or Force Analog Output
(24h) AQ command. The user needs to clear
this command prior to executing the Find
Home command
33 Status Only | Find Home while Jog error Axis The user executed the Find Home command
while the servo was being jogged. The user
must halt the Jog command prior to
executing the Find Home command.
34 Status Only | (1) Find Home while Move at | Axis User executed the Find Home command (1)
Velocity error, or while executing a Move at Velocity (22h) AQ
(2) Find Home while another command or (2) while another Find Home
Find Home Cycle is still active cycle was in progress. For (1), halt the Move
at Velocity operation (Moving | bit off) prior
to executing the Find Home command. For
(2), verify that axis is In Zone and not Moving
before executing a Find Home command.
35 Status Only | Find Home While Follower Axis The user executed the Find Home command
Enabled while the follower function was enabled. The
user must disable the follower (Follower
Enabled | bit off) prior to executing the Find
Home command
36 Status Only | Find Home while Abort bit set | Axis The user executed the Find Home command
error while the Abort bit was set. The user must
clear the Abort bit prior to executing the
Find Home command
37 Status Only | Find Home on first PLC sweep | Axis The Find Home Q bit was set during the first
error PLC sweep. The PLC program must be
corrected to prevent this command from
being sent on the first PLC sweep.
Move at Velocity Errors
38 Status Only | Move at Velocity on First PLC | Axis The Move at Velocity command (22h) was

sweep error

sent during the first PLC sweep. The PLC
program must be corrected to prevent this
command from being sent on the first PLC
sweep.

Error Reporting

369

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

39

Status Only

Move at Velocity while Drive
Not Enabled error

Axis

The Move at Velocity command (22h) was
sent when the Drive Enable bit was not on.
The user should enable the drive and re-
execute the command.

3A

Status Only

Move at Velocity while
Program Selected error

Axis

The Move at Velocity command (22h) was
sent while a Motion Program was selected
for execution. The motion program must be
halted (Program Active | bit off) prior to
sending the Move at Velocity Command

3B

Status Only

Move at Velocity while Home
Cycle active error

Axis

The Move at Velocity command (22h) was
sent while the module was executing a
Home Cycle. The user needs to either abort
the Home Cycle or wait until the Home
Cycle completes prior to sending the Move
at Velocity command

3C

Status Only

Move at Velocity while Jog
error

Axis

The Move at Velocity command (22h) was
sent while the Jog Q bit was active. The user
must halt the Jog command prior to sending
the Move at Velocity command

3D

Status Only

Move at Velocity while Abort
All Moves bit is set error

Axis

The Move at Velocity command (22h) was
sent while the Abort All Moves Q bit was set.
The user must clear the Abort bit prior to
sending the Move at Velocity command

3E

Status Only

Move at Velocity Data greater
than 8,388,607 user units/sec

Axis

The user sent a Move at Velocity command
(22h) where the commanded Velocity was
greater than 8,388,607 user units/sec. The
user needs to make the commanded
Velocity smaller prior to re-executing the
command.

3F

Status Only

Move at Velocity Data greater
than 1 million cts/sec error

Axis

The user executed a Move at Velocity
command (22h) where the scaled
commanded Velocity was greater than 1
million cts/sec. The user needs to make the
commanded Velocity smaller prior to re-
executing the command. Check scaling

Jog Errors

40

Status Only

Jog while Find Home error

Axis

The user executed a Jog while the module
was executing a Find Home function. Either
abort the Find home function or wait until it
completes prior to executing the Jog
function

41

Status Only

Jog while Move at Velocity
error

Axis

The user set a Jog Q bit while the module
was executing a Move at Velocity (22h)
command. The Move at Velocity action
must be halted before executing a Jog.

Error Reporting

370

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
42 Status Only | Jog while Force Digital Servo | Axis The user set a Jog Q bit while the module
Velocity error was executing a Force Digital Velocity (34h)
or Force Analog Output (24h) AQ command.
The AQ command must be removed before
executing aJog.
43 Status Only | Jog while Program Selected | Axis If a program is running, the DSM can only

and not Feedholding error

Jogif the Feedhold Q bit is set.

Force Digital Servo Velocity Errors

Selected error

47 Status Only | Force Digital Servo Velocity or| Axis The user executed a Force Digital Servo
Force Analog Output while Velocity (34h) or Force Analog Output (24h)
Jog error AQ command while the module is executing
aJog function. The Jog function must be
halted prior to executing Force Digital Servo
Velocity or Force Analog Output.
48 Status Only | Force Digital Servo Velocity or | Axis The user executed a Force Digital Servo
Force Analog Output while Velocity (34h) or Force Analog Output (24h)
Move at Velocity error AQ command while the module is executing
a Move at Velocity function. The Move at
Velocity command must be halted prior to
executing Force Digital Servo Velocity or
Force Analog Output.
49 Status Only | Force Digital Servo Velocity or| Axis The user executed a Force Digital Servo
Force Analog Output while Velocity (34h) or Force Analog Output (24h)
Program Selected error AQ command while the module is executing
a motion program. The motion program
must be halted (Program Active | bit off)
prior to executing Force Digital Servo
Velocity or Force Analog Output.
4A Status Only | Force Digital Servo Velocity or| Axis The user executed a Force Digital Servo
Force Analog Output while Velocity (34h) or Force Analog Output (24h)
Follower Enabled error AQ command while the follower was
enabled. The follower must be disabled
(Follower Enabled | bit off) prior to executing
Force Digital Servo Velocity or Force Analog
Output.
4B Status Only [Force Analog Output whilein | Axis The user executed a Force DA (24h) AQ
Analog Torque mode command while the servo was configured
for Analog Torque Mode. Force Analog
Output. is not supported in Analog Torque
Mode
Set Position Errors
50 Status Only | Set Position while Program Axis The user executed a Set Position command

while a Motion Program was selected to
execute. The motion program must be

Error Reporting

371

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
halted (Program Active | bit off) prior to
executing the Set Position command.
51 Status Only | Set Position Data over-range | Axis The user executed a Set Position command
error with a value greater then the maximum
position range (-536,870,912 to
+536,870,911 at 1:1 scaling)
52 Status Only | Set Position while Moving or | Axis Set Position is not allowed if the Moving %I
Set Position while not bitis on. If the Moving bit is off and the In
Moving, not In Zone and Zone %l bit is also off, the Actual Velocity
velocity > 100 cts/sec. must be < 100 cts/second.
53 Status Only [Attempt to initialize position | Axis The absolute digital encoder was not
before digital encoder passes rotated past the zero reference point after
reference point. the first application of power. The encoder
must be rotated past the reference point (up
to 1 revolution) before Set Position is
allowed in absolute mode.
54 Status Only | Digital encoder position Axis 1. Absolute encoder position has not been
invalid, must use Find Home initialized since first application of
or Set Position. power
2. Configuration for Encoder mode has
been changed from incremental to
absolute.
3. Configuration for Axis Direction
(normal or reverse) has been changed.
4. Encoder resolution (Set with Advanced
configuration tab parameter) has been
changed.
5. Encoder alarm has occurred
55 Status Only | Digital Encoder moved too far| Axis The digital absolute encoder was moved
while power off more than 16,383 revolutions while power
was off.
End of Travel and Count Limit Errors
56 Status Only | Commanded Position > Axis The user executed a command that resulted
Positive End of Travel or High in the Commanded Servo Position
Count Limit exceeding the Positive End of Travel or High
Count Limit. Either fix the command to be
less than these values or make the values
higher in Hardware Configuration.
57 Status Only | Commanded Position < Axis The user executed a command that resulted
Negative End of Travel or Low in the Commanded Servo Position
Count Limit exceeding the Negative End of Travel or Low
Count Limit. Either fix the command to be
greater than these values or make the values
more negative in Hardware Configuration

Error Reporting

372

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
58 Status Only | Absolute Encoder Position > | Axis This error is reported at power up or re-
High Software EOT Limit configuration if the absolute digital encoder
has been moved beyond the High Software
EOT Limit.
59 Status Only | Absolute Encoder Position < | Axis This error is reported at power up or re-
Low Software EOT Limit configuration if the absolute digital encoder
has been moved beyond the Low Software
EOT Limit.
Drive Disable Errors
5B Stop Normal | Drive Disabled while Moving | Axis The Enable Drive Q bit was turned off while
the servo was performing a Jog or Move at
Velocity (Moving | bit set). The PLC program
should be corrected to prevent this error.
Consider using the Moving Bit in the logic
that disables the drive.
5C Stop Normal | Drive Disabled while Program | Axis The Enable Drive Q bit was turned off while
Active the servo was executing a motion program
(Program Active | bit set). The PLC program
should be corrected to prevent this error.
Consider using the Program Active Bit in the
logic that disables the drive.
Software Errors
5F Status Only | Software Error (Call Emerson | Axis Contact Emerson
Field Service)
60 Status Only [Absolute Encoder Rotary Axis Contact Emerson
Position Computation error
Program and Subroutine Errors
61 Stop Normal | Invalid subroutine number Axis The Motion Program called a subroutine
that was not contained in the module
program space. If the call instruction
references a parameter that contains the
subroutine number, confirm that the
parameter data is correct.
62 Stop Normal | Call Error (subroutine already | Axis A Motion Subroutine called itself or called
active on axis) another subroutine that called the original
subroutine.
63 Stop Normal | Subroutine End command Axis The Motion Program contains an invalid
foundin Program Subroutine end command within the main
Motion Program (Program 1-10). Modify the
Motion Program to remove this statement.
64 Stop Normal | Program End command Axis The Motion Subroutine contains an invalid

found in Subroutine

Program end command within the Motion
Subroutine (Subroutine 1-40) . Modify the
Subroutine to remove this statement

Error Reporting

373

User Manual Appendix A
GFK-1742F Jan 2020
Error Code [Response |Description Error Type |Possible Cause
(hex)
65 Stop Normal | Sync subroutine encountered | Axis The Motion Program encountered a Sync
by non-sync program block in a program that was not multi-axis
and setup for sync blocks.
66 Normal Stop [CAM Profile not found in CAM | Axis The Cam profile was not linked to the CAM
Download Block Download block in the CAM Editor and/or
the CAM Download block name was not
specified in Hardware Configuration.
67 Normal Stop [CAM Exit Distance out of Axis The exit distance for a Non-Cyclic CAM was
range (Non-Cyclic CAMs) greater than the modulus for the CAM.
68 Status Only | (Correction Enabled) Velocity | Axis
Command Limited due to
Velocity Limit violation or
Position Error Limit violation
69 Normal Stop [(Correction Disabled) CAM Axis
velocity command above
configured axis velocity limit
6A Normal Stop [CAM Position Error Limit Axis
Violation (with Correction
Disabled)
6B Status Only | CAM commanded position at | Axis
the exit different from CAM
profile value due to position
error or velocity limit
6C Normal Stop [CAM master value out of Axis
profile master range for Non-
Cyclic profile (CAM and CAM-
LOAD commands)
6D Normal Stop [Absolute mode CAM after Axis
incremental mode CAM in the
sequence
6F Fast Stop CAM trajectory calculation Axis Contact Emerson
error
Program Execution Errors
70 Status Only | Execute Program on first PLC | Module An Execute Program Q bit was set on the
sweep first PLC sweep. The PLC program must be
corrected to prevent these Q bits from being
set on the first sweep.
71 Status Only | Too many programs Module The number of Execute Program Q bits that
requested in same PLC sweep transitioned ON in 1 sweep is greater than
the configured number of axes.
This error is also reported if the number of
programs requested in a PLC sweep is less
than or equal to the number of configured

Error Reporting

374

User Manual

Appendix A

GFK-1742F Jan 2020

Error Code [Response |Description Error Type |Possible Cause

(hex)

axes but greater than the number of axes
that are NOT already executing programs.

72 Status Only | Execute multi-axis program | Module An Execute Program Q bit was set for a
with multi-axis program multi-axis program when a multi-axis
already active program was already executing.

Note: Error 0075 will be reported instead of
Error 0072 if the DSM is configured
foronly 1 axis. Error 0071 will be
reported instead of Error 0072 if the
DSM is configured for only 2 axes.

73 Status Only | Execute Program for axis Module Motion Programs cannot be executed on an
configured as Limited Aux axis configured as Limited Aux. A Limited
axis Aux axis performs position feedback

processing only and does not have an

internal motion path generator.

74 Reserved - not used in
DSM314

75 Status Only | Empty or Invalid Program Module An Execute Program Q bit was set for a
requested program number not defined in the

configured motion program block.

This error is also reported if the DSM is

configured for fewer axes than the axis
number of the requested program. Check
the configuration for a correct motion
program block name. Make sure the
requested program number is defined in the
configured program block. Make sure the

DSM is configured for a number of axes

greater than or equal to the axis number of
the requested program.

76 Status Only | AQ Move Command Position | Axis The user sent an AQ Move command (27h)
Out of Range with a position value greater then the

maximum position range.

(-536,870,912 to +536,870,911 at 1:1

scaling)

77 Status Only | AQ move command on first | Axis An AQ Move command (27h) was
PLC sweep commanded on the first PLC sweep. The PLC

program must be corrected to prevent AQ

Move commands from being sent on the

first sweep.

Program Execution Conditions Errors

80 Status Only | Execute Program while Home | Axis The PLC set an Execute Program Q bit while
Cycle active the module was executing a home cycle.

The user either needs to wait until the home

Error Reporting

375

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

cycle completes or abort the home cycle
prior to executing the Motion Program.

81

Status Only

Execute Program while Jog

Axis

The PLC set an Execute Program Q bit while
the module was performing a Jog operation.
The Jog bits (from PLC or local logic) must be
turned off prior to executing a Motion
Program.

82

Status Only

Execute Program while Move
at Velocity

Axis

The PLC set an Execute Program Q bit while
the module was executing a Move at
Velocity (22h) command. The Move at
Velocity command must be halted prior to
executing the Motion Program.

83

Status Only

Execute Program while Force
Digital Servo Velocity or Force
Analog Output

Axis

The PLC set an Execute Program Q bit while
the module was executing a Force Digital
Velocity (34h) or Force Analog Output (24h)
command. The Force Digital Velocity or
Force Analog Output command must be
removed prior to executing the Motion
Program.

84

Status Only

Execute Program while
Program Active

Axis

The PLC set an Execute Program Q bit for an
axis that was already running a motion
program. The current program must be
completed (Program Active I bit off) before
executing another program on the same
axis.

85

Status Only

Execute Program while Abort
All Moves bit set

Axis

The PLC set an Execute Program Q bit while
the module was executing an Abort All
Moves. The Abort Q bit, the Moving | bit and
the Program Active | bit must all be off
before executing a program.

86

Status Only

Execute Program while
Position Valid not set

Axis

The PLC set an Execute Program Q bit when
the Position Valid | bit was off. Position Valid
must be set by a Find Home cycle or Set
Position command.

87

Status Only

Execute Program while Drive
Enabled not set

Axis

The PLC set an Execute Program Q bit when
the drive was not enabled (Drive Enabled |
bit off). The Enable Drive Q bit must be setin
order to enable the drive.

Program Sy

nchronous B

lock Errors

8C

Status Only

Sync Block Error during
CMOVE

Axis

Program execution encountered a CMOVE
identified by a sync block even though the
other axis had not yet reached the sync
block.

Error Reporting

376

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

8D

Status Only

Sync Block Error during Jump

Axis

Program execution jumped to a CMOVE or
PMOVE identified by a sync block even
though the other axis had not yet reached
the sync block.

EEPROM Errors

90

Status Only

Flash EEPROM memory
programming failure

Module

Contact Emerson

Local Logic Errors

91

Stop Fast

Local Logic System Halt

Module

The Local Logic program executed a
statement that wrote to the System_Halt
variable (e.g. System_Halt := 1;)

92

Stop Fast

Local Logic Time-Out Error

Module

The Local Logic Program exceeded the
allocated execution time of 300
Microseconds. Decrease the Local Logic
execution time by reducing the number of
Local Logic statements or by modifying the
program structure. Consult Appendix E for
more information on local logic execution
time.

93

Stop Fast

Local Logic Divide By Zero
Error

Module

The Local Logic program performed a divide
by zero or a Modulus by zero. Check the
Local Logic program divide statements for
error source. Parameter registers that
contain zero values are possible sources for
this error.

94

Stop Fast

Local Logic Divide/Modulus
Overflow Error

Module

The Local Logic program performed a divide
(or modulus) of a 64 bit integer and the
result could not fit in a 32 bit integer. Check
the Local Logic program divide statements
for error source.

95

Status Only

Local Logic Add/Subtract
Overflow Warning

Module

The Local Logic program added or
subtracted numbers that caused an
overflow condition to occur. The allowable
range is -2,147,483,648 to +2,147,483,647.
Change the local logic program to prevent
overflow or set the Overflow variable to 0 at
the end of each local logic cycle.

96

Status Only

Local Logic Absolute(ABS)
Overflow warning

Module

The Local Logic program attempted to
perform an ABS operation on -
2,147,483,648 resulting in an overflow.

Error Reporting

377

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

97

Status Only

Local Logic Timeout Warning

Module

The Local Logic program execution time is
close (greater than 275 Microseconds) to
the maximum allowable execution time
(300 Microseconds). Decrease the Local
Logic execution time by reducing the
number of Local Logic statements or by
modifying the program structure. Consult
Appendix E for more information on local
logic execution time.

98

Status Only

Local Logic Execute on First
Sweep Error

Module

The user attempted to execute Local Logic
on the first PLC sweep (e.g. if the Local Logic
enable Q bit is on when the PLC is switched
from Stop to Run Mode).

99

Status Only

Local Logic Invalid Program
Name or Not Enabled in
Configuration

Module

The Local Logic Program Name specified in
Hardware Configuration is not valid (or
empty) or Local Logic is not enabled in
Hardware Configuration.

9A

Stop Fast

Local Logic Stop Error (Per-
Axis)

Axis

A Local Logic Stop Fast Error occurred (error
codes 91-94).

Hardware L

imit Switch Errors

A0

Stop Fast

Limit Switch (+) error

Axis

The Positive Overtravel Limit Switch input is
off. If Overtravel Limit switches are not used,
set the Overtravel Limit Switch configuration
to Disabled.

Al

Stop Fast

Limit Switch (-) error

Axis

The Negative Overtravel Limit Switch input
is off. If Overtravel Limit switches are not
used, set the Overtravel Limit Switch
configuration to Disabled.

Hardware Errors

A8

Stop Fast

Out of Sync error

Axis

Position Error has exceeded the Position

error limit. Possible sources for this error are:

1. Position error limit being set too low for
the application.

2. Feedback device being disconnected or
slipping on controlled device

3. Incorrect Feedback device wiring. (i.e.
positive rotation indicated as negative
by feedback device)

A9

Status Only

Loss of Position Feedback

Axis

A Quadrature Error has been detected on an
incremental quadrature encoder. Check the
encoder wiring and ensure that the encoder
is not operated beyond its rated speed.

BO-BE

See Table 81

Digital Servo Alarms, documented in Table
81

Error Reporting

378

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

Encoder Alarms

co

Stop Fast

Servo not ready

Axis

For analog servos, the Drive Ready faceplate
input must be set on (0 volts) within 1
second after turning on the Enable Drive Q
bit. If the Drive Ready input for analog servos
is not used, the input configuration must be
set to Disabled.

For Digital servos, the amplifier E-Stop input
may be activated or an amplifier fault may
have occurred.

cl

Status Only

Serial Encoder Battery Low

Axis

The Serial Encoder battery voltage is low.
The battery must be replaced or the encoder
can be configured for Incremental (instead
of Absolute) operation.

c2

Stop Normal

Serial Encoder Battery Failed

Axis

The Serial Encoder battery has failed. The
battery must be replaced or the encoder can
be configured for Incremental (instead of
Absolute) operation.

a

Stop Normal

Servo Motor Over
Temperature

Axis

The Servo Motor or Control Firmware has
reported an over temperature condition.
The user needs to check the motion
program to make sure that the duty cycle
rating for the motor is not being exceeded.
The user needs to also check the motor
mounting to make sure the heat sink for the
motor is adequate and ventilation for the
motor is adequate

c4

N/A

Not used.

N/A

5

Stop Fast

Loss of Encoder

Axis

The module is not communicating with the
encoder. Make sure the servo amplifieris on.
Check encoder cabling to make sure cable is
connected. Additionally, check grounding to
ensure that grounding is correct.

c6

Stop Fast

Error in encoder pulse
detection

Axis

The encoder pulse detection circuit has
encountered an error. Make sure that the
motor is properly grounded. If error persists
consult factory.

c7

Stop Fast

Encoder counter error

Axis

The encoder counter circuit has
encountered an error. Make sure that the
motor is properly grounded. If error persists
consult factory.

C8

Stop Fast

Encoder LED is disconnected

Axis

The encoder LED is disconnected. Consult
factory.

Error Reporting

379

User Manual

GFK-1742F

Appendix A
Jan 2020

Error Code
(hex)

Response

Description

Error Type

Possible Cause

a9

Stop Fast

Encoder CRC checksum

failure

Axis

The encoder communications circuit has
detected a CRC error. Check the encoder
cable grounding and the motor grounding
for possible error sources. Check for other
electrical noise sources in the area of the
motor and encoder cabling. Isolate these
sources from motor/encoder cabling if
possible. If error persists consult factory

CA

Stop Fast

Unsupported encoder, linear

orType A

Axis

The motor encoder connected to the
module is not supported. Motor is either not
supported by the DSM module or has an
incorrect encoder attached to the motor.
Check motor label and verify motoris a
supported model. If problem persists
consult factory

CB

Stop Fast

Unsupported encoder, Type C

Axis

The motor encoder connected to the
module is not supported. Motor is either not
supported by the DSM module or has an
incorrect encoder attached to the motor.
Check motor label and verify motor is a
supported model. If problem persists
consult factory

CcC

Normal Stop

Missed DZ pulse when DS
transitioned from 1to 0

Axis

Position data may be incorrect. Power-cycle
motor and amplifier. If problem persists
consult factory.

DSP Alarms

D1

Stop Fast

Over current Detected

Axis

The Motor Control firmware detected an
over current condition. Possible sources for
this errorinclude:

- Incorrect Motor Type selected in Hardware
configuration

- Machine back driving motor excessively

- Over Duty cycle conditions

D2

N/A

Not Used

D3

Stop Fast

Over Acceleration Detected

Axis

The Motor Control firmware detected an
acceleration value that exceeded allowed
values. This error is not encountered under
normal operating conditions. Possible error
causes include encoder failure, encoder
slippage, incorrect position reported from
encoder. If error is not explained by physical
hardware consult factory.

Error Reporting

380

User Manual
GFK-1742F

Appendix A
Jan 2020

Error Code | Response
(hex)

Description

Error Type

Possible Cause

D4 Stop Fast

Over Velocity Detected

Axis

The Motor Control firmware detected a
velocity value that exceeded allowed values.
This error is not encountered under normal
operating conditions. Possible error causes
include encoder failure, encoder slippage,
incorrect position reported from encoder. If
error is not explained by physical hardware
consult factory.

D5 Status Only

Velocity Loop Gain for Kp Too
Large

Axis

The Proportional Gain for the Velocity Loop
has exceeded allowed values. Value limited
to valid range. This error should not be
encountered during normal operation.
Possible error sources include incorrect
motor type selected in hardware
configuration, or Velocity Loop Gain values
that are too large. If motor type is correct in
hardware configuration, then reduce
velocity loop gain. If problem persists, or
velocity loop gain is too small for the
application consult factory.

D6 Status Only

Integrator Gain Too Large

Axis

The Integral Gain for the Velocity Loop has
exceeded allowed values. Value limited to
valid range. This error should not be
encountered during normal operation.
Possible error sources include incorrect
motor type selected in hardware
configuration, or Velocity Loop Gain values
that are too large. If motor type is correct in
hardware configuration, then reduce
velocity loop gain. If problem persists, or
velocity loop gain is too small for the
application consult factory.

D7 Status Only

Alpha Calculation Overflow
G.S.

Axis

Internal Velocity Loop calculation has
exceeded allowed values. Value limited to
valid range. This error should not occur
during normal operation. Reduce Velocity
Loop Gain. If problem persists consult
factory

D8 Status Only

Integrator Gain Calculation
Overflow

Axis

Integral Gain for the Current Loop has
exceeded allowed range. Calculation limited
to valid range. This error should not occur
during normal operation. If error
encountered consult factory.

Error Reporting

381

User Manual Appendix A
GFK-1742F Jan 2020

Error Code [Response |Description Error Type |Possible Cause

(hex)

D9 Status Only [Kp Calculation Overflow Axis Proportional Gain for the Current Loop has
exceeded allowed range. Calculation limited
to valid range. This error should not occur
during normal operation. If error
encountered consult factory.

DA Stop Fast FPGA Error Detected Axis An error was detected when the Field
Programmable Gate Array was initialized.
This error should not be encountered during
normal operating conditions. If error
encountered consult factory.

Special Purpose Errors

E2 Stop Fast DSP Interrupt failure Module Contact Emerson

Follower Ramp Errors

E8 Status Only | Follower Registration Axis When Follower Disable Action = Incremental

Distance (from parameter Position, the incremental distance
register) is out of allowed (registration distance) specified in the
range - follower stops using associated parameter register must be
ramp acceleration. greater than the stopping distance. The
stopping distance depends on the present
slave axis velocity and follower ramp
acceleration. Negative slave axis velocities
require negative registration distances.
E9 Reserved - not used in
DSM314
EA Status Only | Master velocity greater than | Axis The master velocity when converted to slave
0.8*velocity limit-no distance axis units is greater than 0.8 * the
compensation configured velocity limit. The velocity limit
must be increased or the master velocity
must be decreased.
EB Stop Fast Error in calculation during Axis Contact Emerson
follower ramp-up
EC Status Only | Follower makeup time is not | Axis The configured Ramp Makeup Time is too
long enough small so that actual makeup time is longer.
The makeup time of follower ramp
acceleration should be increased.
ED Status Only | Velocity limit violation during | Axis Follower ramp makeup requires a velocity

follower ramp

greater than 0.8 * the configured axis
velocity limit, so that actual makeup time is
longer than the configured value. Increase
the velocity limit, makeup time or ramp
acceleration.

Error Reporting

382

User Manual Appendix A
GFK-1742F Jan 2020

Error Code [Response |Description Error Type |Possible Cause

(hex)

EE Status Only | Time limit violation during Axis Ramp makeup required an acceleration time
acceleration sector of the > 64000 position loop sample times. The
follower distance correction follower ramp acceleration must be

increased.

Position Loop Errors

FO Status Only | Attempt to enable follower | Axis Follower has been enabled on an axis that
with drive disabled the drive is not enabled. Drive must be

enabled prior to enabling follower.

F1 Status Only | Follower Position Error Limit | Axis The position error has reached the position
Encountered error limit and the follower loop is no longer

position-locked to the master axis. The
position error limit must be increased or
velocity feedforward must be used.

F2 Status Only | Velocity Limit Condition Axis The sum of all command inputs (internal
Encountered cmds + follower master + local logic) to the

position loop has exceeded the configured
velocity limit. The axis is no longer position-
locked to the commands. The command
velocities must be decreased or the velocity
limit must be increased.

F3 Status Only | Follower Ratio B value =0 Axis Follower Ratio B values < 0 are not allowed.

F4 Status Only | Follower Ratio B value <0 Axis A Follower Ratio B value of 0 is not allowed.

F5 Status Only | Follower ratio A:B>32:1 or< | Axis The Follower Ratio A [Ratio B values must
1:10000 represent an A/B ratio in the range 32:1 to

1:10000.

Internal Errors

FB Status Only | Control Loop execution time | Axis Contact Emerson
>500 microseconds

FC Status Only [Control Loop execution >400 | Axis Contact Emerson
microseconds, more than 5
times in a row

FD Stop Fast System software error Axis Contact Emerson

FE Stop Fast Unrecognized encoder, not | Axis Error can indicate defective encoder cable -

supported

check cable. If cable checks out correctly,
contact Emerson

Error Reporting

383

User Manual
GFK-1742F

A-1.5

A-2

Error Reporting

Appendix A
Jan 2020

System Error Codes

If the DSM encounters errors with the configuration, a motion program, or local logic
block, it will place a System Error code in the Module Status Code register (the first Al
word). When a System Error occurs, the DSM will not update any %I bits or %Al data and
will not respond to any %Q bit or ¥AQ commands.

So the %Q Clear Error bit has no effect on a System Error. A System Error can only be
cleared by sending a new configuration to the DSM

The following system error codes indicate that the user has entered an invalid DSM
configuration in the configuration/programming software. If one of these errors occurs,
you must change the configuration and store the new configuration to the PLC. Any other
errors of the format Dxxx, Exxx or Fxxx not documented in the table below are unexpected
and should be reported to Emerson.

Table 80: System Error Codes

Error Code (hex) |System Error|Description
(x = axis number) |Type

D008 Module Axis 4 not disabled when Axis 1,2 = Digital Servo

Dx65 Axis Feedback Source is invalid or not supported

Dx68 Axis Follower Disable action is not supported

Dx69 Axis Follower Ramp Makeup Mode is not supported

Dx71 Axis Invalid digital servo motor type

Dx81 Axis Analog Servo Cmd mode (Torque mode) not supported.

Note: DSM314 version 3.0 or later supports Torque Mode.

DSM Digital Servo Alarms (BO-BE)

o and B digital servo systems have built in detection and safety shut down circuitry for
many potentially dangerous conditions. The table below reflects that three different
models of servo amplifiers may be used with the DSM, the B Series, the o Series SVU and
the o Series SVM. The following table indicates alarms supported by a particular servo
amplifier and the corresponding DSM error code. Table entries that are blank in the
amplifier columns indicate amplifier alarms not supported by the particular amplifier
series. To clear a servo alarm, amplifier power cycle reset is required. Additionally, a “Clear
Error* %Q discrete command is required to clear the DSM Error Code. Amplifier alarms not
cleared by power cycle of the amplifier will continue to be reported to the DSM module. A
brief diagnostics section for servo alarms appears at the end of the error alarm tables.

384

User Manual
GFK-1742F

Error Reporting

Appendix A
Jan 2020
Table 81: DSM Digital Servo Alarms
Error Servo Description Amplifier Alarm Display
Number |Alarm SVM SVU |pALM
it TN 7SEG |7SEG |LED
BO HV Over- Voltage DC LINK 07t 1 ON
B1 Lv Low Voltage Control Power 067 2
B2 DBRLY Dynamic Brake Circuit Failure 057 7
TSVM PSM DC LINK Low Charge
B3 LVDC Low Voltage DC LINK 041 3 ON
B4 OH Amplifier Over Heat 037 ON
B5 FAL Cooling Fan Failure 021 ON
B6 TSVM PSM IPM Alarm or Over Current 017
B7 DCSW Regenerative Circuit — Failure Alarm 087 4 ON
DCOH Regenerative Circuit - Discharge Alarm 5
B9 LV5V SVM Servo Module +5V Low 2
BA IPML IPM Over Current, High Temp orLow | 8. 8.
IPMM Volt 9. 9.
IPMN A. A.
IPMLM b. b.
IPMMN (L axis, M axis, N axis, L& M axes, M& | C. C.
IPMNL N axes, N & L axes or L & M & N axes) d. d.
IPMLMN E. E.
BB LVDC SVM Servo Module Low DC LINK 5
BD FAL SVM Servo Module Fan Failure 1
BE HCL Abnormally High Motor Current 8 8 ON
HCM 9 9
HCN A A
HCLM (L axis, M axis, N axis, L& M axes, M& |b b
HCMN N axes, N & Laxes or L& M & N axes) C C
HCNL d d
HCLMN E E

T The two segment display on the SVM power supply module (PSM) indicates power supply

alarms.

385

User Manual
GFK-1742F

A-3

Error Reporting

Appendix A
Jan 2020

Troubleshooting Digital Servo Alarms

The guidelines below are intended to assist in isolating problems associated with various
servo alarms. If the items below do not fit the case or resolve the alarm, replace the servo
amplifier, or Contact Emerson Technical support. The appropriate amplifier and motor,
Maintenance Manual or Description Manual, will include more detailed trouble shooting
procedures.

HV (High-voltage) Alarm: This alarm occurs if the high voltage DC level (DC LINK) is
abnormally high.

1. The ACvoltage supplied to the amplifier may be higher than the rated input voltage.
The B Series amplifier, three-phase supply voltage should be between 200 VAC to
240 VAC.

2. The external regeneration resistor may be wired incorrectly. Carefully check the
connections of the regeneration resistor to the amplifier. Check that the resistance
of the regeneration resistor is within 20% of the rated value. Replace the
regeneration unit if the resistance is out of tolerance.

3. The regeneration resistor may not be capable of dissipating excess generated
voltage. Review the calculations for selecting the regenerative discharge unit and
replace with a resistor of higher wattage rating as needed. Reducing acceleration
values and position loop gains (larger value Position Loop Time Constant) will
additionally reduce regenerated voltage levels.

LVDC (Low Voltage DC Link: This alarm occurs if the high voltage DC level (DC LINK) voltage
is abnormally low.

The AC voltage supplied to the amplifier may be missing or lower in value than the rated
input voltage. The B Series amplifier, three-phase supply voltage should be between 200
VAC to 240 VAC. Verify that the proper level of AC voltage is supplied to the line input
(L1, L2 and L3) connections of the amplifier.

DCOH or DCSW (Regeneration Alarm): The DCOH alarm occurs if the temperature of the
regeneration resistors is too high. The DCSW alarm indicates problems in the switching
portion of the regeneration circuitry.

1. If the external regeneration resistor is not used check that the temperature sensor
input to the amplifier is shorted or jumped. The B Series amplifier jumper T604
should be installed on connector CX11-6.

2. The external regeneration resistor may be wired incorrectly. Carefully check the
connections of the regeneration resistor to the amplifier. Check that the resistance
of the regeneration resistor temperature sensor is near zero ohms at room
temperature. Replace the regeneration resistor if the temperature sensor indicates
an open condition.

3. The regeneration resistor may not be capable of dissipating excess generated
voltage. Review the calculations for selecting the regenerative discharge unit and
replace with a resistor of higher wattage rating as needed. Reducing acceleration

386

User Manual
GFK-1742F

Error Reporting

Appendix A
Jan 2020

values and position loop gains (larger value Position Loop Time Constant) will
additionally reduce regenerated voltage levels.

OH (Over-heat Alarm): The temperature of the amplifier heat sink is too high or motor
temperature is excessive.

1.

Ambient temperature may be too high, consider a cooling fan for the servomotor.
Emerson supplies fan kits for most motors.

The motor may be operating in violation of duty cycle restrictions. Calculate the
amount of cooling time needed based on the duty cycle curves published for the
particular motor.

The motor may be over loaded. Check for excessive friction or binding in the
machine.

Forall the above problems, allow ten minutes cooling of the amplifier with minimum
or no motor loading then cycle amplifier power to reset.

FAL (Fan Alarm): The cooling fan has failed.

1.

Check the fan for obstructions or debris. With amplifier power removed attempt to
manually rotate the fan.

For SVM type amplifier systems the power supply module (PSM) and the servo
amplifier module each include a cooling fan. The alarm code will indicate which unit
failed.

Some amplifiers have field replaceable fan units. If a replacement fan unit is not
available, replace the amplifier.

HC, HCL, etc. (High Current Alarm): Motor current is excessive. For a Series amplifiers the
suffix (L, M, N, etc.) indicates which axis is in alarm

1.

Motor power wiring (U, V and W) may be shorted to ground or connected with
improper phase connections. Check the wiring and connections. Check the
servomotor for shorts to motor frame. Replace the motor if shorted.

Improper motor type code may be configured or excessive values for tuning
parameters. Confirm that the proper motor is configured and lower gain values.

The amplifier maintenance manual will describe the procedure for monitoring
motor current signals (IR and IS). If the waveforms are abnormal replace the
amplifier. If excessive noise is observed check grounds and especially the cable
shield grounds for the command cable (K1) to the amplifier.

The motor may be operating in violation of duty cycle restrictions. Calculate the
amount of cooling time needed based on the duty cycle curves published for the
particular motor.

The motor may be over loaded. Check for excessive friction or binding in the
machine.

For all the above problems, allow ten minutes cooling of the amplifier with minimum
or no motor loading then cycle amplifier power to reset.

387

User Manual
GFK-1742F

Error Reporting

Appendix A
Jan 2020

LV (Low Voltage Control Power Alarm): The control voltage used to operate the low- voltage

circuitry in the amplifier is too low.

1.

o Series SVU type amplifiers will be shipped with default jumpers to use a single
phase of the 220 VAC power to the amplifier. Optionally the user may remove the
jumpers and connect 220 VAC control power separately. Check that a minimum
200VACis available on terminals L1C and L2C for default installation or on connector
CX3 (Y Key) for separate control power.

Check the amplifier fuse. If the fuse is open replace with a new fuse after checking
control power voltage. If the second fuse blows open, replace the amplifier.

DBRLY (Dynamic Brake Relay Failure): This alarm indicates that the contacts of the braking
relay are welded together. Replace amplifierimmediately.

IPML, IPMM, etc. (IPM Alarm): The Intelligent Power Module (IPM) is the high current
switching device in the amplifier. The IPM can detect over-current, over-heat or low- voltage

conditions in the power switching circuitry. The suffix (L, M, N, etc.) indicates which axis is
in alarm.

1.

Motor power wiring (U, V and W) may be shorted to ground or connected with
improper phase connections. Check the wiring and connections. Check the
servomotor for shorts to motor frame. Replace the motor if shorted.

Improper motor type code may be configured or excessive values for tuning
parameters. Confirm that the proper motor is configured and lower gain values.

The amplifier maintenance manual will describe the procedure for monitoring
motor current signals (IR and IS). If the waveforms are abnormal replace the
amplifier. If excessive noise is observed check grounds and especially the cable
shield grounds for the command cable (K1) to the amplifier.

The motor may be operating in violation of duty cycle restrictions. Calculate the
amount of cooling time needed based on the duty cycle curves published for the
particular motor.

The motor may be over loaded. Check for excessive friction or binding in the
machine.

For all the above problems, allow ten minutes cooling of the amplifier with minimum
or no motor loading then cycle amplifier power to reset.

388

User Manual
GFK-1742F

A-4

Error Reporting

Appendix A
Jan 2020

LED Indicators

There are seven LEDs on the DSM314 module that provide status indications. These LEDs
are described below.

STAT Normally ON. FLASHES to provide an indication of operational errors. Flashes

slow (four times/second) for Status-Only errors. Flashes fast (eight
times/second) for errors that cause the servo to stop.

ON:

OFF:

Flashing:

When the LED is steady ON, the DSM314 is functioning properly.
Normally, this LED should always be ON.

When the LED is OFF, the DSM314 is not functioning. This is the result of a
hardware or software malfunction that will not allow the module to power

up.
When the LED is FLASHING, an error condition is being signaled.

Constant Rate, CFG LED ON:

The LED flashes slow (four times | second) for Status Only errors and fast
(eight times [second) for errors that cause the servo to stop. The Module
Error Present %l status bit will be ON. An error code (hex format) will be
placed in the Module Status Code %Al word or one of the Axis Error Code
%Al words.

Constant Rate, CFG LED Flashing:

If the STAT and CFG LEDs both flash together at a constant rate, the
DSM314 module is in boot mode waiting for a new firmware download. If
the STAT and CFG LEDs both flash alternately at a constant rate, the
DSM314 firmware has detected a software watchdog timeout due to a
hardware or software malfunction.

Irreqular Rate, CFG LED OFF:

If this occurs immediately at power-up, then hardware or software
malfunction has been detected. The module will blink the STAT LED to
display two error numbers separated by a brief delay. The numbers are
determined by counting the blinks in both sequences. Record the
numbers and contact Emerson for information on correcting the problem.

OK The OK LED indicates the current status of the DSM314 module.

ON:

OFF:

When the LED is steady ON, the DSM314 is functioning properly.
Normally, this LED should always be ON.

When the LED is OFF, the DSM314 is not functioning. This is the result of a
hardware or software malfunction that will not allow the module to power

up.

389

User Manual
GFK-1742F

Error Reporting

CFG
EN1
EN2
EN3
EN4

Appendix A
Jan 2020

This LED is ON when a module configuration has been received from the PLC.
When this LED is ON, the Axis 1 Drive Enable relay output is active
When this LED is ON, the Axis 2 Drive Enable relay output is active.
When this LED is ON, the Axis 3 Drive Enable relay output is active.
When this LED is ON, the Axis 4 Drive Enable relay output is active.

390

User Manual
GFK-1742F

Appendix B
Jan 2020

Appendix B: DSM314 Communications

B-1

Request Instructions

This appendix describes two types of Communications Request (abbreviated COMM REQ in
this appendix) ladder instructions used with the DSM314:

Parameter Load Type: Used to load DSM Parameter Memory. An advantage of the
COMM REQ instruction is that each one can load up to 16 parameters, and multiple
COMM REQ instructions may be used in one host controller sweep. By comparison,
each Load Parameter Immediate Command can load only one parameter per sweep,
with from one to four Load Parameter Immediate commands allowed per sweep,
depending upon the number of ¥AQ words configured (which, in turn, depends
upon the number of axes configured - see Table 47). Therefore, the COMM REQ is
most useful for loading several or many parameters, and the Load Parameter
Immediate Command is most useful if you only need to load a few (one to four).

User Data Table (UDT) Type: Used to access the DSM314’s Local Logic User Data
Table. The User Data Table is an 8192-byte memory area that Local Logic programs
can use for data storage and retrieval. The UDT COMM REQ can copy data either
from host controller word memory to the UDT or from the UDT to host controller
word memory.

In general, a COMM REQ is used in a host controller ladder program to communicate with a
variety of intelligent modules. This appendix first discusses the COMM REQ instruction in

general in Sections 1 and 2, thenin Sections 3 - 5, discusses how it specifically applies to the
DSM314 module. This appendix is divided into the following sections:

Section 1: Communications Request Overview

Section 2: The COMM REQ Ladder Instruction

Section 3: The User Data Table (UDT) COMM REQ

Section 4: The Parameter Load COMM REQ

Section 5: COMM REQ Ladder Logic Example (uses Parameter Load COMM REQ)

Communications Request Overview

The Communications Request uses the parameters of the COMM REQ Ladder Instruction
and an associated Command Block to define the characteristics of the request. An
associated Status Word reports the results of each request.

DSM314 Communications Request Instructions

391

User Manual
GFK-1742F

B-1.1

Appendix B
Jan 2020

Structure of the Communications Request
The Communications Request is made up of three main parts:
e The COMM REQ Ladder Instruction

e The Command Block, which is a block of host controller memory (usually %R
memory) that contains instructions and data for the COMM REQ.

e The Status Word, which is one word of memory that status/error codes are written
to.

The figure below illustrates the relationship of these parts:

Figure 179: Structure of the COMM REQ

COMREQ
INSTRUCTION
INPUTS COMMAND
AND BLOCK
OUTPUTS
FOR COMREQ
INSTRUCTION
COMMAND DETAILS
BLOCK - OF THE
POINTER REQUEST STATUS
WORD
STATUS ERROR
WORD > CODES
POINTER

The COMM REQ Ladder Instruction: The COMM REQ Ladder Instruction is the main structure
used to enter specific information about a communications request. This information
includes the rack and slot location of the DSM module associated with the request, and a
parameter that points to the starting address of the Command Block. Note that in
programming this instruction, the command block data should be initialized in the ladder
program before the rung containing the COMM REQ instruction is executed.

The Command Block: The Command Block consists of several words of host controller
memory that contain additional information about the communications request. This
information includes timing parameters, a pointer to the Status Word, a Data Block,
memory types and sizes, and a specific command code. The Data Block specifies the

direction of the data transfer (via the Command Code) and location and type of data to be
transferred.

The Status Word: The Status Word is a single location in host controller data memory where
the CPU reports the result of the communications request. The Status Word address is
specified in the Command Block by the user. The following table lists the status codes
reported in the Status Word:

DSM314 Communications Request Instructions

392

User Manual
GFK-1742F

Table 82: DSM COMM REQ Status Word Codes

Appendix B
Jan 2020

processing of the reply record
should not be performed.

Code Name Code # |Description Possible Corrective
Action

IOB_SUCCESS 1 All communications proceeded | None required.
normally.

IOB_PARITY_ERR -1 A parity error occurred while Retry. Check hardware -
communicating with an expansion cables, DSM
expansion rack. module, etc.

IOB_NOT_COMPL -2 After the communication was Retry. Verify the COMM
over, the module did not REQ parameters.
indicate that it was complete.

IOB_MOD_ABORT -3 The module aborted the Retry. Verify the COMM
communication. REQ parameters.

IOB_MOD_SYNTAX -4 The module indicated that the | Verify the COMM REQ
data sent was not in the correct | parameters.
sequence.

IOB_NOT_RDY -5 The RDY bit in the module’s Retry. Check DSM module.
status was not active.

IOB_TIMEOUT -6 The maximum response time Check DSM module. Verify
elapsed without receiving a the COMM REQ
response from the module. parameters.

IOB_BAD_PARAM -7 One of the parameters passed | Verify the COMM REQ
was invalid. parameters.

IOB_BAD_CSUM -8 The checksum received from the | Retry. Check installation
DMA protocol module did not | for proper grounding,
match the data received. shielding, noise

suppression, etc.

IOB_OUT_LEN_CHGD |-9 The output length for the Verify the COMM REQ
module was changed, so normal | parameters.

Corrective Action

The type of corrective action to take depends upon the application. If an error occurs during
the startup or debugging stage of ladder development, the advice to “Verify the COMM REQ
parameters” is appropriate. The same is true if an error occurs right after a program is
modified. But, if an error occurs in a proven application that has been running successfully,
the problem is more likely to be hardware related. The host controller fault tables should be

checked for possible additional information when troubleshooting Status Word errors.

DSM314 Communications Request Instructions

393

User Manual
GFK-1742F

B-1.2

Appendix B
Jan 2020

Monitoring the Status Word

Error Detection and Handling

Figure 180
—1 l— LT
CTATUS INT FAULT
" o &
+00000 |

As shown in the table above, a value of 1 is returned to the Status Word if communications
proceed normally, but if any error condition is detected, a negative value is returned. If you
require error detection in your ladder program, you can use a Less Than (LT) compare
instruction to determine if the value in the Status Word is negative (less than zero). An
example of this is shown in the following figure. If an error occurs, the Less Than’s output
(Q) will go high. A coil driven by the output can be used to enable fault handling or error
reporting logic.

The FT output of the COMM REQ, described later in this appendix, goes high for certain
faults and can be used for fault detection also. Additionally, the Status Word can be
monitored by error message logic for display on an Operator Interface device, in which case,
Status Word codes would correspond to appropriate error messages that would display on
the operator screen. For example, if a -1 was detected in the Status Word, a message could
be displayed that says something like “Error communicating with the DSM module in an
expansion rack.”

To dynamically check the Status Word, write a non-significant positive number (0 or 99 are
typically used) into the Status Word each time before its associated COMM REQ is executed.
Then, if the instruction executes successfully, the CPU will write the number 1 there. This
method lets you know that if the number 1 is present, the last COMM REQ definitely
executed successfully, and that the 1 was not just “left over” from a previous execution. In
the example presented at the end of this appendix, the number 99 is moved into the Status
Word (%R0195) in a rung prior to the rung that contains the COMM REQ instruction.

When multiple DSM COMM REQs are used, it is recommended that each be verified for
successful communications before the next is enabled. Monitoring the Status Word is one
way to accomplish this.

DSM314 Communications Request Instructions

394

User Manual Appendix B
GFK-1742F Jan 2020

Verifying that the DSM Received Correct Data

For critical applications, it may be advisable to verify that certain parameter values were
communicated correctly to the DSM module before operation is allowed to continue. To
accomplish this, first program the Select Return Data %AQ Immediate Command to specify
a DSM parameter number to be read into the applicable User Selected Data %Al double word
(thereis one User Selected Data %Al double word for each axis). Note that at least three host
controller sweeps or 20 milliseconds, whichever represents more time, must elapse before
the new User Selected Data is available in the host controller. This requires programming
some time delay logic to ensure that this requirement is met. Then, program a Double
Integer type Equal instruction to compare the value returned in the User Selected Data
double word with the value sent. Section 5 of this appendix shows an example of this. Also,
refer to Chapter 5 for more information on the User Selected Data word and the Select
Return Data command.

B-1.3 Operation of the Communications Request
The figure below illustrates the flow of information from the host controller CPU to the
DSM module:

Figure 181: Operation of the DSM Communications Request

DSM
PLC CPU MODULE
BACKPLANE
LADDER 'l ettt 1
PROGRAM | | |
® COMREQ | m '
: : FIRMWARE
| | |msTRUCTIONS
U DATA
MEMORY : : ON-BOARD
il | STATUS I IR
® STATUS | |
WORD
- - - __ _

A Communications Request is initiated when a COMM REQ ladder instruction is activated
during the host controller scan. At this time, details of the Communications Request,
consisting of command and data, are sent from the host controller CPU to the DSM module.

e Inthe case of a Parameter Load COMM REQ, the command data specifies that data
is to be read from host controller memory and copied into specific DSM parameter
memory locations.

e Inthe case of a UDT COMM REQ, the command data either specifies that data is to
be read from host controller memory and copied into a specific UDT memory
Segment or read from a specific UDT memory Segment and copied into host
controller memory.

DSM314 Communications Request Instructions 395

User Manual
GFK-1742F

B-2

Appendix B
Jan 2020

The orderin which these instructions are sent s critical, so the Command Block for each type
of COMM REQ should be programmed exactly as instructed later in this appendix. In the
figure above, the DSM module is shown in the CPU rack and communications occur over the
host controller backplane. If the DSM module is located in an expansion or remote rack, the
commands and data are sent over the CPU rack’s backplane, through the expansion or
remote cable to the rack containing the DSM module, and across that rack’s backplane to
the DSM.

At the conclusion of every request, the host controller CPU reports the status of the request
to the Status Word, which is a location in host controller memory that is designated by the
Status Word Pointer in the Command Block.

The COMM REQ Ladder Instruction

This section discusses the COMM REQ instruction in general. More information is provided
in the PACSystems CPU Reference Manual, GFK-2222 and the Series 90-30/20/Micro PLC
CPU Instruction Set Reference Manual, GFK-0467. The Communications Request begins
when the COMM REQ Ladder Instruction is activated. The COMM REQ ladder instruction has
fourinputs and one output:

Figure 182: COMM REQ Ladder Instruction

COMM
Enable input —| REOQ
Command block _|;y rr— Function faulted
starting address output

Rack.r’slot location _|xearn
of intelligent module

Task ID —rack

Enable Input: Must be Logic 1 to enable the COMM REQ Instruction. It is recommended that
the enabling logic be a contact from a transition (“one-shot”) coil.

IN: The memory location of the first word of the Command Block. It can be any valid address
in word-type memory (%R, %Al, or %AQ).

SYSID: A hexadecimal value that gives the rack and slot location of the module that the
COMM REQ is targeting. The high byte (first two digits of the hex number) contains the rack
number, and the low byte contains the slot number. The table below shows some examples
of this:

SYSID Examples

Rack Slot Hex Word Value

0 4 0004h
3 4 0304h
2 9 0209h

DSM314 Communications Request Instructions

396

User Manual
GFK-1742F

Appendix B
Jan 2020

TASK: The number 0 should always be entered here for a DSM module.

FT Output: The function’s FT (fault) output can provide an output to optional logic that can

verify successful completion of the Communications Request. The FT output can have these

states:

Table 83: COMM REQ Instruction FT Output Truth Table

FT Output

Enable Input Status | Does an Error Exist? | FT output
Active No Low

Active Yes High

Not active No execution Low

The FT output will be set High if:

- The specified target address is not present (for example, specifying Rack 1
when the system only uses Rack 0).

- The specified task number is not valid for the device (the TASK number should
always be 0 for the DSM).

- Datalengthissetto 0.

DSM COMM REQ Programming Requirements and Recommendations

It is recommended that DSM COMM REQ instructions be enabled with a contact
from a transition coil.

If using more than one DSM COMM REQ in a ladder program, verify that a previous
COMM REQ executed successfully before executing another one. This can be done
by checking the Status Word and the FT (Fault) output, explained earlier in this
appendix under the heading “Monitoring the Status Word.”

As seen in the table above, the FT output will be held False if the Enable Input is not
active. This means that if the COMM REQ is enabled by a transitional (one-shot)
contact and a fault occurs, the FT output will only be High for one host controller
scan. Therefore, to “capture” the fault, you can program the fault output as a Set
coil, which would not be automatically reset at the end of a scan. Additional logic
would then be needed to reset the fault output coil after the fault is acknowledged.

Programming a device, such as a Set Coil, on the FT output of the COMM REQ is
optional.

It is necessary to initialize the data in the Command Block prior to executing the
COMM REQ instruction. Since the normal host controller sweep order is from top to
bottom, initializing the Command Block in an earlier rung (or rungs) than the rung
that contains the COMM REQ will facilitate this requirement. See the example at the
end of this appendix.

Recommendation: If you use MOVE instructions to load values into Command Block
registers, use a Word-type MOVE to load a hexadecimal number, and an Integer-
type MOVE to load a decimal number. You will see this applied in the example at the
end of this appendix for a Parameter Load COMM REQ, where the E501h code is

DSM314 Communications Request Instructions

397

User Manual
GFK-1742F

B-3

B-3.1

Appendix B
Jan 2020

loaded via a Word-type MOVE instruction, and the remaining decimal values are
loaded via Integer-type MOVEs.

The User Data Table (UDT) COMM REQ

The DSM314 has an 8192-byte memory area called the User Data Table (UDT) that is
designated for use with Local Logic (LL) programs. LL Programs can access all or part of this
memory to store and retrieve data. The UDT is useful for storing and retrieving large
amounts of data such as large batches of setup data.

The host controller CPU can write to or read from the UDT via a User Data Table
Communications Request (UDT COMM REQ) instruction in the host controller ladder
program. A single UDT COMM REQ reads or writes 2048 bytes of memory at a time.
Therefore, the UDT is logically divided into four 2048-byte segments, called Segments 1-4,
that can be accessed individually by a UDT COMM REQ. There is a unique Read and a unique
Write command for each of the four Segments, for a total of 8 possible UDT COMM REQ
commands.

User Data Table COMM REQ Features and Usage

Information

e Reads or Writes 2K (2048) bytes at a time to the Local Logic User Data Table. No
other value is permitted.

e Only works with the DSM314 module (will not work with the DSM302)
e Cannot be used to download parameter data to the DSM314

e Thisinstruction adds about 15 ms to host controller scan (sweep) time for one scan
if the host controller’s Communication Window Sweep Control parameter is set to
COMPLETE (Run to Completion). If the Communication Window Sweep Control
parameteris set to LIMITED, the COMM REQ will be executed over several scans, with
a smaller impact on scan time. However, the COMM REQ probably will not be
executed repeatedly - it will only be executed when there is a need to change data.
Therefore, if it was sent on the First Scan, or during a job setup, it would not have an
impact while the application is running.

e Toavoid memory access conflicts, it is recommended that a Periodic Subroutine not
be used during the time this COMM REQ is active.

e This COMM REQ does not support discrete memory for its host controller Data Type.

DSM314 Communications Request Instructions

398

User Manual
GFK-1742F

B-3.2

Appendix B
Jan 2020

The UDT COMM REQ Command Block

Table 84: User Data Table Command Block

User Data TableCOMM REQ Command Block for DSM314 Module

Description Address Offset | Word No. and Value

Data Block Header Length Address + 0 Word 1, always set to 4

WAIT/NOWAIT Flag Address + 1 Word 2, always setto 0

Status Word Memory Type (see Status Address + 2 Word 3, chosen by user (see

Word Memory Type Codes table below) Memory Type Codes table, below)

Status Pointer Offset Address + 3 Word 4, chosen by user

Idle Timeout Value Address +4 Word 5, always set to 0

Maximum Communication Time Address +5 Word 6, always set to 0

Command Code Address + 6 Word 7, see Command Code Table

Parameter Data Size, in bytes Address +7 Word 8, always 2048.

Memory Type for Host Controller Data Address + 8 Word 9, chosen by user (see
Memory Type Codes table, below)

Start of Host Controller Data (Data Offset) | Address + 9 Word 10, chosen by user

Data Block Length (Word 1): The length of the Data Block header portion of the Command
Block. It should be set to 4. The Data Block header is stored in Words 7 through 10 of the
Command Block

WAIT/NOWAIT Flag (Word 2): This must always be set to logic zero for the DSM.

Status Word Memory Type (Word 3): This word specifies the memory type that will be used
for the Status Word. Each memory type has its own specific code number, shown in the
Memory Type Codes table below. So, for example, if you want to use %R memory for the
Status Word, you would put either the decimal code number 8 or the hexadecimal code
number 08h in this word.

Note that if you select a discrete memory type (%l or %Q), 16 consecutive bits will be
assigned to the Status Word, beginning at the address specified in the Status Word Pointer
Offset word, described below.

Table 85: Status Word Memory Type Codes

Memory Type Memory Type Code Number to Enter
Abbreviation Decimal Hexadecimal
%l Discrete input table 70 46h

%Q Discrete output table 72 48h

%R Register memory 8 08h

%Al Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

DSM314 Communications Request Instructions

399

User Manual Appendix B
GFK-1742F Jan 2020

Status Word Pointer Offset (Word 4): This word contains the offset within the memory type
selected. Note: The Status Word Pointer Offset is a zero-based number. In practical terms,
this means that you should subtract one from the address number that you wish to specify.
For example, to select R0001, enter a zero (1 - 1 = 0). Or, if you want to specify %R0100,
entera99 (100 - 1=99). Note that the memory type, %R in this example, is specified by the
previous word (see the “Status Word Pointer Memory Type” explanation above).

Idle Timeout Value (Word 5): Since the DSM always uses the NOWAIT mode (WAIT/NOWAIT
flag always set to zero), this Idle Timeout Value parameter is not used for the DSM. Set it to
zero.

Maximum Communication Time (Word 6): Since the DSM always uses the NOWAIT mode
(WAIT/NOWAIT flag always set to zero), this Maximum Communication Time parameter is
not used for the DSM. Set it to zero.

Command Code (Word 7): Use one of the eight Command Codes from the table below. The
Command Codes are given as hexadecimal numbers.

Table 86: UDT COMM REQ Command Codes

User Data Table (UDT) COMM REQ Commands
Command Code | Command Description
D001h Write to UDT Segment 1
D101h Write to UDT Segment 2
D201h Write to UDT Segment 3
D301h Write to UDT Segment 4
D804h Read from UDT Segment 1
D904h Read from UDT Segment 2
DAO04h Read from UDT Segment 3
DB04h Read from UDT Segment 4

UDT Segment Data Size (Word 8): Specifies the memory size, in bytes, of the UTP Segment
to be accessed. This value should always be 2048 bytes (800h for hexadecimal).

Data Memory Type (Word 9): This word specifies the memory type that will be used for host
controller data. Each memory type has a unique code number, shown in the Memory Type
Codes table below. So, for example, to specify %R memory, you would put either the
decimal code number 8 or the hexadecimal code number 08h in this word.

Note: The UDT COMM REQ does not support discrete memory (%! or %Q) for the Data Memory Type.

DSM314 Communications Request Instructions 400

User Manual Appendix B
GFK-1742F Jan 2020

Table 87: Data Memory Type Codes for UDT COMM REQ

Memory Type Memory Type Code Number to Enter
Abbreviation Decimal Hexadecimal
%R Register memory 8 08h

%Al Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

Data Start Pointer Offset (Word 10): This word contains the offset within the memory type
selected in the Data Memory Type word (Word 9). Note: The Data Start Pointer Offset is a
zero-based number. In practical terms, this means that you should subtract one from the
address number that you wish to specify. For example, to select %R0001 as the Data Start
location, enter zero (1 - 1=0). Or, to select %R0100, enter 99 (100 — 1 =99). Note that the
memory type, %R in this example, is specified in the previous word. The starting address
designated by this word will be the first of 1024 contiguous words of memory used in the
COMM REQ.

B-3.3 User Data Table COMM REQ Example

In this example, the following specifications are given:

e The DSM314 module is mounted in Rack 0, Slot 7 of the PLC.
e The Command Block’s starting address is %R0196.

e The Status Word is located at %R0195.

e The COMM REQ’s FT (fault) output drives a Set Coil.

¢ Segment 1 of the DSM314 User Data Table is to be Written to. This is specified by
the Command Code D001 in Word 7 of the Command Block.

e Thedatain a 1024-word (2048 byte) portion of register memory, %R0301 through
%R1324, is copied and written into Segment 1 (2048 bytes) of the User Data Table.
(Note that each %R word is two bytes in length.) This transfer of dataisillustrated in
the next figure:

DSM314 Communications Request Instructions 401

User Manual Appendix B
GFK-1742F Jan 2020
Figure 183: Data Transfer for Command Code D001 (Write to Segment 1)
PLC CPU DSM314 User
Register Table (UDT)
76R0000 Segment 1 Byte 0000
%R0301 02 Word DATA N, 4 (2048 Bytes)
ords e D514
(2048 Bytes) } Segment 2 Byte 2048
Byte 4096
Segment 3
(2048 Bytes)
Byte 6144
Segment 4
(2048 Bytes)
Byte 8192
DSM314 Communications Request Instructions 402

User Manual

Appendix B

Command Block for DSM COMM_REQ

GFK-1742F Jan 2020
B-3.4 User Data Table COMM REQ Example
Figure 184: DSM314 UDT COMM REQ Example
SEND
ENABLE % T0001
| —(M
%T0001
|| COMM_
REQ FAULT
{Command Block pointer) %M0295
Fault output
R %R196 — IN FT (s)
| r----------- 0007 —|SYSID
o 00000 —| TASK
1 (Aways0for DSM)
| ! (0007 =Rack 0, Slot 7)
i Series 90-30 PLC, Rack 0 v
Power | CPU DSM
; Supply
i SltNo: 1 2 3 4 5 6 7 & 9 10

S

Memory -
Address Value Description
TR196 4 Length, in words, of Data Block Header (always 4)
SR197 0 WAIT/IMOWAIT Flag. Always 0 for DSM
%R1498 8 8 = Register memory (%R) for StatusWord | » | %R195 Status
addrgss _ Word Register
SoR199 164 Specifies register 195 for Status Word address = p--—- -
%R200 0 Always 0 for DSM
%201 0 Ahways 0 for DSM
(Sfart of “Data Block Header” section)
YoR202] DO01h | Write to DSM314’s User Data Table Segment 1
SeR203 2048 UDT Segment Size, always 2048 hytes Data Block
%HR204 g 8 = Reqister memory (%R) for PLC Memory Header
(4 words)
%R205 300 Specifies register 301 for start of PLC data

DSM314 Communications Request Instructions

403

User Manual

GFK-1742F
B-4
B-4.1

—
Data
Block
Header‘<
S
-~
Parameter
Specifier <
Words
P
Parameter
Data

.

Appendix B

Jan 2020

The Parameter Load COMM REQ

The Command Block

The Command Block contains the details of a Communications Request. The first address of
the Command Block is specified by the IN input of the COMM REQ Ladder Instruction. This
address can be in any word-oriented area of memory (%R, %Al, or %AQ). The Command
Block structure can be placed in the designated memory area using an appropriate
programming instruction (the BLOCK MOVE instruction is recommended). The DSM

Command Block has the following structure:

Table 88: DSM Parameter Load COMM REQ Command Block

Parameter Load COMM REQ Command Block for DSM Module

Description

Address + Offset

Word No. and Value

Data Block Header Length

Address + 0

Word 1, always set to 4

WAIT/NOWAIT Flag

Address + 1

Word 2, always setto 0

Status Pointer Memory Type (see Address + 2 Word 3, chosen by user (see Sspt}gafg

Memory Type Codes table, below) Memory Type Codes table) Word

Status Pointer Offset Address + 3 Word 4, chosen by user Address

Idle Timeout Value Address + 4 Word 5, always set to 0

Maximum Communication Time Address + 5 Word 6, always set to 0

Command Code Address + 6 Word 7, always E501 (hex.)

Parameter Data Block Size, in Address + 7 Word 8, always set to 68 (44

bytes (must include 4 bytes for hex)

Parameter Specifier Words)*

Parameter Data| Memory Type (for Address + 8 Word 9, chosen by user (see Specify

Word 11) Memory Type Codes table) Word 11
Address

Parameter Data Offset (for Address + 9 Word 10, chosen by user

Word 11)

Starting parameter number (0 - Address xyz Word 11, chosen by user

255) in DSM Parameter Table

(Address specified
in Words 9 and 10)

Number of parameters to load

Address xyz + 1

Word 12, chosen by user

1st parameter data

Address xyz+ 2/3

Word 13 and Word 14

2nd parameter data

Address xyz + 4/5

Word 15 and Word 16

Address xyz + ..

16th parameter data (4 bytes)

Address xyz +
32133

Word 43 and Word 44

Parameter
> Data Block

* Parameter Data Block size equals 4 bytes for the Parameter Specifier Words plus 4 bytes for

each Parameter

DSM314 Communications Request Instructions

404

User Manual
GFK-1742F

Appendix B
Jan 2020

Data Block Length (Word 1): The length of the Data Block header portion of the Command
Block. It should be set to 4 for the DSM. The Data Block header is stored in Words 7 through
10 of the Command Block

WAIT/NOWAIT Flag (Word 2): This must always be set to logic zero for the DSM.

Status Word Pointer Memory Type (Word 3): This word specifies the memory type that will
be used for the Status Word. Each memory type has its own specific code number, shown in
the Memory Type Codes table below. So, for example, if you want to use %R memory for
the Status Word, you would put either the decimal code number 8 or the hexadecimal code
number 08h in this word.

Note that if you select a discrete memory type (%l or %Q), 16 consecutive bits will be
assigned to the Status Word, beginning at the address specified in the Status Word Pointer
Offset word, described below.

Status Word Pointer Offset (Word 4): This word contains the offset within the memory type
selected. Note: The Status Word Pointer Offset is a zero-based number. In practical terms,
this means that you should subtract one from the address number that you wish to specify.
For example, to select $R0001, enter a zero (1 - 1 =0). Or, if you want to specify ¥R0100,
entera99(100-1=99). Note that the memory type, %R in this example, is specified by the
previous word (see the “Status Word Pointer Memory Type” explanation above).

Idle Timeout Value (Word 5): Since the DSM always uses the NOWAIT mode

(WAIT/NOWAIT flag always set to zero), this Idle Timeout Value parameter is not used for
the DSM. Set it to zero.

Maximum Communication Time (Word 6): Since the DSM always uses the NOWAIT mode
(WAIT/NOWAIT flag always set to zero), this Maximum Communication Time parameter is
not used for the DSM. Set it to zero.

Command Code (Word 7): This is always E501(hexadecimal) for the DSM. To enter this
value directly as a hexadecimal value, use a Word-type MOVE instruction. Also, since this
value is 58,625 in decimal, an Integer-type MOVE instruction (limited to a maximum
decimal value of 32,767 because bit 16 is used for the sign) does not have the capacity to
contain it. A Word-type MOVE instruction can hold a decimal number up to 65,535 (FFFFin
hex.).

Parameter Data Size (Word 8): Specifies the Parameter Data size in bytes. This value is
always 68, which provides 4 bytes (for the first two words of the Parameter Data section)
plus 4 additional bytes for each parameter loaded.

Parameter Data Memory Type (Word 9): This word specifies the memory type that will be
used for Parameter Data. Each memory type has a unique code number, shown in the
Memory Type Codes table below. So, for example, to specify %R memory, you would put
either the decimal code number 8 or the hexadecimal code number 08h in this word.

Note that if you select a discrete memory type (%l or %Q), a group of 32 consecutive bits will
be required for each parameter, and a group of 16 consecutive bits each will be required for
Words 11 and 12.

DSM314 Communications Request Instructions

405

User Manual
GFK-1742F

Appendix B
Jan 2020

Parameter Data Start Pointer Offset (Word 10): This word contains the offset within the
memory type selected in the Parameter Data Memory Type parameter. Note: The
Parameter Data Pointer Offset is a zero-based number. In practical terms, this means that
you should subtract one from the address number that you wish to specify. For example, to
select %R0001 as the Parameter Data Start location, enter zero (1 - 1=0).

Or, to select %R0100, enter 99 (100 — 1 = 99). Note that the memory type, %R in this
example, is specified in the previous word.

Starting Parameter Number (Word 11): Specifies the number of the first parameter to be
loaded to the DSM Parameter Table. Valid values are 0 - 255. However, to load all 16
parameters, the value of Word 11 must be 240 or less.

Number of Parameters to Send (Word 12): This parameter must always be set to 16.

Parameter Data (Words 13 - 44): The size of this Parameter Data area depends on the value
in Word 12 (Number of Parameters to Send). Two words (4 bytes) of data are required for
each parameter. Since the valid number of Double Integer parameters is 1 through 16, the
Parameter Data area can be between 2 and 32 words.

COMM REQ Memory Type Codes: The codes in the following table are used in Word 3 (Status
Word Pointer Memory Type), and Word 9 (Parameter Data Memory Type).

Table 89: Parameter Load COMM REQ Memory Type Codes

Parameter Load COMM REQ Memory Type Codes

Memory Type Memory Type Code Number to Enter
Abbreviation Decimal Hexadecimal
%l Discrete input table 70 46h

%Q Discrete output table 72 48h

%R Register memory 8 08h

%Al Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

DSM314 Communications Request Instructions

406

User Manual
GFK-1742F

B-4.2 DSM Parameter Load COMM REQ Example

Appendix B

Jan 2020

This example is used as the basis for the following section, “Section 5: COMM REQ Ladder
Logic Example.” In this example, the following specifications are given:

The DSM module is mounted in Rack 0, Slot 7 of the PLC.

The Command Block’s starting address is %R0196.

The Status Word is located at %R0195.

16 parameters are to be sent.

The COMM REQ’s FT (fault) output drives a Set Coil.

DSM Parameter 1 is considered critical in this example application. The last two
rungs of the “COMM REQ Ladder Logic Example” (see Section 5) verify that
Parameter 1 received the correct value via the COMM REQ.

The data in 32 words (16 double words) of memory, %R0208 through %R0239, are
copied to 16 double word parameter registers, PO01 through P016, in DSM314
parameter memory. This transfer of data is illustrated in the next figure:

Figure 185: Data Transfer for Parameter Load COMM REQ Example

%R0000

PLC CPU
Register

%R0208 32 Words

%R0239

(16 Double
words)

} == DATA

-

DSM314
Parameter

(16 Double
Words)

P0O01

PO16

P255

DSM314 Communications Request Instructions

407

User Manual
GFK-1742F

Appendix B

Jan 2020
Figure 186: Overview of the Parameter Load COMM REQ Example
SEND
ENABLE %T0001
| | ;A
[] L
% TOO001
II COMM_
REQ FAULT
{Command Block %MO29
S %R19 Fault o
E—In FT (s)
———————————— 0007— SYSID
00000—— TASK
(Always 0 for DSM

(0007 = Rack 0, Slot 7)

Power | CPU DsSMm

Supply

Slot Mo: 1 2 3 4 5 i T a 9 10

Command Block for DSM COMM_REQ
Memory .
Address Value Description
Lo-w %R196 4 Length, in words, of Data Block header (always 4)
YHR197 1] WAITIMOWAIT Flag. Always 0 for DSM
%RE198 il B = Register memory (%R for Status Word | » | %R155: Status
addrfr.ss - Word Register
RE199 194 Specifies register 195 for Status Word address ———- -
%R200 0 Alwrays O for DSM
%R201 0 Always 0 for DSM
(Start of *Data Block™ section of Command Block)

%R202 | ES01 | Always ESO1 for DSM)
%R203 6a Parameter Data size, in bytes Data Block
WmRE204 g B = Register memory (%R for Data Block = Header

ra Parameter Data (4 words)
%R205 . 205 Specifies register 206 for start of Parameter Data _

/’;/ztﬁtan of “Parameter Data™ section of Data Block)
»]

%R206 1 Starting Parameter Number 7 Data Block
%R207 16 Mumber of Parameters to send Par:n?ete‘:cnata
W%R208 - | wxxx | Parameter data for 16 contiguous double word ce b
%R239 parameters. (68 bytes)

DSM314 Communications Request Instructions

408

User Manual
GFK-1742F

Appendix B
Jan 2020

B-5 COMM REQ Ladder Logic Example

The following ladder logic example is based upon the Parameter Load COMM REQ example
in the previous section. Refer to the table on the previous page for the Command Block

listing.

Setting up the COMM REQ Command Block Values

The next two rungs load the appropriate values into the first seven words of the COMM
REQ’s Command Block.

Figure 187

Load Send
— | {1
| %M00100 _ %T00001

Semd [ELRMOV|

— INT
_ %T00001

99 4IN1 0O

194 IN5

- STATOS

_ WE00135

%R00195 — Status Word pointer = 99
%R00196 — Data Block header = 4
%R00197 — Wait/No Wait flag = 0
2%R00198 — Memaory type (%R) =8
2%R00199 — Status Word register = 194
%R00200 — Always zero =0

%R00201 — Always zero =0

In the following two rungs, the remainder of the Command Block data is loaded. This data

is listed next:

%R00202 - Command. For DSM, it’s always = E501 (hex)

%R00203 - Parameter data size, in bytes = 68

%R00204 - Memory type code for %R memory = 8

%R00205 - Starting register for Parameter Data (offset by one) = 205

%R00206 - Starting Parameter Number = 1

DSM314 Communications Request Instructions

User Manual Appendix B
GFK-1742F Jan 2020

%R00207 - Number of Parameters to send = 16
%R00208 - %R00239 - Parameter data to be sent

Figure 188
Send MOVE MOVE MOVE
|| WORD INT INT
_ #T00001
1 1 1
E501 <IN OF CMDTYP §2 <IN 0Of EYTECNT g-IN 0O} MEMTYF
 %ERO0202 _ ~ %R00203) %R00204
Send MOVE MOVE MOVE
|} INT INT INT
_ %T00001
1 1 1
205 IN O DATAST 1-I¥ O} PARNO 16 <IN 0OF NOPAERS
_ %R00205 _ | %RO0206) _ %R00207

Logic for Parameter Data (not Shown)

Additional logic will be required to load your data into registers %R00208 - %R00239 so that
it can be sent to the DSM314 parameters. (The value in double word %R00208/%R00209
will be sent to Parameter 1, the value in %4R00210/%R00211 will be sent to Parameter 2, and
so on, until finally, the value in %R00238/%R00239 will be sent to Parameter 16.) The
method to be used for loading the data into these registers depends upon your application.
If the data values will not change, constants can be moved into the registers using Block
Move and/or Move instructions. If the values are to change, they could be moved into the
registers from an operator interface device.

Handling Double Integer Parameter Values and Input Value Scaling

The data in the single precision registers (16 bits) needs to be converted to double-integer
(32 bits) form because the DSM’s parameters are double-integer size. A convenient way to
do this is to use a Double Integer Multiply (MUL DINT) instruction to move input data into
the registers whose contents will be sent to the DSM. There are two possible advantages to
this approach:

e Thisis an easy way to convert single integer registers to double-integer form.

o Itletsyou easily scale the input values if you should need to. The term scaling refers
to multiplying and/or dividing a value to create a new value that is proportional to
the original value. For example, multiplying an input value by two, then dividing it
by 3 would result in an output value that is always 2/3 the size of the input value.
Scaling is often required in a servo system to match the actual distance moved to
the distance commanded. It is doing so, it provides the function of an “electronic

DSM314 Communications Request Instructions 410

User Manual
GFK-1742F

Appendix B
Jan 2020

gearbox.” It can be used to allow for gear ratio, ballscrew pitch, encoder resolution,
and customer input value preference.

In the example below, the integer value from an Operator Input device (a 4-digit BCD
thumbwheel switch) will be multiplied by a factor of 1000, then placed into the double-
integer word %R00208/%R00209 (for Parameter 1).

Figure 189

INF_1 [BCD4TO BLECLE ML

| | INT WOED DINT |
_ %I00001

1

BCDINP {IN O IN CNWT WORD 2 -IN IN_CNVT IN1 0O DEL_WED

_ %I00017 _ %RO01S0 %RO01S1 . _ %RO01SO0 ~ %R00208
1000 —{IN2

In the example above, when switch %100001 is closed, the Binary Coded Decimal (BCD)
value in BCDINP (%100017-%100032) from a BCD Operator Input device is converted to an
integer value (by the BDC4 TO INT instruction), and the integer value is placed in register
%R00150. Next, %R00151 is cleared to zero by the BLK CLR instruction. Note that on the
output of the BCD4 TO INT instruction, %R00150 is a single integer value. However, when
%R00150 is used as an input (IN1) for the double integer Multiply instruction (MUL DINT),
the CPU automatically combines it with the next %R address (%R00151) to form a double-
integer value. Word %R00150 becomes the Least Significant Word, and %R00151 becomes
the Most Significant Word in this double-integer word. The MUL DINT instruction multiplies
the value in %R00150/%R00151 by 1000 and places the result in double word
%R00208/%R00209 (DBL_WRD).

When used this way, %R00151 is called an “implied address” since it is not shown on the
screen. Be aware that you must not use %R00151 for any other purpose (it should be held
to a value of zero); otherwise, the value placed into %R00150 from the BDC4 to INT
instruction would be altered. The same principle applies in the case of double word
%R00208/R00209. Here, the use of %R00209 is implied by the fact that %R00208 is
displayed as the output of the Double Integer Multiply (MUL DINT) instruction. So %R00209
should be reserved for this use only.

In this rung, the MUL DINT instruction performs two functions: (1) it converts the value in
%R00150 from single integer form to double integer form, and (2) it scales the value in
%R00150/%R00151 by multiplying it by 1000. If scaling had not been desired, a value of 1
would be used instead of 1000 at IN2 of the MUL DINT instruction; this would provide
conversion to double integer without changing (scaling) the value.

DSM314 Communications Request Instructions

411

User Manual Appendix B
GFK-1742F Jan 2020

The Communications Request Instruction

The next figure shows the Communications Request (COMM REQ) instruction. The IN input
contains the address of the first word of the command block. The SYSID input contains the
rack and slot number (rack 00, slot 07) of the DSM314 targeted by this COMM REQ. The
TASK input is always zero for the DSM314. The FT output connects to a coil (¥M00295) that
will be energized if a fault is detected.

Figure 190
Send COMM
— }— EEO
| %T00001
Fault
HDRWDS {IN FT { H
_ wR00196 | %M00295
7 -{S¥SID
0 TASK

Verifying the Data Sent to Parameter 1

In this example, the value in DSM Parameter 1 is critical because it specifies a move distance
that, if incorrect, could result in machine damage. So, the logic in the following two rungs
verifies that Parameter 1 received the correct value. If the value is not correct, contacts (not
shown) from output coil “VERIFY” in the second rung will prevent the DSM from producing

motion.
Figure 191
Corrpare HOVE HOVE THE TIME_1
| | WORD INT THOOS |: :,_|
 mMo0z00 _)) . _)) mMo0z02
1 1 TME_1
1340 4 IN OF AQWord_1 1IN OF AQWord_2 45 PV
_ #aAQ0001) _ »AQ0002) 0)

’ TIME 1 . EQ DINT -
| |
| %MO0202
Verity
I'I
DEL_WED IN1 0O { H
| %E00208 ' . . . ‘ . . | %M00236

ALGIN_1 —INZ
, wAloozl

DSM314 Communications Request Instructions 412

User Manual
GFK-1742F

Appendix B
Jan 2020

First Rung: The MOVE WORD instruction moves hexadecimal number 1840 into AQ00001,
the first word of the Immediate Command. The low byte value (40) of this number specifies
the Select Return Data Immediate Command. The high byte value (18) specifies the Mode
selection for Parameter Data.

The MOVE INT instruction moves a decimal value of 1, indicating Parameter 1, into
%AQ00002. This commands that the value in DSM Parameter 1 be written to the User
Selected Data double word for Axis 1, %Al00021/AI00022 in this example.

Note: The actual %Al addresses used for any DSM module are specified when the module is configured.

The TMR THOUS (thousandths) timer instruction produces a 45-millisecond time delay after
the Select Return Data Immediate Command is sent. This is required because User Selected
Data is not available in the ladder until at least 3 sweeps or 20 milliseconds (whichever is
greater) elapses after the Select Return Data Immediate Command is sent. Since the sweep
time in this example is 14 milliseconds, this 45-millisecond delay ensures that the Parameter
1 data will be present in the User Selected Data double word before the Equal instruction in
the next rung executes. Note that contact %M00200 must stay ON long enough for the TMR
timer to time out and enable the second rung.

Second Rung: After the 45-millisecond delay in the previous rung elapses, contact ¥M00202
closes and enables this rung. In this rung, a double integer EQUAL instruction compares the
value in %R00208/R00209 (the source of the value sent by the COMM REQ to DSM
Parameter 1) with the value returned from Parameter 1in %AlI00021/Al00022. If the values
are equal, coil “Verify” will turn on.

DSM314 Communications Request Instructions

413

User Manual Appendix C
GFK-1742F Jan 2020

Appendix C: Position Feedback Devices

Four o and B Series Digital serial encoder models function with the DSM314:

Table 90: Digital Serial Encoder Resolutions

8K (8,192 cts/rev) - No longer available on new motors
32K (32,768 cts [rev) - Standard on B Series motors
64K (65,536 cts/rev) - Standard on a Series motors
1000K (1,048,576 cts[rev) - Optional on a Series motors

Note: The older “A” or “C” Series million count serial encoder will not operate with the DSM314. An
error will be reported if this encoder is connected.

For position control purposes, by default, the DSM314 treats all encoders as 8192
counts/rev. The additional resolution of 32K, 64K and 1000K encoders will still be used in
the digital servo velocity controller to provide smooth operation at low speeds. To use the
increased position feedback resolution, refer to the Tuning Parameters section of Chapter
4.

C-1 Digital Serial Encoder Modes

The Digital serial encoders can be operated in either Incremental mode or Absolute mode.
The mode is configured using the Feedback Mode selection in the configuration software.
Proper operation of the Absolute mode requires an external battery pack that must be
connected to the servo amplifier. Refer to the appropriate amplifier manual for selection
and installation of the battery pack.

C-2 Incremental Encoder Mode Considerations

The digital serial encoder can be used as an incremental encoder returning 8192 counts per
shaft revolution, with no revolution counts retained through a power cycle. The equivalent
of a marker pulse will occur once each motor shaft revolution. All Home Modes (Home
Switch, Move+, Move-) and Set Position %AQ commands reference the axis, and set the
Position Valid %I bit upon successful completion. The configured High Position Limit and
Low Position Limit are valid and the Actual Position %Al status word as reported by the
DSM314 will wrap from high to low count or from low to high count values. This is an
excellent mode for continuous applications that will always operate via incremental moves,
in the same direction. Home Offset and Home Position configuration items allow simple
referencing to the desired location.

Position Feedback Devices 414

User Manual Appendix C
GFK-1742F Jan 2020

C-3 Absolute Encoder Mode Considerations

The Digital serial encoder can be used as an absolute type encoder by adding a battery pack
to retain servo position while system power is off. A Find Home cycle or Set Position %AQ
command must be performed initially or whenever encoder battery power is lost with the
servo amplifier also in a powered down state. Feedback Mode set to ABSOLUTE must be
selected in the configuration software for proper operation with a battery pack.

C-3.1 Absolute Encoder - First Time Use or Use After Loss of
Encoder Battery Power

The absolute encoder temporarily provides incremental data during the first use or after
restoring encoder battery power. The incremental data is lost when motor shaft rotation
causes the encoder to pass a reference point (similar to a marker signal) within one
revolution of the motor shaft. The Digital Absolute serial encoder must be rotated up to one
full revolution after the absolute mode battery has been reattached to the amplifier. The
encoder will reference itself within one revolution and report a referenced status to the
DSM314.

C-3.2 Absolute Encoder Mode - Position Initialization

When a system is first powered up in Absolute Encoder mode, a position offset for the
encoder must be established. Using the %Q Find Home cycle or the Set Position % AQ
command can accomplish this.

Find Home Cycle - Absolute Encoder Mode

The Find Home Mode can be configured for Move (+), Move (-) or Home Switch operation.
Refer to Chapter 4 for additional details of Home Cycle operation. The Home Offset and
Home Position configuration items function the same as in Incremental Encoder mode. At
the completion of the Home Cycle, the Actual Position %Al status word is set to the
configured Home Position value. The DSM314 internally calculates the encoder Absolute
Feedback Offset needed to produce the configured Home Position at the completion of the
Home Cycle. This Absolute Feedback Offset is immediately saved in the DSM314 non-
volatile (capacitor backup) memory.

Once an absolute position is established by successful completion of a Find Home cycle, the
DSM314 will automatically initialize the Actual Position %Al status word after a power cycle
and set the Position Valid %l bit.

Note: Ifthe Position Valid %I bit is set before initiating a Home Cycle, the Home Cycle clears Position Valid
and then sets Position Valid again when the cycle completes. If the Home cycle is halted by an
Abort All Moves %Q bit command, Position Valid will remain off. However cycling power will cause
a valid Actual Position to be restored and Position Valid will be automatically set.

Position Feedback Devices 415

User Manual
GFK-1742F

C-3.3

Appendix C
Jan 2020

Set Position Command - Absolute Encoder Mode

The Set Position %AQ command functions the same way as in incremental encoder mode.
At the completion of the Set Position operation, Actual Position is set to the Set Position
value. The DSM314 internally calculates the encoder Absolute Feedback Offset needed to
produce the commanded Set Position value. This Absolute Feedback Offset is immediately
saved in the DSM314 non-volatile (capacitor backup) memory.

If a Set Position AQ command is received before the encoder has been referenced, Error
Code 53(hex) “Attempt to initialize position before digital encoder passes reference point”
will be reported. This error code is only reported if the Feedback Mode is set to Absolute.
Serial Encoders configured for Incremental mode do not have this restriction.

Once an absolute position is established by a Set Position command, the DSM314
automatically initializes Actual Position after a power cycle and sets the Position Valid %l bit.

Absolute Encoder Mode - DSM314 Power-Up

The battery pack attached to the servo subsystem maintains power to the encoder counter
logic. Once the encoder has referenced through first time start up, the encoder
automatically maintains the actual position, even if the axis is moved during servo power
loss. The encoder monitors the status of the battery pack, and reports loss of battery power
or low battery power to the DSM314.

The DSM314 completes a power-on diagnostic, and when configured for absolute encoder
mode, interrogates the referenced status of the Digital serial encoder. A valid referenced
status from the encoder signals the DSM314 to read the encoder absolute position. The
DSM314 reports the Actual Position %Al status as the sum of the encoder position and the
Absolute Feedback Offset established by the initial Find Home cycle or Set Position %AQ
command.

Position Feedback Devices

416

User Manual
GFK-1742F

C-34

Appendix C
Jan 2020

Incremental Quadrature Encoder

Incremental Quadrature Encoders provide three output signals to the DSM314: Channel A,
Channel B, and Marker. The Channel A and Channel B signals transition as the encoder turns,
allowing the DSM314 to count the number of signal transitions and calculate the latest
encoder position change and direction of rotation.

Incremental Quadrature Encoders are incremental feedback devices; they do not provide a
continuous indication of absolute shaft angle as the input shaft rotates. For this reason, the
DSM314’s Actual Position %Al status word must be initialized with a known physical position
before positioning control is allowed. This position alignment can be accomplished using
the Set Position ¥AQ Immediate command or the %Q Find Home cycle. The home cycle
makes use of the encoder marker channel, which is a once per revolution pulse produced at
a known encoder shaft angle. Successful completion of the %Q Find Home cycle or a Set
Position $AQ command causes the DSM314 to set the axis Position Valid %I bit. Position
Valid must be set before motion programs will be allowed to execute. Position Valid is only
cleared by an encoder Quadrature Error (Channel A and Channel B switching at the same
time) or by turning on the Find Home and Abort %Q bits simultaneously.

Note: In Digital Mode, only incremental quadrature encoders are supported for the Follower mode
master axis.

Position Feedback Devices

417

User Manual
GFK-1742F

AppendixD
Jan 2020

Appendix D: Tuning Digital and Analog Servo

D-1

D-1.1

Systems

This appendix provides a procedure for starting up and tuning a Digital or Analog servo
system. For Digital servos systems, there are two control loops in the DSM314 that require
tuning, the velocity loop and the position loop. Always begin with module configuration
then proceed to the velocity loop setting and finally the position loop. For Analog servo
systems, there are a series of Start-Up Procedures to follow.

Start-Up and Tuning Information for Digital
Servo Systems

There are three major sections covered:
e Validating Home Switch, Over Travel Inputs and Motor direction.
e Tuning the Velocity Loop.

e Tuning the Position Loop.

Validating Home Switch, Over Travel Inputs and Motor
direction

1. Connect the motor, amplifier and DSM314 module following the procedures in
Chapter 2.

2. If Over travel Limit switches are used (Overtravel Limit Switch = Enabled in
configuration), wire them to the correct 24V terminal board points (refer to Chapter

3). The overtravel inputs are operated in the fail-safe mode i.e. a normally closed or
PNP type switching device should be used. Current must be sourced to the input to
maintain a logic level 1 on the input while the axis is NOT at the overtravel position
or an alarm condition (Error A9) will be returned. Otherwise the Overtravel Limit
Switch configuration must be set to Disabled using the configuration software.

3. IfaHome switch is used (Home Mode = Home Switch in configuration), wire it to the
correct 24V terminal board points (refer to Chapter 3). The Home switch must be
wired and actuated so that it is ALWAYS ON (closed) when the axis is on the negative
side of home and ALWAYS OFF (open) when the axis is on the positive side of home.
Typically, the Home switch is mounted at or near one end of the axis travel. It is
important to verify the operation of the home switch prior to attempting a home
cycle. It may be necessary to reverse the motor direction (Motor1 or Motor2 Dir =
POS/NEG) in the module configuration.

Tuning Digital and Analog Servo Systems

418

User Manual
GFK-1742F

4.

10.

AppendixD
Jan 2020

Use the configuration software to set the desired user scaling factors and other
configurable parameters. The following items MUST be changed from the default
configuration settings:

Configuration ltem Setting

Axis 1 Mode Digital Servo

Motor Type: Select from Table in Chapter 4
Position Loop Time Constant: 60 ms

Velocity Loop Gain: (Load Inertia [Motor Inertia) * 16
User Units : Counts (Standard Mode Only) ~ See Chapter 3

Position Error Limit: 30000 x User Units | Counts

Set the configuration parameters in the order shown above.

Store the configuration to the host controller.

Clear the program from the host controller, turn off all DSM314 %Q bits and place
the host controller in RUN mode. Monitor the %I CTL bits for Home Switch, (+)
Overtravel and (-) Overtravel and confirm that each bit responds to the correct
switch (Refer to Chapter 5 for %I bit definitions).

Turn on the Enable Drive %Q bit and confirm that the servo amplifier is enabled. If a
brake is used on the servomotor it should be released at this time.

Send the %AQ command code for Force Digital Servo Velocity 100 (rpm). Confirm
that the motor moves in the desired POSITIVE direction and the Actual Velocity
reported in the %Al table is POSITIVE. If the motor moves in the wrong direction, use
the Axis Direction parameter in the configuration software to swap the positive and
negative axis directions.

Remove the Force Digital Servo Velocity command from the %AQ table. Use a low
Jog Velocity and Jog Acceleration in the configuration, values may be increased later.
Turn on the Jog Plus %Q bit. Confirm that the servo moves in the proper direction
and that the Actual Velocity reported by the DSM314 in the %Al table matches the
configured Jog Velocity. If Motion Programs will use an acceleration higher than the
Jog Acceleration, it may be necessary to increase Jog Acceleration so that Abort All
Moves and Normal Stop actions will operate as expected.

Use a low value for Find Home Velocity and Final Home Velocity in the module
configuration, values may be increased later. Check for proper operation of the Find
Home cycle by momentarily turning on the Find Home %Q bit (the Drive Enabled %Q
bit must also be maintained on). The axis should move towards the Home Switch at
the configured Find Home Velocity, then seek the Encoder Reference point at the
configured Final Home Velocity. If necessary, adjust the configured velocities and
the location of the Home Switch for consistent operation. The final Home Switch
MUST transition at least 10 milliseconds before the encoder reference point is
encountered. The physical location of Home Position can be adjusted by changing
the Home Offset value with the configuration software.

Tuning Digital and Analog Servo Systems

419

User Manual
GFK-1742F

11.

12.

AppendixD
Jan 2020

Monitor servo performance and use the Jog Plus and Jog Minus %Q bits to move the
servomotor in each direction. Placing the correct command code in the % AQ table
can temporarily modify the Position Loop Time Constant. For most systems the
Position Loop Time Constant can be reduced until some servo instability is noted,
thenincreased to avalue approximately 50% higher. Once the correct time constant
is determined, the DSM314 configuration should be updated using the
configuration software. Velocity Feedforward can also be set to a non-zero value
(typically 90 — 100 %) for optimum servo response. Refer to Tuning a Digital Servo
for information on setting the digital servo Velocity Loop Gain.

If Follower mode is used with an Incremental Quadrature Encoder, confirm that
Actual Position (Aux Axis 3) represents the encoder position. Make sure the desired
Follower axis slave: master ratio has been programmed as the A:B ratio using the
configuration software.

Digital Servo System Startup Troubleshooting Hints

1.

The DSM314 requires a Series 90-30 CPU with firmware release 10.0 or later, or a
PACSystems RX3i CPU (version 2.8 or later).

DSM support for Beta M1 and Beta M0.5 motors requires DSM firmware version 3.0
or later.

The default DSM314 configuration for the Overtravel Limit Switch inputs is
ENABLED. Therefore, 24 VDC must be applied to the Overtravel inputs or the
DSM314 will not operate. If Overtravel inputs are not used, the DSM314
configuration should be set to Overtravel Limit Switch inputs DISABLED.

If the Axis Enabled %I bit is OFF, the axis will not respond to any %Q bits or ¥AQ
commands. When a servomotor is not used with a Servo Axis, the Motor Type must
be set to 0 or Axis Enabled will stay OFF. A Motor Type of 0 disables the axis servo
loop processing and sets Axis Enabled ON, allowing the axis to accept commands
such as Load Parameter Immediate and Set Analog Output Mode.

The Enable Drive %Q control bit must be set continuously to ON or no motion other
than Jogs will be allowed. If no STOP errors have occurred, the Drive Enabled %l
status bit will mirror the state of the Enable Drive %Q bit. A STOP error will turn off
Drive Enabled even though Enable Drive is still ON. The error condition must be
corrected, and the Clear Error %Q control bit turned ON for one host controller
sweep to re-enable the drive.

If the Module Error Present %l status bitis ON and the Axis Enabled and Drive Enabled
%| status bits are OFF, then a STOP error has occurred (Status LED flashing fast). In
this state, the Servo Axis will not respond to any %Q bits or %AQ commands other
than the Clear Error %Q bit.

The Clear Error %Q control bit uses one-shot action. Each time an error is generated,
the bit must be set OFF then ON for at least one sweep to clear the error.

Tuning Digital and Analog Servo Systems

420

User Manual
GFK-1742F

D-1.2

AppendixD
Jan 2020

7. The CFG OK LED must be ON or the DSM314 will not respond to host controller
commands. If the LED is OFF then a valid DSM314 configuration has not been
received from the host controller, or there may be a recognized configuration error.
Check the %Al error code words for Dxxx errors, which are documented in the
“System Error Codes” section of Appendix A. Also check the PLC fault tables for

reported configuration errors.

Tuning a Digital Servo Drive

The following pages provide you with an introduction to the basics required for tuning a
Digital servo drive. This introduction shows one method for tuning a servo drive. The
method will not work in all applications, and you should modify the approach based on the
application. In order to display and measure the necessary signal waveforms, the DSM314
analog outputs must be connected to an oscilloscope. Without an oscilloscope to measure
the signals, tuning the servo drive with the following approach will not be possible. The
Select Analog Output Mode %$AQ command (47h) is used to select the data that is sent to
the analog outputs during servo tuning. Refer to Chapter 5 for a discussion of this $AQ

command.

Tuning Requirements

The module has three main parameters that are adjusted during tuning. The parameters are
the Position Loop Time Constant, Velocity Feed Forward Gain, and Velocity Loop Gain. The
Position Loop Integrator Time Constant gives the position loop an additional degree of
freedom but in typical applications is not required.

The approach to tuning the control loops is to tune the inner control loops first. In this
example, the inner control loop that requires tuning is the velocity loop. As shown in the
figure below, the position loop is the outer loop and sends velocity commands to the

velocity loop.

Figure 192: Control Loops Block Diagram

Paosition Velocity Torque
[Command [Command I,"_ Command
|'II |II /
| | [
I| II .'I
| . |' . [| Torque/
Path | | Position | y | Velocity | 4 Flux Ll Servo Mot
Planning Control | | Control . Amp otor
Controller |,
Fy y T F Y T T
Position
to Encoder
Velocity Interface
F Y

Tuning Digital and Analog Servo Systems

421

User Manual AppendixD
GFK-1742F Jan 2020

Tuning the DIGITAL MODE Velocity Loop

The proper method to tune the velocity loop is to separate the velocity loop from the
position loop. To achieve this separation, a method must be used to directly send velocity
commands without using the position loop control. The DSM module has several modes
that will allow the user to send a velocity command directly to the velocity loop. Two
methods are as follows:

Method #1:

The Force Digital Servo Velocity %AQ immediate command (34h) will send a velocity
command directly to the velocity loop. This command is different from the Move at Velocity
Command, which uses the position loop to generate the command. This is important since
the position loop should not be interacting with the velocity loop at this point in the tuning
process. The Force Digital Servo Velocity %AQ command allows the user to generate a step
change in the velocity. The velocity command step is then used to generate the velocity
loop step response. The user should note that when a velocity command step change is
performed the acceleration is limited only by the bandwidth of the velocity loop. In some
applications this can cause damage to the controlled device due to the high acceleration
rate.

Method #2:

In some applications, method #1 introduces too large a shock to the device under control.
In these cases, another method to generate a velocity command is needed. The method
requires that the user set the position loop to an open loop configuration. The position loop
is set to open loop by setting the Position Loop Time Constant to zero and the Velocity
Feedforward Gain to 100 percent. You can then use the Move at Velocity Command or a
motion program to generate velocity commands to the servo drive.

The first parameter that needs to be adjusted is the Velocity Loop Gain. The parameter
adjusts the velocity loop bandwidth. As a starting point use the following formula (also
reference the Velocity Loop Gain Section):

Equation 1

J
Velocity Loop Gain = J—l 16

m
Where :

Ji = Load Inertia

Jm =Motor Inertia

The Velocity Loop Gain calculated in equation 1 in many cases will not need to be altered.
However, due to the application (for example, machine resonance) the value may need to
be adjusted. To tune the Velocity Loop Gain the following procedure can be used:

1. Choose the method to introduce velocity command to the velocity loop. Method #1
and Method #2 (above) are examples of methods to perform this task.

Tuning Digital and Analog Servo Systems 422

User Manual
GFK-1742F

AppendixD
Jan 2020

Connect an oscilloscope to the analog outputs for Motor Velocity feedback and
Torque Command. See Section 4.25 of Chapter 5 for analog output configuration
instructions.

Set the Velocity Loop Gain to zero. This is a conservative approach. If the application
is known to not have resonant frequencies from zero to approximately 250 Hz, you
can start with a higher value, but do not exceed the value calculated in equation 1 at
this point.

Generate a velocity command step change. At this point the step change should be
relatively small compared to the full speed of the machine. Ten to 20 % of the rated
machine speed is a good start.

Observe the Motor Velocity and Torque Command on the oscilloscope. The
objective is to obtain a critically damped velocity loop response. Pay particular
attention to any oscillations that are occurring in the velocity feedback signal.

Increase the Velocity Loop Gain in small steps and repeat 4 and 5 until instability in
the Motor Velocity feedback signal is observed. Once this pointis reached, decrease
the Velocity Loop Gain by at least 15 %. As a general rule, the lower the Velocity Loop
Gain value that meets the system requirements the more robust the control. You
should carefully observe the velocity feedback signal. In some applications, running
the Velocity Loop Gain high enough to create instability can cause machine damage.
If in doubt, adjust the Velocity Loop Gain to be no greater than the value calculated
in equation 1. If oscillations are observed in the Motor Velocity feedback signal prior
to this point, decrease the Velocity Loop Gain and continue with step 7 below.

The velocity loop is tuned at this point. However, the robustness of the loop must
be checked. To perform this test, introduce velocity command steps in increments
of 20% Rated Machine Speed, 40% Rated Machine Speed, 60% Rated Machine Speed,
80% Machine Rated Speed, and 100% Rated Machine Speed. Observe the Motor
Velocity and Torque Command signals for any instability. If an instability or
resonance is observed, reduce the Velocity Loop Gain and repeat the test.

Note:

For Digital servos, the %AQ Force Analog Output command can provide Torque Command or
Commanded Motor Velocity. (Velocity = 750 rpm/volt and %TqCmd = (100/1.111111 Volt) *X Volt
or Torque Cmd = 100% Torque Command = 1.111 Volts, 100%TqCmd = MaxCur Amplifier. For
instance: Beta 0.5 MaxCurAmp =12 amps =>1.111111 volt = 12 amps.

Tuning Digital and Analog Servo Systems

423

Jan 2020

AppendixD

0

A sample velocity loop tuning session is shown in the plots that follow.
Figure 193: Velocity Loop Step Response Velocity vs. Time VLGN

Sample DIGITAL MODE Velocity Loop Tuning Session

User Manual
GFK-1742F

=0

0.5

05

04

1
|
1
i
1
se====s=fq======
!
I
I
|
e el .- -
s e
!
i
I
|
I
1
|
|
B el
1
i
|
|
L R R
i
|
!
L LY T
1
|
!
!
- o m o m mmw m
1
I
|
1
b
i
|
I
i

0.3
03

0.2
0.2

e e e m - -

Time (Sec)

0.1

1
)

R R o
T
)
]

0.1

0

e e e ey ==

o g g

Figure 194: Velocity Loop Step Response Torque Command vs. Time VLGN

(5dwy) pueLLLWoD anbio |

424

Time (Sec)

Tuning Digital and Analog Servo Systems

AppendixD

User Manual
GFK-1742F

Jan 2020

Note that in Figures 193 and 194 the system does not have enough damping. In this case

the controller does not have the required bandwidth and the Velocity Loop Gain must be

increased.

=24

Figure 195: Velocity Loop Step Response Velocity vs. Time VLGN

e mmm e m === = = =]

[
1
i
i
[
1
L
i
[
[
1
i
1
[
*
1
1
[
[
1
1
r
1
1
1
i
[
1
1

e L L LT e

g g gy g

o] o
o =
o L

(Ndd) Ao A

100 f-------

05

04

0.3

Time (Sec)

=24

Figure 196: Velocity Loop Step Response Torque Command vs. Time VLGN

E |
Bt
------.1----.--_

i
_______1_______ﬂ

1

[

[

1

TE el st
e e
iy

]
]
)
i
i
S
)
1
]
]
)

-] = ——

) R

(sduwy) puewwon snbio |

2
4
6
8
-10
-12

02 03 04 05

01

-0.1

-02

Time (Sec)

425

Tuning Digital and Analog Servo Systems

AppendixD

User Manual
GFK-1742F

Jan 2020

Note that in Figures 195 and 196, the system is beginning to look acceptable. The only

problem is the velocity overshoot.

=48

Figure 197: Velocity Loop Step Response Velocity vs. Time VLGN

600

! ! T ! T !
i i i i i i
; | ' | i |
1 1] I] 1
1 1] I 1 1
..... : L EEEEE LR PP EEEEPE
) I 1 1
] I] i
L} I L] 1
' | ' |
] I] 1
................. S
' i "
) 1 1
1 1 1
i i i
' ' "
|||||||||| Leccccslacccclaccccdacccad
1 1 1
' ' |
)] 1
i i i
L} 1 1
L S R — H——— H——
]] 1
i i i
_ ' ' "
]] 1
1 1 1
i i i i
IIIIII rT= == =Tr=T=7== -T=== T=====9
1 1 L) I "]
i i] I] {
1 1 1 I 1]
" " ' | ' |
1 1) I L] 1
|||||| L I O N | S —
1 1 L} I L] 1
" | ' | i |
1 1] I] 1
i i i i i i
A S N N N
o o o o o o o
o o o o= o -
s} = o I — —
(Ndd) Alsole A

0.5

0.2 03

01

-0.1

-0.2

Time (Sec)

=48

Figure 198: Velocity Loop Step Response Torque Command vs. Time VLGN

P R ——

'
'
|||||||||| T
[
L}
L}
'
'
[
'
s TR T T
! ' 1
1 [i
1 L} I
1 L) I
! ' 1
1 [l
e |
' '
' ' !
! ' 1
1 [i
1 L} I
1 L) I
' ' 1
||||| R LR L
i [i
' '
' 1
1 1 1
1 ']
1 L} 1
1) U
IIIII e S—— ————
[[i
' [i
' [
| ! ' ' 1
1 [1 ' 1
i [1 [i
|||||||||| T L T T ey PR
I i I 1) I
I 1 ! ! ' 1
[i [1 [i
[i | [i
[i ' '
! | ! ' ' 1
[1 [1 ' 1
L 1 L 1 1 1
| o] =T (o] e el = Ly
1 i [' — ~—
[

(sdily) pueLlLIOD) anblo |

-0.1 0 0.1 02 03 04 05

-0.2

Time (Sec)

The response shown in Figures 197 and 198 is good.

426

Tuning Digital and Analog Servo Systems

AppendixD

User Manual
GFK-1742F

Jan 2020

=64

Figure 199: Velocity Loop Step Response Velocity vs. Time VLGN

-] —]

R L L L

e I I et

600

500 f-------

(W) Adojep,

02 03 04 05

1

0.

Time (Sec)

=64

Figure 200: Velocity Loop Step Response Torque Command vs. Time VLGN

T
]
1
i
[l
]
s
i
i
]
1
1
—_—m e e - - -
-]

R L L L L T
=

]

1

i

i

']

1)

1 L
= K

(sduy) pusLUWOD anbuo |

8
10}---
2

02 03 04 05

A

0

-0.1

-0.2

Time (Sec)

The response shown in Figures 199 and 200 is acceptable.

427

Tuning Digital and Analog Servo Systems

AppendixD

User Manual
GFK-1742F

Jan 2020

=208

Figure 201: Velocity Loop Step Response Velocity vs. Time VLGN

B e
1
i
1
1
1
L
1
1
1
i
[
e
1
1
[
1
1
mssssssd====== =
[
1
i
1
[
-

L L L LT T I
o

600

500f------

5] TP

(g Aooje

-100

-0.1 0 0.1 02 03 04 05

-0.2

Time (Sec)

Figure 202: Velocity Loop Step Response Torque Command vs. Time VLGN =208

[—

-

i

[——

5

0

5 ;
AQf-----

(sduiy) puswioD enbuo |

-0.1 0 01 02 03 04 05
Time (Sec)

-02

The response shown in Figures 201 and 202 is marginally stable and would be

unacceptable in many applications. The plots are shown for reference only.

428

Tuning Digital and Analog Servo Systems

User Manual AppendixD
GFK-1742F Jan 2020

Tuning the Position Loop

The very first step in adjusting the tuning for the position loop is to insure that the velocity
loop is stable and has response suitable to the application. Refer to the previous section for
methods of setting the velocity loop.

Preliminary Position Loop Settings for Tuning Session.

1. If using Standard Mode control loop settings, set the User Unit and Counts
configuration to values appropriate to the mechanical configuration for the axis. See
the discussion and examples in Chapter 4 for details.

Set the Velocity at 10 Volt value as described in Chapter 4.
Set the Integrator Mode selection to “OFF”.

Set the Feed Forward % to zero.

ua A W N

Set the Position Error Limit to near maximum value. The maximum is 60,000 (User
Units [Counts).

Setting the Position Loop Gain

The position control loop is primarily a “PI” (Proportional, Integral) algorithm with optional
Feed Forward. Begin tuning the position loop by setting the proportional gain (Pos Loop TC)
to provide a stable response with sufficient gain (bandwidth) to meet the motion profile
requirements. Setting the Integrator Mode to “OFF” as described in the previous section
creates a proportional-only control loop. There are two suggested methods of setting the
proportional gain (Pos Loop TC).

Position Loop Proportional Gain Method 1

Calculating the position loop proportional gain assumes that the mechanical design of the
machine will have sufficient bandwidth to remain stable and that any resonant frequencies
are higher than the bandwidth required by the motion profile.

Terminology

A large mismatch between the load and motor inertia can cause a RESONANCE in the
system. Resonance is oscillatory behavior caused by mechanical limitations and
aggravated by gearing backlash or torsion windup of mechanical members like
couplings or shafts. Resonance is eliminated by improving the mechanics, reducing
load/motor inertia mismatch or reducing servo gains (reduce performance).

BANDWIDTH is a figure of merit used to compare control system or mechanical
performance. As the frequency of command increases, the system response will begin
to lag. The bandwidth is defined as the frequency range over which system response
(gain) is at least 70% (-3 decibels) of the desired command.

Tuning Digital and Analog Servo Systems 429

User Manual AppendixD
GFK-1742F Jan 2020

High Bandwidth

o Allows the servo to more accurately reproduce the desired motion

e Allows accurate following of sharp corners in motion paths and high machine cycle
rates

o Rejects torque disturbances from mechanics or outside influences improving
system accuracy

e (Can expose machine resonance, which occur at frequencies near or below the
bandwidth

The response of a proportional only system, which is set up by setting Integrator Mode to
“OFF”, is an exponential rise. A time constant for an exponential curve represents 68% of
the remaining rise. For instance, starting at zero velocity, the response of the position loop
to a change in command will require one time constant to reach 68% of the commanded
velocity. The second time constant will reduce 68% of the remaining command.
Subsequent time constants will reduce 68% of remaining command. For example 100% -
68% (one time constant) = 32%, 32%(68%)=21.8%, 68% (first time constant) + 21.8% (second
time constant) = 89.8%. Two-time constants eliminate 89.8% of the command necessary.
Three-time constants will account for 96.7% of the rise in command. Four-time constants
account for 98.9% of the rise. Typically, three time constants are sufficient for most motion
applications.

You can use your knowledge of time constants to predict the required system response. For
instance, if the fastest acceleration required in the motion profiles must occur within

200 mSec, the 200 mSec response to the change in command will be 98.9% complete in
three-time constants. Dividing the 200 mSec by 3 results in a time constant of about 67
mSec. The Pos Loop TC configuration field represents one time constant in mSec. In the
example above one time constant is 67msec.

Position Loop Proportional Gain Method 2

Similar to the Velocity loop tuning method above. Use an oscilloscope and gradually lower
the Pos Loop TC value (increasing gain). Monitor the Motor Velocity analog output for
performance characteristics are appropriate.

Tuning Digital and Analog Servo Systems 430

User Manual
GFK-1742F

D-2

D-2.1

AppendixD
Jan 2020

Start-Up and Tuning Information for Analog
Servo Systems

There are two major sections covered;

Validating Home Switch, Over Travel Inputs, and Motor direction.

Velocity at Max Cmd, Position Loop Time Constant, and Velocity Feedforward
determination

Analog Mode Velocity Interface System Startup
Procedures

Startup Procedures

1.

Connect the motor to the analog velocity interface servo amplifier according to the
manufacturer’s recommendations.

Connect the DSM314 Drive Enable Relay and Velocity Command outputs to the
servo amplifier. Connect the position feedback device (Incremental Quadrature
Encoder) to the Motion Mate DSM314 encoder inputs.

Note: If these connections are incorrect or there is slippage in the coupling to the Feedback
Device, an Out of Sync error condition can occur when motion is commanded.

Connect the servo amplifier Ready output (if available) to the DSM314 Drive Ready
input (IN_4). This signal must switch to Ov when the amplifier is ready to control the
servo. The DSM starts checking the Drive Ready input one second after the Drive
Enable relay turns on in response to the Enable Drive %Q bit. If the servo amplifier
does not provide a suitable Ready output, this input to the DSM314 must be
connected to Ov or the Drive Ready input can be disabled in the module
configuration. If aHome switch is used (24 Vdc), wire it to the correct DSM314 input.
The Home switch must be wired so that it is ALWAYS ON when the axis is on the
negative side of home and ALWAYS OFF when the axis is on the positive side of
home.

Use the configuration software to set the desired configurable parameters. Store the
configuration to the host controller.

Turn on the %Q Enable Drive bit and place the command code for Force D/A Output
equal to 0 in the %AQ table. Confirm that the servo amplifier is enabled (the motor
should exhibit holding torque). If the motor moves, adjust the amplifier command
offset adjustment until the motor stops moving. Note: The %Q Enable Drive bit must
be maintained ON in order for the Force D/A Output command to function.

Send the command code for Force D/A Output equal to +3200 (+1.0v). Confirm that
the motor moves in the desired POSITIVE direction (based on the Axis Direction
configuration parameter setting) and the Actual Velocity reported in the DSM314
%Al table is POSITIVE. If the motor moves in the wrong direction, consult the servo
amplifier manufacturer's instructions for corrective action. The Axis Direction
parameter in the Configuration Software can also be used to swap the positive and

Tuning Digital and Analog Servo Systems

431

User Manual
GFK-1742F

10.

11.

AppendixD
Jan 2020

negative axis directions. If the motor moves in the POSITIVE direction but the
DSM314 reports that Actual Velocity is NEGATIVE, then the encoder channel A and
channel B inputs must be swapped.

Record the actual motor velocity reported by the Motion Mate DSM314 with a 1.0
volt velocity command. Multiply this velocity by 10 and update the Velocity at Max
Cmd entry in the DSM314 configuration, if necessary. Initially set the Pos Loop Time
Constant (0.1 ms) configuration parameter to a high value (typically 100 ms or a
value of 1000 in the configuration).

Turn on the %Q Jog Plus bit. Confirm that the servo moves in the proper direction
and that the Actual Velocity reported by the Motion Mate DSM314 in the %Al table
matches the configured Jog Velocity. If Motion Programs will use an acceleration
higher than the Jog Acceleration, it may be necessary to increase Jog Acceleration so
that Abort All Moves and Normal Stop actions will operate as expected.

With the Drive Enabled %Q bit ON and no servo motion commanded, adjust the
servo drive command offset adjustment for zero Position Error. The integrator
should be OFF during this process.

Check for proper operation of the Find Home cycle by momentarily turning on the
%Q Find Home bit (the Drive Enabled %Q bit must also be maintained ON). The axis
should move towards the Home Switch at the configured Find Home Velocity, then
seek the Encoder Marker at the configured Final Home Velocity. If necessary, adjust
the configured velocities and the location of the Home Switch for consistent
operation. The final Home Switch transition MUST occur at least 10 ms before the
Encoder Marker Pulse is encountered. The physical location of Home Position can
then be adjusted by changing the Home Offset value in the Configuration Software.

Monitor servo performance and use the %Q Jog Plus and Jog Minus bits to move the
analog servo motor in each direction. The Position Loop Time Constant can be
temporarily modified by placing the correct command code in the %AQ table. For
most systems the Position Loop Time Constant can be reduced until some servo
instability is noted, then increased to a value approximately 50% higher. Once the
correct time constant is determined, the DSM314 configuration should be updated
using the Configuration Software. Velocity Feedforward can also be set to a non-
zero value (typically 90-100 %) for optimum servo response.

Note: For proper servo operation, the Configuration entry for Velocity at Max Cmd MUST be set
to the actual servo velocity (in User Units/sec) caused by a 10 Volt Velocity command to
the amplifier.

Tuning Digital and Analog Servo Systems

432

User Manual
GFK-1742F

D-2.2

AppendixD
Jan 2020

Analog Mode Torque Interface System Startup
Procedures

Startup Procedures

1.

Connect the motor to the analog torque interface servo amplifier according to the
manufacturer’s recommendations.

Note: The amplifier must be configured to accept voltage (+-10 volt) that corresponds to motor
torque.

Connect the DSM314 Drive Enable Relay and Torque Command outputs to the servo
amplifier. Connect the position feedback device (Incremental Quadrature Encoder)
to the Motion Mate DSM314 encoder inputs.

Note: If these connections are incorrect or there is slippage in the coupling to the Feedback
Device, an Out of Sync error condition can occur when motion is commanded.

Connect the servo amplifier Ready output (if available) to the DSM314 Drive Ready
input (IN_4). This signal must switch to Ov when the amplifier is ready to control the
servo. The DSM starts checking the Drive Ready input one second after the Drive
Enable relay turns on in response to the Enable Drive %Q bit. If the servo amplifier
does not provide a suitable Ready output, this input to the DSM314 must be
connected to Ov or the Drive Ready input can be disabled in the module
configuration. If a Home switch is used (24 Vdc), wire it to the correct DSM314 input.
The Home switch must be wired so that it is ALWAYS ON when the axis is on the
negative side of home and ALWAYS OFF when the axis is on the positive side of
home.

Use the configuration software to set the desired configurable parameters. Store the
configuration to the host controller. Specific parameters that the user will need to
reference are as follows:

Analog Servo Command -configuration must be set to Torque. This is not the default
value. This configuration parameter configures the module to produce a torque
command on the analog output.

Note: DSM firmware revision 3.0 or later is required for Analog Torque mode to function.

Velocity at Max Command - The configuration setting velocity at maximum
command determine the maximum velocity the servo will be commanded to run. In
the early tuning stages it is advisable to set this value relatively low. This will allow
the system to be brought up in stages. Once basic operation and tuning has been
verified, the maximum value can be raised to the value that is determined by either
the process limitations or servo amplifier/motor set

Torque Limit - The torque limit value determines the maximum analog torque
command that will be sent to the servo amplifier. In the early tuning stages it is
advisable to set this value relatively low. This torque limit is set using %AQ
command. Refer to Chapter 5 for information on this command. Once basic
operation is verified, the torque limit value can then be set to the value desired for
the application.

Tuning Digital and Analog Servo Systems

433

User Manual
GFK-1742F

AppendixD
Jan 2020

Advanced Tuning Parameters: The advanced tuning parameter section contains
many parameters that are used to configure torque mode to operate correctly. The
advanced tuning parameters are discussed in detail in Chapter 4. For a complete
reference consult this chapter. The tuning parameters of interest are as follows:

Tuning Parameter 6: Sets the encoder resolution parameter. The parameter is only
used in torque mode. For correct torque mode operation, this value must be set to
the number of quadrature encoder counts generated by the motor feedback device
per revolution. The user can determine the value from the feedback device
specification. As a double check, the user may wish to connect the feedback device
to the DSM and manual rotate the motor shaft one revolution. The reading on the
DSM %Al data for actual position should closely match (variations are caused by the
accuracy of manual turning shaft one revolution) the value placed in this parameter.
The allowed range is 100-32767 counts/revolution. The defaultvalue is 4096 counts
per revolution

Tuning Parameter 7: Sets the velocity regulator proportional gain. The parameter is
only used in torque mode. The proportional gain is multiplied by velocity error
(velocity command - velocity feedback) to generate the portion of the torque
command due to the proportional term. Correctly setting this value will determine
how well the velocity regulator performs in the control system. The following
sections will discuss how to set this value.

Tuning Parameter 8: Sets the velocity regulator integral gain. The parameter is only
used in torque mode The integral gain is the term multiplied by the area of the
velocity error (velocity command - velocity feedback) to generate the portion of the
torque command due to the integral term. Correctly setting this value will
determine how well the velocity requlator performs in the control system. The
following sections will discuss how to set this value.

Note: For proper servo operation, the Configuration entry for Encoder Resolution MUST be set
to the correct value for the servo amplifier/motor set. If this value is not set correctly
instabilities can result.

Turn on the %Q Enable Drive bit and place the command code for Force Servo
Velocity equal to 0 in the %¥AQ table. Confirm that the servo amplifier is enabled (the
motor should exhibit holding torque). If the motor moves, adjust the amplifier until
the motor stops moving.

Make sure that the motor shaft is not connected to the load when first performing
the following operation. The user needs to now verify basic control functionality.
Send the command code for Force Servo Velocity equal to 10 RPM. Confirm that the
motor moves in the desired POSITIVE direction (based on the Axis Direction
configuration parameter setting) and the Actual Velocity reported in the DSM314
%Al table is POSITIVE. If the motor moves in the wrong direction, consult the servo
amplifier manufacturer's instructions for corrective action. The Axis Direction
parameter in the Configuration Software can also be used to swap the positive and
negative axis directions. If the motor moves in the POSITIVE direction but the
DSM314 reports that Actual Velocity is NEGATIVE, then the encoder channel A and
channel B inputs must be swapped.

Tuning Digital and Analog Servo Systems

434

User Manual AppendixD
GFK-1742F Jan 2020

7. With the Drive Enabled %Q bit ON and no servo motion commanded, adjust the
servo drive so no motion is generated. The velocity loop integral term MUST be set
to 0 to properly complete this step.

8. Once correct basic operation has been achieved, the velocity loop requires tuning.
The section "Tuning the Torque Mode Velocity Loop" contains a basic procedure for
tuning the loop. NOTE: The tuning procedure for Torque Mode velocity requlators is
DIFFERENT from Digital Mode Velocity regulators. The user should NOT proceed to
tuning the Position Loop until the velocity loop tuning is complete.

9. Once the velocity regulators have been tuned, the position loop tuning and setup
can be completed. Initially set the Pos Loop Time Constant (0.1 ms) configuration
parameter to a high value (typically 100 ms or a value of 1000 in the configuration).

10. Turn on the %Q Jog Plus bit. Confirm that the servo moves in the proper direction
and that the Actual Velocity reported by the Motion Mate DSM314 in the %Al table
matches the configured Jog Velocity. If Motion Programs will use acceleration
higher than the Jog Acceleration, it may be necessary to increase Jog Acceleration so
that Abort All Moves and Normal Stop actions will operate as expected.

11. Check for proper operation of the Find Home cycle by momentarily turning on the
%Q Find Home bit (the Drive Enabled %Q bit must also be maintained ON). The axis
should move towards the Home Switch at the configured Find Home Velocity, then
seek the Encoder Marker at the configured Final Home Velocity. If necessary, adjust
the configured velocities and the location of the Home Switch for consistent
operation. The final Home Switch transition MUST occur at least 10 ms before the
Encoder Marker Pulse is encountered. The physical location of Home Position can
then be adjusted by changing the Home Offset value in the Configuration Software.

12. Monitor servo performance and use the %Q Jog Plus and Jog Minus bits to move the
analog servo motor in each direction. The Position Loop Time Constant can be
temporarily modified by placing the correct command code in the %AQ table. For
most systems the Position Loop Time Constant can be reduced until some servo
instability is noted, then increased to a value approximately 50% higher. Once the
correct time constant is determined, the DSM314 configuration should be updated
using the Configuration Software. Velocity Feedforward can also be set to a non-
zero value (typically 90-100 %) for optimum servo response.

Note: For proper servo operation, the Configuration entry for Velocity at Max Cmd MUST be set
to maximum servo velocity (in User Units/sec) that the system or process allows.

Tuning Digital and Analog Servo Systems 435

User Manual
GFK-1742F

AppendixD
Jan 2020

Tuning the Torque Mode Velocity Loop

The proper method to tune the velocity loop is to separate the velocity loop from the
position loop. To achieve this separation, a method must be used to directly send velocity
commands without using the position loop control. The DSM module has several modes
that will allow the user to send a velocity command directly to the velocity loop. Two

methods are as follows:

Figure 203: Analog Mode Torque Interface Control Loops Block Diagram

Position)
I|_ Command f gzlrﬁ}wcr'n;tgn g - Torgue
[."I / Command
(,u" / |_|
| { f
|I I|II .'I.
g { . !
Path v | Position | ¥ | Velocity r Servo
. > > , » Motor
Planning Control Control Amp
h r r I
Position
to
Velocity
“

Method #1:

The Force Servo Velocity %AQ immediate command (34h) will send a velocity command
directly to the velocity loop. This command is different from the Move at Velocity
Command, which uses the position loop to generate the command. This is important since
the position loop should not be interacting with the velocity loop at this point in the tuning
process. The Force Servo Velocity %AQ command allows the user to generate a step change
in the velocity. The velocity command step is then used to generate the velocity loop step
response. The user should note that when a velocity command step change is performed
the acceleration is limited only by the bandwidth of the velocity loop. In some applications
this can cause damage to the controlled device due to the high acceleration rate.

Tuning Digital and Analog Servo Systems

436

User Manual AppendixD
GFK-1742F Jan 2020

Method #2:

In some applications, method #1 introduces too large a shock to the device under control.
In these cases, another method to generate a velocity command is needed. The method
requires that the user set the position loop to an open loop configuration. The position loop
is set to open loop by setting the Position Loop Time Constant to zero and the Velocity
Feedforward Gain to 100 percent. You can then use the Move at Velocity Command or a
motion program to generate velocity commands to the servo drive.

1. The following procedure tunes the velocity regulator. It is suggested that initially,
this be done with the motor NOT connected to the driven load. The tuning
associated with the load will be performed in a later step. The first parameter that
needs to be adjusted is the Velocity Loop Proportional Gain. The velocity loop
proportional gain is multiplied by velocity error (velocity command - velocity
feedback) to generate the portion of the torque command due to the proportional
term. The proportional term should be set low to begin the process. Depending on
the bandwidth of the controlled servo amplifier, the default value of 1500 may
represent a good starting point. However, if the servo amplifier has a low bandwidth
or is very sensitive to changes in the torque command the initial value may need to
be set lower. The tuning procedure will allow the user to iterate to get the final value.
Thus, if there is any concern start with a very low value (100 for example)

2. Choose the method to introduce velocity command to the velocity loop. Method #1
and Method #2 (above) are examples of methods to perform this task.

3. Connect an oscilloscope to the analog outputs for Motor Velocity from the servo
amplifier.

4. Perthe earlier discussion, set the initial velocity loop proportional gain value.

5. Generate a velocity command step change. At this point the step change should be
relatively small compared to the full speed of the machine. Ten to 20 % of the rated
machine speed is a good start.

6. Observe the Motor Velocity on the oscilloscope. The objective is to obtain a critically
damped velocity loop response. There will most likely be a steady state error in the
velocity at this point. This is expected at this pointin the tuning process. The velocity
integral term will be introduced in steps that follow to cancel this error. Pay
particular attention to the 1st peak that occurs and any oscillations that are
occurring in the velocity signal.

7. Increase the Velocity Loop Proportional Gain in small steps and repeat 5 and 6 until
the desired response is achieved. Depending on the application this may be a
critically damped system or may have a slight overshoot. As a general rule, the lower
the Velocity Loop Proportional Gain value that meets the system requirements the
more robust the control. The user should carefully observe the velocity feedback
signal. In some applications, running the Velocity Loop Gain high enough to create
instability can cause machine damage. If oscillations are observed in the Motor
Velocity feedback signal prior to this point, decrease the Velocity Loop Proportional
Gain.

Tuning Digital and Analog Servo Systems

437

User Manual
GFK-1742F

10.

11.
12.

13.

14.

15.

AppendixD
Jan 2020

The next parameter to be adjusted is the Velocity Loop Integral Gain. . The Velocity
Loop integral gain is the term multiplied by the area of the velocity error (velocity
command - velocity feedback) to generate the portion of the torque command due
to the integral term. The integral gain term is typically used to compensate for
steady state error in velocity. To begin the tuning process the Velocity Loop Integral
Gain should be set to zero. The tuning procedure will be to slowly increase this value
until steady state error is eliminated without incurring large overshoot or excessive
ringing in the response.

Choose the method to introduce velocity command to the velocity loop. Method #1
and Method #2 (above) are examples of methods to perform this task.

Connect an oscilloscope to the analog outputs for Motor Velocity from the servo
amplifier.

Per the earlier discussion, set the initial Velocity Loop Integral Gain value.

Generate a velocity command step change. At this point the step change should be
relatively small compared to the full speed of the machine. Ten to 20 % of the rated
machine speed is a good start.

Observe the Motor Velocity on the oscilloscope. The objective is to eliminate steady
state error without introducing excessive overshoot or ringing. While tuning the
integral term pay particular attention to any oscillations that occur in the response.
Excessive oscillations are an indication of instability in the control loop due to
excessive integral gain.

Increase the Velocity Loop Integral Gain in small steps and repeat 12 and 13 until the
desired response is achieved. Depending on the application this may be a critically
damped system or may have a slight overshoot. As a general rule, the lower the
Velocity Loop Integral Gain value that meets the system requirements the more
robust the control. The user should carefully observe the velocity feedback signal. In
some applications, running the Velocity Loop Integral Gain high enough to create
instability can cause machine damage. If oscillations are observed in the Motor
Velocity feedback signal prior to this point, decrease the Velocity Loop Integral Gain.
The basic velocity loop is tuned at this point. The next step will be to connect the
motor to the load and adjust the Velocity Loop Gain parameter to adjust for the
motor load.

With the base Velocity Loop tuned, connect the motor to the load. The Velocity Loop
Gain. parameter adjusts the velocity loop response to compensate for the load.
Specifically, the Velocity Loop Gain parameter adjusts the velocity loop bandwidth.
As a starting point use the following formula shown below.

Tuning Digital and Analog Servo Systems

438

User Manual
GFK-1742F

AppendixD
Jan 2020

Equation 2

J
Velocity Loop Gain = J*' 16

Where:

JiMotor Inertia

Jm Load Inertia

The Velocity Loop Gain calculated above in many cases will not need to be altered. However,

due to the application (for example, machine resonance) the value may need to be adjusted.
To tune the Velocity Loop Gain the following procedure can be used:

16.

17.

18.

19.

20.

21.

22.

Choose the method to introduce velocity command to the velocity loop. Method #1
and Method #2 (above) are examples of methods to perform this task.

Connect an oscilloscope to the analog outputs from the Servo Amplifier for Motor
Feedback Velocity.

Set the Velocity Loop Gain to zero. Thisis a conservative approach. If the application
is known to not have resonant frequencies from zero to approximately 250 Hz, you
can start with a higher value, but do not exceed the value calculated in equation 2 at
this point.

Generate a velocity command step change. At this point the step change should be
relatively small compared to the full speed of the machine. Ten to 20 % of the rated
machine speed is a good start.

Observe the Motor Velocity on the oscilloscope. The objective is to obtain a critically
damped velocity loop response. Pay particular attention to any oscillations that are
occurring in the velocity feedback signal.

Increase the Velocity Loop Gain in small steps and repeat 19 and 20 until instability
in the Motor Velocity feedback signal is observed.

Note: Care should be taken in this step that an instability does not cause damage to the
machine. Once this point is reached, decrease the Velocity Loop Gain by at least 15 %. As
a general rule, the lower the Velocity Loop Gain value that meets the system
requirements the more robust the control. You should carefully observe the velocity
feedback signal. In some applications, running the Velocity Loop Gain high enough to
create instability can cause machine damage. If in doubt, adjust the Velocity Loop Gain
to be no greater than the value calculated in equation 1. If oscillations are observed in
the Motor Velocity feedback signal prior to this point, decrease the Velocity Loop Gain
and continue with step 22 below.

The velocity loop is tuned at this point. However, the robustness of the loop must
be checked. To perform this test, introduce velocity command steps in increments
of 20% Rated Machine Speed, 40% Rated Machine Speed, 60% Rated Machine Speed,
80% Machine Rated Speed, and 100% Rated Machine Speed. Observe the Motor
Velocity and Torque Command signals for any instability. If an instability or
resonance is observed, reduce the Velocity Loop Gain and repeat the test.

Tuning Digital and Analog Servo Systems

439

User Manual

AppendixD
GFK-1742F

Jan 2020

Sample Velocity Loop Tuning Session

A sample velocity loop tuning session is shown in the plots that follow. To begin the
process the Velocity Loop Proportional Gain is tuned

Figure 204: Velocity Loop Step Response Velocity Feedback vs. Time Kp=500 Ki=0
VLGN =0

Velocity Feedback Kp=500 Ki=0 VLG=0

“elocity {volts)

02 i | |
-0.05 0 0.05 0.1 015 02
time (sec)

Note the system has a relatively slow response. Also based the desired velocity, there is a

steady state error. In this case, the Velocity Loop Proportional Gain can be increased to
help generate a faster response.

Tuning Digital and Analog Servo Systems 440

AppendixD

User Manual
Jan 2020

GFK-1742F

Figure 205: Velocity Loop Step Response Velocity Feedback vs. Time Kp=1000 Ki=0
VLGN =0

Yelocity Feedback Kp=1000 Ki=0 YLG=0
1.8 T T T T

“elocity (volts)

Tios a 0.05 0.1 015 02
tirme (sec)

The Velocity Loop Proportional Gain has been increased in the figure above. The rise time
has been decreased. However, the system can still be enhanced by adding additional
Velocity Loop Proportional Gain. The steady state error is still present.3

Figure 206: Velocity Loop Step Response Velocity Feedback vs. Time Kp=2000 Ki=0
VLGN=0

Yelocity Feedback Kp=2000 Ki=0 VLG=0

1.5

Yelocity (volts)

=
ay
T

tirne (sec)

The Velocity Loop Proportional Gain has been increase again. The response shown is
starting to look very acceptable. However, the rise time can be improved further.

Tuning Digital and Analog Servo Systems 441

User Manual

AppendixD
GFK-1742F

Jan 2020

Figure 207: Velocity Loop Step Response Velocity Feedback vs. Time Kp=3000 Ki=0
VLGN=0

Yelocity Feedback Kp=3000 Ki=0 %LG=0

“Welocity (valts)

-0.05 a 0.05 0.1 015 0z
time (gec)

The response shown above in is looking very good. Note the slight peak in the response. To
experiment with the response, the Velocity Loop Proportional Gain will be increased more.

Figure 208: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=0
VLGN =0

“elocity Feedback Kp=4000 Ki=0 vLG=0

25 T

Yelocity (volts)

05

005 0 0.05 0.1 0.15 02
time (sec)

The response shown in the figure has a slight overshoot. This or the previous response
would be very acceptable in many applications. However, the tuning should be
determined based upon the machine abilities. The plots are shown for reference only.

Tuning Digital and Analog Servo Systems 442

User Manual AppendixD
GFK-1742F Jan 2020

Figure 209: Velocity Loop Step Response Velocity Feedback vs. Time Kp=10000 Ki=0
VLGN =0

“elocity Feedback Kp=10000 Ki=0 VLG=0

i=

Welocity (volts)

1/ RN S S U SR -
0 e e b —
05 i i i i
-0.0a 1] 0.05 01 014 02

time (gec)

The plot shown above represents an unacceptable response. The loop is exhibiting signs of
instability. Not the Overshoot and ringing following the first peak. The Velocity Loop
Proportional Gain should be significantly decreased to achieve a more stable response.

For this exercise, the response shown corresponding to the Velocity Loop Proportional Gain
(Kp) =4000 will be chosen as the desired response for the system. This value will be used
when tuning the Velocity Loop Integral Gain.

The Velocity Loop Integral Gain is initially zero. You can make a small change to the value
and observe the response.

Figure 210: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN =0
Yelocity Feedback Kp=4000 Ki=30 ¥LG=0
25 T T T T
)
S
=
= 1 S A .
E
i
= . H H
e tELETEELPELE SCRGERCEET TEEPREERERE et -
OF --Wl -------------- e e m e e m e -
05 i i i]
-0.05 a 0.05 0.1 0.15 0.2

time (sec)

Tuning Digital and Analog Servo Systems 443

User Manual AppendixD
GFK-1742F Jan 2020

The response above indicates that the Velocity Loop Integral Gain has resulted in a more
desirable response. Specifically, the steady state error is being reduced.

Figure 211: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=60
VLGN =0

“elocity Feedback Kp=4000 Ki=60 YLG=0
25 T T T

Yelocity (volts)
|

Qo 0 0.05 0.1 0.15 02
time (sec)

When you increase the Velocity Loop Integral Gain further, you can see the beginning of an
overshoot due to the integral gain. However, the responses in the previous two figures are
both acceptable. The final values chosen to depend on the capabilities of the driven load. In
general, the lower the Velocity Loop Proportional Gain and Velocity Loop Integral Gain that
meet the system requirements the more robust the control.

Figure 212: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=120
VLGN =0

Welocity Feedback Kp=4000 Ki=120 vLG=0

W
=
S
2 L e S et —
3
o
>] | i
0.5 ittt ittt sttt Sttt ettt
O - - - -emsmprman - - -] .
05 i i 1 i
005 0 0.05 01 0.15 02

time (sec)

Tuning Digital and Analog Servo Systems 444

User Manual
GFK-1742F

The response shown above illustrates too much Velocity Loop Integral Gain and in most

applications this would be considered unacceptable.

Figure 213: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000

Ki=7500 VLGN =0

‘elocity Feedback Kp=4000 Ki=750 VLG=0

Welocity (volts)

3 S T
s | | ; |
0.05 0 0.05 01 D15

time (sec)

The result shown above represents a marginally stable system. In this response, there is not
only a significant overshoot, but also a ringing in the velocity response that is slowly being

damped out. The response is unacceptable.

The next step in the tuning process is to connect the motor to the load and then adjust the
control to achieve the desired performance. The Velocity Loop Gain parameter allows the
user to adjust the controller parameters to account for the motor load. As in the procedure

above, start with the Velocity Loop Gain equal to zero.

Tuning Digital and Analog Servo Systems

AppendixD
Jan 2020

445

User Manual AppendixD
GFK-1742F Jan 2020

Figure 214: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN =0
Yelocity Feedback Kp=4000 Ki=30 YLG=0
2 T T T T
; MW AY
1.5 b- - .; -
P P S S S
2 i
B = e i bbbt B ke -
0 - -- - - -
058 i i I I
-0.05 0 0.05 01 015 02

time (sec)

The figure above shows the motor velocity response with a load connected to the motor
and the motor tuned per the exercise above. The performance is acceptable, but by
increasing the Velocity Loop Gain the rise time can be decreased.

Figure 215: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30
VLGN =16

Yelocity Feedback Kp=4000 Ki=30 VLG=16
2.5 T T T T

—_
5]

“elocity (volts)

o
m
]
'
i
]
i
'
]
]
L
+
i
1
i
i
1
i
'
'

-r
]
]
i
i
i
1
i
i
i
'
o
1
'
i
]
i
'
i
1
i
'
1
1
i
'
i
]
i
'
|

-0.05 0 0.05 0.1 0.15 02
time (sec)

The response shown above is acceptable. The response has a slight overshoot but no
sustained oscillation or ringing.

Tuning Digital and Analog Servo Systems 446

User Manual AppendixD
GFK-1742F Jan 2020

Figure 216: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30
VLGN =32

Velocity Feedback Kp=4000 Ki=30 VLG=32

- I
5 15) G - L] - -
= i

= i
= |

5 :
E 1__'____'_'___""'___'_"___'_"___"_'___"": _________________________ —
- i i i

05f - , i - -
05 H H H H

-0.05 0 0.05 0.1 0.15 0.2

time (sec)

The response shown above has a rather large overshoot, however there are no adverse
effect beyond the initial overshoot and oscillation. The overshoot indicates that the user
may wish to reduce the Velocity Loop Gain.

Figure 217: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30
VLGN =48

elocity Feedback Kp=4000 Ki=30 VLG=48

5 :
© :
= ! !
Fon) il i
g i i '
g T O K ------------- IR — e meenmnann -
11 O S S .
D..._...‘..J: i
05 i | | |
0.05 0 0.05 0.1 0.15 02

time (sec)

The response shown above exhibits an overshoot and notable ringing in the response. This
response is starting to indicate that the velocity loop gain is greater than necessary.

Tuning Digital and Analog Servo Systems 447

User Manual
GFK-1742F

AppendixD
Jan 2020

Figure 218: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN =80
Welocity Feedback Kp=4000 Ki=30 VLG=80
3-5 T T T T
S LTV T
—_ 2 semaabbbbE “ae s -
0 T ,‘\ AR
S LU*} N —_—
| S § S A b e i
0 e —————t - - - - - .- --- - .
05 1 H 1 H
-0.05 0 0.05 01 0.15 0.2

tirme (sec)

The response shown above represents a marginally stable system. The Velocity Loop Gain is
significantly too large. Notice the significant overshoot and sustained ringing in the

response. This response would not be acceptable.

D-3 System Troubleshooting Hints (Analog Mode)

1.

The DSM314 requires a Series 90-30 CPU with firmware version 10.0 or later, or a
PACSystems RX3i CPU with version 2.8 or later.

The DSM Torque Mode function requires DSM firmware version 3.0 or higher.

If the Drive Ready input is enabled in the module configuration, the input must be
connected to Ov within 1 second after the Drive Enable relay turns on or the Motion
Mate DSM314 will not operate. Incorrect Drive Ready configuration or wiring will
cause Error Code COh to be reported in the Axis Error Code %Al data.

The ENABLE DRIVE %Q control bit must be set continuously to 1 or no motion other
than Jog moves will be allowed. If no STOP errors (see Appendix A for error codes)
have occurred, the DRIVE ENABLED %l status bit will mirror the state of the ENABLE
DRIVE %Q bit. A STOP error will turn off the DRIVE ENABLED output bit even though
ENABLE DRIVE input bit is still a 1. The error condition must be corrected and the
CLEAR ERROR %Q control bit turned on for one host controller sweep to re-enable
the drive.

If the ERROR %l status bit is 1 and the AXIS ENABLED and DRIVE ENABLED %I status
bits are 0, then a STOP error has occurred (Status LED flashing fast). In this state, the
DSM314 will not respond to any commands other than the CLEAR ERROR %Q control
bit.

Tuning Digital and Analog Servo Systems

448

User Manual AppendixD
GFK-1742F Jan 2020

6. The CLEAR ERROR %Q control bit uses one-shot action. Each time an error is
generated, the bit must be set to 0 then set to 1 for at least one sweep to clear the
error.

7. The CFG OK LED must be ON or the DSM314 will not respond to host controller
commands. If the LED is OFF then a valid DSM314 configuration has not been
received from the host controller, or there may be a recognized configuration error.
Check the %Al error code words for Dxxx errors, which are documented in the
“System Error Codes” section of Appendix A. Also check the PLC fault tables for
reported configuration errors.

8. Host controller logic should not send the following %Q bit commands to the
DSM314 on the first sweep: Find Home, Execute Motion Program, Execute Local
Logic. If these commands are sent on the first sweep, an error will be reported, and
the action will not be performed.

9. Host controller logic should not send the following %AQ commands to the DSM314
on the first sweep: Move at Velocity, Move Command. If these commands are sent
on the first sweep, an error will be reported, and the action will not be performed.

Tuning Digital and Analog Servo Systems 449

User Manual
GFK-1742F

Appendix E
Jan 2020

Appendix E: Local Logic Execution Time

E-1

E-2

This appendix contains information necessary to determine a local logic program’s
execution time.

Local Logic Execution Timing Data

Local Logic program in the DSM is constrained to complete execution within 300
Microseconds. Exceeding the execution time limit will result in a watchdog timeout and an
error being reported. The watchdog timeout error will stop axes motion and Local Logic
execution. The timing data supplied in the tables below allows the programmer to compute
the worst-case execution time for a program. Note that the data below represents
execution times, not response times. For example, the execution time required to write a
value to the follower ratio variables is 0.30 microseconds, however the time required to
observe the resulting change in the axes motion would be in the order of

2 to 5 milliseconds. Similarly, for the digital inputs the hardware filter delays must be taken
into account when computing the response time.

Note: If the program execution time is between 300 and 350 microseconds a watchdog timeout may
not occur, depending on the task loading in the module. The user should keep his program
execution time within 300 microseconds to ensure that it runs without any timeouts.

The tables below can be used to compute the worst case execution times and therefore
predetermine that a program will not cause a watchdog timeout. The examples below
illustrate the computation of execution times for a program.

Example 1
POO1 := POO2 + 3500; (* Instruction Line 1 *)
IF P0O01 > 5000 THEN (* Instruction Line 2 *)
Torque Limit 1 := 75; (* Instruction Line 3 *)
Jog_PIus_l = Strobel Level 1; (* Instruction Line 4 *)
END IF; (* Instruction Line 5 *)

Execution Time for Instruction Line 1=>

(Time to Load P002) + (Time to load Constant) + (Time to perform Addition) + (Time to write
P001)

=>(.60 (from Table 97) + 0.50 (from Table 97) + 0.90 (from Table 91) + 0.60 (from
Table 97)

=>2.60 microseconds

Execution Time for Instruction Line 2 =>

(Time to Load P001) + (Time to load Constant) + (Time to perform > Conditional)
=>(.60 (from Table 97) + 0.50 (from Table - 97) + 2.50 (from Table 92)

=>3.60 microseconds

Local Logic Execution Time

450

User Manual Appendix E
GFK-1742F Jan 2020

Execution Time for Instruction Line 3 (assuming Conditional evaluates to TRUE)=>
(Time to load Constant) + (Time to write Torque_Limit_1)

=>(.50 (from Table 97) + 0.30 (from Table 93)

=>(0.80 microseconds

Execution Time for Instruction Line 4 (assuming Conditional evaluates to TRUE)=>
(Time to load Strobe1_Level_1) + (Time to write Jog_Plus_1)

=>1.40 (from Table 93) + 1.70 (from Table 93)

=>3.10 microseconds

Execution Time for Instruction Line 5 => 0.0 microseconds (from Table 92)

Total Execution Time =>2.60 + 3.60 + 0.80 + 3.10 +0.0 = 10.10 Microseconds

E-3 Example 2

DOO := P100 * 1000; (* Instruction Line 1 *)
P10l := DOO / 55; (* Instruction Line 2 *)
Enable_Follower_1l := CTLO1l BWAND CTLOZ; (* Instruction Line 3 *)
Follower_Ratio_A_1l := P101; (* Instruction Line 4 *)

Execution Time for Instruction Line 1=>
(Time to Load P100) + (Time to Load Constant) + (Time to Multiply) +(Time to write D0O)

=> (.60 (from Table 97) + 0.50 (from Table 97) + 1.30 (from Table 91) + 0.70 (from Table
97)

=>3.10 microseconds
Execution Time for Instruction Line 2 =>

(Time to Load D0O) + (Time to load constant) + (Time to perform divide) + (Time to write
P101)

=>(0.70 (from Table 97) + 0.50 (from Table 97) + 2.90 (from Table 91) + 0.60 (from Table
97)

=>4.70 microseconds
Execution Time for Instruction Line 3 =>

(Time to Load CTLO1) + (Time to load CTLO2) + (Time to perform BWAND) + (Time to store
Enable_Follower_1)

=>1.40 (from Table 97) + 1.40 (from Table 97) + 0.20 (from Table 91) + 1.70 (from Table
93)

=>4.70 microseconds
Execution Time for Instruction Line 4 =>
(Time to Load P101) + (Time to write Follower_Ratio_A_1)

=>(.60 (from Table 97) + 0.30 (from Table 93)

Local Logic Execution Time 451

User Manual
GFK-1742F

=>0.90 microseconds

Total Execution Time =>3.10+4.70 + 4.70 + 0.90 = 13.40 Microseconds

Table 91: Local Logic Math/Logical Operation execution times

Local Logic Math and Logical Operations Local Logic Execution Time
(Assignment, :=) (Microseconds)
Add (+) 0.90*

Subtract (-) 0.90%

Multiply (*) 1.30

Divide (/) 2.90

Modulus (MOD) 2.90

Absolute (ABS) 1.70*

BWAND 0.20

BWOR 0.30

BWXOR 0.20

BWNOT 0.50

*

computation overflows.

Execution times for Addition, Subtraction and Absolute value (ABS) assume there are no

Table 92: Local Logic Conditional Operation Execution Times

Local Logic Conditional Operations Local Logic Execution Time
(IF...THEN) (Microseconds)
Greater Than (>) 2.50

Less Than (<) 2.50
Greater/Equal (>=) 2.50

Less/Equal (<=) 2.50

Equal (=) 2.30

Not Equal (<>) 2.30

BWAND 1.40

BWOR 1.40

BWXOR 1.40

BWNOT 1.60

Null operator (IF var THEN) 1.10

END_IF 0.00

Appendix E
Jan 2020

Note: The execution time for the conditionals is for the case where the IF... THEN operation evaluates to
FALSE. This represents the worst-case execution time, since the execution time required to
evaluate a conditional that is TRUE is less. Note that the END_IF instruction does not require any
execution time.

Local Logic Execution Time 452

User Manual
GFK-1742F

Table 93: Axis 1 Local Logic Variable Execution Times

X- Not Applicable.

Appendix E
Jan 2020

Local Logic Variable Name

Local Logic Execution Time (In Microseconds)

Read Write
Strobe1_Level_1 1.40 X
Strobe2_Level_1 1.40 X
Positive_EOT_1 1.40 X
Negative_EOT_1 1.40 X
Home_Switch_1 1.40 X
Digital_Output1_1 X 1.80
Digital_Output3_1 X 1.80
Analog_Input1_1 0.80 X
Analog_Input2_1 0.80 X
Position_Loop_TC_1 X 0.30
Follower_Ratio_A_1 X 0.30
Follower_Ratio_B_1 X 0.30
Torque_Limit_1 X 0.30
Position_Increment_Cts_1 X 0.30
Velocity_Loop_Gain_1 0.80 0.20
Reset_Strobe1_1 X 1.70
Reset_Strobe2_1 X 1.70
Enable_Follower_1 X 1.70
Jog_Plus_1 X 1.70
Jog_Minus_1 X 1.70
FeedHold_1 X 1.70
Error_Code_1 0.80 X
Actual_Position_1 0.70 X
Strobe1_Position_1 0.80 X
Strobe2_Position_1 0.80 X
Actual_Velocity_1 0.80 X
Block_1 0.90 X
Commanded_Position_1 0.60 X
Position_Error_1 0.60 X
Commanded_Velocity_1 0.60 X
User_Selected_Datal_1 0.60 X
User_Selected_Data2_1 0.60 X
UnAdjusted_Actual_Position_Cts_1 0.80 X
UnAdjusted_Strobe1_Position_Cts_1 0.80 X
UnAdijusted_Strobe2_Position_Cts_1 0.80 X

Local Logic Execution Time

453

User Manual Appendix E

GFK-1742F Jan 2020
Local Logic Variable Name Local Logic Execution Time (In Microseconds)
Read Write
Commanded_Torque_]1 0.80 X
Axis_OK_1 1.40 X
Position_Valid_1 1.40 X
Strobel1_Flag_1 1.40 X
Strobe2_Flag_1 1.40 X
Drive_Enabled_1 1.40 X
Program_Active_1 1.40 X
Moving_1 1.40 X
In_Zone_1 1.40 X
Position_Error_Limit_1 1.40 X
Torque_Limited_1 1.40 X
Servo_Ready_1 1.40 X
Follower_Enabled_1 1.40 X
Follower_Ramp_Active_1 1.40 X
Follower_Velocity_Limit_1 1.40 X

Table 94: Axis 2 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name Local Logic Execution Time (In Microseconds)
Read Write

Strobe1_Level_2 1.40 X
Strobe2_Level_2 1.40 X
Positive_EOT_2 1.40 X
Negative_EOT_2 1.40 X
Home_Switch_2 1.40 X
Digital_Output1_2 X 1.80
Digital_Output3_2 X 1.80
Analog_Input1_2 0.80 X
Analog_Input2_2 0.80 X
Position_Loop_TC_2 X 0.30
Follower_Ratio_A_2 X 0.30
Follower_Ratio_B_2 X 0.30
Torque_Limit_2 X 0.30
Position_Increment_Cts_2 X 0.30
Velocity_Loop_Gain_2 0.80 0.20
Reset_Strobe1_2 X 1.70
Reset_Strobe2_2 X 1.70

Local Logic Execution Time 454

User Manual Appendix E

GFK-1742F Jan 2020
Local Logic Variable Name Local Logic Execution Time (In Microseconds)
Read Write

Enable_Follower_2 X 1.70

Jog_Plus_2 X 1.70

Jog_Minus_2 X 1.70

FeedHold_2 X 1.70

Error_Code_2 0.80

Actual_Position_2 0.70

Strobe1_Position_2 0.80

Strobe2_Position_2 0.80

Actual_Velocity_2 0.80

Block_2 0.90

Commanded_Position_2 0.60

Position_Error_2 0.60

Commanded_Velocity_2 0.60

User_Selected_Datal_2 0.60

User_Selected_Data2_2 0.60

UnAdjusted_Actual_Position_Cts_2 0.80
UnAdjusted_Strobe1_Position_Cts_2 0.80
UnAdjusted_Strobe2_Position_Cts_2 0.80

X XXX X XXX XX XXX XX XXX X[X] XX X]| X[X] X]| X|X]| X

Commanded_Torque_2 0.80
Axis_OK_2 1.40
Position_Valid_2 1.40
Strobe1_Flag_2 1.40
Strobe2_Flag_2 1.40
Drive_Enabled_2 1.40
Program_Active_2 1.40
Moving_2 1.40
In_Zone_2 1.40
Position_Error_Limit_2 1.40
Torque_Limited_2 1.40
Servo_Ready_2 1.40
Follower_Enabled_2 1.40
Follower_Ramp_Active_2 1.40
Follower_Velocity_Limit_2 1.40

Local Logic Execution Time 455

User Manual
GFK-1742F

Appendix E
Jan 2020

Table 95: Axis 3 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name

Local Logic Execution Time (In Microseconds)

Read Write
Strobe1_Level_3 1.40 X
Strobe2_Level_3 1.40 X
Positive_EOT_3 1.40 X
Negative_EOT_3 1.40 X
Home_Switch_3 1.40 X
Digital_Output1_3 X 1.80
Digital_Output3_3 X 1.80
Analog_Input1_3 0.80 X
Analog_Input2_3 0.80 X
Reset_Strobe1_3 X 1.70
Reset_Strobe2_3 X 1.70
Error_Code_3 0.80 X
Actual_Position_3 0.70 X
Strobe1_Position_3 0.80 X
Strobe2_Position_3 0.80 X
Actual_Velocity_3 0.80 X
Axis_OK_3 1.40 X
Position_Valid_3 1.40 X
Strobe1_Flag_3 1.40 X
Strobe2_Flag_3 1.40 X

Table 96: Axis 4 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name

Local Logic Execution Time (In Microseconds)

Read Write
Strobe1_Level_4 1.40 X
Strobe2_Level_4 1.40 X
Positive_EOT_4 1.40 X
Negative_EOT_4 1.40 X
Home_Switch_4 1.40 X
Digital_Output1_4 X 1.80
Digital_Output3_4 X 1.80
Analog_Input1_4 0.80 X
Analog_Input2_4 0.80 X

Local Logic Execution Time

456

User Manual Appendix E
GFK-1742F Jan 2020

Table 97: Global Local Logic Variable Execution Times

X- Not Applicable

Local Logic Variable Name Local Logic Execution Time (In Microseconds)
Read Write

Local Logic Program Constants 0.50 X
Overflow 2.40 1.30
System_Halt X 1.80
Data_Table_Ptr 0.60 0.70
Data_Table_sint 2.10 1.70
Data_Table_usint 1.80 1.70
Data_Table_int 2.30 2.20
Data_Table_uint 2.30 2.20
Data_Table_dint 3.80 4.00
Module_Error_Present 1.40 X
New_Configuration_Received 1.40 X
First_Local_Logic_Sweep 1.40 X
Module_Status_Code 0.50 X
CTL_1_to_32 0.50 X
P000-P255 0.60 0.60
D00-D0O7 0.70 0.70
CTLO1-CTL32 1.40 1.80

Local Logic Execution Time 457

User Manual
GFK-1742F

Appendix F
Jan 2020

Appendix F: Updating Firmware in the

DSM314

The DSM314 operating firmware is stored in on-board FLASH memory. The Winloader
update utility requires Windows 95, Windows NT, or Windows 98, or Windows 2000. The
hardware required to run these operating systems should suffice to also run Winloader.
Winloader requires about 500Kbytes of hard disk space.

The DOS-based PC Loader utility controls downloading the new firmware from the floppy to
the DSM314 FLASH memory. PC Loader requires an IBM AT/PC compatible computer with
at least 640K RAM, one floppy drive, MS-DOS 3.3 (or higher), and one RS-232 serial port. In
order to run this utility within an MS-DOS box under Windows® 3.1, Windows 95 or
Windows NT, the processor should be at least a Pentium 133. If not, the computer should
be rebooted into MS-DOS mode. PC Loader functions optimally with a hard drive with at
least 1 MB available space.

A WARNING

The user MUST determine that the PCis connected to a DSM (and not a Host Controller CPU
or other module that supports FLASH firmware upgrades) before entering Boot mode.
Failure to do so can cause loss of Host Controller CPU Program and Configuration.

To Install the New Firmware, Perform the Following Steps:

1. Save or back up any programs or data resident in the module before performing the
update function.

2. Place the Host Controllerin STOP/NOIO Mode. (Clear any faults.)
3. Ensure that the module’s SNP serial port baud rate is set to 19200 baud.

4. Using a Station Manager to PC cable, IC693CBL316, connect the appropriate serial
port of your computer (master) to the DSM314 module to be updated (slave).

Updating Firmware in the DSM314

458

User Manual
GFK-1742F

F-1

F-2

Appendix F
Jan 2020

Windows Update (for Windows
95/NT/98/2000)

Note:

This section only applies to those using the Winloader update software with Windows 95, NT, 98
or 2000. If using the DOS operating system, see the section “DOS Update.”

Insert a labeled floppy disk in drive A: or B. Ensure that the floppy is not write
protected. Run the self-extracting archive specifying drive A: or B: as the destination
when prompted with "Unzip to folder".

Invoke the Winloader software package by double clicking on its icon located in
drive A: or B: (depending on the drive designation for the 3.5” floppy disk) in
Windows Explorer or simply execute it by going to the start menu and selecting RUN.
In the RUN window type A (or B): winloader.exe.

Begin storing firmware by single clicking the “Update” button.

Upon completion of the update a window will “pop up” indicating the status of the
update. If the update was successful, power cycle the Host Controller and indicate
that another device is NOT to be updated by left clicking on “No”. If not successful,
consult the on-line help for additional information.

DOS Update

Note:

This section only applies to those running the DOS Loader update program from DOS. For those
using Windows software, refer to “Windows Update.”

Insert a labeled floppy disk in drive A: or B: Ensure that the floppy is not write
protected. Run the self-extracting archive specifying drive A: or B: as the destination
when prompted with “Unzip to folder:”.

At the C:\> prompt, type A: install (or B: install if your floppy drive is B:). The install
program will copy several files to the hard drive then invoke the PC Loader. Install
can also be run from the floppy drive directly if there is not enough space on the hard
drive. To run from the floppy, type install at the A:\> or B:\> prompt.

From the main menu, press the F3 key to configure the correct serial port if the cable
is not connected to COM1. Press the TAB key to toggle through the options and
ENTER to accept the displayed choice.

From the main menu, press the F1 key to attach to the DSM312 slave device.

Once the slave device is attached, the boot mode menu will appear - press F1 to
enter BOOT MODE and press the ‘Y’ key to confirm the operation. The STAT and CFG
LED’s on the front of the module should now be flashing in unison.

Once in boot mode, press the F1 key to download the new firmware.

Press the Y key to confirm the operation. The download should take about 4
minutes. If the download fails, refer below to Restarting An Interrupted Firmware
Upgrade.

Updating Firmware in the DSM314

459

User Manual Appendix F
GFK-1742F Jan 2020

8. When the download is complete, the PC loader will instruct you to power cycle your
module. At this time, power cycle the module. If the module is installed in an
expansion or remote rack, it is necessary to also power-cycle the main rack.

9. Label the unit with the installed firmware version. If the firmware is Beta or an
Engineering Release, indicate so on the label.

F-3 Restarting an Interrupted Firmware Upgrade

A. Connect all cables as described in step 4 of the procedure above.

B. Power cycle the rack containing the module. If a partial or erroneous download was
performed, the module will power up with the STAT and CFG LED’s on the module
flashing in unison.

C. Ifyou are still running the PC Loader or Winloader program on your PC, skip to step
D below; otherwise, follow steps 5 and 6 above.

D. Follow step 7 above. Note that you will automatically be placed in BOOT MODE. E.
Follow steps 9 through 12 above.

E. Ifthe update still fails, repeat the process with a lower baud rate.

F. Label your unit with the installed firmware version.

MS-MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft
Corporation; Pentium is a trademark of Intel Corporation; IBM-AT and IBM-PC are registered
trademarks of International Business Machines Corporation.

Updating Firmware in the DSM314

460

User Manual
GFK-1742F

Appendix G
Jan 2020

Appendix G: Strobe Accuracy Calculations

In general the accuracy of the strobe position value can be expressed as +/- 2 counts with an
additional variance of 10 microseconds. However, the actual accuracy of the strobe position
value may be better than that depending upon axis configuration, motor acceleration
during a strobe event, and the number of counts per revolution of the encoder used. The
first consideration is whether the axis configuration is Digital or Analog.

Analog Mode

In Analog mode, when a strobe event occurs, the quadrature counter value is latched into a
holding register immediately. This means that the position capture inaccuracies are based
primarily on the input filtering and sampling delay for the strobe input which can total up to
10 microseconds (or the number of counts that can occur in 10 microseconds). Note that
the value may be one count off based on when the strobe event occurred in relation to when
the count value changed.

Digital Mode

In Digital mode the encoder is read as serial data. Because this data is only acquired once
every 250 microseconds, latching the position value read from the encoder will only allow
an accuracy of 250 microseconds. To overcome this limitation, the strobe event is time
stamped in relation to the last encoder position reading that occurred within the DSM314.
This value is used to estimate the axis position at the instant that the strobe event occurred
based on the actual servo axis velocity at the time of the strobe. The velocity used for the
calculation is derived from the difference in the two encoder position readings around the
strobe event (see the formula below).

Velocity = (Position Sample after Strobe) - (Position Sample before Strobe)
250 microseconds

Therefore, changes in velocity (i.e. acceleration or deceleration of the motor) between
position samples are not taken into account thus causing inaccuracies in the captured
strobe position value. For strobe events that occur during when velocity is constant during
the sampling period, the interpolation algorithm will be accurate to within one count and
the position capture inaccuracy will be primarily determined by the filtering and sampling
delays.

The following example can be used to calculate the worst case inaccuracies due to
acceleration given a particular servo motor:

Strobe Accuracy Calculations

461

User Manual Appendix G
GFK-1742F Jan 2020

Given the following values/constant for this example:
Encoder Resolution = 8192 cnts/rev

A = Acceleration/deceleration during the strobe event which is 250,000,000 cnts/sec?
(assumed to be constant over the entire 250us period; Larger acceleration values will
increase the amount of error in the calculation)

T, = Position sampling period which is 250 microseconds
V, = Initial velocity just before the strobe event which will be 0 for this example.

The change in the number of encoder counts (Cnts) for a given amount of time (t) can be
calculated using the following formula:

Pat =Vi t + VAL

Therefore the total number of counts to occur during the sampling period for this example
is approximately 8 counts (actual calculated values is 7.8125) or 0.343 degrees of motor
rotation.

The average velocity for the sample period given the change in position would be as follows:

Vayg = Change in counts = 7.8125 cnts = 31250 cnts/sec
Sampling Period 250 psec

The following formula can be used to estimate the strobe position using the velocity derived
above:

Pest =Vit +Vyq t

Therefore, the error between the estimated strobe position and the actual strobe position
is as follows:

Error =Pst - Pest

The graph below contains plots of the actual position, the estimated position, and the
resulting strobe position count error for the 250-microsecond sample period. The graph
shows that the greatest count error occurs in the middle (i.e. at 125 microseconds) of the
period.

Strobe Accuracy Calculations 462

User Manual Appendix G
GFK-1742F Jan 2020

Figure 219: Example axis position capture error due to acceleration

04
7
03 /
Estimated assuming /
02 constant velocity)
yd
e
- d
Position (deg) e
J/{f\ctual
0.1
.-"f//
ol = atl i
0~ 62510 ° 125410 187510 L1570 *
01 Error
02
Time (sec)

Since the initial velocity is equal to 0, the formula for calculating P, can be manipulated to
determine the time that the count actually occurred at (T,c) as follows:

2Pact
Tact = ’\I“ A

Likewise, the formula for estimating the strobe position (Pest) can be solved for time (Test) as
well (assuming that the initial velocity is 0):
Test =Pest [Vavg

Using these formulas, the difference in time between when the strobe occurred and when
the reported count occurred (i.e. the effective delay) can be calculated as follows:

Effective Delay = Test - Tact

The effective delay for the maximum strobe position error (i.e. at 125 microseconds) is equal
to -62.5 microsecond. This value is negative because the estimated/reported strobe
position occurred prior to the actual position when the strobe event happened. The
following graph represents the effective delay that would be seen across the change in
position for the sampling period in this example.

Strobe Accuracy Calculations 463

User Manual
GFK-1742F

Figure 220: Effective response time delay

=5

-1.2510

—2.510

Time (sec)

—3.7510 2

—510

—6.2510 7

0.15

02 0.25
Position (deg)

0.3

Appendix G
Jan 2020
Jfrf
jj.r
035 04

Therefore, in the example above, the worst-case error due to acceleration/deceleration
can be expressed as +/- 0.086 degrees (approximately 2 counts) of position or as 62.5
microseconds of delay (given that the initial velocity is 0). Note that the DSM cannot deal
with fractional units and therefore the error will be rounded to the nearest count or user

unit.

The formulas for determining the strobe error due to acceleration/deceleration on a

Digital axis are as follows:

Counts_of_error =

To(Vi+ A Tp)

Effective_delay =

Where:

A = Acceleration/deceleration during the strobe event

T, = Position sampling period which is 250 microseconds

42V +ATy)

V,= Velocity just before the strobe

Note that the formulas above assume constant acceleration throughout the sampling
period. The formulas for determining the error for the cases where acceleration is not
constant during the sampling period are too complex for the context of this manual.

Strobe Accuracy Calculations

464

User Manual Appendix G
GFK-1742F Jan 2020

Note that an additional error as much as 10 microseconds (or the number of degrees or
position counts that can occur in 10 microseconds) may also be seen due to input
filtering/sampling delays in the hardware.

Note that user wiring and the type of device used for the strobe input may also cause
inaccuracies in the strobe value.

Strobe Accuracy Calculations 465

User Manual Appendix H
GFK-1742F Jan 2020

Appendix H: Using VersaPro with the
DSM314

The examples shown in this chapter are specific to the VersaPro programming software.
Users of Machine Edition software should refer to other chapters in this manual and the on-
line help for instructions on configuring and programming the DSM314 controller.

H-1 Getting Started

Note: VersaPro Version 1.1 or later is required for use with the DSM314.

This document discusses how to use the VersaPro software to access the DSM314
configuration, motion programming, and Local Logic programming screens. It does not tell
you specifically what values to configure, or what commands to use in motion or Local Logic
programs. That information is covered elsewhere in this manual. Additional VersaPro
information can be found in the VersaPro Programming Software User’s Guide, GFK-1670,
as well as in VersaPro’s on-line help.

H-1.1 Starting VersaPro

Double click the VersaPro icon on your Windows desktop to start the software running.
VersaPro will start with a blank screen called the “Workbench.”

Figure 221: VersaPro Startup Screen

Fon Hob, prase F1 ' 7 [Dreorracied | [l
i Stant| P Misseoait o - ez, | [F ersaPre ol

Using VersaPro with the DSM314 466

User Manual AppendixH
GFK-1742F Jan 2020

e Before creating afile, check the Workbench default settings to make sure that Series
90-30 is the default PLC. To do this, click Tools on the Menu bar (see Figure 15-4),
then click the Options selection. The Options dialog box will appear, as shown next:

Figure 222: Checking the VersaPro Default Settings in the Tools|Options Dialog Box

General IDisplayI Ladderl Communicatiansl

Default Block Language Default Hardware Caonfiguration

| [Series 3030 =]
;'-Eung.’ﬂow Comments - Syntax Check ————

| & Brief Comments .
| [Tum off wamings
' Full Comments

Mumber of undoable modifications per window: I1lj

| 0K I Cancel Help

e Make sure Series 90-30 is shown in the Default Hardware Configuration box, then
click the OK button.

e Toopenafolder, click File on the Menu bar, then either click Open Folder to open an
existing one, or click New Folder to create anew one. You can alsoimport an existing
Series 90-30 folder that was originally created in Logicmaster or Control. See the
“Folder Operations” section of Chapter 2 in the VersaPro User’s Guide, GFK-1670 for
details. For this example, click New Folder. A New Folder Wizard dialog box will
appear as shown in the next figure.

Using VersaPro with the DSM314 467

User Manual
GFK-1742F

Appendix H
Jan 2020

Figure 223: The New Folder Wizard Dialog Box

MNew Folder Wizard

Folder Mame:
Locatior:

|E:\WIN95\Favorites g,’*l

Folder Description

Back I MNest » I Eirush LCancel

Enter a name for your folder. Although you can use up to 255 characters to name
the folder, only the last 7 characters will be used as the folder name in the PLC. These
last 7 characters of the Folder Name are called the Folder Nickname. This being the
case, you may wish to carefully name your folder so that its nickname is meaningful.
Forexample, if your Folder Name is “Pumphouse_Number_1,” the Nickname stored
to the PLC is “umber_1" which may not convey the meaning you desire. Better
names might be something like “PHouse1” or “PH1.” Chapter 2 of the VersaPro
user’s manual (GFK-1670) has a section that explains the rules for creating Folder
Names, including which characters are allowed.

You may also change the folder location path from the default path shown in the
Location field if you wish to store your folder in a different location. Also, there is a
Description field that allows you to enter up to 64 characters of description
information. When finished entering information in this dialog box, click the Finish
button. (If you wanted to import a Logicmaster or Control folder, you would click
Next, which would give you another dialog box with the import choices.) You will
now see the Main LD (Ladder Diagram) screen.

Using VersaPro with the DSM314

468

User Manual Appendix H
GFK-1742F Jan 2020

Figure 224: VersaPro’s Main Ladder Diagram (LD) Screen

Hardware Configuration Icon

J VerzaPro - dem314_1 - _MAINbIK
Menu Bar 4.*\2 Edit ¥iew [nzert Folder PLC Tools Window Help
NEEEIERRBA TS EREE) [EEs T YR UE) L ool Bar
x| [ololelelels] FE| || @8] | 258 apala) ==] 8] @ ool bars
b _1o]x =] ugrfu
\aiduare Canfiguation
. . E%\fanameuedaanm
Logic Editor —| WA LD
Window Folder Browser
Wimdow
Hame } Tpp= } Len I Address I Desciplion I Stored Vake } Scope } i } Ow I E:dl =1
- Information
|+] _Gisbd ¢ Tocal S Al S _Sydom S Tompoa K] _.[_'I Window
Fer Hep, mress Pl - [Dizcarme: e | [
Status Bar
H-2 Starting the Configuration Process

The configurator is actually a separate program that you can launch from the Main screen
(shown in the previous figure). To begin, double click the Hardware Bill| Configuration icon

to launch the HWC (Hardware Configuration) program. The HWC screen may appear as a
window in or on top of the VersaPro Workbench, as shown below. If so, click the Expand
button to expand it to full size. (You may also have to click the Expand Button in the smaller
window to expand it also.)

Using VersaPro with the DSM314 469

User Manual
GFK-1742F

Appendix H

Jan 2020
Figure 225: The Hardware Configuration (HWC) Startup Screen
Expand Button U
JF VersaPro - test77 - _MAIN.blk [=IE10]

File Edit ¥iew Inserd Folder PILC Tools Window Help

FEEEEEEEEEREEREE EEE

=]

[l:.:.s.smuﬂummmlﬂliszlmlEIEIJ@JUJEIEI_[IJET.IEIEIE[EI N
S HWLE - test77
File Edit Parameter View Tools Window Help

DM FER=E R DEREE FEE R

Flack b | Rack 7 |

| Rack2 | Rakd | Rackd

| Racki

ICEIICHSZ - Base 10 Slot Leed Aack]

A= F

B tast??

Bifl Hardwars Confoura
= vaiiablz DeclaratinrI
_MAIH -LD

Dec 01,1993 14.26:23 - Hw'C Opened U S EC B B2 BT

Clec 0. 1339 14 2625 - Validating Haidware Configrato

Dec 0. 133314 2525 - Vfidating Haicware Config.ratio Ovz[Stert |End |Addr |Mem Tuc| Calclog |

Clec 0. 1339 1435 29 - Validating Hadware Canfigrato |

Dec 01,1999 14:3% 29 - Vaidating Hadware Canfigration |

[« e _ Tolal %41 0000 Highest: D000 Limik: 2048 7
Diizplagy H ack Sypstam power consumption detals graph | A i—

I~

|T] Gonord f Find % Cross Roferonce 7 || KX [+]
For Hefp. press F1 [77= | [Cizconrected || I[I

The Configuration Window will expand to its full size:

Figure 226: The Expanded Hardware Configuration Screen

TiiHwe - ooz

Hff Fle Edit Parameter Yiew Tools Window Help (=]
CEE FEEEE Ehl EERERE EEE |
Rack 5 | Rack £ | Rack 7 Power Consumption farWain Power Supply
Man | Rackl | Reck2 | Reck3 | Rack+ Volts +§ &2}1 |+2-1| " Total
. - elay Solate
Border > |00

7
a0
15
]
Rackiiatts 10080 0.000 oo
PSwiaEts 15000 15000 20,000
Al Cit Wiatte 0.000 0.000 10.040

CEAZCHE3ET - Base 10 Sl [[Coeal Fack ||

Mew 17,1999 11:24:39 - Hw/C Opered N P EE N NN EAD

Mo 17,1993 11:24:42 -V slidating Hardware Canfiquiation - st 02

Mow 17,1993 11:24:42 -Validatng Hardwara Configuraton completed. Emors = Overl| St |End Add Wem Type | Catalog B

[Ii] 0084 az Consumed | [CES20SM3T4
(1 Total %41 0084 Highest (024 Limit- 2048
Rizzdy [

Using VersaPro with the DSM314

470

User Manual

GFK-1742F

H-3

Appendix H
Jan 2020

Configuring the DSM314

The following information discusses configuring the DSM314. For configuring other
hardware, please refer to the VersaPro User’s Guide, GFK-1670, and the VersaPro on- line
help.

e With the Configuration window open, as shown in the previous figure, double click
the empty slot where the DSM314 is to be installed. You will see a Module Catalog
window appear with a list of module categories:

Figure 227: Module Catalog Widow for Hardware Configuration

Module Catalog |

Analog Output | &nalog Mixed | Communications I Bus Controller | totion I
Intelligent Option |
Discrete Input I Discrete Output | Discrete Mixed I Analog Input I 3rd Party |
Cancel I
Catalog Murnber Description ||
8 Circuit Input Generic Help I
IN 16 16 Circuit Input Generic
IN 32 32 Circutt Input Generic
IN B4 B4 Circuit Input Genenc
ICE33ACC300 Input Simulator Module
ICE93MDL230 8 Circuit Input 120 VAL | solated
ICEI3IMDLZ31 8 Circuit Input 240 VAL |solated e
ICE33MDL240 16 Circuit Input 120 VAL
ICEI3MDL241 16 Circuit Input 24 VDC
ICEI3MDLES0 8 Circuit Input 24 WDC Positive Logic
ICE33MDLEZ2 8 Circuit Input 125 VDI Positive / Negative Logic
ICE93MDLES3 8 Circuit Input 24 VD C Megative Logic
ICEI3MDLE4 2 Circuit Inout 24 VDC Positive / Neaative Loaic ﬂ

e (lick the Motion tab to access a list of motion module choices:

Figure 228: Motion Tab for Hardware Configuration

Module Catalog B |

|rtelligent Option I
Discrete Inpull Dizcrete Dutputl Discrete MiHedI Analog Input] ard Partyl

Analog Output | Analog Mixed | Comrmunications I Bus Controller | Motion |
Cancel

Catalog Murnber | Description || ;I
IC6334PLIZ00 High Speed Counter Module Help I
ICE33APUEM Motion Mate &PM 1-Axis
ICE334PU302 Motion Mate APM 2-Auis
ICEI3a P30S 90-301/0 Processor Module
ICEI3M R0 Digital Servo Interface Unit

Motion Mate DSM302

IC633D5M302

Motion Mate DSM314

Using VersaPro with the DSM314 471

User Manual AppendixH
GFK-1742F Jan 2020

e Double click the IC693DSM314 or highlight it as shown and click the OK button. The
DSM314 will be added to the on-screen rack, and its Configuration window will
appear:

Figure 229: DSM314 Hardware Configuration Window

TH HWC - dsm314_1 (0.2) IC693DSM314

File Edit Parameter View Tools Window Help
2 =)) = e e = [[
Bili dsm314_1 =

Main | Rack 1] Fiack 2| Fiack 3 | Rack 4| Riack 5] Rack 6 | Rack 7|

R 2]

[} dsm314_1 (0.2) ICE93DSM314 O] x]
| Settings | SNP Port | CTL Bits | Output Bits | Auds #1] Avis #2] Awis 83| Tuning #1 | Tuning #2 | Advanced | Power Consumption |
Parameters Values -l
Arambar nédamn 4 _]
% Referance: *100001
%l Length:
%0 Reference: #030000
%0 Lenglh:
4l Reference: FAI0001
Al Length: 34
A0 Reference: #A0000m
| | A0 Length: 12
i 7 Mok Analog Servo -~
T e y
1 & - - - - ., - -
Sep 10,1939 13:33:33 - HWC Opened O B G I T I I O

Sep 10, 1993 13:32:40 - Validating Hardware Configuration - dsm314_1 Overl] Start Erd add Mem T Tatalon
Sep 10, 1999 13:33:40 - Validating Hardware Configuration completed. Errors = 0 e 0;0[1 0384 02 ! c =0 ""D: |cas;3gsm1 r
Sep 10, 1333 14:37:37 - Add Module ICEI3DSM314 2t [0.2] - dsm314_1 d Onsume:

] | »]|| Total %41: 0084 Highest: 0084 Limit: 2048
Feady

The figure above shows the DSM314 default configuration settings. Only 11 of the selection
tabs are displayed. Other tabs not shown will appear if their associated parameters are
selected. For details on individual configuration settings, refer to Chapter 4. Here is a
summary of the tabs:

Using VersaPro with the DSM314 472

User Manual
GFK-1742F

Appendix H
Jan 2020

Table 98: DSM314 Hardware Configuration Window Selection Tabs

Tab Name Description

Settings Contains PLC Reference assignments and lengths, DSM Axis setup, and other
global data.

SNP Port Setup for the DSM front panel SNP port (labeled COMM).

CTL Bits Configuration for 24 Control bits used inside the DSM.

Output Bits Configuration for the 8 DSM faceplate digital outputs.

Axis #1 Configuration of axis parameters such as Position Limits, Find Home Velocity,

Axis #2 and Jog Acceleration.

Axis #3

Axis #4

Tuning #1 Configuration of servo loop tuning items such as Motor Type, Position Loop Time

Tuning #2 Constants, and Velocity Feedforward parameters.

Tuning #3

Tuning #4

Advanced Allows user entry of custom tuning parameters for any axis.

Power Lists DSM power consumption required from the backplane supply (4.0 watts

Consumption plus encoder power).

e When finished configuring the module, click the DSM314 configuration window’s
close button (the button in the upper right corner of the configuration window with
an X) to return to the “Rack View.” At this point, your configuration settings are not

yet saved to disk. They only reside in your computer’s volatile RAM memory.

Saving Your Configuration Settings to Disk

e Click File on the Menu bar, then click Save on the drop-down File menu. The
configuration settings will be written to the applicable file in your program folder.
Once afile is saved, the Save selection on the Menu file becomes inactive (it changes
from black to a light green color). If you make any further changes to the
configuration, the Save selection on the File menu will return to its active state (and

its color will change back to black).

e After saving your configuration file, click File on the Menu bar, then click Exit to

return to the Main LD screen.

Using VersaPro with the DSM314

473

User Manual AppendixH
GFK-1742F Jan 2020

H-4 Connecting to and Storing Your Configuration
to the PLC

Note: You cannot store your configuration file to the PLC from within the configurator program. You
must be on VersaPro’s Main LD screen in order to store to the PLC.

Useful Tool Bar Icons

Several toolbar icons will be used in the next several steps to initiate such operations as
Connect, Stop the PLC, and Store. The following figure identifies these toolbar icons:

Figure 230: VersaPro Toolbar Icons

Connect
Disconnect

Store to PLC EFL"lal Eﬁ-bll'?gnl E=L| I—"- O | :ﬁl ..”Elul |

Load from PLC

Verify with PLC

Run PLC

Stop PLC e @

Toggle a Reference

9. Override a Reference

10. Write a Value to a Reference
11. View PLC Status

NGO R O =

Connecting to the PLC

e On the main VersaPro screen, click the Connect icon on the Toolbar. The Connect
dialog box will appear.

Figure 231: The Connect Dialog Box

N - |

— Device Screen
O TCPAP &) SNP Serial
ISaT .
B LN
~ Device ~ Paort
MOTPROG_DEVICE || |COM2 il
samp COM3
bam ComM4
| |IMOTPROG_PORT
[Automatic
port selection

e Ifconnectingdirectly to the PLC programmer port from the COM1 serial port on your
computer, use the DEFAULT settings shown in the figure above.

Using VersaPro with the DSM314 474

User Manual
GFK-1742F

Appendix H
Jan 2020

e Make sure your serial cable is connected between your computer and the serial port
on the PLC. Then click the Connect button on the Connect dialog box to begin
connecting to the PLC. The message bar at the bottom of the VersaPro screen will
display a “Connecting” message with a horizontal bar graph. Once the connection is
made, the Status bar message will change from Disconnected to Connected.

Stopping the PLC

e The PLC must be stopped to store configuration files, so click the Stop icon on the
Tool bar. The Stop Execution dialog box will appear.

Figure 232: The Stop Execution Dialog Box

Stop Execution E |

Are you sure?
" Outputs Enabled

' Outputs Disabled No

e Click Yes to stop the PLC. The Status bar message at the bottom of the screen will
change from Run Enabled to Stop Disabled.

Store Operation

e Click the Store to PLC icon on the Tool bar. The Store Folder to PLC dialog box will
appear.

Figure 233: The Store Folder to PLC Dialog Box

Store Folder to PLC |

VI Store hardware configuration and mation to PLC Cancel_|

[V Store logic to PLC

[~ Store stored/overidden values to PLC Help

e Make sure the “Store hardware configuration and motion to PLC” item is checked as
shown, then click the OK button to store to the PLC. Once the store is complete, the
message on the Status bar at the bottom of the screen will change from Not Equal
to Equal.

Using VersaPro with the DSM314

475

User Manual Appendix H

GFK-1742F Jan 2020
H-5 Creating a Motion Program
H-5.1 Accessing the Motion Editor Screen

Both the Motion Editor and Local Logic Editor are accessed from the VersaPro Folder
Browser window. However, once created and saved, motion programs and Local Logic
programs become part of the PLC CPU Hardware Configuration and are Stored to the PLC
with the other configuration information.

e Onthe Main LD screen, click File on the Menu bar, then select New Motion. Then, on
the side menu, click Motion Program (see next figure).

Figure 234: Creating a New Motion Program from the File Menu

& YersaPro - CamExample
(A=W Edit View |nsert Folder PLC Tools Window Help

2) New Black... B [l oslsel =1 wol o || w8 =lw|

M= |

New Mation Local Logic Program...
New Reference View Table. .. M otion Program... (3 !ml ‘l iz | I@ @
New Variable View Table... Cam Program...

Hicave [tries
Gl Savesl S hift+Clrl+
[Elose (efriFk
‘@) New Folder... Ctrl+N
(2 Open Folder... CtikO
Cloze Folder
= it [t +F
Print Report...
Page Setup...
1 CamExample.fld
2 Dehdhm'. AGE&ppl314.6id -

3 D:Adhmt. . AGEAppNGEAppl.fid
4 D:Adhm's, . SCAMAbortT est. fid

Exit AFs | -l
T[T GErers A s FErden: | 4 |»
|RunEnabled |Connected [470

Using VersaPro with the DSM314

476

User Manual AppendixH
GFK-1742F Jan 2020

e The Create New Motion Program dialog box will appear.

Figure 235: The Create New Motion Program Dialog Box

Create New Motion Program X |

M armne: Ok
IF'art 1

Cancel
Description:

Motion Program for Part 1]

Help |

Mation Module Type: IDSM 34 3

e Enter the motion program Name and Description, then click the OK button (leave
the Motion Module Type box set at its default DSM314 setting). A window for the
new motion program block will open. As shown in the next figure, the window title
is based upon the folder name, Test102 in this case, and motion program name,
Part1 in this case. Notice also in the next figure that an icon for the new motion
program, called “Part1 - MP” (Motion Program), appears in the Folder Browser
window.

Figure 236: A New Motion Editor Window

% File Edit o lntelt Folder PFLC Toole Window Help ;[ilﬂ
ala| el []we] S]o[x] &) W] 0| [a@mlae) &|FE @5
(] lolololels] vlal =1|| oll||*JS] slalal »[s] Sapl@
! =g etz
Bif Harchuzre Configuraticn
7 Variable Declaraions
gh _HEN - LD
Part1 - MP
E — o
HNamzs I Tvoo | Le=n | Addiess | Descipbon | Stored Yalue | Scops | F||:l| Ol | E:-:ll J-l
||r ", Global Local o &l ho Spztem >\ Termporan u rI-v
Far Halp, prass F1 [772 |Discornach=d | 1]

i start| g nbor - icrosait Dutiok, | B Mizoccitword - coriva. | [] VersaPro - testiD2 | @ Microsait Photo Edior .| | LTI 115440

Using VersaPro with the DSM314

477

User Manual
GFK-1742F

H-5.2

H-5.3

H-5.4

Appendix H
Jan 2020

e The text-based motion programs and subroutines are created in the Motion Editor
window, as shown in the following figure. Up to 10 motion programs and 40
subroutines, separated by their identifying headers (such as “PROGRAM 1 MULTI-
AXIS”), are programmed in the same window and are stored in the same file. Details
on motion program commands and syntax are covered in Chapter 7.

Figure 237: Motion Editor Window with Programmed Code

%Fie Edit Wiew Inset Folder PLC Toolz Window Help

alal =lala@ iuel oo &l 2 o] |[FlEmmales =2E &5

FMQML&IJIIIE@II * /5] alala] [»]n] o5[]w])|
FROCEZE 1 HULTI 2115

AZCEL AEIS1 S00000 7 testin2

YELDC AXISL S0000 Kif Haorcwere Confiouraticn
. CaLll 2 Wanable Declaiation:

CHOVE &KTS2 —100000. ABS. LINEAR _AIN - LD
DRELL &EIS:Z o000 Pt - 4P
JUKF
CALL P255
LJAD P21%,
FHOYE AHISL
ENDEROG

CTLi1. 1

05419296
3288607, IHCR., S-CURVE

SUBROUTINE & WILTI-AXTS
EL &xIS: F10d
VELOC &AHIS2 P10S
CHOYE ANIS2 P00,
CHELL AXTIS2 POO1
CTLOL, 2
FMOVE AXIS2 P214.

IHNCE. S-CURVE

AE=, LINEAE

_»I_I
Desciphion | Shored Yalue | Scops | Fict | Owr | E:-cll J-l

o
Scl

| BMP Edtor Cocor. | [BT B 217 P

II k(o Global

Fan Helo, prass F1

i Start| R oo - Mirocoit...| [P Micrcsok Word - |[F] VersaPro - tes. BRIHWE - [dcez)

Local n &l & Spstem >\ Temporary u

[777

|Dizcornacted [

Saving your Motion Program

e When ready to save your motion program/subroutine file to your computer’s hard
disk, either click the Save icon on the tool bar (looks like a floppy diskette), or click
File from the Menu bar and click Save.

Storing your Motion Programs and Subroutines to the
PLC

Since the Motion Program/Subroutine file is considered part of the Configuration file group,
use the procedure under the heading “Connecting to and Storing Your Configuration to the
PLC” on page 473.

Printing a Hardcopy of your Motion Programs and
Subroutines

There are two print selections on the File menu: Print and Print Report.

Using VersaPro with the DSM314

478

User Manual
GFK-1742F

Appendix H
Jan 2020

Print

This item describes how to print your entire motion program file (block). While the

Motion Editor is active, click File on the Menu bar and select Print. The Printer dialog
box will display. Make any desired printer setup changes, then click the OK button.

Figure

238: Print Dialog Box

N -

Printer \
Name: ech Witihg PLC Properties |
Status: Default printer; Ready

Tupe: HP Laserlet 45i/45iMx PS
Where: S\\ChontO0tech_wrt_ple

-~

Comment: 1 Print ta file
 Print range r Copies

® Al Mumber of copies: 1 2

) Pages from: I'l tor |1

Selection

Print

Using VersaPro with the DSM314

This item describes how to print just a selected portion of your motion
program/subroutine file. In the Motion Editor window, use your mouse to select the
portion you wish to print, click File on the Menu bar, then select Print. In the Print
dialog box (shown above), make sure the Selection radio button in the Print range
section is selected (has a dot in the middle). Click the OK button.

Report

To print all motion program blocks (if you have more than one) as part of a report
with the other information in the folder, click File on the Menu bar and select Print
Report. The Print Report dialog box will appear. Click the Blocks checkbox on the
Print Report dialog box. Make sure the All radio button is selected. (You can also
select other items and features for the report such as Table of Contents, Cross
References, Variables, etc.) Click the OK button to start printing. Motion program,
Local Logic, and Ladder Diagram blocks will be printed as part of this report.

To print only selected blocks, highlight them in the Folder Browser window. Click File
on the Menu bar and select Print Report. Click the Blocks checkbox, then choose the
Selected radio button. This limits the reports to only those blocks that you have
highlighted in the Folder Browser window.

479

User Manual Appendix H
GFK-1742F Jan 2020

Figure 239: The Print Report Dialog Box

A VersaPro - MotionT est - [MPExample. blk] -1=1x]
€y File Edit View Insert Folder PLC Took Window Help M|
ala) =lale| klale| S[-lx] 5] el ol | almmlale| @@ Al
%] o]w]elelslel kel @l alll el alalal yla] @l @
{, Frogran la P m] MotionTast
(* Descriptic| P B} Hardware Confi
E: :ggnmgégﬁl Name: Tachwiting PLC N
%0 to 1 _MAMN LD
b | W WAChonDech_m_plc [y— 5 oL
(* Varisbles R vl L
(% CTLO1 - Br| % Boeks————— 1| Cross Beference ™ Wariabh E sample -
R e] o
(CMl @ Selected ® Fader © PuBlack Include fiom Yarisbls Lk AV I Esarele
FROGRAM 1 XTI | |nchude Include Declaration T able: S . .
ACCEL 100 = [iderttiers < [elGIabal Vanabies Epp—— Highlighted
VELOC [|Propertties [zl CLocal Variables - MOtiOn
¥ sriable Infomation w40 CIsystem Varisbles
“Selected’—1 UATT CTIO e T smporary Varisbles Prog ram
electe PUOVE 10 " [V
Radio Te mhco, [PR = Bl... k
™ Fint Lable of Contents R
Button ENDEROG [Pint Header Page z$ 7 Incha Local Losgic
)2 Variabl |
Starling Page Nunber: [T 2! =l a - Folder
Browser
K1 — ok || cencel Hel i
—— o c Heb Window
4|+ [_Genesl {_Find n_Cioss Rielererce Fl D
For Help, press F1 [777 |Disconnected || \ |
i start| Rgirbo - irosot Dutock || 7 Microscitwird - chapter’..| [3 VersaPro - MotionTe... ol B

H-6 Creating a Local Logic Program

Both the Motion Editor and Local Logic Editor are accessed from VersaPro’s Folder Browser
window. However, once created and saved, motion programs and Local Logic programs
become part of the PLC CPU Hardware Configuration and are Stored to the PLC with the
other configuration information.

e Onthe Main LD screen, click File on the Menu bar, then select New Motion. Then, on
the side menu, click Local Logic Program.

Figure 240: Creating a New Local Logic Program

Edit Yiew Insert Folder PLC TJTools Window Help

2] New Block.... Cul+B l_.lyl 2| w2l ||u__|

New Belference View Table... Motion Program. ..
New Vanable View Table...

[Save Crl+S

Gi Save Al Shift+Ctrl+A
Close Ctrl+F4

"ﬂ New Folder... Ctrl+N

ﬁ Dpen Folder... Cul+D
Close Folder

Using VersaPro with the DSM314 480

User Manual Appendix H
GFK-1742F Jan 2020

The Create New Local Logic dialog box will appear.

Figure 241: Create New Local Logic Dialog Box

Create New Local Logic Pr