
USER MANUAL

GFK-1742F

Jan 2020

PACSystems™ RX3i & Series 90-30
DSM314 MOTION CONTROLLER

USER MANUAL

User Manual Contents
GFK-1742F Jan 2020

Contents i

Contents

Chapter 1: Product Overview .. 1

1.1 Features of the Motion Mate DSM314 .. 2

1.1.1 High Performance ... 2

1.1.2 Easy to Use .. 2

1.1.3 Versatile I/O .. 3

1.2 Section 1: Motion System Overview ... 4

1.2.1 DSM314 Operation with a Host Controller ... 4

1.3 Section 2: Overview of DSM314 Operation .. 9

1.3.1 Standard Mode Operation ... 10

1.4 Section 3:  Series Servos (Digital Mode) ... 12

1.4.1  Series Integrated Digital Amplifier (SVU) .. 13

1.5 Section 4:  Series Servos (Digital Mode) ... 14

1.5.1  Series Digital Amplifiers .. 15

1.6 Section 5: SL Series Servos (Analog Velocity Mode) .. 16

Chapter 2: System Overview ... 17

2.1 Unpacking the System ... 18

2.1.1 Unpacking the DSM314 ... 18

2.1.2 Unpacking the Digital Servo Amplifier ... 18

2.1.3 Unpacking the Motor .. 18

2.2 Assembling the Motion Mate DSM314 System... 19

2.2.1 General Guidelines .. 19

2.2.2 Motion Mate DSM314 Connections ... 19

2.2.3 Connecting the Series SVU Digital Servo Amplifier 20

2.2.4 Connecting the β Series SVU Digital Servo Amplifier 28

2.2.5 Installing and Wiring the DSM314 for Analog Mode 36

2.2.6 Grounding the Motion Mate DSM314 Motion System 37

2.3 Turning on the Motion Mate DSM314 .. 38

2.4 Connecting the Programmer to the Host Controller .. 39

2.5 Machine Edition Configuration .. 40

2.6 Storing Your Configuration to the Host Controller ... 44

2.7 Alarms ... 46

2.8 Configuration Settings .. 46

2.9 Getting Help .. 46

User Manual Contents
GFK-1742F Jan 2020

Contents ii

Chapter 3: Installing and Wiring the DSM314 47

3.1 Hardware Description .. 47

3.1.1 LED Indicators ... 48

3.1.2 The DSM COMM (Serial Communications) Connector.............................. 49

3.1.3 I/O Connectors .. 49

3.1.4 Shield Ground Connection .. 50

3.2 Installing the DSM314 Module ... 51

3.3 I/O Wiring and Connections ... 54

3.3.1 I/O Circuit Types .. 54

3.3.2 Terminal Boards .. 55

3.3.3 Digital Servo Axis Terminal Board - IC693ACC335 56

3.3.4 Auxiliary Terminal Board - IC693ACC336 ... 61

3.3.5 Cables ... 64

Chapter 4: Configuration .. 93

4.1 Connecting the Programmer to the Host Controller .. 93

4.2 Rack/Slot Configuration... 94

4.3 Module Configuration ... 97

4.3.1 Setting the Configuration Parameters ... 98

4.3.2 Settings... 99

4.3.3 Serial Communications Port Configuration Data 104

4.3.4 Control (CTL) Bits .. 105

4.3.5 Output Bits .. 106

4.3.6 Axis Configuration Data ... 107

4.3.7 Tuning Data .. 122

4.3.8 Computing Data Limit Variables .. 128

4.3.9 Advanced Tab Data ... 129

4.3.10 Power Consumption Data ... 130

Chapter 5: DSM314 to Host Controller Interface 131

5.1 Section 1: %I Status Bits .. 131

5.2 Section 2: %AI Status Words ... 136

5.3 Section 3: %Q Discrete Commands ... 139

5.4 Section 4: %AQ Immediate Commands .. 145

Chapter 6: Non-Programmed Motion.................................. 163

6.1 DSM314 Home Cycle ... 163

User Manual Contents
GFK-1742F Jan 2020

Contents iii

6.1.1 Home Switch Mode ... 163

6.1.2 Move+ and Move– Modes ... 166

6.2 Jogging with the DSM314 .. 167

6.3 Move at Velocity Command... 168

6.4 Force Servo Velocity Command (DIGITAL Servos; Analog Torque Mode) 169

6.5 Force Analog Output Command (ANALOG Velocity Interface Servos) 169

6.6 Position Increment Commands ... 170

6.7 Other Considerations .. 170

Chapter 7: Programmed Motion ... 171

7.1 Single-Axis Motion Programs and Subroutines ... 171

7.2 Multi-Axis Motion Programs and Subroutines .. 172

7.3 Motion Program Command Types ... 172

7.4 Program Blocks and Motion Command Processing .. 174

7.5 Prerequisites for Programmed Motion ... 174

7.6 Conditions That Stop a Motion Program .. 175

7.7 Motion Program Basics .. 175

7.7.1 Motion Language Syntax and Commands .. 176

7.7.2 Motion Program Commands ... 178

7.7.3 Program and Subroutine Structure .. 187

7.7.4 Command Usage Examples ... 190

7.7.5 Types of Programmed Move Commands ... 192

7.7.6 Other Programmed Motion Considerations ... 208

7.7.7 Feedhold with the DSM314 ... 210

7.7.8 Feedrate Override ... 211

7.7.9 Multi-axis Programming .. 212

7.7.10 Parameters (P0-P255) in the DSM314 .. 213

7.7.11 Calculating Acceleration, Velocity and Position Values 215

7.7.12 Motion Editor Error and Warning Messages ... 218

Chapter 8: Follower Motion .. 223

8.1 Master Sources .. 223

8.2 External Master Inputs ... 224

8.2.1 Example 1: Following Axis 3 Actual Position Master Input 224

8.3 Internal Master Axis Command Generators .. 224

8.3.1 Example 2: Following an Internal Master command 225

8.4 A:B Ratio.. 225

User Manual Contents
GFK-1742F Jan 2020

Contents iv

8.4.1 Example 3: Sample A:B Ratios .. 226

8.5 Velocity Clamping ... 227

8.5.1 Example 5: Velocity Clamping ... 227

8.6 Unidirectional Operation ... 228

8.6.1 Example 9: Unidirectional Operation ... 228

8.7 Enabling the Follower with External Input .. 228

8.8 Disabling the Follower with External Input ... 229

8.9 Follower Disable Action Configured for Incremental Position 229

8.10 Follower Axis Acceleration Ramp Control ... 229

8.10.1 Follower Mode Command Source and Connection Options 233

Chapter 9: Combined Follower and Commanded Motion 239

9.1 Example 1: Follower Motion Combined with Jog .. 239

9.2 Follower Motion Combined with Motion Programs .. 240

9.3 Example 2: Follower Motion Combined with Motion Program 244

Chapter 10: Introduction to Local Logic Programming 246

10.1 Local Logic Programming .. 246

10.2 When to Use Local Logic Versus Ladder Logic ... 249

10.3 Getting Started with Local Logic and Motion Programming 249

10.3.1 Requirements ... 249

10.3.2 Creating a Local Logic Program ... 250

10.4 Local Logic Variable Table .. 251

10.5 Connecting the Local Logic Editor to the DSM .. 253

10.6 Building a Local Logic Program .. 254

10.6.1 Creating a Local Logic Program ... 254

10.6.2 Checking Local Logic Syntax .. 257

10.6.3 Setting up Hardware Configuration for Local Logic 258

10.7 Downloading a Local Logic Program .. 262

10.8 Executing Your Local Logic Program .. 264

10.9 Using the Motion Program Editor... 265

10.9.1 Creating a Motion Program ... 265

10.9.2 Setting Motion Program Parameters in Hardware Configuration 271

10.10 Executing Your Motion Program .. 274

Chapter 11: Local Logic Tutorial .. 275

11.1 Statements.. 275

11.2 Comments .. 276

User Manual Contents
GFK-1742F Jan 2020

Contents v

11.3 Variables ... 276

11.4 Operators .. 277

11.4.1 Arithmetic Operators .. 277

11.4.2 Relational Operators ... 278

11.4.3 Bitwise Logical Operators .. 279

11.5 Local Logic / Host Controller / Motion Program Communication 280

11.6 Local Logic Programming Examples ... 280

11.6.1 Torque Limiting Program Example .. 280

11.6.2 Gain Scheduler Program Example .. 282

11.6.3 Programmable Limit Switch Program Example 282

11.6.4 Trigger Output Based Upon Position Program Example 283

11.6.5 Windowing Strobes Program Example ... 285

Chapter 12: Local Logic Language Syntax 286

12.1 Syntactic Elements .. 286

12.1.1 Numeric Constants.. 286

12.1.2 Local Logic Variables ... 287

12.1.3 Local Logic Statements .. 288

12.1.4 Whitespace ... 289

12.1.5 Comments .. 290

12.1.6 PRAGMA Directive ... 291

12.1.7 Local Logic Keywords and Operators ... 291

12.2 Enabling and Disabling Local Logic ... 292

12.3 Local Logic Outputs/Commands .. 292

12.4 Local Logic Arithmetic Operators ... 293

12.4.1 Operator + .. 294

12.4.2 Operator - ... 294

12.4.3 Operator * .. 295

12.4.4 Operator MOD .. 295

12.4.5 Function ABS ... 296

12.5 Local Logic Bitwise Logical Operators ... 296

12.5.1 Operator BWAND .. 297

12.5.2 Operator BWOR .. 297

12.5.3 Operator BWXOR .. 298

12.5.4 Operator BWNOT .. 298

12.6 Comparison Operators .. 299

User Manual Contents
GFK-1742F Jan 2020

Contents vi

12.7 Local Logic Runtime Errors ... 300

12.7.1 Overflow Status ... 300

12.8 Local Logic Error Messages .. 301

12.8.1 Local Logic Build Error Messages .. 301

12.8.2 Local Logic Syntax Errors ... 302

12.8.3 Local Logic Parse Errors ... 302

12.8.4 Local Logic Parse Warnings .. 305

12.8.5 Local Logic Download Error Messages ... 305

12.8.6 Local Logic Runtime Errors .. 307

Chapter 13: Local Logic Variables .. 308

13.1 Local Logic Variable Types ... 308

13.2 Local Logic System Variables ... 309

13.2.1 First_Local_Logic_Sweep Variable ... 309

13.2.2 Overflow Variable .. 309

13.2.3 System_Halt Variable .. 310

13.3 Double Precision 64 Bit Registers ... 310

13.4 Local Logic User Data Table ... 311

13.5 Digital Outputs / CTL Variables .. 312

Chapter 14: Local Logic Configuration 319

14.1 CTL Bit Configuration ... 319

14.2 CTL bits CTL01-CTL32 .. 320

14.3 CTL01-CTL24 Bit Configuration Selections ... 321

14.4 FBSA Function and CTL Bit Assignments ... 322

14.5 Faceplate Output Bit Configuration ... 322

Chapter 15: Using the Electronic CAM Feature 324

15.1 Electronic CAM Overview ... 324

15.2 Basic Cam Shapes/Definition ... 326

15.3 CAM Syntax ... 327

15.3.1 CAM Types .. 327

15.3.2 Interpolation and Smoothing .. 330

15.3.3 Interaction of Motion Programs with CAM ... 332

15.3.4 CAM Command ... 333

15.3.5 CAM-LOAD Command... 334

15.3.6 CAM-PHASE Command ... 335

User Manual Contents
GFK-1742F Jan 2020

Contents vii

15.3.7 CAM and MOVE Instructions .. 335

15.3.8 Time-Based CAM Motion ... 336

15.3.9 CAM Scaling Editor and Hardware Configuration 336

15.3.10 Synchronization of CAM Motion with External Events 340

15.3.11 CAM-Specific DSM Error Codes .. 341

15.4 Electronic Cam Programming Basics .. 343

15.4.1 Requirements ... 343

15.4.2 Introduction to Electronic Cam Programming 343

Appendix A: Error Reporting ... 364

A-1 DSM314 Error Codes ... 364

A-1.1 Module Status Code Word ... 364

A-1.2 Axis Error Code Words ... 364

A-1.3 Error Code Format ... 365

A-1.4 Response Methods .. 365

A-1.5 System Error Codes ... 384

A-2 DSM Digital Servo Alarms (B0–BE) ... 384

A-3 Troubleshooting Digital Servo Alarms .. 386

A-4 LED Indicators ... 389

Appendix B: DSM314 Communications Request Instructions .. 391

B-1 Communications Request Overview .. 391

B-1.1 Structure of the Communications Request .. 392

B-1.2 Monitoring the Status Word .. 394

B-1.3 Operation of the Communications Request ... 395

B-2 The COMM REQ Ladder Instruction .. 396

B-3 The User Data Table (UDT) COMM REQ .. 398

B-3.1 User Data Table COMM REQ Features and Usage Information 398

B-3.2 The UDT COMM REQ Command Block ... 399

B-3.3 User Data Table COMM REQ Example .. 401

B-3.4 User Data Table COMM REQ Example .. 403

B-4 The Parameter Load COMM REQ .. 404

B-4.1 The Command Block ... 404

B-4.2 DSM Parameter Load COMM REQ Example .. 407

B-5 COMM REQ Ladder Logic Example ... 409

Appendix C: Position Feedback Devices 414

User Manual Contents
GFK-1742F Jan 2020

Contents viii

C-1 Digital Serial Encoder Modes ... 414

C-2 Incremental Encoder Mode Considerations .. 414

C-3 Absolute Encoder Mode Considerations... 415

C-3.1 Absolute Encoder - First Time Use or Use After Loss of Encoder Battery Power 415

C-3.2 Absolute Encoder Mode - Position Initialization 415

C-3.3 Absolute Encoder Mode - DSM314 Power-Up .. 416

C-3.4 Incremental Quadrature Encoder .. 417

Appendix D: Tuning Digital and Analog Servo Systems 418

D-1 Start-Up and Tuning Information for Digital Servo Systems 418

D-1.1 Validating Home Switch, Over Travel Inputs and Motor direction 418

D-1.2 Tuning a Digital Servo Drive... 421

D-2 Start-Up and Tuning Information for Analog Servo Systems 431

D-2.1 Analog Mode Velocity Interface System Startup Procedures 431

D-2.2 Analog Mode Torque Interface System Startup Procedures 433

D-3 System Troubleshooting Hints (Analog Mode) ... 448

Appendix E: Local Logic Execution Time 450

E-1 Local Logic Execution Timing Data ... 450

E-2 Example 1 .. 450

E-3 Example 2 .. 451

Appendix F: Updating Firmware in the DSM314 458

F-1 Windows Update (for Windows 95/NT/98/2000) ... 459

F-2 DOS Update .. 459

F-3 Restarting an Interrupted Firmware Upgrade ... 460

Appendix G: Strobe Accuracy Calculations 461

G-1 Analog Mode ... 461

G-2 Digital Mode .. 461

Appendix H: Using VersaPro with the DSM314 466

H-1 Getting Started ... 466

H-1.1 Starting VersaPro .. 466

H-2 Starting the Configuration Process .. 469

H-3 Configuring the DSM314 ... 471

H-4 Connecting to and Storing Your Configuration to the PLC 474

H-5 Creating a Motion Program ... 476

User Manual Contents
GFK-1742F Jan 2020

Contents ix

H-5.1 Accessing the Motion Editor Screen ... 476

H-5.2 Saving your Motion Program ... 478

H-5.3 Storing your Motion Programs and Subroutines to the PLC 478

H-5.4 Printing a Hardcopy of your Motion Programs and Subroutines 478

H-6 Creating a Local Logic Program .. 480

H-6.1 Checking Local Logic Syntax .. 484

H-6.2 Viewing the Local Logic Variable Table .. 485

H-7 Creating a Cam Block ... 487

GFK-1742F Jan 2020

 x

Warnings And Caution Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages,
currents, temperatures, or other conditions that could cause personal injury to exist
in this equipment or may be associated with its use.
In situations where inattention could cause either personal injury or damage to
equipment, a Warning notice is used.

 Caution

Caution notices are used where equipment might be damaged if care is not taken.

Notes: Notes merely call attention to information that is especially significant to understanding and operating
the equipment.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every
possible contingency to be met during installation, operation, and maintenance. The information is supplied
for informational purposes only, and Emerson makes no warranty as to the accuracy of the information
included herein. Changes, modifications, and/or improvements to equipment and specifications are made
periodically and these changes may or may not be reflected herein. It is understood that Emerson may make
changes, modifications, or improvements to the equipment referenced herein or to the document itself at any
time. This document is intended for trained personnel familiar with the Emerson products referenced herein.

Emerson may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not provide any license whatsoever to any of these patents.

Emerson provides the following document and the information included therein as-is and without warranty of
any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability
or fitness for particular purpose.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 1

Chapter 1: Product Overview
The Motion Mate DSM314 is a high performance, easy-to-use, multi-axis motion control

module that is highly integrated with the PACSystems RX3i and Series 90-30 host controller

logic solving and communications functions.

The two versions of the DSM314, IC693DSM314 and IC694DSM314 are functionally

identical.

Figure 1

The DSM314 supports two primary control loop configurations:

• Standard Mode (Follower Control Loop Disabled)

• Follower Mode (Follower Control Loop Enabled)

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 2

Servo Types Supported

• Digital – Series and  Series digital servo amplifiers and motors. These products are

documented in Servo Product Specifications Guide, GFH-001.

• Analog – SL Series analog servos and third-party analog velocity command interface

and analog torque command interface servos are supported. The SL Series servos

are documented in the SL Series Servo User’s Manual, GFK-1581.

1.1 Features of the Motion Mate DSM314

1.1.1 High Performance
• Digital Signal Processor (DSP) control of servos

• Block Processing time under 5 milliseconds

• Velocity Feed forward and Position Error Integrator to enhance tracking accuracy

• High resolution of programming units

— Position: -536,870,912...+536,870,911 User Units

— Velocity: 1 ... 8,388,607 User Units/sec

— Acceleration: 1 … 1,073,741,823 User Units/sec/sec

1.1.2 Easy to Use
• Simple and powerful motion program instruction set

• Simple 1 to 4-axis motion programs. Multi-axis programs using Axes 1 and 2 may

utilize a synchronized block start.

• Non-volatile storage for 10 programs and 40 subroutines created with the

programming software.

• Compatible with Series 90-30 CPUs equipped with firmware version 10.0 or later

(does not work with CPUs 311 – 341 and 351) and PACSystems RX3i CPUs (version

2.8 or later).

• Single point of connection for all programming and configuration tasks, including

motion program creation (Motion Programs 1 – 10) and Local Logic programming.

All programming and configuration are loaded through the host controller’s

programming communications port. In turn, the CPU loads all configuration,

motion programs, and Local Logic programs to the DSM314 across the host

controller backplane.

• User scaling of programming units (User Units) in both Standard and Follower

modes.

• DSM314 firmware, stored in flash memory, is updated via the front panel COMM

port. Firmware update kits provide firmware and Loader software on floppy disk.

Firmware is also available for download on the Emerson web site

(https://www.emerson.com/Industrial-Automation-Controls/support).

https://www.emerson.com/Industrial-Automation-Controls/support

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 3

• Recipe programming using command parameters as operands for Acceleration,

Velocity, Move, and Dwell Commands

• Automatic Data Transfer between host controller tables and DSM314 without user

programming

• Ease of I/O connection with factory cables and terminal blocks

• Electronic CAM capability, starting with Firmware Release (Version) 2.0

1.1.3 Versatile I/O
• Control of  Series and  Series Digital servos, SL-Series servos, or third-party servos

with analog velocity command or analog torque command interface.

• Home and overtravel switch inputs for each Servo Axis

• Two Position Capture Strobe Inputs for each axis can capture axis and/or master

position with an accuracy of +/-2 counts plus 10 microseconds of variance.

• 5v, 24v and analog I/O for use by the host controller

• Incremental Quadrature Encoder input on each axis for Encoder/Analog mode

• Quadrature Encoder input for Follower Master axis

• 13-bit Analog Output can be controlled by the host controller or used as Digital

Servo Tuning monitor

• High speed digital output (four each 24V and four each 5V) via on-board Local Logic

control

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 4

1.2 Section 1: Motion System Overview
The DSM314 is an intelligent, fully programmable, motion control option module for the

Series 90-30 and PACSystems RX3i control systems. The DSM314 allows a user to combine

high performance motion control and Local Logic capabilities with logic solving functions in

one integrated system. The figure below illustrates the hardware and software used to set

up and operate a servo system. This section briefly discusses each system element to

provide an overall understanding of system operation.

Figure 2: Hardware and Software Used to Configure, Program, and Operate a

DSM314 Servo System

1.2.1 DSM314 Operation with a Host Controller
The DSM314 and host controller (either PACSystems RX3i or Series 90-30 PLC) operate

together as one integrated motion control package. The DSM314 communicates with the

host controller through the backplane interface. Every host controller sweep, data such as

Commanded Velocity and Actual Position within the DSM314 is transferred to the host

controller in %I and %AI data. Also, every host controller sweep, %Q and %AQ data is

transferred from the host controller to the DSM314. The %Q and %AQ data is used to control

the DSM314. %Q bits perform functions such as initiating motion, aborting motion, and

clearing strobe flags. %AQ commands perform functions such as initializing position and

loading parameter registers.

Besides the use of %I, %AI, %Q, and %AQ addresses, an additional way to send parameters

from the host controller to the DSM314 is with the COMM_REQ ladder program instruction.

Details about using the COMM_REQ instruction with the DSM can be found in Appendix B,

DSM314 COMM_REQ Instructions

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 5

Host Controller Data Latency and DSM314 Latencies

The DSM314 is an intelligent module operating asynchronously to the CPU module. Data is

exchanged between the CPU and the DSM314 automatically. For information about the

operation of the CPU sweep refer to the following:

• Series 90-30 PLC CPU Instruction Set Reference Manual, GFK-0467M or later

• PACSystems CPU Reference Manual, GFK-2222

Host Controller to DSM Data Transfers

• Host controller-based functions may retrieve DSM status (%I and %AI) information

from the DSM data memory asynchronously. The DSM internally refreshes all status

data except Actual Velocity at the position loop rate (once every 0.5 to 2ms). Actual

Velocity is updated in the DSM data memory every 128 milliseconds. The DSM

performs averaging to generate an accurate Actual Velocity reading; therefore, the

Actual Velocity reading is not intended for high-speed control purposes.

• The host controller requires approximately 2-4 milliseconds back-plane overhead

when reading data (%I and %AI) from and writing data (%Q and %AQ) to DSM internal

memory if the DSM is in the CPU rack. The host controller normally reads input data

from and writes output data to the DSM once per host controller sweep. In the worst

case, the DSM internal data update (which takes 0.5 to 2ms to occur) occurs just

after the host controller scan’s input update. In this case, the host controller does

not read DSM data again until its next scan and any changes in DSM data will be

available in the host controller either 4-6ms later or approximately one host

controller sweep later, whichever is larger.

• The configuration software automatically selects the lengths of %AI and %AQ data

based upon the number of axes configured. A host controller CPU requires time to

read and write the data across the backplane with the DSM314. The following

manuals document the host controller sweep impact:

— Series 90-30 PLC Instruction Set Reference Manual, GFK-0467M or later.

— PACSystems CPU Reference Manual, GFK-2222B or later.

Also refer to the Important Product Information sheet that comes packaged with

the DSM module.

• Host controller commands to the DSM (%Q, %AQ) are output to the DSM at the end

of the logic solving sweep. The DSM processes the commands within 4 milliseconds

after receipt.

Motion Program/CTL Faceplate Inputs

• Delays associated with motion program control or branching via faceplate CTL

inputs are equal to a position loop update time interval (0.5 to 2ms) plus the input

filter delay (5ms typical for 24 volt CTL inputs or 10 µs for 5 volt CTL inputs). See

tables 1, 2, and 3 for position loop update times.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 6

Local Logic

• Delays associated with Local Logic data updates are based upon the position loop

update time interval (see “DSM314 Servo Loop Update Times”) and are not related

to the host controller scan. Therefore, Local Logic programs can utilize rapidly

changing DSM internal data that cannot be utilized by the host controller CPU due

to the host controller to DSM data transfer time and the host controller’s longer scan

time.

DSM314 Servo Loop Update Times

When controlling a digital AC servo, the DSM314 uses the loop update times shown in Table

1.

Table 1: Digital Servo Loop Update Times

Motor Current / Torque Loop: 250 microseconds

Motor Velocity Loop: 1 millisecond

Motor Position Loop: 2 milliseconds

When controlling an Analog servo, the DSM314 without Local Logic uses the loop update

times shown in Table 2.

Table 2: Analog Servo Loop Update Times without Local Logic

1-Axis Position Loop without Local Logic: 0.5 milliseconds

2-Axes Position Loop without Local Logic: 1 millisecond

3-4 Axes Position Loop without Local Logic: 2 milliseconds

When controlling an Analog servo, the DSM314 with Local Logic uses the following loop

update times shown in Table 3. The loop update rates with Local Logic are longer since Axis

#4 time slot is used to calculate the Local Logic function.

Table 3: Analog Servo Loop Update Times with Local Logic

1 Axis Position Loop with Local Logic: 1 millisecond

2 –3 Axes Position Loop with Local Logic: 2 milliseconds

Analog Torque mode includes a velocity regulator in addition to the position regulators. For

an axis in Analog Torque mode, the velocity regulator is run every 0.5 milliseconds.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 7

DSM314 Position Strobes

Each axis connector on the DSM314 faceplate has two Position Strobe inputs. A rising edge

pulse on a Strobe input causes the axis Actual Position to be captured. The position capture

resolution is +/- 2 counts with an additional 10 microseconds of variance for the strobe input

filter delay. The actual error seen is dependent upon servo acceleration and strobe input

filtering/sampling. Consult Appendix G for the exact formulas used to calculate strobe

accuracy.

The strobe data is updated within one position loop update interval (0.5 - 2 ms) in the

associated Strobe Position %AI data register. The Strobe Position data is also stored in a DSM

Parameter Register that can be used as an operand for Motion Program PMOVE and CMOVE

commands and in Local Logic. The Strobe Position data update to the host controller is

dependent on the host controller sweep time and may take longer than 2 ms.

In Digital mode, these strobes are 5V single-ended/differential inputs (IN1-IN2).

In Analog mode, these strobes are only 5V single-ended (IO5-IO6). In Analog mode only,

these strobe inputs are pulled high (as seen in the host controller %I Strobe status bits) if not

physically connected to a device.

DSM314 Scan Time Contribution

The tables below list the time that the DSM314 adds to host controller scan time. The scan

time contribution is related to (1) the number of DSM314 axes configured, and (2) the type

of rack (main, expansion, or remote) the DSM314 is mounted in.

DSM314 Scan Time Contribution (in Milliseconds)

No. of Axes

Configured

90-30 CPU364 Rack 90-30CPU374 Rack RX3i CPU310 Rack

Main Expansion Remote Main Expansion Remote Main Expansion Remote

1 1.9 2.9 7.9 1.3 2.3 6.9 1.8 2.3 6.9

2 2.5 3.8 11.0 1.9 3.1 10.0 2.5 3.2 10.0

3 3.1 4.7 14.2 2.4 3.9 13.0 3.1 4.2 13.1

4 3.6 5.6 17.3 2.9 4.8 16.0 3.8 5.1 16.2

Note:

1. Be aware that the DSM314’s internal Local Logic engine has a maximum scan time of 2ms that is
independent of the host controller scan. This allows the user the flexibility to control time critical
motion tasks within the Local Logic program. See the applicable chapters in this manual for details
on Local Logic programming.

2. (90-30 Feature only) For applications where the above additions to scan rates will affect machine
operation, you may need to use the “suspend I/O,” “DOIO,” and “SNAP” features to transfer
necessary data to and from the DSM314 selectively. These features let you avoid transferring all
the %I, %Q, %AI, %AQ data every scan, if you do not require it that frequently, which reduces the
scan time contribution amount.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 8

Software

The DSM314 requires one of the following configuration/programming software packages:

• Machine Edition Logic Developer – PLC, version 4.5 or later for RX3i

• Machine Edition Logic Developer – PLC, version 2.1 or later, or VersaPro, version 1.1

or later for Series 90-30

The programming/configuration software package is used for the following tasks. The

information created by these tasks is sent to the DSM314 over the host controller backplane

each time the host controller is powered up.

• Configuration. Allows user to select module settings and default operational

parameters.

• Motion program creation. Up to 10 motion programs and 40 subroutines are

allowed.

• Local Logic program creation. A Local Logic program runs synchronously with the

motion program but is independent of the host controller’s CPU scan. This allows

the DSM314 to interact quickly with motion I/O signals on its faceplate connectors.

This internal response time to motion I/O signals is much faster than would be

possible if the logic for these signals was handled in the main ladder program

running in the host controller. This is due to (1) the delay in communicating the

signals across the backplane and (2) the longer host controller sweep time.

• CAM profile creation. A CAM profile specifies the response of a follower servo to a

master position index. CAM profiles are referenced by name in the associated

motion program.

Note: The CAM editor is fully integrated with Logic Developer – PLC.

Operator Interfaces

Operator interfaces provide a way for the operator to control and monitor the servo system

through a control panel or CRT display. These interfaces communicate with the host

controller through discrete I/O modules or an intelligent serial communications or network

communications module.

Operator data is automatically transferred between the host controller and the DSM314

through %I, %AI, %Q, and %AQ references that are specified when the module is configured.

This automatic transfer of data provides a flexible and simple interface to a variety of

operator interfaces that can interface to the host controller.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 9

Servo Drive and Machine Interfaces

The servo drive and machine interface are made through a 36-pin connector for each axis.

This interface carries the signals that control axis position such as the Pulse Width

Modulated (PWM) signals to the amplifier, Digital Serial Encoder Feedback signals or Analog

Servo Command and Quadrature Encoder Feedback. Also provided are Home Switch and

Axis Overtravel inputs as well as general-purpose host controller inputs and outputs.

Standard cables that connect directly to custom DIN rail or Panel mounted terminal blocks

simplify user wiring and are available from Emerson. The terminal blocks provide screw

terminal connection points for field wiring to the DSM314 module. For more information

concerning the cables and terminal blocks used with the DSM314 module, refer to chapter

3.

1.3 Section 2: Overview of DSM314 Operation
Each DSM314 axis may be operated with the Follower Control Loop enabled or disabled:

Standard Mode (Follower Control Loop Axis Configuration = Disabled)

• In Digital Standard mode, the module provides closed loop position, velocity, and

torque control for up to two α or β Series servomotors on Axis 1 and Axis 2.

Axis 3 can be used as an Analog Velocity command interface servo axis or an Aux

master axis.

• In Analog Standard mode, the module provides closed loop position control for up

to four servomotors. Also, based upon the axis configuration, the DSM provides

velocity loop control for Analog Torque mode. When the DSM is used with analog

velocity interface servos, velocity and torque control loops are closed in the servo

amplifier, while the DSM closes the position loop. When the DSM is used with analog

torque interface servos, the torque control loop is closed in the servo amplifier, while

the DSM closes the velocity and position loops.

• For both digital and analog applications, user programming units can be adjusted by

configuring the ratio of User Units and Counts configuration parameters. Jog, Move

at Velocity and Execute Motion Program commands allow Standard mode to be

used in a wide variety of positioning applications.

Follower Mode (Follower Control Loop Axis Configuration = Enabled)

• In Digital Follower mode, the module provides closed loop position, velocity, and

torque control for up to two α or β Series servomotors on Axis 1 and Axis 2. Axis 3

can be used as an Analog Velocity Command Interface servo axis or an Aux master

axis.

• In Analog Follower mode, the module provides closed loop position control for up

to four servomotors (one or two of the four available axes may instead be used as an

Aux master axis). Additionally, based on the axis configuration, the module provides

velocity loop control for Analog Torque mode. When the DSM is used with analog

velocity interface servos, velocity and torque control loops are closed in the servo

amplifier, while the DSM closes the position loop. When the DSM is used with analog

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 10

torque interface servos, the torque control loop is closed in the servo amplifier, while

the DSM closes the position and velocity loops.

• In both digital and analog applications, the module provides the same features as

Standard mode including configurable User Units to Counts ratio.

• In addition, a Master Axis position input can be configured. Each Follower axis tracks

the Master Axis input at a programmable (A:B) ratio. Motion caused by Jog, Move at

Velocity and Execute Motion Program commands can be combined with follower

motion generated by the master axis.

• Follower options include:

— Master Axis source configurable as Actual or Commanded Position from any

other axis

— Master Source Select %Q bit switches between two Master Axis sources

— Acceleration Ramp to smoothly accelerate a slave axis until its position and

velocity synchronize to the master

— Separate enable and disable follower trigger sources

Note that Winder mode is not supported in the DSM314. It is supported in the DSM302.

1.3.1 Standard Mode Operation
Figure 3 is a simplified diagram of the Standard mode Position Loop. An internal motion

Command Generator provides Commanded Position and Commanded Velocity to the

Position Loop. The Position Loop subtracts Actual Position (Position Feedback) from

Commanded Position to produce a Position Error. The Position Error value is multiplied by a

Position Loop Gain constant to produce the Servo Velocity Command. To reduce Position

Error while the servo is moving, Commanded Velocity from the Command Generator is

summed as a Velocity Feedforward term into the Servo Velocity Command output.

The following items are included in the data reported by the DSM314 to the host controller:

Commanded Velocity- the instantaneous velocity generated by the DSM314’s internal path

generator.

Commanded Position- the instantaneous position generated by the DSM314’s internal path

generator.

Actual Velocity- the velocity of the axis indicated by the feedback.

Actual Position- the position of the axis indicated by the feedback.

Position Error- the difference between the Commanded Position and the Actual Position.

The DSM314 allows a Position Loop Time Constant (in units of 0.1 millisecond) and a

Velocity Feedforward (in units of 0.01 percent) to be programmed. The Position Loop Time

Constant sets the Position Loop Gain and determines the response speed of the closed

Position Loop. The Velocity Feedforward percentage determines the amount of

Commanded Velocity that is summed into the Servo Velocity Command.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 11

Figure 3: Simplified Standard Mode Position Loop with Velocity Feedforward (Analog

Velocity Interface)

Follower Mode Operation

Figure 4 is a simplified diagram of the Follower mode Position Loop. It is like the Standard

mode Position Loop (see previous page) with the addition of a Master Axis input. The Master

Axis input is an additional command source producing a Master Axis Position and Master

Axis Velocity. Master Axis Position is summed with Commanded Position from the axis

Command Generator. Master Axis Velocity is summed with the Commanded Velocity

(Velocity Feedforward) output of the axis Command Generator. Therefore, the

servomotor’s position and velocity are determined by the sum of the Command Generator

output and Master Axis input. The Command Generator and Master Axis input can operate

simultaneously or independently to create Servo Axis motion.

The DSM314 allows several sources for the Master Axis input:

• Axis 1 Commanded Position

• Axis 1 Actual Position (Axis 1 Encoder)

• Axis 2 Commanded Position

• Axis 2 Actual Position (Axis 2 Encoder)

• Axis 3 Commanded Position

• Axis 3 Actual Position (Axis 3 Encoder)

• Axis 4 Commanded Position

• Axis 4 Actual Position (Axis 4 Encoder)

The ratio at which a Servo Axis follows the Master Axis is programmable as the ratio of two

integer numbers. For example, a Servo Axis can be programmed to move 125 Position

Feedback units for every 25 Master Axis Position units. Each time the Master Axis Position

changed by 1 position unit; the Servo Axis would move (125 / 25) = 5 Position Feedback

units.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 12

Figure 4: Simplified Follower Mode Position Loop with Master Axis Input (Analog

Velocity Interface)

1.4 Section 3:  Series Servos (Digital Mode)
The Digital  Series Servo features include:

• World-leading reliability

• Low maintenance, no component drift, no commutator brushes

• All parameters digitally set; no re-tuning required

• Absolute encoder eliminates re-homing (requires optional battery kit)

• An optional motor brake is available

• Optional IP67 environmental rating is also available for most motors

• High resolution 64K count per revolution encoder feedback (incremental or

absolute)

The Servo motors, proven on over three million axes installed worldwide, offer the highest

reliability and performance. The latest technologies such as high-speed serial encoders and

high efficiency Integrated Power Modules (IPMs), further enhance customer benefits.

The servo system is unique in that all the control loops - current, velocity and position - are

closed in the motion controller. This approach reduces setup time and delivers significant

throughput advantages even in the most challenging applications.

The servo drives are less costly to integrate and maintain. Control circuits are unaffected by

temperature changes. There are no personality modules. The servos have a broad

application range, that is, a wide load inertia range, flexible acc/dec and position feedback

configurations, etc.

Extensive customization features are available to optimize performance and overcome

machine limitations. IPM based servo amplifiers require 60% less panel space than

conventionally switched amplifiers and produce 30% less heat.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 13

1.4.1  Series Integrated Digital Amplifier (SVU)
The α Series Integrated Servo Amplifiers (SVU) packages the amplifier with an integral

power supply in a stand-alone unit. This unit is the same physical size and footprint as the

previous “C” Series of Servo Amplifiers.

The Integrated  Series SVU Amplifiers use the same connections as the “C” Series Amps

except that the Emergency Stop circuit uses the internal 24v supply, thus there is no longer

a requirement for a 100v power supply.

The heat sinks on the SVU design mount through the panel to keep heat outside the

enclosure.

Since the  SVU Amplifiers do not provide regeneration to line capability, discharge resistors

may be required. These are available in several sizes.

SVU style  Series Servo Amplifiers are available in five sizes, with peak current limit ratings

from 12A to 130A. (Note: Only the 80A and 130A models are currently offered by NA.)

Cables to connect the SVU Amps to the DSM314 and to the motors are available in various

lengths.

Refer to publication GFH-001, Servo Product Specification Guide for more information

about the  Series servo products.

 Series Servo Motors

The  Series of servomotors incorporate design improvements to provide the best

performance possible. Ratings up to 56 Nm are offered. These motors are up to 15% shorter

and lighter than the previous S Series of servomotors. New insulation on the windings and

an overall sealant coating help protect the motor from the environment.

The standard encoder supplied with the motor is a 64K absolute unit. Holding brakes (90

Vdc) and IP67 sealants are options. The  Series servomotors are approved to conform to

international standards for CE (EMC and Low Voltage), IEC and UL/CUL. The following table

indicates a sample of the α Series motors available (some L, C, HV, and M also

available).

For more information refer to Chapter 4 of this manual, “Configuring the DSM314,” under

the section labeled “Motor Type.” See also, the following publications:

• GFH-001, Servo Products Specification Guide

• GFZ-65142E,  Series AC Motor Descriptions Manual

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 14

Table 4: Selected  Series Servo Motor Models

 Model Number Torque Nm Output KW Max. Speed (RPM)

1 1 0.3 3000

2 2 0.4 2000

2 2 0.5 3000

3 3 0.9 3000

6 6 1.0 2000

6 6 1.4 3000

12 12 2.1 2000

12 12 2.8 3000

22 22 3.8 2000

22 22 4.4 3000

30 30 3.3 1200

30 30 4.5 2000

30 30 4.8 3000

40 38 5.9 2000

40/Fan 56 7.3 2000

1.5 Section 4:  Series Servos (Digital Mode)
The Digital  Series Servo features include:

• World leading reliability

• Low maintenance, no component drift, no commutator brushes

• All parameters digitally set; no re-tuning required

• Absolute encoder eliminates re-homing (optional battery kit required)

• Optional motor brake

• High resolution (32K – Beta) (64K – Beta M) count per revolution encoder

The  Series Servos offer the highest reliability and performance. The latest technologies,

such as high-speed serial encoders and high efficiency Integrated Power Modules, further

enhance the performance of the servo system. Designed with the motion control market in

mind, the  Series Servo Drives is ideally suited for the packaging, material handling,

converting, and metal fabrication industries.

The servo system is unique in that all the control loops - current, velocity, and position - are

closed in the motion controller. This approach reduces setup time and delivers significant

throughput advantages even in the most challenging applications.

The servo drives are less costly to integrate and maintain. Control circuits are unaffected by

temperature changes. There are no personality modules. The servos have a broad

application range including a wide load inertia range, flexible acceleration/deceleration and

position feedback configurations. Extensive software customization features are available

to optimize performance and overcome machine limitations.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 15

1.5.1  Series Digital Amplifiers
The  Series servo amplifier integrates a power supply with the switching circuitry.

Therefore, can provide a compact amplifier that is 60% smaller than conventional models.

In fact, the  Series amplifier has the same height and depth as the RX3i and Series 90-30

modules. This allows efficient panel layout when using the DSM314 motion controller.

The amplifier is designed to conform to international standards.

Emerson offers three communication interfaces for the  Series amplifiers: pulse width

modulated (PWM), Servo Serial Bus (FSSB), and I/O Link Interface. Only the pulse width

modulated (PWM) interface may be used with the DSM314 module. The PWM interface

utilizes the standard servo communication protocol. Position feedback is communicated

serially between the DSM controller and the motor mounted serial encoder.

 Series Servo Motors

The  Series Servomotors are built on the superior technology of the  Series servos. They

incorporate several design innovations that provide the best possible combination of high

performance, low cost, and compact size. Ratings of 0.5 to 12 Nm are offered.

These motors are up to 15% shorter and lighter than comparable servos. New insulation on

the windings and an overall sealant coating help protect the motor from the environment.

The  Series motors conform to international standards (IEC). The motor protection level is

IP65 (IP67 may be made available through special order).

A (32K – Beta) (64 K – Beta M) absolute encoder is standard with each  Series servo. An

optional 90 Vdc holding brake is also available with each model.

For more information, refer to Chapter 4 of this manual, “Configuring the DSM314,” under

the section labeled “Motor Type.” See also, the following publications:

• GFH-001, Servo Products Specification Guide

• GFZ-65232E, β Series AC Motor Descriptions Manual

Table 5: Selected  Series Servo Motor Models

 Model Number Torque1 Nm Output KW Max. Speed RPM

0.5 0.5 0.2 3000

M0.5 0.65 0.2 5000

1 1 0.3 3000

M1 1.2 0.4 5000

2 2 0.5 3000

3 3 0.5 3000

6 6 0.9 2000

C12 12 1.4 2000

1 Indicates continuous, 100% duty cycle

Note: The C12 motor is listed with the β motors due to similar attributes and amplifier series.

User Manual Chapter 1
GFK-1742F Jan 2020

Product Overview 16

1.6 Section 5: SL Series Servos (Analog Velocity

Mode)
The DSM314 supports all models of the SL Series Servos. For details on the SL Series Servo

amplifiers, motors, and accessories, please see the SL Series Servo User’s Manual, GFK-

1581.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 17

Chapter 2: System Overview
A typical DSM314 motion system includes the DSM314 motion controller, a logic controller

(Series 90-30 PLC or PACSystems RX3i), motor(s), servo amplifier(s), I/O, and the Human

Machine Interface (HMI).

The DSM314 control system consists of two parts: the servo control and the machine

control.

The servo control translates motion commands into signals that are sent to the servo

amplifier. It also runs the Local Logic and Motion programs. The servo amplifier receives the

control signals from the servo control and amplifies them to the required power level of the

motor. The DSM314 provides the servo control.

The machine control/host control (PACSystems RX3i or Series 90-30 PLC) houses the

DSM314 module and I/O modules. The machine control executes user defined control logic

(but not Local Logic). The machine control and the servo control (DSM314) exchange data

over the backplane.

Figure 5: Typical Two-Axis Motion Mate DSM314 Digital Motion Control System

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 18

2.1 Unpacking the System
The DSM314, Digital Servo Amplifiers, and Motors are packed separately. This section

describes how to unpack the hardware and perform a preliminary check on the

components.

2.1.1 Unpacking the DSM314
Carefully unpack the DSM314 and host controller system components. Verify that you have

received all the items listed on the bill of material. Keep all documentation and shipping

papers that accompanied the DSM314 motion system.

2.1.2 Unpacking the Digital Servo Amplifier
There are two digital amplifier and servo subsystem packages shipped for use with the

DSM314, the  Series or the  Series.

The digital servo amplifier is shipped in a double-layered box. Remove the top layer of

packing material to uncover the amplifier. Next, carefully remove the inner box from the

outer layer. Then lift the amplifier out of the inner box. Retain any loose parts or gasket

materials packed with the amplifier. Visually inspect the amplifier for damage during

shipment.

Note: Do not change any pre-configured jumpers or switches on the amplifier at this time.

2.1.3 Unpacking the Motor
Motors are packed two different ways, depending on their size. The largest motors are

shipped on wooden pallets and are covered with cardboard. Most motors, however, are

packed in cardboard boxes.

1. Unpacking Instructions:

— For those motors packed in boxes, open the box from the top. The motors are

packed in two pieces of form-fitted material. Carefully lift the top piece from

the box. This should allow sufficient clearance for removing the motor.

— If the motor is attached to a pallet, remove the cardboard covering. This allows

access to the bolts holding the motor to the pallet. Remove the bolts to free

the motor from the pallet.

2. Inspect the motor for damage.

3. Confirm that the motor shaft turns by hand.

Note: If the motor was ordered with the optional holding brake, the shaft will not turn until the brake is
energized.

Next step.Assembling the Motion Mate DSM314 System

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 19

2.2 Assembling the Motion Mate DSM314 System

2.2.1 General Guidelines
• Always make sure that the connectors lock into the sockets. The connectors are

designed to fit only one way. Do not force them.

• Do not overlook the importance of properly grounding the DSM314 system

components, including the DSM314 faceplate shield ground wire. Grounding

information is included in this section.

All user connections, except for the grounding tab, are located on the front of the DSM314

module. The grounding tab is located on the bottom of the module. Refer to the figure

below.

For instructions about installation of the DSM314 when IEC and other standards must be

observed, see Installation Requirements for Conformance to Standards, GFK-1179.

2.2.2 Motion Mate DSM314 Connections
Figure 6 provides an overview of the faceplate and labels on the DSM314 module. For

additional information and a complete connection diagram, please refer to chapter 3,

Installing and Wiring the Motion Mate DSM314.

Figure 6: Face Plate Connections on the Motion Mate DSM314 Motion Control System

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 20

2.2.3 Connecting the Series SVU Digital Servo Amplifier
Skip to the next section if you are connecting a β Series amplifier.

The  Series Digital Servo Amplifier does not require tuning adjustment during initial startup

or when a component is replaced. It also does not need adjustment when environmental

conditions change.

To connect the  Series Digital Servo Amplifier, follow the steps outlined below.

1. Connect the  Series Servo Amplifier to the DSM314.

A. Before connecting the servo command cable, make sure the DSM314 faceplate

shield ground wire is connected. This wire is shipped with the DSM314 module

and must be connected from the ¼ inch blade terminal on the bottom of the

module to a suitable panel earth ground.

B. The servo command cable contains the pulse width modulated (PWM) output

signal from the DSM, the serial data from the motor encoder, and diagnostic

signals from the amplifier. The signals carried in this cable are at data

communications voltage levels and should be routed away from other

conductors, especially high current conductors.

C. Locate the servo command cable IC800CBL001 (1 meter) or IC800CBL002 (3

meter). Insert the mating end of this cable into the connector JS1B, located on

the Servo Amplifier bottom (see Figure 2-4).

D. If you are not using the IC693ACC335 axis terminal board to break out user I/O

such as overtravel or home limit inputs, insert the other end of the cable into the

connector labeled A, for axis 1, or B for axis 2, on the front of the DSM314. If you

are using the terminal board, insert the other end of the cable into the terminal

block connector marked SERVO. Next locate the terminal board connection

cable IC693CBL324 (1 meter) or IC693CBL325 (3 meter). Insert one end of this

cable into the terminal board connector marked DSM. Insert the other end of the

cable into the connector labeled A, for servo axis 1, or B for servo axis 2, on the

front of the DSM314 module.

Note: Refer to “I/O Connections” in chapter 3 for information concerning the user I/O available for
IC693ACC335 terminal block connections.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 21

2. Check SVU Amplifier Channel Switch Settings

Confirm that the Channel Switches (DIP switches), located behind the SVU amplifier

door, are set as shown in the following tables. Note that the OFF position is to the left,

and the ON position is to the right. Note also, that the switches are numbered from

bottom to top (Switch 1 is the bottom switch). For example, in Figure 7, Switches 1, 3,

and 4 are shown ON, and switch 2 is shown OFF.

Figure 7: SVU Amplifier Channel Switches

Table 6: SVU Amplifier Channel Switch Settings

Amplifier SVU1-80

Regenerative Discharge Unit SW1 SW2 SW3 SW4

Built-in (100 W) ON OFF ON ON

Separate ZA06B-6089-H500 (200 W) ON OFF ON OFF

Separate ZA06B-6089-H713 (800 W) ON OFF OFF OFF

Amplifier SVU1-130

Regenerative Discharge Unit SW1 SW2 SW3 SW4

Built-in (400 W) ON OFF ON ON

Separate ZA06B-6089-H711 (800 W) ON OFF ON OFF

(To connect additional amplifiers, repeat steps B, C and D above for each additional

amplifier.)

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 22

Figure 8: Connecting the  Series Digital Servo Amplifier to the Motion Mate

DSM314

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 23

3. Connect the Motor Power Cable to the α Series Digital Servo Amplifier.

A. The motor size ordered for your system determines the K4 motor power cable

you will use if you ordered prefabricated cables with your system. The following

table lists the prefabricated cables commonly specified for each group of motors.

A complete listing of  Series servomotor power cables available through

Emerson can be found in the Servo Product Specifications Guide, GFH-001.

Table 7: Prefabricated  Servo Motor Power Cable (K4) Part Number Examples

Motor Type Severe Duty Cable

Catalog Number

Cable Description Cable Length

3/3000

6/3000

IC800CBL061 Elbow MS Connector 14 Meters

12/3000

22/2000

30/1200

IC800CBL062 Elbow MS Connector 14 Meters

30/3000

40/2000

IC800CBL063 Elbow MS Connector 14 Meters

B. One end of this cable has four wires labeled U, V, W, and GND that connect to

screw terminals 9—12 on the servo amplifier. Connect these four wires to the

terminal strip as shown in Figure 9.

C. Attach the other end of the cable to the motor after first removing the plastic

caps protecting the motor’s connector. Note that this cable is keyed and can only

be properly attached to one of the motor’s connection points.

(Repeat this procedure as needed for any other axes in the system.)

For the most current information on the motor power cables or wiring custom motor

power cables please refer to the latest version of the  Series Servo Motor Description

Manual, GFZ-65142E.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 24

Figure 9: Connecting the Motor to the  Series Servo Amplifier Terminal Strip

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 25

4. Connect the Motor Encoder to the α Series Digital Servo Amplifier.

A. Remove the protective plastic cap from the encoder connector on the motor,

and locate the K2 feedback cable CF3A-2MPB-0140-AZ. The cable is configured

so that it can only be attached to one connection on the motor.

B. Plug the opposite end into the connection labeled JF1 on the bottom of the 

Series servo amplifier (see Figure 10).

Repeat this procedure for all axes in the system.

Figure 10: Connecting the α Series Motor Encoder

Table 8: Prefabricated  Servo Motor Encoder Cable (K2) for 3 to 40 Models

Motor Models Severe Duty Cable Cable Length

3 to 40 CF3A-2MPB-0140-AZ 14 meters

Note: Details on  cables can be found in the  Series AC Servo Motor Descriptions Manual, GFZ-

65142E, and in the  and  Series Product Specifications Guide, GFH-001.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 26

5. Connect 220-Volt AC 3 Phase Power to the α Series Digital Amplifier

An AC line filter will reduce the effect of harmonic noise to the power supply; its use is

recommended. Two or more amplifiers may be connected to one AC line filter if its power

capacity has not been exceeded. Figure 11 shows how to connect the amplifier to the line

filter.

Figure 11: Connecting the Servo Amplifier to the Line Filter and Power Source

Note: You must supply the cable for both the connections between the line filter and the servo amplifier,
and the connection between the line filter and the power source. Use four-conductor, 600V, 60°C
(140°F), UL or CSA approved cable between the line filter and the servo amplifier.

The gauge of wire used for connecting the line filter to the power source must be sized, based on
the circuit breaker between the power source and the line filter and the number of servos
connected to the line filter.

If a separate isolation transformer is used to supply AC power to the amplifiers, a line filter is not
required.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 27

6. Connect the Machine Emergency Stop to the α Series Digital Servo Amplifier

Pin 3 of connector CX4, located on the bottom of the α Series (SVU) amplifier, supplies +24

volts DC for the E-STOP circuit. Route this through the machine E-STOP circuit so that there

is +24 volts DC to pin 2 when not in E-STOP. If no E-STOP switch is used this connection must

be made with a wire jumper.

Note: You must supply the cable for this connection. Keyed connector plugs marked as connector X and
terminal connector pins are included with the amplifier package. You must install this connection
as a switch or jumper for the amplifier to operate.

CAUTION

Do not apply any external voltage to this connector.

Figure 12: Connecting Emergency Stop to the  Series Servo Amplifier

For more information, refer to the  Series Servo Amplifier (SVU) Descriptions Manual, GFZ-

65192EN.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 28

2.2.4 Connecting the β Series SVU Digital Servo Amplifier
The  Series Digital Servo Amplifier does not contain any user adjustments. To connect the

 Series Servo Amplifier, follow the steps outlined below. Refer to the previous section for 

Series Amplifiers.

1. Connect the  Series Digital Servo Amplifier to the DSM314

A. Before connecting the servo command cable, make sure the DSM314 faceplate

shield ground wire is connected. This wire is shipped with the DSM314 module

and must be connected from the ¼ inch blade terminal on the bottom of the

module to a suitable panel earth ground.

B. The servo command cable contains the pulse width modulated (PWM) output

signal of the motion controller, the serial data from the motor encoder, and

diagnostic signals from the amplifier. The signals carried in this cable are at data

communications voltage levels and should be routed away from other high

current conductors.

C. Locate the servo command cable IC800CBL001 (1 meter) or IC800CBL002 (3

meter). Insert the mating end of this cable into the connector JS1B, located on

the front of the Servo Amplifier (see Figure 13).

D. This step depends on whether you are using a terminal board:

— If you are not using the IC693ACC335 axis terminal board to break out user

I/O, such as overtravel or home limit inputs, insert the other end of the cable

into the connector labeled A, for servo axis 1, or B for servo axis 2, on the

front of the DSM314.

— If you are using the IC693ACC335 axis terminal board, insert the other end

of the cable into the terminal board connector marked SERVO. Next locate

the servo command cable IC693CBL324 (1 meter) or IC693CBL325 (3

meter). Insert one end of this cable into the terminal block connector

marked DSM. Insert the other end of the cable into the connector labeled A,

for servo axis 1, or B for servo axis 2, on the front of the DSM314.

To connect additional amplifiers, repeat steps B - D above for each additional amplifier.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 29

Figure 13:  Series Servo Amplifier Connections

For more information, refer to the connection section of the Servo Product Specification

Guide, GFH-001.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 30

2. Connect the Motor Power Cable (K4) to the β Series Digital Servo Amplifier

CAUTION

Make connections to the CX-11 connector carefully. This connector is not keyed. Double-

check your connections before applying power. Incorrect connections could result in

equipment malfunction or damage. Amplifier versions later than revision G have keyed

connectors.

A. The size of the motor ordered for your system determines the motor power cable

(K4) you must use. You can choose to purchase prefabricated cables or to build

custom cables. Refer to the  Series Control Motor Descriptions Manual, GFZ-

65232EN, for information about custom cables or installation for conformance

to CE mark. The amplifier end of the prefabricated motor power cable is

constructed to connect to terminal block CX11-3 on the amplifier.

Table 9: K4 Cable – Series Motor Cable Examples

Servo Motor Type K-4 Motor Cable Part Number Cable Description

 0.5/3000 IC800CBL067 14 Meter

 1/3000,  2/3000,  3/3000, and

 6/2000

IC800CBL068 14 Meter

 C12/2000 CF3A-2MPB-0140-AZ 14 Meter

M 0.5/5000 CP8B-1WPB-0140-AZ 14 Meter

M 1/5000 CP8B-1WPB-0140-AZ 14 Meter

Figure 14: Connecting the  Series Digital Servo Amplifier Terminal Strip

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 31

B. Attach the other end of the motor power cable to the motor, after first removing

the plastic cap protecting the motor’s connector. Note that this cable is keyed

and can only be properly attached to one of the motor’s connection points.

C. Motor power cables purchased from Emerson include a 1-meter, single

conductor wire with a CX11-3 connector on one end and a ring terminal on the

other. This cable provides grounding connections for the frame of the motor and

should always be connected. Custom cable builders should always include this

cable. See the previous connection diagram for proper connection to the

amplifier.

(Repeat this procedure as needed for the other axis in the system.)

For more information, please refer to the Servo Product Specification Guide,

GFH-001.

3. Connect the Motor Encoder Cable (K2) to the  Series Digital Servo Amplifier

The motor size ordered for your system determines the K4 motor power cable you will use

if you ordered prefabricated cables with your system. Please refer to the table below to

determine the correct encoder cable catalog number.

D. Remove the protective plastic cap from the connector on the motor, and locate

the encoder cable K2, (see table 10). This cable has two distinct connectors.

E. Plug the end of the cable with the D-shell style connector into the connection

labeled JF1 on the servo amplifier (see Figure 13).

F. The other end of the cable is configured so that it can only be attached to one

connection on the motor encoder (red end cap).

G. (Repeat this procedure for all axes in the system.)

Table 10: K2 Cable –  Series Encoder Cable Examples

Motor Type K2 Encoder Cable Part Number Cable Description

 0.5/3000 IC800CBL022 14 Meter

1/3000, 2/3000, 3/3000, and

6/2000

IC800CBL023 14 Meter

C12/2000 CF3A-2MPB-0140-AZ 14 Meter

M 0.5/5000 CFBA-0WPB-0140-AZ 14 Meter

M 1/5000 CFBA-0WPB-0140-AZ 14 Meter

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 32

4. Connect the 220 VAC Power Cable (K3) to the β Series Digital Amplifier

The AC power cable is a user-supplied cable that connects to CX11–1 on the face of the 

Series amplifier. The connector for the amplifier end of this cable is part of kit ZA06B-6093-

K305 supplied with each amplifier package. See the Servo Product Specification Guide, GFH-

001, for more detailed information.

An AC line filter will reduce the harmonic noise effect to the power supply; its use is

recommended. A line filter is not needed if an isolation transformer or separate power

transformer is used. Two or more amplifiers may be connected to one AC line filter or

transformer if its power capacity is not exceeded. Figure 15 shows how to connect the

amplifier to the line filter.

Figure 15: Connecting the  Series Servo Amplifier to the Line Filter and Power Source

Note: You must supply the cable for the connection between the line filter and the power source. Use 4-
conductor, 600V, 60°C (140°F), UL or CSA approved cable between the line filter and the servo
amplifier. The gauge of wire used for connecting the line filter to the power source must be sized,
based on the size of the circuit breaker between the power source and the line filter and the
number of servos connected to the line filter. The power connectors and terminals are supplied as
part of the amplifier package.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 33

5. Connect the Machine Emergency Stop to the  Series Digital Servo Amplifier

Figure 16: Connecting the E-STOP to the  Series Servo Amplifier

Note: You must supply the cable for this connection package. The JX5 connector and connector cover is
included with the amplifier as part number ZA02B-0120-K301. If no E-STOP circuit is required, this
connection must be made with a wire jumper or the amplifier will not enable.

Connector JX5 Pin 20 supplies +24V DC for the E-STOP circuit. Wire Pin 20 through a

normally closed contact or switch so there is +24V DC to JX5 Pin 17 when not in E- STOP.

Emerson uses two brands of connectors for the JX5 connector. See figure 2-13 for proper

connection to each type.

CAUTION

Do not apply any external voltage to this connection.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 34

HIROSE 20 Pin PCR Type Connector Pin Configuration

Figure 17

HONDA 20 Pin PCR Type Connector Pin Configuration

Figure 18: 20-Pin PCR Connector Pin-Out

6. Connect 24V DC Cable (K12) to the  Series Digital Servo Amplifier

A connector for the external 24 VDC supply is included with the amplifier package as a part

of kit ZA06B-6093-K305 and should be connected to CX11-4. The other end of the cable

must be connected to a 24VDC source capable of supplying at least 450 milliamps of current

for each  Series amplifier. The Emerson IC690PWR024 power supply is recommended. Do

not apply power at this time.

7. Connect Cable K8 – Jumper or External Regeneration Resistor to the  Series Digital

Servo Amplifier

Without External Regeneration Resistor (Using a Jumper)

If you do not have an external regeneration resistor, you must leave the connections on

CX11-2 (DCP and DCC) open. However, you must jumper the CX11-6 (TH1 and TH2)

terminals, shown in the figure below. (This jumper completes the circuit that would

otherwise be completed by the normally closed thermal over-temperature switch in the

external regeneration resistor unit.) If you do not have this jumper installed, the amplifier

will not function. The jumper and its connector are included as a part of the connector kit

ZA06B-6093-K305 that is shipped with each amplifier package.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 35

Figure 19: Installing a Jumper when an External Regeneration Resistor is not Used

With External Regeneration Resistor

If you have an external regeneration resistor, observe that it has four wires. The two smaller

wires (K8) connect to the resistor’s internal, normally closed, over-temperature switch. This

switch will open and shut down the amplifier if the resistor gets too hot. The two larger wires

(K7) connect to the resistor. All connectors needed to connect this resistor unit to the

amplifier are provided in the amplifier package.

Connect the two over-temperature switch wires (K8) to CX11-6 terminals TH1 and TH2.

(These connections are not polarity sensitive.)

Connect the two resistor wires (K7) to CX11-2, terminals DCP and DCC. (These connections

are not polarity sensitive.)

Figure 20: Connecting the External Regeneration Resistor

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 36

Figure 21: ZA06B-6093-H401 20-Watt Regenerative Resistor

2.2.5 Installing and Wiring the DSM314 for Analog Mode
Important Analog Servo Considerations:

• The Analog Servo Velocity Command or Analog Torque mode output is a single-

ended signal on pin 6 of the Auxiliary Terminal Board. This signal is referenced to 0v

of the DSM module and host controller. This signal should be connected to the

velocity command or torque command input of the servo amplifier.

Note: It is important to correctly configure the DSM for either Analog Torque mode or Analog Velocity

mode. Which mode you select depends on the type of servo amplifier in use.

• The DSM314 provides a low current (30 ma) solid state relay output on pin 15 of the

Auxiliary Terminal Board for connection to a servo amplifier enable input.

• In analog mode, the DSM314 requires a Drive Ready input (IN_4 signal) on pin 5 of

the Auxiliary Terminal Board. This signal must be switched to 0v when the amplifier

is ready to control the servo. The DSM starts checking the Drive Ready input one

second after the Drive Enable relay turns on in response to the Enable Drive %Q bit.

If the servo amplifier does not provide a suitable output, the IN_4 input to the

DSM314 can be connected to 0v or the function can be disabled in the module

configuration. For details, refer to chapter 4.

• Quadrature encoder feedback is used in analog mode. Encoder wiring connections

are detailed in figures 49 through 53.

• Figures 49 through 53 are generic analog wiring diagrams for the DSM.

• For details about interfacing the DSM314 to the SL Servo products, refer to the

manual, SL Series Servo User’s Manual, GFK-1581.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 37

2.2.6 Grounding the Motion Mate DSM314 Motion System
The DSM314 System must be properly grounded. Many problems occur simply because this

practice is not followed. To properly ground your Motion Mate DSM314 system, you should

follow these guidelines:

• The grounding resistance of the system ground should be 100 ohms or less (class 3

grounding).

• The DSM314 faceplate shield ground wire (shipped with the module) must be

connected from the ¼ inch blade terminal at the bottom of the module to a panel

frame ground.

• If an axis terminal board is used, two shield (“S”) connections are provided and one

of these must be connected to a panel frame ground.

• The system ground cable must have sufficient cross-sectional area to safely carry the

accidental current flow into the system ground when an accident such as a short

circuit occurs. Typically, it must have at minimum the cross-sectional area of the AC

power cable. Figure 22 illustrates the grounding systems.

• The amplifier ground connections, power earth (PE) connections, and motor frame

ground connections should always be wired to conform to local electrical wiring

regulations. When installing in conformance to CE Mark directives, a grounding bar

and clamp(s) (ordered separately) is required for the terminal block to amplifier

cable.

Refer to Chapter 3, Installing and Wiring the DSM314, I/O Cable Grounding section, for

more details.

Figure 22: Motion Mate DSM314 System Grounding Connections

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 38

Table 11: Grounding Systems

Grounding System Description

Frame Ground System The frame ground system is used for safety and to suppress external and

internal noises. In a frame ground system, the frames, cases of the units,

panels, and shields for the interface cables between the units are connected.

System Ground

System

The system ground system is used to connect the frame ground systems

connected between devices or units with the ground.

This completes the steps required to assemble the Motion Mate DSM314 system.

2.3 Turning on the Motion Mate DSM314
Before turning on the power, you should:

• Confirm that the supplied cables are properly attached to the appropriate

connectors.

• Confirm that all wiring to the power sources is correct.

• Make sure that the motors are properly secured.

• Check that all components are properly grounded, including the DSM314 faceplate

shield.

• If you are using more than one motor, confirm that the servo amplifier connections

and the feedback cables are not crossed between motors.

There is a specific sequence for turning on power to the DSM314 Control System. In the

order listed, perform these steps:

1. Turn on the 220V AC power to the Digital servos. Verify that the charged LED

indicator on the amplifier is on.

2. For  Series Digital amplifiers turn on the 24V DC source. Verify that the amplifier

Power indicator is on.

3. Switch on the power to the host controller. Check that the PWR LED on the Power

Supply is illuminated.

4. Using the correct communication cable, connect a personal computer with the

configuration/programming software to the host controller. (For Series 90-30, you

can also use a Handheld Programmer — HHP.) For more information, please refer to

the appropriate hardware installation manual.

5. Place the host controller in the STOP/Disabled mode.

6. If using an optional motor mounted holding brake, apply applicable power (90 VDC

for  and  Series motors, and 24 VDC for S-Series and MTR Series motors) to the

brake leads to disengage the holding brake.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 39

2.4 Connecting the Programmer to the Host

Controller
All DSM314 programming is done through the configuration/programming software

interface, yielding a single point of programming for the module. For more information,

please refer to the Series 90-30 PLC Installation and Hardware Manual (GFK-0356 or later)

or the PACSystems RX3i System Manual (GFK-2314 or later). The programming

environment has several communications options. One communications option is to

connect the programmer directly to the host controller SNP port, as shown in the following

figure. Consult the software documentation for additional communications methods.

The DSM314 Controller is configured using the following programming software:

RX3i Machine Edition version 4.5 or later

Series 90-30 Machine Edition version 2.1 or later VersaPro version 2.1 or later

Note: The DSM314 also has a serial port on the module faceplate. This serial port is used only for
updating the DSM314 firmware.

Figure 23: DSM Programmer Connection Diagram

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 40

2.5 Machine Edition Configuration
This section describes configuration using Machine Edition software. For VersaPro software,

refer to Appendix H.

1. Start the Machine Edition Logic Developer – PLC software. The Machine Edition

dialog box appears.

Figure 24

2. Under Create a New Project, choose Machine Edition Template and click OK. The

New Project dialog box appears.

3. Type a name for Project Name. In the Project Template dropdown list, select Series

90-30 PLC or PACSystems RX3i. Click OK.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 41

Figure 25

Your project appears in the Navigator window as shown in the following figure.

Figure 26

4. Expand the Main Rack node, which contains the default power supply and CPU.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 42

Figure 27

5. If necessary, replace the power supply and/or CPU with the models that will be used

in your application. To replace a module, right click and choose Replace Module.

6. Add a DSM314 to the rack configuration.

Note: Because an IC694DSM314 module and an IC693DSM314 module have the same functionality, a
Series 90-30 PLC supports them in the same way. If you install an IC694DSM314 in a Series 90-30
PLC, however, you cannot select it in Logic Developer - PLC. You must select an IC693DSM314
module and configure it as if it were an IC694DSM314.

A. Right click an empty slot and choose Add Module. The Module Catalog dialog

box appears.

B. Select the Motion tab, choose the DSM314 and click OK.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 43

Figure 28

This operation adds the DSM314 to the rack and displays the DSM314

configuration screens that allow you to customize the DSM314 to your

particular application. Refer to chapter 4 for details concerning the DSM314

configuration settings.

You should complete the configuration of your host controller to include the Power Supply,

Rack, CPU and additional modules to match the target system. Consult the software user’s

manual, and on-line help as needed.

Important

The completed configuration must be stored to the host controller. See “Storing Your

Configuration to the Host Controller” on page 44 for instructions on how to do this. For

additional details, consult the software user’s manual, and on-line help.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 44

2.6 Storing Your Configuration to the Host

Controller
To perform the download operation, first make sure that the communications port is

properly configured. To access communications setup in Machine Edition software, right

click the target you want to connect to in the Navigator window and choose Properties. In

the Inspector window, select the Physical Port through which you want to connect. (For

information on downloading using VersaPro, see Appendix H.)

Figure 29: Communications Setup

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 45

After configuring the communications port, the local logic program can be downloaded

(stored) to the Host Controller CPU. To store the current folder to the Host Controller,

choose Target from the Menu Bar and Go Online with “<Target>” from the submenu. Once

connected, choose Target from the Menu Bar and Download “<Target>” to PLC from the

submenu. The store operation begins the folder transfer process from the programmer to

the Host Controller CPU. When you initiate the store operation, a dialog box is presented

that allows you to choose what to store to the Host Controller. To store the hardware

configuration, select Hardware configuration and Motion.

Note: Local Logic and Motion programs are transferred with the Hardware Configuration.

Figure 30: Machine Edition Download Dialog Box

Machine Edition will indicate any errors or that it has successfully downloaded the program

in the Feedback Zone window.

Note:

A host controller status error of “System Configuration Mismatch” with the same rack/slot
location as a DSM314 indicates that there is a parameter configured and sent to the DSM314 that
has been rejected by the DSM314. Carefully check each parameter of your DSM314 configuration
with the configuration settings in this manual for the discrepancy. Correct the discrepancy, clear
the host controller Fault, and re-Store the configuration. Check that the error has been corrected.
See the next section, Enabling Run Mode on the PLC, for instructions on viewing and clearing PLC
faults.

The DSM314 can detect many typical configuration errors. These are returned as error codes of
the form Dxxx (hex) in the Module Status Code %AI word or Axis Error Code %AI words. These errors
do not cause a host controller status of “System Configuration Mismatch”. Refer to Appendix A
for a description of these errors. Correct any configuration errors and restore the configuration
with the host controller in Stop mode.

User Manual Chapter 2
GFK-1742F Jan 2020

System Overview 46

2.7 Alarms
The first step in correcting a problem is to determine if any alarms have occurred. Host

controller alarms or errors may be viewed in the PLC fault table. Servo and motion

subsystem alarms may be viewed in the DSM314 Module Status Code %AI word or one of

the Axis Error Code %AI words. Consult Chapter 5 for additional information on error

reporting through the %AI data.

For more information on DSM314 alarms, please refer Appendix A, “Error Codes,” which

contains a list of alarm codes and descriptions

For more information on diagnostics, see Appendix D, “Tuning a Digital or Analog Servo

System.”

2.8 Configuration Settings
If your system powers up with alarms, it may be due to an incorrect configuration setting.

The configuration must be stored to the host controller CPU and the host controller must

be in Run/Output Enabled mode.

If you cannot move an axis or execute a jog, check to see that all conditions necessary to

perform these operations are met. Refer to the appropriate sections in this manual.

2.9 Getting Help
For additional information, see https://www.emerson.com/Industrial-Automation-

Controls/support

• Save the paperwork that came with your system.

The Important Product Information sheet will contain the latest information on this

product, some of which may not be included in this manual.

• Back up your ladder logic folder.

Important

Do this frequently while developing your application.

https://www.emerson.com/Industrial-Automation-Controls/support
https://www.emerson.com/Industrial-Automation-Controls/support

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 47

Chapter 3: Installing and Wiring the

DSM314

3.1 Hardware Description
This section identifies the module’s major hardware features. The module’s faceplate

provides seven status LEDs, one communications port RJ-11 connector and four user I/O

connectors (36 pin). A grounding tab on the bottom of the module provides a convenient

way to connect the module’s faceplate shield to a panel ground.

Figure 31: DSM314 Module

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 48

3.1.1 LED Indicators
There are seven LED status indicators on the DSM314 module, described below:

STAT Normally ON. FLASHES to provide an indication of operational errors. Flashes slow

(four times/second) for Status-Only errors. Flashes fast (eight times/second) for

errors that cause the servo to stop.

ON: When the LED is steady ON, the DSM314 is functioning properly.

Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result

of a hardware or software malfunction that prevents the module from

powering up.

Flashing: When the LED is FLASHING, an error condition is being signaled.

Constant Rate, CFG LED ON:

The LED flashes slow (four times/second) for Status Only errors and fast (eight

times/second) for errors that cause the servo to stop. The Module Error Present %I status bit

will be ON. An error code (hex format) will be placed in the Module Status Code %AI word or

one of the Axis Error Code %AI words.

Constant Rate, CFG LED Flashing:

If the STAT and CFG LEDs both flash together at a constant rate, the DSM314 module is in

boot mode waiting for a new firmware download. If the STAT and CFG LEDs both flash

alternately at a constant rate, the DSM314 firmware has detected a software watchdog

timeout due to a hardware or software malfunction.

Irregular Rate, CFG LED OFF:

If this occurs immediately at power-up, then a hardware or software malfunction has been

detected. The module will blink the STAT LED to display two error numbers separated by a

brief delay. The numbers are determined by counting the blinks in both sequences. Record

the numbers and contact Emerson for information on

correcting the problem.

OK The OK LED indicates the current status of the DSM314 module.

ON: When the LED is steady ON, the DSM314 is functioning properly.

Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result of a

hardware or software malfunction that prevents the module from

powering up.

CFG This LED is ON when a module configuration has been received from the host

controller.

EN1 When this LED is ON, the Axis 1 Drive Enable relay output is active.

EN2 When this LED is ON, the Axis 2 Drive Enable relay output is active.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 49

EN3 When this LED is ON, the Axis 3 Drive Enable relay output is active.

EN4 When this LED is ON, the Axis 4 Drive Enable relay output is active.

3.1.2 The DSM COMM (Serial Communications) Connector
The module’s front panel contains a single RJ-11 connector for serial communications,

labeled “COMM”. It is used to download firmware updates to the DSM module from a

personal computer running the PC Loader or Win Loader utility software. (See Appendix F

for details.)

This serial COMM port connects to the personal computer’s serial port and uses the SNP

protocol and the RS-232 serial communications standard. The baud rate is configurable

from 300 to 19,200 baud. The COMM port is configured using the configuration software.

A 1-meter cable, IC693CBL316, is available from Emerson to connect the COMM port to a

personal computer. This cable uses a 9-pin female D-shell connector for the computer side

and an RJ-11 connector for the DSM314. If a longer cable is used, the maximum

recommended length is 50 feet.

Table 12: DSM314 COMM Port Pin Assignments

RJ-11 Pin Number 9-Pin (female) Number Signal Name Description

1 7 CTS Clear to Send

2 2 TXD Transmit Data

3 5 0V Signal Ground

4 5 0V Signal Ground

5 3 RXD Receive Data

6 8 RTS Request to Send

Note: Pin 1 is at the bottom of the connector when viewed from the front of the module.

3.1.3 I/O Connectors
The DSM314 is a two-axis digital servo/one axis analog velocity interface or four axis analog

servo (Torque Mode and/or Velocity Mode) controller with four 36-pin I/O connectors

labeled A, B, C, and D. The connectors are assigned as follows:

Table 13: Axis I/O Connector Assignments

Connector Axis

Number

Axis Type I/O Usage

A 1 Servo Axis Closed Loop Digital or Analog Servo Control

B 2 Servo Axis

Aux Axis

Closed Loop Digital or Analog Servo Control or

Position Feedback and auxiliary analog / digital I/O

C 3 Servo Axis

Aux Axis

Closed Loop Analog Servo Control or Position

Feedback and auxiliary analog / digital I/O

D 4 Servo Axis

Aux Axis

Closed Loop Analog Servo Control or Position

Feedback and auxiliary analog / digital I/O

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 50

All four connectors provide similar analog and digital I/O circuits. Only Axis 1 and Axis 2 can

be configured to control digital servos. If digital servos are used, both Axis 1 and Axis 2 must

be configured for Digital Servo mode. When Axis 1 and Axis 2 are configured for digital

servos, Axis 3 can be used for Analog Velocity Interface Servo or Aux Axis control. Axis 4 is

not available for Analog Velocity Interface Servo, Torque Interface Servo or Aux Axis control

when Axis 1 and 2 are configured for digital servos.

When Axis 1 is configured for Analog Servo control (Torque Interface or Velocity Interface),

Axis 2 - Axis 4 are also available for Analog Servo (Torque Interface or Velocity Interface) or

Aux Axis control. Aux Axis functions include position input for Follower Master axes and

internal (virtual master) command generation.

Any of these four connectors used in a system typically is cabled to an appropriate Terminal

Board with cable IC693CBL324 (1 meter) or IC693CBL325 (3 meters). Three different

terminal boards provide screw terminals for connecting to external devices. The terminal

boards are described later in the “Terminal Board” section of this chapter.

3.1.4 Shield Ground Connection
The DSM314 faceplate shield must be connected to frame ground. This connection from

the DSM314 to frame ground can be made using the green ground wire (part number

44A735970-001R01) provided with the module. This wire has a stab-on connector on one

end for connection to a ¼ inch terminal on the bottom of the DSM314 module and a

terminal on the other end for connection to a grounded enclosure.

Figure 32: Connecting the Shield Ground

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 51

3.2 Installing the DSM314 Module
The DSM324i can operate in the main rack, expansion rack, or remote baseplate of any

supported Host Controller (PACSystems Rx3i, firmware release 2.8 or later or Series 90-30

PLC, firmware release 10.0 or later). The configuration files created by the configuration

software must match the physical configuration of the modules.

For general Series 90-30 installation and environment considerations, refer to the Series 90-

30 PLC Installation and Hardware Manual, GFK-0356.

For general PACSystems RX3i installation and environment considerations, refer to the

PACSystems RX3i System Manual, GFK-2314 or later.

To install the DSM314 on the baseplate, follow these steps:

1. Use the configuration software or the Hand-Held Programmer (Series 90-30 only) to

stop the host controller. This prevents the local application program, if any, from

initiating any command that may affect the module operation on subsequent

power- up.

2. Power down the host controller system.

3. Align the module with the desired base slot and connector. Tilt the module upward

so that the top rear hook of the module engages the slot on the baseplate top edge.

4. Swing the module down until the connectors mate and the lock-lever on the bottom

of the module snaps into place engaging the baseplate notch.

5. Connect the faceplate shield wire from the ¼ inch blade terminal on the bottom of

the module to a suitable panel earth ground.

6. Refer to Figures 3-10 through 3-23 and Tables 3-7 through 3-14 for I/O wiring

requirements.

7. Power up the host controller rack. The Status LED of the Motion Mate DSM314 will

turn ON when the controller has passed its power-up diagnostics.

8. Repeat this procedure for each DSM314 module in your host controller system.

9. Configure the DSM314 module(s) as described in Chapter 4.

The following table lists the DSM314 module current draw and defines the number of

modules that can be installed in a particular host controller system.

The number of modules in a system may be restricted by:

• Host controller rack power supply capacity

• Host controller I/O Table space. The DSM module requires the use of %I, %Q, %AI,

and %AQ memory in the host controller’s I/O Table, with the %I and %Q type usually

being the most restrictive of the four. %AI is also restrictive on CPUs that do not

support configurable %AQ memory (such as the 350 CPU). The amount of available

memory varies with the model of host controller CPU to be used.

• Host controller Configuration data storage capacity

• Available CPU memory

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 52

The absolute limits for each host controller type must not be exceeded because in some

cases they are based on I/O Table and Configuration data capacity.

The practical number of axes must consider I/O use and sweep time of the entire system.

Table 14: Maximum Number of DSM314 Modules per Host Controller System by Rack

and Power Supply Types

Power Supply Voltage:

Power Supply Current Draw by DSM:

Available +5V Current/Module to supply

external encoder, if used:

5 VDC from host controller backplane

800 mA plus encoder supply current (see next

item).

500 mA (if used, must be added to module +5V

current draw)

PACSystems RX3i

Main Rack

Model 310 CPUs:

5 DSM314 modules in CPU baseplate per PWR 040

Up to 12 DSM314s with two multifunctional DC

power supplies

(PSD140) in a 16-slot rack

PACSystems RX3i

Expansion/Remote Racks

(5 and 10-slot expansion or remote

baseplates - 8 total baseplates per system)

2 DSM314 modules in remote baseplate with

PWR321/322/328

3 DSM314 modules in expansion baseplate with

PWR321/322/328

6 DSM314 modules in expansion/remote

baseplate with PWR330/331/332

PACSystems RX3i Maximum 61 total DSM314 modules per PACSystems RX3i

system.

(60 maximums if an Ethernet module,

IC695ETM001, is required.)

Series 90-30

Model 350, 352, 360, 363, 364, 366, 367, 374

CPUs:

(5 and 10-slot CPU (main) baseplates, 5

and 10-slot expansion or remote

baseplates - 8 total baseplates per

system)

2 DSM314 modules in CPU baseplate with

PWR321/322/328

5 DSM314 modules in CPU baseplate with

PW330/331/332

3 DSM314 modules in expansion/remote

baseplate with PWR321/322/328

6 DSM314 modules in remote baseplate with

PWR330/331/332

7 DSM314 modules in expansion baseplate with

PWR330/331/332

20 total DSM314 modules per Series 90-30

system with PWR321/322/328*

20 total DSM314 modules per Series 90-30

system with PWR330/331/332*

* The maximum number of modules supported in a system may be reduced by other

modules in the system, such as APM and GBC modules. It may also be further reduced

by having datagrams set up that read the reference or fault tables. If the configuration

and user program is stored at the same time, the presence of either C blocks within

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 53

the LD program, or a C logic program may also affect the number of DSM314 modules

that can be included in a system. If the store fails, it may be possible to store the

configuration to the system by first storing the logic program, and then storing the

configuration on a separate store request.

The numbers listed in the above table are the theoretical maximums. However, an

important factor in determining the module mix in any baseplate is that the total power

consumption of all modules must not exceed the total load capacity of the power supply. It

is possible that a module mix would not allow the maximum number of DSM314s to be

installed in a baseplate due to power supply limitations. The configuration software has a

power supply usage display that can be used to check this.

This calculation can also be done manually as explained in:

• PACSystems RX3i System Manual, GFK-2314, which also lists load requirement

specifications for PACSystems RX3i modules.

• Series 90-30 PLC Installation Manual, GFK-0356P or later, which also lists load

requirement specifications for Series 90-30 modules.

The available power supplies are:

PACSystems RX3i Power Supplies

• IC695PSA040 - AC/DC Power Supply - allows 30 watts (6000 ma) for +5 VDC

• IC695PSD040 - 24 VDC input Power Supply - allows 30 watts (6000 ma) for +5 VDC

• IC695PSD140 – AC/DC Multifunctional Power Supply - allows 30 watts (6000 mA)

for +5 VDC

• IC695PSA140 - 24VDC input Multifunctional Power Supply - allows 30 watts (6000

mA) for +5 VDC

• IC694PWR321 – AC/DC Serial Expansion Power Supply - allows 15 watts (3000 mA)

for +5 VDC

• IC694PWR330 – High Capacity AC/DC Serial Expansion Power Supply - allows 30

watts (6000 mA) for +5 VDC

• IC694PWR331 - High Capacity 24 VDC Serial Expansion Power Supply - allows 30

watts (6000 mA) for +5 VDC

Standard Series 90-30 Power Supplies

• IC693PWR321 - Standard AC/DC Power Supply - allows 15 watts (3000 mA) for +5

VDC

• IC693PWR322 - 24/48 VDC input Power Supply - allows 15 watts (3000 mA) for +5

VDC

• IC693PWR328 - 48 VDC input Power Supply - allows 15 watts (3000 mA) for +5 VDC

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 54

High Capacity Series 90-30 Power Supplies

• IC693PWR330 - High Capacity AC/DC Power Supply - allows 30 watts (6000 mA) for

+5 VDC

• IC693PWR331 - High Capacity 24 VDC input Power Supply - allows 30 watts (6000

mA) for +5 VDC

• IC693PWR332 – High Capacity 12 VDC input Power Supply - allows 30 watts (6000

mA) for +5 VDC

Note: If you are installing the ground plate on a painted surface, the paint must be removed where the
ground plate is to be mounted to ensure a good ground connection between the plate and
mounting surface.

Note: Refer to GFK-0867B, (Emerson Product Agency Approvals, Standards, General Specifications), or
later version for product standards and general specifications.

Installation instructions in this manual are provided for installations that do not require special
procedures for noisy or hazardous environments. For installations that must conform to more
stringent requirements (such as CE Mark), see GFK-1179, Installation Requirements for
Conformance to Standards.

3.3 I/O Wiring and Connections

3.3.1 I/O Circuit Types
Each of the module’s four connectors (Connector A, B, C, and D) provide the following types

of I/O circuits:

• Three differential / single ended 5v inputs (IN1-IN3)

• 5 VDC Encoder Power (P5V)

• One single ended 5v input (IN4)

• Four single ended 5v input / output circuits (IO5-IO8)

• Three 24v inputs (IN9-IN11)

• One 24v, 125 mA solid state relay output (OUT1)

• Two differential 5v line driver outputs (OUT2-OUT3)

• One 24v, 30 mA solid state relay output (OUT4)

• Two differential +/- 10v Analog Inputs (AIN1-AIN2)

• One single ended +/- 10v Analog Output (AOUT1)

Not all of these I/O circuits are available for user connections. Some of the circuits are used

to control the digital servo amplifier. Refer to Tables 3-11 through 3-14 for additional

information.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 55

3.3.2 Terminal Boards
• Axis Terminal Board, Catalog No. IC693ACC335 – Used in digital mode only. It

connects DSM connector A or B to a  or  Digital Servo amplifier. It also provides

screw terminal connections for I/O devices. This terminal board contains two 36 pin

connectors. One connects to the DSM via cable IC693CBL324/325, and the other

connects to the Digital Servo amplifier via the servo command cables IC800CBL001

/ 002. See Figures 40, 46, 47, and 48.

Note: For Digital Servo applications that do not require use of the DSM’s A or B connector I/O signals,

the DSM connector can be cabled directly to the digital servo amplifier. Refer to Section 3, “I/O
Wiring and Connections,” later in this chapter for additional information.

• Auxiliary Terminal Board, Catalog No. IC693ACC336 – This terminal board contains

a single 36 pin connector that connects to the DSM314 module. This board has two

basic applications (see Figures 40 and 41):

1. For Analog servos, it connects to DSM Connector A, B, C or D to provide screw

terminals for wiring to a third-party Analog servo amplifier and I/O devices. See

Figures 49 through 53.

2. For Auxiliary axes, it connects to DSM Connector B, C, or D to provide screw

terminals for wiring to external devices such as Strobe sensors, Home switches,

and Overtravel Limit switches. Note: See Figure 53.

• SL-Series Servo to APM/DSM Terminal Board, Catalog IC800SLT001 – Used to

connect DSM connector A, B, C or D to a SL-Series analog velocity interface servo

amplifier, as well as provide screw terminals for wiring to I/O devices. It contains two

connectors. One connects to the DSM module, and the other to the SL-Series Servo

amplifier. For additional information, please see the SL-Series Servo User’s Manual,

GFK-1581.

Table 15: DSM Terminal Board Quick Selection Table

DSM Application DSM

Connector

DSM Axis

Mode

Terminal Board

Required

Connect to -Series or -Series digital servo

and I/O.

A or B Digital IC693ACC335

Connect directly to -Series or -Series

digital servo. No I/O connections needed.

A or B Digital None

Connect to third party analog servo and I/O. A, B, C or D Analog IC693ACC336

Connect to SL-Series analog servo and I/O. A, B, C or D Analog Velocity

Interface

IC800SLT001

Connect to Auxiliary Axis I/O on DSM

connector B, C or D or S2K Series analog

servo and I/O.

B, C or D Analog or Aux IC693ACC336

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 56

Figure 33: Axis and Auxiliary Terminal Board Assemblies

Note: Each terminal board is shipped with DIN Rail mounting feet. Instructions for converting a terminal
board to panel-mount are included in this chapter.

3.3.3 Digital Servo Axis Terminal Board - IC693ACC335

Description

The IC693ACC335 Digital Servo Axis Terminal Board is used to connect the DSM314 to

Digital Servo Amplifiers. The board contains two 36-pin connectors, labeled DSM and

SERVO. A cable IC693CBL324 (1 meter) or IC693CBL325 (3 meters) connects from DSM

connector (PL2) to the DSM314 faceplate connector A or B. A Servo Command Cable

IC800CBL001 (1 meter) or IC800CBL002 (3 meters) connects from the SERVO connector

(PL3) to the JS1B connector on a  Series or  Series Digital Servo Amplifier.

Eighteen screw terminals are provided on the Digital Servo Axis Terminal Board for

connections to user devices. These terminals have the following assignments:

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 57

Table 16: IC693ACC335 Digital Axis Terminal Board Pin Assignments

Axis Terminal

Board I/O Screw

Terminal

DSM314

Faceplate

Pin

Circuit

Identifier

Circuit Type Servo Axis 1, 2

Circuit Function

Signal

Name (Axis

1 listed) *

Maximum

Voltage

1

9

1

19

IN1 Single ended

/differential 5v

inputs

Strobe Input 1 (+)

Strobe Input 1 (-)

IN1P_A

IN1M_A

5 VDC

2

10

2

20

IN2 Strobe Input 2 (+)

Strobe Input 2 (-)

IN2P_A

IN2M_A

5 VDC

3 4 P5V 5v Power 5v Power P5V_A 5 VDC

11 22 0V 0v 0v 0V_A 5 VDC

6 16 IN9 24v optically

isolated inputs

Overtravel (+) IN9_A 30 VDC

14 34 IN10 Overtravel (-) IN10_A 30 VDC

7 17 IN11 Home Switch IN11_A 30 VDC

15 35 INCOM 24v Input

Common

24v Input Common INCOM_A 30 VDC

8

16

18

36

OUT1 24 v, 125 mA

DC SSR output

Host controller 24v

Output (+)

Host controller 24v

Output (-)

OUT1P_A

OUT1M_A

30 VDC

5

13

14

32

OUT3 Differential 5v

output

Host controller 5v

Output (+)

Host controller 5v

Output (-)

OUT3P_A

OUT3M_A

5 VDC

4 6 AOUT +/- 10v Analog

Out

Host controller

Analog Out

AOUT_A 5 VDC

12 24 ACOM Analog Out

Com

Analog Out Com ACOM_A 5 VDC

S (2 pins) SHIELD Cable Shield Cable Shield SHIELD_A 5 VDC

* For signal names pertaining to servo axis 2, change all “_A” to “_B”.

Six 130V MOVs are installed between selected I/O points and the shield (frame ground) for

noise suppression. The I/O terminal points so connected are 6, 7, 8, 14, 15, and 16. The I/O

terminals support a wire gauge of 14-28 AWG. Maximum screw torque that may be applied

is 5 inch-pounds.

Note: Two of the screw terminals are labeled S for Shield. A short earth ground wire should be connected
from one of the S terminals directly to a panel earth ground. The cable shields for any shielded
cables from user devices should connect to either of the S terminals.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 58

Mounting Dimensions

Figure 34: IC693ACC335 Digital Axis Terminal Board Mounting Dimensions

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 59

Converting From DIN-Rail Mounting to Panel Mounting

The following parts are used in either the DIN-rail or Panel mount assembly options. The axis

terminal board is shipped configured for DIN-rail mounting. The instructions in this section

guide you in converting the board to its panel mounting optional configuration.

The following table and drawings describe the various plastic parts that make up the axis

terminal board assembly and shows a side view of the board configured for DIN-rail

mounting

Table 17: Axis Terminal Board Assembly Components

Plastic Component Part

Number

Description Quantity Mounting Styles Used With

UMK-BE 45 Base Element 1 DIN, Panel

UMK-SE 11.25-1 Side Element 2 DIN, Panel

UMK-FE Foot Element 2 DIN

UMK-BF* Mounting Ear 2 Panel

* Parts shipped with axis terminal board for optional panel mounting

Figure 35: Digital Servo Axis Terminal Board Assembly Drawings

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 60

Figure 36: Digital Servo Axis Terminal Board Assembly Side View

The following procedure should be used to convert the Digital Servo axis terminal board to

its panel mounting form. Remember to save all removed parts for possible later conversion

back to DIN-rail mounting.

1. Carefully remove one UMK-SE 11.25-1 side element from the UMK-BE 45 base

element. If a screwdriver or other device is used, exercise extreme caution to avoid

damaging either the plastic parts or the circuit board.

2. Slide the UMK-FE foot element off the base element. Save this part for possible

future use in converting the terminal board back to its DIN-rail mounting

configuration.

3. Snap the side element, removed in step 1 above, back into the base element.

4. Insert one UMK-BF mounting ear into the appropriate two holes in the side element.

Note that the mounting ear has a recessed hole for later inserting a (user supplied)

mounting screw. The recessed hole should face upwards to accommodate the

mounting screw.

5. Repeat steps 1-4 above for the other side of the terminal board.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 61

3.3.4 Auxiliary Terminal Board - IC693ACC336

Description and Mounting Dimensions

The IC693ACC336 Auxiliary Terminal Board is used to connect the DSM314 to Analog Servo

Axes and auxiliary devices such as Incremental Quadrature Encoders, Strobe detectors and

external switches. The board contains one 36 pin connector, labeled DSM. A cable

IC693CBL324 (1 meter) or IC693CBL325 (3 meters) connects from the DSM connector (PL2)

to the DSM314 faceplate.

Thirty-eight screw terminals are provided on the Auxiliary Terminal Board for connections

to user devices. These screw terminals have the same pin labels as the 36-pin DSM314

faceplate connector. For detailed connection information, refer to “Analog Servo Axis 1-4

Circuit and Pin Assignments “on page 71.

The maximum voltage that should be applied to I/O terminals 16-18 and 34-36 is 30 VDC.

The maximum voltage for any other input terminal is 5 VDC.

Six 130V MOVs are installed between selected I/O points and the shield (frame ground) for

noise suppression. The I/O terminal points so connected are 16, 17, 18, 34, 35, and 36.

The I/O terminals support a wire gauge of 14-28 AWG. Maximum screw torque that may be

applied is 5 inch-pounds.

Note: Two of the screw terminals are labeled S for Shield. A short earth ground wire should be connected
from one of the S terminals directly to a panel earth ground. The cable shields for any shielded
cables from user devices should connect to either of the S terminals.

Figure 37: IC693ACC336 Terminal Board Mounting Dimensions

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 62

Converting From DIN-Rail Mounting to Panel Mounting

The following parts are used in either the DIN-rail or Panel mount assembly options. The

auxiliary terminal board is shipped configured for DIN-rail mounting. The instructions in this

section guide you in converting the board to its panel mounting optional configuration.

The following table and drawings describe the various plastic parts that make up the

auxiliary terminal board assembly and shows a side view of the board configured for DIN-

rail mounting.

Table 18: Auxiliary Terminal Board Components

Phoenix Contact Part Number Description Quantity

UM45 Profil 105.25 PCB Carrier 1

UM 45-SEFE with 2 screws Side element with Foot 2

UMK 45-SES with 2 screws* Side Element 2

UMK-BF* Mounting Ear 2

* Parts shipped with auxiliary terminal board for optional panel mounting

Figure 38: Auxiliary Terminal Board Assembly Drawings

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 63

Figure 39: Auxiliary Terminal Board Assembly Side View

The following procedure should be used if you wish to mount the auxiliary terminal board

directly to a panel instead of on a DIN-rail. Remember to save all removed parts for possible

later conversion back to DIN-rail mounting.

1. Using a small bladed Phillips screwdriver, carefully remove the two screws holding

one UM-45 SEFE side element with foot to the UM 45 profile PCB carrier. Save this

part for possible future use in converting the terminal board back to its DIN-rail

mounting configuration.

2. Attach one UMK 45-SES side element to the PCB carrier in place of the side removed

in step 1 above, again using the two screws. Be careful to not over tighten the

screws.

3. Insert one UMK-BF mounting ear into the appropriate two holes in the side element.

Note that the mounting ear has a recessed hole for later inserting a (user supplied)

mounting screw. The recessed hole should face upwards to accommodate the

mounting screw.

4. Repeat steps 1-3 above for the other side of the terminal board.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 64

3.3.5 Cables
Five cables are available for the DSM314:

Table 19: Cables for the DSM314

Cable Description Length Application

IC693CBL316 Station Manager Cable 1 meter DSM314 Comm for firmware upgrade

IC693CBL324 Terminal Board Connection

Cable

1 meter DSM314 to Servo Axis Terminal Board or

Aux Terminal Board

IC693CBL325 Terminal Board Connection

Cable

3 meters DSM314 to Servo Axis Terminal Board or

Aux Terminal Board

IC800CBL001 Digital Servo Command Cable 1 meter Digital Servo Axis Terminal Board or DSM

to Digital Servo Amp

IC800CBL002 Digital Servo Command Cable 3 meters Digital Servo Axis Terminal Board or DSM

to Digital Servo Amp

Custom Terminal Board and Servo cables are available in longer lengths by contacting your

Emerson distributor. The maximum recommended cable length for the DSM connector to

the  and  Series servo amplifier is 50 meters.

The cables use special shielding and construction to ensure reliable servo operation. We

recommend that users do not attempt any field modifications of the cables or connectors.

Note: If a Digital Servo Axis does not use any of the devices that normally connect to the IC693ACC335
Digital Servo Terminal Board screw terminals, the Terminal Board and Terminal Board Cable
IC693CBL324/325 are not needed. Instead, the Digital Servo Command Cable IC800CBL001/002
can be connected directly from the Digital Servo Amplifier to the DSM314 faceplate A or B
connector. When this is done, the OT Limit Sw configuration parameter must be set to Disabled
in the configuration software or the DSM will not operate.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 65

The figure below illustrates the Digital Servo Axis terminal board and cables associated with

the DSM314.

Figure 40: DSM314 Digital Servo Terminal Boards and Connectors

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 66

The figure below illustrates the Analog Servo terminal boards and cables associated with the

DSM314.

Figure 41: DSM314 Terminal Boards and Connectors for S2K or Third-Party Analog

Servos

Note: See GFK-1581 for SL Servos and GFK-1866 for S2K servos.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 67

I/O Cable Grounding

Properly routing signal cables, amplifier power cables and motor power cables along with

installation of proper Class 3 grounding will insure reliable operation. Typically, Class 3

grounding specifies a ground conductor of a minimum wire diameter larger than the power

input wire diameter, connected via a maximum 100-ohm resistance to an earth ground.

Consult local electrical codes and install in conformance to local regulations.

The specifications for completing the  and  Series Digital Servo amplifier installation and

wiring, including amplifier grounding are completely described in the manual GFH- 001,

Servo Product Specification Guide.

When routing signal lines, amplifier input power line and motor power line, the signal lines

must be separated from the power lines. The following table indicates how to separate the

cables.

Table 20: Separation of signal lines

Group Signal Action

A Amplifier input power

Motor Power

Master Control Contactor (MCC)

drive coil. The MCC switches

amplifier input power.

Separate a minimum 10cm from group “B” signals by

bundling separately or use electromagnetic shielding

(grounded steel plate). Use noise protector for MCC.

B DSM to Axis Terminal cable Axis

terminal cable to amplifier DSM

to Aux Terminal cable Encoder

feedback cable

Separate a minimum 10cm from group “A” signals by

bundling separately or use electromagnetic shielding

(grounded steel plate). Use all required individual cable

shield grounds and grounding bar connections.

DSM to  or  Series Digital Servo Amplifier – Signal Cable Grounding

The signal cables used with the DSM314 contain shields that must be properly grounded to

ensure reliable operation. The illustration below shows cable grounding recommendations

for typical installations. The following points should be considered:

1. The DSM314 faceplate ground wire must be connected to a reliable panel ground.

2. The Digital Servo Axis Terminal Block and Auxiliary Terminal Block each provide two

screw terminals labeled S. A short ground wire must be connected from one of the

S terminals to a reliable panel ground.

The  and  Series Digital Servo amplifier encoder feedback cable always requires an ZA99L-

0035-0001 Cable Shield Grounding Clamp and one of the 11 available slots on a

Z44B295864-001 Grounding Bar at the amplifier end of the cable. This clamp arrangement

serves as a mechanical strain relief and as cable shield ground. The outer insulation of the

Digital servo amplifier cable must be removed to expose the cable shield in the contact area

of the clamp.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 68

Figure 42: Detail of Cable Grounding Clamp ZA99L-0035-0001

Figure 43: Z44B295864-001 Grounding Bar, Side View Dimensions

Figure 44: Z44B295864-001 Grounding Bar Dimensions, Rear View Showing

Mounting Holes

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 69

3. For installations that must meet IEC electrical noise immunity standards, a Cable

Shield Grounding Clamp ZA99L-0035-0001 and one of the 11 available slots on the

Grounding Bar Z44B295864-001 must also be used at the Digital Servo Axis

Terminal Block end of the servo amplifier cable IC800CBL001/002. If the Digital

servo amplifier cable is connected directly to the DSM314 faceplate (no Digital Servo

Axis Terminal Block used) the Grounding Clamp and Bar are not required at the

faceplate end of the cable.

For additional information, refer to Installation Requirements for Conformance to

Standards, GFK-1179.

Figure 45: DSM314 I/O Cable Grounding

I/O Circuit Identifiers and Signal Names

I/O circuit identifiers provide a consistent method of naming the I/O circuits. For example,

IN1 refers to the first of three differential / single ended 5v inputs for each axis.

Signal names are assigned to the circuit identifiers for each axis. The signal name consists of

the circuit identifier followed by a suffix A-D to identify the axis connector. Differential

circuits also have suffixes P (positive) and M (minus) to identify the (+) and (-) signal for each

differential pair.

Example: OUT2 is the circuit identifier for the first differential 5v output on each connector.

The signal names associated with circuit OUT2 are:

Table 21: Signal Names Associated with OUT2

Axis: Axis 1 Axis 2 Axis 3 Axis 4

Connector: A B C D

(+) Output Signal: OUT2P_A OUT2P_B OUT2P_C OUT2P_D

(-) Output Signal: OUT2M_A OUT2M_B OUT2M_C OUT2M_D

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 70

I/O Circuit Function and Pin Assignments

The next three tables list the I/O circuit functional assignments as well as the connector and

terminal board pin assignments for each axis connector. Although each connector has the

same I/O circuits, the functional assignment of the I/O circuits is axis dependent:

Table 22: Connector Axis Assignment and Function

Connector Axis Number Axis Type I/O Usage

A 1 Servo Axis Closed Loop Digital / Analog Servo Control and user

I/O

B 2 Servo Axis Closed Loop Digital / Analog Servo Control or

Auxiliary analog and digital I/O

C 3 Servo Axis Closed Loop Analog Servo Control or Auxiliary analog

and digital I/O

D 4 Servo Axis Closed Loop Analog Servo Control or Auxiliary analog

and digital I/O

Digital Servo Axis 1, 2 Circuit and Pin Assignments

This table identifies all circuits and pin assignments for Digital Servo Axis 1 and Digital Servo

Axis 2. The shaded areas indicate signals that are cabled to the servo amplifier and are not

available for user connections.

Table 23: Circuit and Pin Assignments for Digital Servo Axis 1 and Digital Servo Axis 2

Circuit

Identifier

Circuit Type Analog Servo

Axis 1, 2 Circuit

Function

Axis 1 Signal

Name

Axis 2 Signal

Name

Faceplate

Pin

Axis Term

Board

Terminal

IN1 Single ended /

differential 5v

inputs

Strobe Input 1 (+)

Strobe Input 1 (-)

IN1P_A

IN1M_A

IN1P_B

IN1M_B

1

19

1

9

IN2 Strobe Input 2 (+)

Strobe Input 2 (-)

IN2P_A

IN2M_A

IN2P_B

IN2M_B

2

20

2

10

IN3 Ser Encoder Data

(+)

Ser Encoder Data (-

)

IN3P_A

IN3M_A

IN3P_B

IN3M_B

3

21

P5V 5v Power 5v Power P5V_A P5V_B 4 3

0V 0v 0v 0V_A 0V_B 22,23 11

IN4 Single ended

5v in

Servo Ready Input IN4_A IN4_B 5

 IO5 Single ended

5v inputs /

outputs

Servo PWM /

Alarm

IO5_A IO5_B 9

IO6 Servo PWM /

Alarm

IO6_A IO6_B 10

IO7 Servo PWM /

Alarm

IO7_A IO7_B 11

IO8 Servo ENBL / Alarm IO8_A IO8_B 12

0V 0v 0v 0V_A 0V_B 27-30

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 71

Circuit

Identifier

Circuit Type Analog Servo

Axis 1, 2 Circuit

Function

Axis 1 Signal

Name

Axis 2 Signal

Name

Faceplate

Pin

Axis Term

Board

Terminal

 IN9 24v optically

isolated inputs

Overtravel (+) IN9_A IN9_B 16 6

IN10 Overtravel (-) IN10_A IN10_B 34 14

IN11 Home Switch IN11_A IN11_B 17 7

INCOM 24v Input

Common

24v Input

Common

INCOM_A INCOM_B 35 15

OUT1 24 v, 125 mA

DC SSR output

Host controller 24v

Output (+)

Host controller 24v

Output (-)

OUT1P_A

OUT1M_A

OUT1P_B

OUT1M_B

18

36

8

16

OUT2 Differential 5v

outputs

Ser Encoder Req

(+)

Ser Encoder Req (-)

OUT2P_A

OUT2M_A

OUT2P_B

OUT2M_B

13

31

OUT3 Host controller 5v

Output (+)

Host controller 5v

Output (-)

OUT3P_A

OUT3M_A

OUT3P_B

OUT3M_B

14

32

5

13

ENBL 24v, 30 mA

SSR output

Servo MCON (+)

Servo MCON 0v

ENBL1_A

ENBL2_A

ENBL1_B

ENBL2_B

15

33

AIN1 Differential +/-

10v Analog

Inputs

IR Phase Current

(+)

IR Phase Current (-

)

AIN1P_A

AIN1M_A

AIN1P_B

AIN1M_B

7

25

AIN2 IS Phase Current

(+)

IS Phase Current (-)

AIN2P_A

AIN2M_A

AIN2P_B

AIN2M_B

8

26

AOUT1 +/- 10v Analog

Out

Host controller

Analog Out

AOUT_A AOUT_B 6 4

ACOM Analog Out

com

Analog Out Com ACOM_A ACOM_B 24 12

SHIELD Cable Shield Cable Shield SHIELD_A SHIELD_B S

Analog Servo Axis 1-4 Circuit and Pin Assignments

This table identifies all circuits and pin assignments for Analog Servo Axis 1 - Analog Servo

Axis 4. The shaded areas indicate signals that are unused and not available for user

connections.

Table 24: Circuit and Pin Assignments for Analog Servo Axis 1 - Analog Servo Axis 4

Circuit

Identifier

Circuit

Type

Analog Servo

Axis 1-4 Circuit

Function

Axis 1

Signal

Name

Axis 2

Signal

Name

Axis 3

Signal

Name

Axis 4

Signal

Name

Faceplate

Pin

Aux

Term

Board

Terminal

IN1 Single

ended /

Encoder Chan A

(+) Encoder Chan

A (-)

IN1P_A

IN1M_A

IN1P_B

IN1M_B

IN1P_C

IN1M_C

IN1P_D

IN1M_D

1

19

1

19

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 72

Circuit

Identifier

Circuit

Type

Analog Servo

Axis 1-4 Circuit

Function

Axis 1

Signal

Name

Axis 2

Signal

Name

Axis 3

Signal

Name

Axis 4

Signal

Name

Faceplate

Pin

Aux

Term

Board

Terminal

IN2 differential

5v inputs

Encoder Chan B

(+) Encoder Chan

B (-)

IN2P_A

IN2M_A

IN2P_B

IN2M_B

IN2P_C

IN2M_C

IN2P_D

IN2M_D

2

20

2

20

IN3 Encoder Marker

(+) Encoder

Marker (-)

IN3P_A

IN3M_A

IN3P_B

IN3M_B

IN3P_C

IN3M_C

IN3P_D

IN3M_D

3

21

3

21

P5V 5v Power 5v Encoder Power P5V_A P5V_B P5V_C P5V_D 4 4

0V 0v 0v 0V_A 0V_B 0V_C 0V_D 22,23 22,23

IN4 Single

ended 5v

in

Servo Ready Input IN4_A IN4_B IN4_C IN4_D 5 5

IO5 Single

ended 5v

inputs /

outputs

Strobe 1 Input IO5_A IO5_B IO5_C IO5_D 9 9

IO6 Strobe 2 Input IO6_A IO6_B IO6_C IO6_D 10 10

IO7 Not Used IO7_A IO7_B IO7_C IO7_D 11 11

IO8 Not Used IO8_A IO8_B IO8_C IO8_D 12 12

0V 0v 0v 0V_A 0V_B 0V_C 0V_D 27-30 27-30

IN9 24v

optically

isolated

inputs

Overtravel (+) IN9_A IN9_B IN9_C IN9_D 16 16

IN10 Overtravel (-) IN10_A IN10_B IN10_C IN10_D 34 34

IN11 Home Switch IN11_A IN11_B IN11_C IN11_D 17 17

INCOM 24v Input

Common

24v Input

Common

INCOM_A INCOM_

B

INCOM_C INCOM_

D

35 35

OUT1 24 v, 125

mA DC

SSR

output

PLC 24v Output

(+) PLC 24v

Output (-)

OUT1P_A

OUT1M_A

OUT1P_

B

OUT1M_

B

OUT1P_C

OUT1M_C

OUT1P_

D

OUT1M_

D

18

36

18

36

OUT2 Differentia

l 5v

outputs

Not Used

Not Used

OUT2P_A

OUT2M_A

OUT2P_

B

OUT2M_

B

OUT2P_C

OUT2M_C

OUT2P_

D

OUT2M_

D

13

31

13

31

OUT3 PLC 5v Output (+)

PLC 5v Output (-)

OUT3P_A

OUT3M_A

OUT3P_

B

OUT3M_

B

OUT3P_C

OUT3M_C

OUT3P_

D

OUT3M_

D

14

32

14

32

ENBL 24v, 30

mA SSR

output

Servo Enable (+)

Servo Enable (-)

ENBL1_A

ENBL2_A

ENBL1_B

ENBL2_B

ENBL1_C

ENBL2_C

ENBL1_D

ENBL2_D

15

33

15

33

AIN1 Differentia

l +/- 10v

Analog

Inputs

PLC Analog In (+)

PLC Analog In (-)

AIN1P_A

AIN1M_A

AIN1P_B

AIN1M_B

AIN1P_C

AIN1M_C

AIN1P_D

AIN1M_

D

7

25

7

25

AIN2 PLC Analog In (+)

PLC Analog In (-)

AIN2P_A

AIN2M_A

AIN2P_B

AIN2M_B

AIN2P_C

AIN2M_C

AIN2P_D

AIN2M_

D

8

26

8

26

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 73

Circuit

Identifier

Circuit

Type

Analog Servo

Axis 1-4 Circuit

Function

Axis 1

Signal

Name

Axis 2

Signal

Name

Axis 3

Signal

Name

Axis 4

Signal

Name

Faceplate

Pin

Aux

Term

Board

Terminal

AOUT1 +/- 10v

Analog

Out

Servo Vel Cmd (+)

or Servo Torque

Cmd (+)

AOUT_A AOUT_B AOUT_C AOUT_D 6 6

ACOM Analog

Out Com

Servo Vel Cmd

Com or Servo

Torque Com

ACOM_A ACOM_B ACOM_C ACOM_D 24 24

SHIELD Cable

Shield

Cable Shield SHIELD_A SHIELD_

B

SHIELD_C SHIELD_

D

 S

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 74

Aux Axis 2-4 Circuit and Pin Assignments

This table identifies all circuits and pin assignments for Aux Axis 2 - Aux Axis 4. The shaded

areas indicate signals that are unused and not available for user connections.

Table 25: Circuit and Pin Assignments for Aux Axis 3 (Connector C)

Circuit

Identifier

Circuit Type Aux Axis 2-4

Circuit Function

Axis 2

Signal

Name

Axis 3

Signal

Name

Axis 4

Signal

Name

Faceplate

Pin

Aux Term

Board

Terminal

IN1 Single ended /

differential 5v inputs

Encoder Chan A (+)

Encoder Chan A (-)

IN1P_B IN1P_C

IN1M_C

IN1P_D

IN1M_D

1 1

19 IN1M_B 19

IN2 Encoder Chan B (+)

Encoder Chan B (-)

IN2P_B IN2P_C

IN2M_C

IN2P_D

IN2M_D

2 2

20 IN2M_B 20

IN3 Encoder Marker (+)

Encoder Marker (-)

IN3P_B IN3P_C

IN3M_C

IN3P_D

IN3M_D

3 3

21 IN3M_B 21

P5V 5v from PLC 5v Encoder Power P5V_B P5V_C P5V_D 4 4

0V 0v 0v 0V_B 0V_C 0V_D 22,23 22,23

IN4 Single ended 5v in PLC 5v Input IN4_B IN4_C IN4_D 5 5

IO5 Single ended 5v inputs

/ outputs

Strobe 1 Input IO5_B IO5_C IO5_D 9 9

IO6 Strobe 2 Input IO6_B IO6_C IO6_D 10 10

IO7 Not Used IO7_B IO7_C IO7_D 11 11

IO8 Not Used IO8_B IO8_C IO8_D 12 12

0V 0v 0v 0V_B 0V_C 0V_D 27-30 27-30

IN9 24v optically isolated

inputs

PLC 24v Input IN9_B IN9_C IN9_D 16 16

IN10 PLC 24v Input IN10_B IN10_C IN10_D 34 34

IN11 Home Switch IN11_B IN11_C IN11_D 17 17

INCOM 24v Input Common 24v Input

Common

INCOM_B INCOM_C INCOM_D 35 35

OUT1 24 v, 125 mA

DC SSR output

PLC 24v Output (+)

PLC 24v Output (-)

OUT1P_B

OUT1M_B

OUT1P_C

OUT1M_C

OUT1P_D

OUT1M_D

18

36

18

36

OUT2 Differential 5v outputs Not Used

Not Used

OUT2P_B

OUT2M_B

OUT2P_C

OUT2M_C

OUT2P_D

OUT2M_D

13

31

13

31

OUT3 PLC 5v Output (+)

PLC 5v Output (-)

OUT3P_B

OUT3M_B

OUT3P_C

OUT3M_C

OUT3P_D

OUT3M_D

14

32

14

32

ENBL 24v, 30 mA

SSR output

ON when Force

Analog Output

%AQ Cmd is active

ENBL1_B

ENBL2_B

ENBL1_C

ENBL2_C

ENBL1_D

ENBL2_D

15

33

15

33

AIN1 Differential +/- 10v

Analog Inputs

PLC Analog In (+)

PLC Analog In (-)

AIN1P_B

AIN1M_B

AIN1P_C

AIN1M_C

AIN1P_D

AIN1M_D

7

25

7

25

AIN2 PLC Analog In (+)

PLC Analog In (-)

AIN2P_B

AIN2M_B

AIN2P_C

AIN2M_C

AIN2P_D

AIN2M_D

8

26

8

26

AOUT1 +/- 10v Analog Out PLC Analog Out AOUT_B AOUT_C AOUT_D 6 6

ACOM Analog Out com Analog Out Com ACOM_B ACOM_C ACOM_D 24 24

SHIELD Cable Shield Cable Shield SHIELD_B SHIELD_C SHIELD_D S

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 75

I/O Connection Diagrams

The following diagrams illustrate typical user connections to the DSM314.

Figure 46: Digital Servo Axis-1 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 76

Figure 47: Digital Servo Axis-2 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 77

Figure 48:  and  Series Digital Servo Command Cable (IC800CBL001/002)

Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 78

Figure 49: Analog Servo Axis-1 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 79

Figure 50: Analog Servo Axis-2 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 80

Figure 51: Analog Servo Axis-3 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 81

Figure 52: Analog Servo Axis-4 Connections

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 82

Figure 53: Aux Axis Connections (Axis 3 Shown)

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 83

I/O Specifications

The specifications and simplified schematics for the module’s I/O circuits are provided on

the following pages. The I/O circuits described are as follows:

• Differential/Single Ended 5v Inputs (IN1, IN2, IN3)

• Single Ended 5v Sink Input (IN4)

• Optically Isolated 24v Source/Sink Inputs (IN9, IN10, IN11, INCOM)

• Single Ended 5v Inputs/Outputs (IO5, IO6, IO7, IO8)

• 5v Differential Outputs (OUT2, OUT3)

• 24v DC Optically Isolated Output (OUT1)

• Optically Isolated Enable Relay Output (OUT4)

• Differential +/- 10v Analog Inputs (AIN1, AIN2)

• Single Ended +/- 10v Analog Outputs (AOUT1, ACOM)

• +5v Power (P5V, 0V)

Differential / Single Ended 5v Inputs

Circuit

Identifier

Digital Servo Axis

1, 2 Circuit

Function

Analog Servo Axis 1- 4

and Aux Axis 2-4 Circuit

Function

Signal Name

(X = A, B, C, or D

Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

IN1 Strobe Input 1 (+)

Strobe Input 1 (-)

Encoder Chan. A (+)

Encoder Chan. A (-)

IN1P_X 1 1 1

IN1M_X 19 19 9

IN2 Strobe Input 2 (+)

Strobe Input 2 (-)

Encoder Chan. B (+) Encoder

Chan. B (-)

IN2P_X 2 2 2

IN2M_X 20 20 10

IN3 Ser Encoder Data (+)

Ser Encoder Data (-)

Encoder Marker (+) Encoder

Marker (-)

IN3P_X 3 3 N/C

IN3M_X 21 21 N/C

I/O Type: Differential / Single Ended 5v Inputs

Circuit Type: Source Input (9.4K ohm pull-down to 0v)

Input Impedance (+) or (-) Input: 9.4K ohms common mode to 0v 18.8K ohms

differential

Maximum Input Voltage: +/- 15 v common mode +/- 20 v differential

Logic 0 Threshold: +0.8 v max single ended +0.4 v max differential

Logic 1 Threshold: +2.0 v min single ended +1.5 v min differential

Input Filtering: 0.5 microsecond typical

Quadrature Encoder Frequency: 250 KHz/channel (1 MHz count rate) max with

differential inputs 150 KHz/channel (600 KHz count

rate) max with single ended inputs Quadrature

Tolerance: 90 degrees +/- 45 degrees

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 84

Strobe Response: Minimum Pulse Width: 3 microseconds Position

Capture Accuracy: +/- 2 counts with an additional 10

microseconds of variance

Note: Use (+) Input for single ended mode and leave (-) input floating. Use faceplate 0v pins for
common mode reference or single ended signal return. Inputs can be driven by 5v TTL or CMOS
logic.

Single Ended 5v Sink Input

Circuit

Identifier

Servo Axis 1-4

Circuit Function

Aux Axis 2-4

Circuit Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

IN4 Servo Ready Input Faceplate 5v IN4_X 5 5 N/C

Input

I/O Type: Single Ended 5v Sink Input

Circuit Type: Sink Input (4.7K ohm pull-up to internal +5v) Input

Impedance: 4.7K ohms to +5v

Maximum Input Voltage: +/- 10.0 v

Logic 0 Threshold: +0.8 v max

Logic 1 Threshold: +2.0 v min

Input Filtering: 1.0 microseconds (typical) hardware filter + position

loop sampling rate (0.5, 1.0 or 2.0 milliseconds).

Note: This input must be pulled to 0v to turn on.

Optically Isolated 24v Source / Sink Inputs

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 85

Circuit

Identifier

Servo Axis 1-4

Circuit

Function

Aux Axis 2-4

Circuit

Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

IN9 Overtravel (+) Faceplate 24v

Input

IN9_X 16 16 6

IN10 Overtravel (-) Faceplate 24v

Input

IN10_X 34 34 14

IN11 Home Switch Home Switch IN11_X 17 17 7

INCOM 24v Input

Common

24v Input

Common

INCOM_X 35 35 15

I/O Type: Optically Isolated 24v Source / Sink Inputs

Circuit Type: Source / Sink (5K resistance to INCOM)

Input Impedance: 5.4K ohms to INCOM (@ 24 VDC)

Maximum Input Voltage: +/- 30.0v (referenced to INCOM)

Logic 0 Threshold: +/- 6.0 v max (referenced to INCOM)

Logic 1 Threshold: +/- 18.0 v min (referenced to INCOM)

Input Filtering: 5 milliseconds typical

Note: These inputs use bi-directional optocouplers and can be turned on with either a positive or
negative input with respect to INCOM.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 86

Single Ended 5v Inputs/Outputs

Circuit

Identifier

Digital Servo

Axis 1, 2

Circuit

Function

Analog Servo

Axis 1-4 and

Aux Axis 2-4

Circuit Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

IO5

0V

Servo PWM /

Alarm

0v

Strobe 1 Input

0v

IO5_X / IN5_X

0V_X

9

27

9

27

N/C

N/C

IO6

0V

Servo PWM /

Alarm

0v

Strobe 2 Input

0v

IO6_X / IN6_X

0V_X

10

28

10

28

N/C

N/C

IO7

0V

Servo PWM /

Alarm

0v

Not Used

0v

IO7_X / IN7_X

0V_X

11

29

11

29

N/C

N/C

IO8

0V

Servo ENBL /

Alarm

0v

Not Used

0v

IO8_X / IN8_X

0V_X

12

30

12

30

N/C

N/C

I/O Type: Single Ended 5v Inputs / Outputs

Circuit Type: Sink (4.7K ohm pull-up to internal +5v)

Input Impedance: 4.7K ohms to internal +5v

Maximum Input Voltage: -1.0 v, +7.0v

Logic 0 Input Threshold: +0.8 v max

Logic 1 Input Threshold: +2.4 v min

Input Filtering: 10 microseconds typical

Output Sink Current 10 mA max

On State Output Voltage +0.5v at 10 mA

Strobe Response: Minimum Pulse Width: 10 microseconds. Position

Capture Accuracy: +/- 2 counts with an additional 10

microseconds of variance

Note: For digital servos, these points act as the PWM / ENBL outputs and Alarm inputs. For Analog Servos
and Aux axes, these points are input only. The listed 0v pins should be normally used for the signal
return.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 87

5v Differential Outputs

Circuit

Identifier

Digital Servo Axis 1,

2 Circuit Function

Analog Servo Axis 1-

4 and Aux Axis 2-4

Circuit Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

OUT2 Serial Encoder Req (+)

Serial Encoder Req (-)

Not Used

Not Used

OUT2P_X

OUT2M_X

13

31

13

31

N/C

N/C

OUT3 Faceplate 5v Output (+)

Faceplate 5v Output (-)

Faceplate 5v Output (+)

Faceplate 5v Output (-)

OUT3P_X

OUT3M_X

14

32

14

32

5

13

I/O Type: 5v Differential Outputs

Circuit Type: Differential Totem Pole (Source / Sink)

Output Source/Sink Current: 20 mA max

Output Voltage: +/- 1.5 v min across 120-ohm differential load

Note: Axis 1 and Axis 3 use CMOS Drivers with 47-ohm series resistors. Axis 2 and Axis 4 use RS-422 Line
Drivers.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 88

24v DC Optically Isolated Output

Circuit

Identifier

Servo Axis 1-4 Circuit

Function

Aux 2-4 Axis Circuit

Function

Signal Name (X

= A, B, C, or D

Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

OUT1 Faceplate 24v Output (+)

Faceplate 24v Output (-)

Faceplate 24v Output (+)

Faceplate 24v Output (-)

OUT1P_X

OUT1M_X

18

36

18

36

8

16

I/O Type: 24v DC Optically Isolated Output

Circuit Type: Isolated Solid-State Relay (SSR)

Output Current: 125 mA continuous, 500 mA for 10 ms (resistive or

inductive)

Output Voltage Drop: 1.0 v max at 0.125 amps

Note: Output is protected by a 30v transzorb and a 0.2-amp Polyswitch. If a short circuit occurs, the
output will automatically switch to a high impedance state until the load is removed. The load
should not be reapplied for 60 seconds. This is a dc output and it will appear to be always ON if
connections to it are reversed.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 89

Optically Isolated Enable Relay Output

Circuit

Identifier

Digital Servo

Axis 1, 2 Circuit

Function

Analog Servo

Axis 1-4 Circuit

Function

Aux Axis 2-4

Circuit Function

Signal Name

(X = A, B, C,

or D

Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

ENBL Servo MCON (+)

Servo MCON 0v

Drive Enable (+)

Drive Enable (-)

Drive Enable (+)

Drive Enable (-)

ENBL1_X

ENBL2_X

15

33

15

33

N/C

N/C

I/O Type: Optically Isolated Enable Relay Output

Circuit Type: Isolated AC Solid State Relay (SSR)

Output Current: 30 mA continuous, 50 mA for 10 ms

Output Voltage Drop: 1.0 v max at 10 mA

Note: This is a low current SSR output. The output is ON when the associated faceplate Axis Enabled
LED is illuminated. This occurs when:

The servo is enabled

A Force Digital Servo Velocity %AQ Cmd is used (Axis 1, 2) A Force Analog Output %AQ Cmd is
used

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 90

Differential +/- 10v Analog Inputs

Circuit

Identifier

Digital Servo Axis

1, 2 Circuit

Function

Analog Servo Axis

1-4 and Aux Axis 2-

4 Circuit Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

AIN1 IR Phase Current (+)

IR Phase Current (-)

Faceplate Analog In (+)

Faceplate Analog In (-)

AIN1P_X

AIN1M_X

7

25

7

25

N/C

N/C

AIN2 IS Phase Current (+)

IS Phase Current (-)

Faceplate Analog In (+)

Faceplate Analog In (-)

AIN2P_X

AIN2M_X

8

26

8

26

N/C

N/C

I/O Type: Differential +/- 10v Analog Inputs

Circuit Type: Differential Input

Input Impedance: 102K ohms common mode with respect to faceplate

connector 0v 204K ohms differential

Maximum Input Voltage: +/- 15 v common mode with respect to faceplate

connector 0v +/- 20 v differential

Resolution: 15 bits

Linearity: 13 bits

Input Offset: +/- 1.0 millivolt

Gain Factor: +/- 10.0v = +/- 32,000 counts

Gain Accuracy: +/- 0.5 %

Update Rate: 2 milliseconds + host controller sweep time when

data is reported to the host controller’s %AI table.

Note: Use faceplate 0v pins for common mode reference.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 91

Single Ended +/- 10v Analog Output

Circuit

Identifier

Analog Servo Axis

1-4 Circuit Function

Digital Servo Axis

1,2 and Aux Axis 2-

4 Circuit Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

AOUT1 Analog Servo Velocity

Command or Analog

Servo Torque

Command

Faceplate Analog Out AOUT_X 6 6 4

ACOM Analog Out Com Analog Out Com ACOM_X 24 24 12

I/O Type: Single Ended Analog

Output Circuit Type: Op Amp Voltage Follower Output

Load Impedance: 2K ohms minimum

Output Current: 5 mA max

Resolution: 13 bits

Linearity: 13 bits

Output Offset Voltage: +/- 500 microvolts max

Force D/A Gain Factor: +/- 10.0v = +/- 32000 counts

Gain Accuracy: +/- 1.0 %

Force Analog Output Update Rate: Host controller sweep rate when used by Force

Analog Output %AQ command.

250 microseconds when used as Digital Servo tuning

output.

Note: Since this is a single ended output, it should normally drive a user device with a differential input
to prevent common mode noise problems. The positive differential input should be connected to
AOUT and the negative differential input to ACOM.

The Select Analog Output Mode %AQ command can be used to select the source for the analog
output. Refer to Chapter 5 for more information.

User Manual Chapter 3
GFK-1742F Jan 2020

Installing and Wiring the DSM314 92

+5v Power

Circuit

Identifier

Servo Axis

Circuit

Function

Aux Axis

Circuit

Function

Signal Name

(X = A, B, C, or

D Connector)

Faceplate

Pin

Auxiliary

Terminal

Board

Servo

Terminal

Board

P5V 5v Power 5v Power P5V_X 4 4 3

0V 0v 0v 0V_X 22 22 11

I/O Type: +5V Encoder Power

Circuit Type: +5V Power with Electronic Short Circuit Protection

Output Voltage: 4.70 v to 5.20 v at 0.5 amp

Output Current: 0.5 amp max (total for all connectors)

Notes:

Note: This output is intended to power external devices such as Incremental Quadrature Encoders
requiring less than 0.5 amps total from all four axis connectors. The output current is provided by
the host controller backplane +5v supply and is protected by an electronic short circuit protector
in the DSM314 module.

The total external device current drawn from this +5V circuit must be added to the power supply
consumption value in the DSM314 configuration screen in the configuration software and must
be added in if performing a manual power supply loading calculation.

The listed 0v pin should normally be used as the power return signal.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 93

Chapter 4: Configuration
This chapter describes the configuration steps necessary to set up the DSM314 for a specific

application. Refer to Chapter 2 for instructions on how to configure the system to send a Jog

command to the DSM to test that the system components are operable. Refer to Chapter

15 for Electronic CAM configuration information.

The DSM314 Controller is configured using the following programming software:

RX3i Machine Edition version 4.5 or later

Series 90-30 Machine Edition version 2.1 or later

VersaPro version 2.1 or later (refer to Appendix H)

Configuration is a two-part procedure consisting of:

1. Rack/Slot Configuration

2. Module Configuration

4.1 Connecting the Programmer to the Host

Controller
All DSM314 programming is done through the configuration/programming software

interface, yielding a single point of programming for the module. For more information,

please refer to the Series 90-30 PLC Installation and Hardware Manual, GFK-0356 or the

PACSystems RX3i System Manual, GFK-2314. The programming environment has several

communications options. One communications option is to connect the programmer

directly to the host controller SNP port, as shown in the following figure. Consult the

software documentation for additional communications methods.

Note: The DSM314 also has a serial port on the module faceplate. This serial port is used only for
updating the DSM314 firmware.

Figure 54: DSM Programmer Connection Diagram

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 94

4.2 Rack/Slot Configuration
The hardware configuration defines the type and location of all modules present in the PLC

racks. This is done by first completing setup screens that represent the modules in a

baseplate, and saving the information to a configuration file, which is then downloaded to

the PLC CPU.

1. Start the Machine Edition Logic Developer – PLC software. The Machine Edition

dialog box appears.

Figure 55

2. Under Create a New Project, choose Machine Edition Template and click OK. The

New Project dialog box appears.

3. Type a name for Project Name. In the Project Template dropdown list, select Series

90-30 PLC or PACSystems RX3i. Click OK.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 95

Figure 56

Your project appears in the Navigator window as shown in the following figure.

Figure 57

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 96

4. Expand the Main Rack node, which contains the default power supply and CPU.

Figure 58

5. If necessary, replace the power supply and/or CPU with the models that will be used

in your application. To replace a module, right click and choose Replace Module.

6. Add a DSM314 to the rack configuration.

Note: Because an IC694DSM314 module and an IC693DSM314 module have the same functionality, a
Series 90-30 PLC supports them in the same way. If you install an IC694DSM314 in a Series 90-30
PLC, however, you cannot select it in Logic Developer - PLC. You must select an IC693DSM314
module and configure it as if it were an IC694DSM314.

A. Right click an empty slot and choose Add Module. The Module Catalog dialog box

appears.

B. Select the Motion tab, choose the DSM314 and click OK.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 97

Figure 59

This operation adds the DSM314 to the rack and displays the DSM314 configuration screens

that allow you to customize the DSM314 to your application. Refer to chapter 4 for details

concerning the DSM314 configuration settings.

You should complete the configuration of your host controller to include the Power Supply,

Rack, CPU and additional modules to match the target system. Consult the software

user’s manual and on-line help as needed.

Important

The completed configuration must be stored to the host controller. See “Storing Your

Configuration to the PLC” in Chapter 2 for instructions on how to do this. For additional

details, consult the software user’s manual, and on-line help.

Note: A host controller status error of “System Configuration Mismatch” with the same rack/slot
location as a DSM314 indicates that there is a parameter configured and sent to the DSM314 that
has been rejected by the DSM314. Carefully check each parameter of your DSM314 configuration
with the configuration settings in this manual for the discrepancy. Correct the discrepancy, clear
the host controller Fault, and re-Store the configuration. Check that the error has been corrected.
See the next section, Enabling Run Mode on the PLC, for instructions on viewing and clearing PLC
faults.

The DSM314 can detect many typical configuration errors. These are returned as error codes of
the form Dxxx (hex) in the Module Status Code %AI word or Axis Error Code %AI words. These errors
do not cause a host controller status of “System Configuration Mismatch”. Refer to Appendix A
for a description of these errors. Correct any configuration errors and restore the configuration
with the host controller in Stop mode.

4.3 Module Configuration

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 98

4.3.1 Setting the Configuration Parameters
The hardware configuration data is presented in a tabular format. The tabs correspond to

the groupings shown below. The tab and/or tabs that correspond to the groups are shown

in parenthesis after the group name. Note that tabs appear and disappear based upon the

configuration selections made on the Settings tab. For example, if Axis 4 is disabled, the Axis

#4 and Tuning #4 tabs are not shown.

• Module Configuration Data (Settings, CTL Bits, Output Bits)

• Serial Communication (SNP Port)

• Axis Configuration Data

• Axis Tuning

• Advanced Settings

• Power Consumption

The content of each tab is as shown below:

Tab Name Function or Description

Settings Contains PLC Reference assignments and lengths, DSM Axis Setup and

other global data

SNP Port DSM front panel SNP port setup

CTL Bits Configuring the DSM’s 24 control bits

Output Bits Configuring the DSM’s 8 faceplate digital outputs

Axis #1 - Axis #4 Configuring axis parameters such as Position Limits, Find Home Velocity

and Jog Acceleration

Tuning #1 – Tuning #4 Configuring servo loop tuning items such as Motor Type, Position Loop

Time Constant and Velocity Feedforward.

Advanced Allows user entry of custom tuning parameters for any axis

Power Consumption Lists DSM power required from backplane supply (4.0 watts + encoder

power)

For additional details concerning the operation of the configuration software, please

consult the online help or PAC Machine Edition Logic Developer-PLC Getting Started, GFK-

1918.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 99

4.3.2 Settings
The Settings tab contains configuration information that allows you to define basic module

operation. These settings specify the number of controlled axes, axis operating modes etc.

The selections on these tabs can cause other tabs within the configuration to appear or

disappear. For example, if you disable axis #4, the Axis and Tuning tabs relating to axis #4

are not displayed.

The Settings tab is where you define the Motion program, Local Logic, and Cam block

names. These names determine which programs stored in the CPU will be transferred to

each DSM on system power-up.

During each CPU sweep, data is automatically transferred between the DSM314 and the

CPU. The Settings tab contains the CPU interface data references and the starting locations

for the automatic transfers. The configuration parameters in the Settings tab are described

in Table 26. All Reference Section designations shown in the tables pertain to this chapter.

Table 26: Settings Tab

Configuration

Parameter

Description Values Default Units Reference

Section

Number of Axes Number of Controlled

Axis

1

2

3

4

4 N/A 1.01

%I Reference Start address for %I ref

type (80 bits)

CPU Dependent %I00001 or next

higher reference

N/A 1.02

%I Length %I reference address

length

32 = 1 Axis

48 = 2 Axis

64 = 3 Axis

80 = 4 Axis

N/A

Length automatically

determined by

Number of Axes

setting

N/A 1.02

%Q Reference Start address for %Q ref

type (80 bits)

CPU Dependent %Q00001 or next

higher reference

N/A 1.02

%Q Length %Q reference address

length

32 = 1 Axis

48 = 2 Axis

64 = 3 Axis

80 = 4 Axis

N/A

Length automatically

determined by

Number of Axes

setting

N/A 1.02

%AI reference Start address for %AI ref

type (84 bits)

CPU Dependent %AI00001 or next

higher reference

N/A 1.02

%AI Length %AI reference address

length

24= 1 Axis

44 = 2 Axis

64 = 3 Axis

84 = 4 Axis

N/A

Length automatically

determined by

Number of Axes

setting

N/A 1.02

%AQ reference Start address for %AQ

ref type (12 bits)

CPU Dependent %AQ00001 or next

higher reference

N/A 1.02

%AQ Length %AQ reference address

length

3= 1 Axis

6 = 2 Axis

9 = 3 Axis

N/A

Length automatically

determined by

N/A 1.02

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 100

Configuration

Parameter

Description Values Default Units Reference

Section

12 = 4 Axis Number of Axes

setting

Axis 1 Mode Axis 1 Control Mode Analog Servo

Digital Servo

Analog Servo N/A 1.03

Axis 2 Mode Axis 2 Control Mode Analog Servo

Digital Servo

Auxiliary Axis

Analog Servo N/A 1.03

Axis 3 Mode Axis 3 Control Mode Analog Servo

Auxiliary Axis

Auxiliary Axis N/A 1.03

Axis 4 Mode Axis 4 Control Mode Disabled

Analog Servo

Auxiliary Axis

Disabled N/A 1.03

Local Logic

Mode

The Local Logic

Engine mode

Disabled

Enabled

Disabled N/A 1.04

Total Encoder

Power

Encoder power

requirements

RX3i: 0.000 through

0.500

90-30: 0 through 2.5

0 RX3i: Amps

90-30: Watts

1.05

Motion Program

Block Name

The motion program

name to execute on the

module

Name must be 20

characters or less

and begin with a

letter or underscore

(_). Only

alphanumeric

characters and non-

consecutive

underscores are

allowed.

<blank> N/A 1.06

Local Logic

Block Name

The local logic program

name to execute on the

module

<blank> N/A 1.07

CAM Block

Name

The CAM block name to

execute on the module

<blank> N/A 1.08

I/O Scan Set

(RX3i only)

The scan set (as defined in

the CPU's Scan Sets tab)

to be assigned to this

module.

1 through 32 1 N/A 1.09

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 101

1.01 Number of Axes. This parameter selects the number of axes the DSM314 is going to

control and the size of automatic data transfers between the PLC and DSM. (Default

= 4.) The following two tables document the possible axis combinations for Analog

and Digital modes. Axes identified as Limited Aux Axis provide position feedback but

no internal motion command generation.

Table 27: Number of Axes

Item # Axes Axis 1 Axis 2 Axis 3 Axis 4 Local Logic Sample

Rate (ms)

1. 4 Analog Servo Analog Servo Analog Servo Analog Servo Disabled 2.0

2. 4 Analog Servo Analog Servo Analog Servo Auxiliary Axis Disabled 2.0

3. 4 Analog Servo Analog Servo Analog Servo Disabled Disabled 2.0

4. 4 Analog Servo Analog Servo Analog Servo Disabled Enabled 2.0

5. 4 Analog Servo Analog Servo Analog Servo Limited Aux Axis Enabled 2.0

6. 4 Analog Servo Analog Servo Auxiliary Axis Analog Servo Disabled 2.0

7. 4 Analog Servo Analog Servo Auxiliary Axis Auxiliary Axis Disabled 2.0

8. 4 Analog Servo Analog Servo Auxiliary Axis Disabled Disabled 2.0

9. 4 Analog Servo Analog Servo Auxiliary Axis Disabled Enabled 2.0

10. 4 Analog Servo Analog Servo Auxiliary Axis Limited Aux Axis Enabled 2.0

11. 4 Analog Servo Auxiliary Axis Analog Servo Analog Servo Disabled 2.0

12. 4 Analog Servo Auxiliary Axis Analog Servo Auxiliary Axis Disabled 2.0

13. 4 Analog Servo Auxiliary Axis Analog Servo Disabled Disabled 2.0

14. 4 Analog Servo Auxiliary Axis Analog Servo Disabled Enabled 2.0

15. 4 Analog Servo Auxiliary Axis Analog Servo Limited Aux Axis Enabled 2.0

16. 4 Analog Servo Auxiliary Axis Auxiliary Axis Analog Servo Disabled 2.0

17. 4 Analog Servo Auxiliary Axis Auxiliary Axis Auxiliary Axis Disabled 2.0

18. 4 Analog Servo Auxiliary Axis Auxiliary Axis Disabled Disabled 2.0

19. 4 Analog Servo Auxiliary Axis Auxiliary Axis Disabled Enabled 2.0

20. 4 Analog Servo Auxiliary Axis Auxiliary Axis Limited Aux Axis Enabled 2.0

21. 3 Analog Servo Analog Servo Analog Servo NA Disabled 2.0

22. 3 Analog Servo Analog Servo Analog Servo NA Enabled 2.0

23. 3 Analog Servo Analog Servo Auxiliary Axis NA Disabled 2.0

24. 3 Analog Servo Analog Servo Auxiliary Axis NA Enabled 2.0

25. 3 Analog Servo Auxiliary Axis Analog Servo NA Disabled 2.0

26. 3 Analog Servo Auxiliary Axis Analog Servo NA Enabled 2.0

27. 3 Analog Servo Auxiliary Axis Auxiliary Axis NA Disabled 2.0

28. 3 Analog Servo Auxiliary Axis Auxiliary Axis NA Enabled 2.0

30. 2 Analog Servo Analog Servo NA NA Disabled 1.0

31. 2 Analog Servo Analog Servo NA NA Enabled 2.0

32. 2 Analog Servo Auxiliary Axis NA NA Disabled 1.0

33. 2 Analog Servo Limited Aux Axis NA NA Enabled 1.0

34. 1 Analog Servo NA NA NA Disabled 0.5

35. 1 Analog Servo NA NA NA Enabled 1.0

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 102

Table 28: Digital Axis Configurations

Item # Axes Axis 1 Axis 2 Axis 3 Axis 4 Local Logic Sample Rate

(ms)

1. 4 Digital Servo Digital Servo Analog Servo Disabled Disabled 2.0

2. 4 Digital Servo Digital Servo Analog Servo Disabled Enabled 2.0

3. 4 Digital Servo Digital Servo Auxiliary Axis Disabled Disabled 2.0

4. 4 Digital Servo Digital Servo Auxiliary Axis Disabled Enabled 2.0

5. 3 Digital Servo Digital Servo Analog Servo NA Disabled 2.0

6. 3 Digital Servo Digital Servo Analog Servo NA Enabled 2.0

7. 3 Digital Servo Digital Servo Auxiliary Axis NA Disabled 2.0

8. 3 Digital Servo Digital Servo Auxiliary Axis NA Enabled 2.0

9. 2 Digital Servo Digital Servo NA NA Disabled 2.0

10. 2 Digital Servo Digital Servo NA NA Enabled 2.0

11. 1 Digital Servo NA NA NA Disabled 2.0

12. 1 Digital Servo NA NA NA Enabled 2.0

1.02 I/Q/AI/AQ Len. Displays the beginning addresses and number of %I, %Q, %AI, and

%AQ references assigned to the DSM314. The reference sizes are set when the user

configures the number of axes.

1.03 Axis n Mode. These parameters define the command output types provided to the

servo sub-systems. Digital Servo selects a special digital output for Digital servo

drives. If Digital Servo is selected, Axes 1 and 2 must be digital. Analog Servo selects

a +/-10-volt velocity command or +/- 10-volt torque command for standard analog

servo drives. The torque or velocity interface is configured by the Analog Servo

Command setting in the module configuration. Auxiliary Axis disables the position

loop so that the internal command generator and encoder position input can be

used for follower or cam functions. If any axis connector is used as a master source

input for follower mode, it should be configured as Auxiliary Axis. An Auxiliary Axis

will output an analog voltage proportional to Commanded Velocity if Velocity

Feedforward is set to a non-zero value. When an axis is configured as Auxiliary Axis

and identified as Limited Aux Axis in Table 27, position feedback is available but

internal motion command generation is not available. An axis configured as

Disabled (applies to Axis 4 only) provides analog and digital i/o but no position

feedback or internal motion command generation. (Default = Analog Servo (Axis 1-

2), Aux Axis (Axis 3), Disabled (Axis 4)).

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 103

1.04 Local Logic Mode. This parameter defines the Local Logic engine status. To enable

Local Logic this parameter must be set to Enabled. If Local Logic is enabled, the

maximum number of Servo axes available is 3. A Local Logic Block Name must also

be entered when Local Logic Mode = Enabled. (Default = Disabled)

1.05 Total Encoder Power. This parameter defines the total power consumption for all

encoders attached to the DSM module. (Default = 0). This parameter should account

for all analog axis and master encoders and is used to update the Power

Consumption display in the configuration software.

1.06 Motion Program Block Name. This parameter defines the optional Motion Program

block name to execute on the DSM module. If no name is entered, the DSM will

assume that Motion Program blocks are not used. If a name is entered, a Motion

Program block of the same name must exist within the active folder. Entering an

invalid name will cause an error to be generated when storing the hardware

configuration to the PLC. The name may consist of up to 31 characters, but cannot

have any blank spaces, although you are allowed to use the underline character.

Both upper- and lower-case characters are permitted. (Default = <blank>).

1.07 Local Logic Block Name. This parameter defines the optional Local Logic block name

to execute on the DSM module. If no name is entered, the DSM will assume that

Local Logic blocks are not used. If a name is entered, a Local Logic block of the same

name must exist within the active folder. Entering an invalid name will cause an error

to be generated when storing the hardware configuration to the PLC. The name may

consist of up to 31 characters, but cannot have any blank spaces, although you are

allowed to use the underline character. Both upper- and lower-case characters are

permitted. For Local Logic to operate, the Local Logic Mode must also be set to

Enabled. (Default = <blank>).

1.08 CAM Block Name. Defines the optional CAM block name to execute on the DSM

module. If no name is entered, the DSM will assume that CAM blocks are not used.

If a name is entered, a CAM block of the same name must exist within the active

folder. Entering an invalid name will cause an error to be generated when storing the

hardware configuration to the PLC. The rules for CAM Block names are:

• Only the characters A-Z, a-z, 0-9, and _ (underscore symbol) are allowed.

Consecutive underscores and blank spaces are not allowed.

• The CAM block name must begin with a letter or underscore symbol.

• A block cannot have the same name as another block that exists in an open folder.

• A CAM block name may contain up to a maximum of seven characters.

• This feature was first supported in DSM314 firmware release 2.00.

See Chapter 15 for CAM feature details. (Default = <blank>).

1.09 I/O Scan Set.

The scan set (as defined in the CPU's Scan Sets tab) to be assigned to this module.

For details on scan set operation refer to the PACSystems CPU Reference Manual,

GFK-2222.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 104

4.3.3 Serial Communications Port Configuration Data
The DSM314’s Serial Communications Port uses an RJ-11 connector labeled COMM on the

module’s faceplate and supports the RS-232 protocol. It is used for firmware upgrades to

flash memory and must be configured properly to communicate with the upgrade software

running on your programmer. Make sure the programmer’s configuration parameters and

the DSM314’s Serial Communications Port configuration parameters match. These

configuration parameters are described in Table 29.

Table 29: SNP Port Tab

Configuration

Parameter

Description Values Defaults Units Ref.

Data Rate Baud rate of SNP

Port

300, 600, 1200, 2400,

4800, 9600, 19200

19200 N/A 2.01

Stop Bits Number of stop

bits

1 or 2 1 N/A 2.02

Parity Parity ODD, EVEN, NONE ODD N/A 2.03

Idle Time Maximum link idle

time

1...255 10 sec 2.04

Modem

Turnaround Time

Modem

turnaround time

0…255 0 .01

sec/count

2.05

SNP ID SNP ID Seven characters consisting

of A-F and 0-9. First

character must be A-F.

A000001 N/A 2.06

2.01 Baud Rate. The baud rate parameter specifies the transmission rate, in bits per

second, of data through the serial port.

2.02 Stop Bits. All serial communications devices use at least one (1) stop bit. For slower

devices, set this parameter to two (2) stop bits.

2.03 Parity. Specifies whether or not a parity bit is to be used (NONE if not), and if so,

whether it should be ODD or EVEN.

2.04 Idle Time. Specifies the time, in seconds, that the DSM314 will wait for a new

message to be received from the master device before assuming that

communications have been lost or terminated. In such a case, the DSM314 will

reinitialize to wait for the start of a new SNP connection sequence.

2.05 Modem Turnaround Time. When utilizing a modem, a Modem Turnaround Time

must be specified. This is the time required for the modem to start data transmission

after receiving the transmit request. If no modem is used, 0 should be specified. If a

modem is used, a value greater than 0 must be specified.

2.06 SNP ID. An identifier consisting of from 0 to 7 characters consisting of A-F and 0-9.

The first character specified must be in the set A-F. The identifier must be utilized for

a multi- drop network. The DSM314 will support multi-drop connections only if the

RS232 connection is converted to RS422/485.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 105

Note: Since this Serial Communications Port is used only for upgrading the DSM314’s firmware, it is
recommended you leave this port’s communications settings at their default values. Use cable
IC693CBL316 to connect this port to the serial port of a personal computer running the firmware
upgrade software.

4.3.4 Control (CTL) Bits
The CTL Bits configuration tab allows the user to configure the input source for Control Bits

(CTL01-CTL24). The configuration screen allows the user to select a CTL bit configuration

that corresponds with Motion Program and Local Logic program requirements. CTL Bits

configuration parameters are described in Table 30. For additional information concerning

CTL bit configuration, consult chapter 14.

Table 30: CTL Bits Tab

Configuration Parameter Description Default Ref

CTL01 Config CTL01 Bit Configuration IN9_A (Axis 1 +OT) Chapter 14

CTL02 Config CTL02 Bit Configuration IN10_A (Axis 1 -OT) Chapter 14

CTL03 Config CTL03 Bit Configuration IN11_A (Axis 1 Home Sw) Chapter 14

CTL04 Config CTL04 Bit Configuration Strobe1 Level (Axis 1) Chapter 14

CTL05 Config CTL05 Bit Configuration IN9_B (Axis 2 +OT) Chapter 14

CTL06 Config CTL06 Bit Configuration IN10_B (Axis 2 -OT) Chapter 14

CTL07 Config CTL07 Bit Configuration IN11_B (Axis 2 Home Sw) Chapter 14

CTL08 Config CTL08 Bit Configuration Strobe1 Level (Axis 2) Chapter 14

CTL09 Config CTL09 Bit Configuration %Q bit Offset 12 Chapter 14

CTL10 Config CTL10 Bit Configuration %Q bit Offset 13 Chapter 14

CTL11 Config CTL11 Bit Configuration %Q bit Offset 14 Chapter 14

CTL12 Config CTL12 Bit Configuration %Q bit Offset 15 Chapter 14

CTL13 Config CTL13 Bit Configuration IN9_C (Axis 3 +OT) Chapter 14

CTL14 Config CTL14 Bit Configuration IN10_C (Axis 3 -OT) Chapter 14

CTL15 Config CTL15Bit Configuration IN11_C (Axis 3 Home Sw) Chapter 14

CTL16 Config CTL16 Bit Configuration Strobe1 Level (Axis 3) Chapter 14

CTL17 Config CTL17 Bit Configuration %Q bit Offset 24 Chapter 14

CTL18 Config CTL18 Bit Configuration %Q bit Offset 25 Chapter 14

CTL19 Config CTL19 Bit Configuration %Q bit Offset 40 Chapter 14

CTL20 Config CTL20 Bit Configuration %Q bit Offset 41 Chapter 14

CTL21 Config CTL21 Bit Configuration %Q bit Offset 56 Chapter 14

CTL22 Config CTL22 Bit Configuration %Q bit Offset 57 Chapter 14

CTL23 Config CTL23 Bit Configuration %Q bit Offset 72 Chapter 14

CTL24 Config CTL24 Bit Configuration %Q bit Offset 73 Chapter 14

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 106

Each CTL bit shown in the previous table can be configured to one of the values in the

following table

Table 31: Allowed Values for CTL Bits Tab

Local Logic Controlled IN9_D (Axis 4 +OT) Strobe2 Level (Axis4) %Q bit Offset 57

IN9_A (Axis 1 +OT) IN10_D (Axis 4 -OT) %Q bit Offset 12 %Q bit Offset 72

IN10_A (Axis 1 -OT) IN11_D (Axis 4 Home Sw) %Q bit Offset 13 %Q bit Offset 73

IN11_A (Axis 1 Home Sw) Strobe1 Level (Axis1) %Q bit Offset 14 FBSA* Write Bit 1

IN9_B (Axis 2 +OT)

IN10_B (Axis 2 -OT)

Strobe2 Level (Axis1)

Strobe1 Level (Axis2)

%Q bit Offset 15

%Q bit Offset 24

FBSA* Write Bit 2

FBSA* Write Bit 3

IN11_B (Axis 2 Home Sw) Strobe2 Level (Axis2) %Q bit Offset 25 FBSA* Write Bit 4

IN9_C (Axis 3 +OT) Strobe1 Level (Axis3) %Q bit Offset 40 Local Logic Active Flag

IN10_C (Axis 3 -OT) Strobe2 Level (Axis3) %Q bit Offset 41

IN11_C (Axis 3 Home Sw) Strobe1 Level (Axis4) %Q bit Offset 56

* FBSA is an acronym for “Fast Backplane Status Access” (Service Request #46). See GFK-0467L

or later for details.

4.3.5 Output Bits
The Output bits configuration tab allows the user to configure the DSM314 faceplate digital

outputs for either Local Logic program control or PLC program control. Output Bit

parameters are described in Table 32. Refer to Chapter 14 for additional information

concerning Output bit configuration.

Table 32: Output Bits Tab

Configuration

Parameter

Description Values Defaults Ref

Out1_A Config Out1_A Control

Source

PLC Control (%Q bit Offset 24)

DSM Control (Digital Output1_1)

PLC Control Chapter 14

Out3_A Config Out3_A Control

Source

PLC Control (%Q bit Offset 25)

DSM Control (Digital Output3_1)

PLC Control Chapter 14

Out1_B Config Out1_B Control

Source

PLC Control (%Q bit Offset 40)

DSM Control (Digital Output1_2)

PLC Control Chapter 14

Out3_B Config Out3_B Control

Source

PLC Control (%Q bit Offset 41)

DSM Control (Digital Output3_2)

PLC Control Chapter 14

Out1_C Config Out1_C Control

Source

PLC Control (%Q bit Offset 56)

DSM Control (Digital Output1_3)

PLC Control Chapter 14

Out3_C Config Out3_C Control

Source

PLC Control (%Q bit Offset 57)

DSM Control (Digital Output3_3)

PLC Control Chapter 14

Out1_D Config Out1_D Control

Source

PLC Control (%Q bit Offset 72)

DSM Control (Digital Output1_4)

PLC Control Chapter 14

Out3_D Config Out3_D Control

Source

PLC Control (%Q bit Offset 73)

DSM Control (Digital Output3_4)

PLC Control Chapter 14

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 107

4.3.6 Axis Configuration Data
The DSM314 Axis configuration parameters define items such as User Units to Counts ratio,

Jog Velocity, Jog Acceleration, End of Travel, and Velocity limits. The configuration

parameters for each control loop mode are defined and briefly described here. The numbers

in the “Ref” column refer to section reference numbers in this chapter. Values for

MaxPosnUu, MaxVelUu, and MaxAccUu in the following table can be calculated using the

formulas in Table 37 (“Computing Data Limit Variables”).

Table 33: Axis Configuration Data

Parameter Description Values Defaults Units Ref

User Units User Units Value 1...65,535 1 N/A 5.01

Counts Feedback Counts 1...65,535 1 N/A 5.01

Overtravel Limit Sw Over travel Limit Switch

Enable / Disable

Enabled

Disabled

Enabled N/A 5.02

Drive Ready Input Drive Ready Input Control Enabled

Disabled

Enabled N/A 5.03

High Position Limit High Position Limit -MaxPosnUu

…+MaxPosnUu-1*

+8388607 User units 5.04

Low Position Limit Low Position Limit -MaxPosnUu

…+MaxPosnUu-1*

-8388608 User units 5.05

High Software EOT

Limit

High Software End of Travel

Limit

-MaxPosnUu

…+MaxPosnUu-1*

+8388607 User units 5.06

Low Software EOT

Limit

Low Software End of Travel

Limit

-MaxPosnUu

…+MaxPosnUu-1*

-8388608 User units 5.07

Software End of

Travel

Software End of Travel

Control

Disabled

Enabled

Disabled N/A 5.08

Velocity Limit Axis Velocity Limit 1…MaxvelUu 1,000,000 User units/sec 5.09

Command Direction Allowable Commanded

Direction

Bi-directional Positive Only

Negative Only

Bi-

directional

N/A 5.10

Axis Direction Axis Direction Normal

Reverse

Normal N/A 5.11

Feedback Source Feedback type Default

Ext Quadrature Encoder

Ext Serial Encoder

Default N/A 5.12

Feedback Mode

(Digital Mode only)

Feedback Mode Incremental

Absolute

Incremental N/A 5.13

Reversal

Compensation

Reversal Compensation 0...255 0 user units 5.14

Drive Disable Delay Drive Disable Delay 0...60,000 100 ms 5.15

Jog Velocity Jog Velocity 1...MaxVelUu +1000

5.16

Jog Acceleration Jog Acceleration 1...MaxAccUu* +10,000

5.17

Jog Acceleration

Mode

Jog Acceleration Mode Linear

Scurve

Linear N/A 5.18

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 108

Parameter Description Values Defaults Units Ref

Home Position Home Position Low Position Limit … High

Position Limit

0 user units 5.19

Final Home Velocity Final Home Velocity 1...MaxVelUu* +500

5.21

Home Offset Home Offset Value -32,768...+32,767 0 user units 5.20

Find Home Velocity Find Home Velocity 1...MaxVelUu* +2000

5.22

Home Mode Find Home Mode Home Switch

Move +

Move -

Home

Switch

N/A 5.23

Return Data 1 Mode Return Data 1 Mode 0…FF 0 5.24

Return Data 1 Offset Return Data 1 Offset -2,147483,648 to

2,147,483,647

0 5.24

Return Data 2 Mode Return Data 2 Mode 0…FF 0 5.24

Return Data 2 Offset Return Data 2 Offset -2,147483,648 to

2,147,483,647

0 5.24

Cam Master Source Cam Master Source Cmd Position 1

Actual Position 1

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4

Actual

Position 3

N/A 5.25

Follower Control

Loop

Follower Control Loop

Enable

Disabled

Enabled

Disabled N/A 5.26

Ratio A Value Follower A/B Ratio A -32768...+32767 1 N/A 5.27

Ratio B Value Follower A/B Ratio B 1...32767 1 N/A 5.27

Follower Master

Source 1

Follower Master Source 1 None

Cmd Position 1

Actual Position 1

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4

None N/A 5.28

Follower Master

Source 2

Follower Master Source 2 None

Cmd Position 1

Actual Position 1

Cmd Position 2

Actual Position 2

Cmd Position 3

Actual Position 3

Cmd Position 4

Actual Position 4

None N/A 5.29

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 109

Parameter Description Values Defaults Units Ref

Follower Enable

Trigger

Follower Enable Input

Trigger

None

CTL01-CTL32

None N/A 5.30

Follower Disable

Trigger

Follower Enable Input

Trigger

None

CTL01-CTL32

None N/A 5.31

Follower Disable

Action

Follower Disable Action Stop

Inc Position

Abs Position

Stop N/A 5.32

Ramp Makeup

Acceleration

Follower Ramp Makeup

Acceleration

1...MaxAccUu* 10,000

5.33

Ramp Makeup Mode Follower Ramp Makeup

Mode

Makeup Time

Makeup Velocity

Makeup

Time

N/A 5.34

Ramp Makeup Time Follower Ramp Acceleration

Makeup Time

0…32000 0 mSec 5.35

Ramp Makeup

Velocity

Follower Ramp Makeup

Velocity

1...MaxVelUu* +100,000

5.36

* See Table 37 for calculating MaxAccUu, MaxPosnUu, and MaxVelUu.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 110

5.01 User Units, Counts. The User Units to Counts ratio sets the number of programming

units for each position feedback count. This allows the user to program the DSM314

in application-specific units. The User Units and Counts values must be within the

range of 1 to 65,535. The User Units to Counts ratio must be within the range of 8:1

to 1:32. For example, if there is 1.000 inch of travel for 8192 feedback counts, a

1000:8192 User Units: Counts ratio sets 1 User Unit equal to 0.001 inch. Default is

1:1.

The User Units to Counts ratio sets the number of position programming units for

each feedback count. It is a requirement to set this value correctly for the

mechanical systems coupled to the axis, otherwise movement to unsafe and

inaccurate positions may occur.

Note: It is important to set this relationship at the beginning of the configuration session; most
other configuration fields are specified in user units.

For example, Velocity will be specified in user units per second and Acceleration will

be specified in user units per second per second.

This ratio is a very powerful scaling feature. A User Unit to Counts ratio can be

configured to allow programming in other than default counts. In a simplified

example, suppose an encoder feedback application has an encoder that produces

1,000 quadrature counts per revolution (250 lines) and is geared to a machine that

produces one inch per revolution. The default unit would be one thousandth of an

inch per count. However, you may want to write programs and use the DSM300

Series module with metric units. A ratio of 2540 User Units to 1000 Counts can be

configured to allow this. With this ratio, one user unit would represent .01

millimeters. 2540 user units would represent 25.40 millimeters (one inch) of travel.

The example below illustrates how to meet the requirements that the User Units and

Counts values be within the range of 1 to 65,535, and the User Units to Counts ratio

be within the range of 8:1 to 1:32.

The basic equation to satisfy is:

The numerator and denominator must each fit within the RANGE limits. The reduced

fraction must fit between the RATIO limits. The decimal point is always implied, not

used. The User Units to Counts ratio is always expressed as an integer ratio.

Sample Application

Use the User Units to Counts ratio to configure the DSM314 so you can program in

engineering units rather than encoder counts. As an example, assume a machine has

a motor with a motor-mounted quadrature encoder connected through a gear

reducer to a spur gear. The spur gear is mounted to the end of a pinch-roller shaft.

The pinch roller feeds sheet material for a cut-to-length application. The motion

program will specify the length of cut sheets. The programmer wishes to program

in 0.01-inch resolution.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 111

The following data is given:

• 2000-line encoder (x4 = 8000 counts per encoder revolution)

• 20:1 gear reduction

• 14.336-inch pitch diameter spur gear

• Inch desired programming unit (.01)

Although several approaches are possible, the most straightforward is to base

the calculations on a single spur gear revolution.

1. First determine the number of User Units per spur gear revolution:

14.336-inch pitch diameter * π (pi) = 45.0378 inches circumference

45.0378 inches / 0.01-inch desired programming units = 4503.78

User Units per revolution of spur gear

2. Then determine the number of encoders counts per spur gear revolution:

3. Then check the value of the User Units to Counts ratio. The ratio must be

in the 8:1 to 1:32 (8 to 0.03125) range and the two numbers must be in

the 1 to 65535 range.

4503.78 User Units / 160,000 encoder counts = 0.02815 or 1:35.5

This ratio is too small, so something must be changed. Any of the

following system components could be changed to solve the problem:

— Change the spur gear diameter to 15.92 inch or larger

— Change the encoder lines per revolution to 1800 or less

— Change the gear reduction to 18:1 or less

— Change the desired programming unit to 0.001 inch

By far, the easiest component to change is the desired programming unit

to 0.001 inch.

4. Recalculate to determine the revised User Units per revolution using

0.001-inch programming unit.

14.336 inches diameter * pi = 45.0378 inches circumference

45.0378 inches / 0.001-inch programming unit = 45,037.8 User Units per

revolution of spur gear

Thus, the User Units to Counts ratio is 45,038 / 160,000 = 0.2815 or

about 1:3.6, which is within the valid ratio range.

So, a 45,038 / 160,000 ratio would be used except that 160,000 is

larger than the maximum 65,535 range value. Dividing both numbers

by 10 solves this to make the ratio 4,504 / 16,000. Note that in the

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 112

above example, we simply reduced the fraction and ignored the slight

rounding error

One method of avoiding “rounding” is to express the numeric ratio as

a fraction. From the previous example, any number set that produced

a 0.2815 ratio could be used. An example is 2815 / 10000.

Another approach is to rationalize the fraction (reduce it to its lowest

terms). This is done by evenly dividing both the numerator and

denominator by successively smaller prime numbers, beginning with

the largest prime that will evenly divide into both the numerator and

the denominator, until no more division without remainders is

possible.

Always maintain an exact integer fraction, a decimal ratio expressed as a fraction,

or a rationalized fraction when configuring the User Units to Counts ratio for the

best accuracy. The user must determine if the rounding error, if present, is of

significance. A rotary mode application that always operates in one direction will

accumulate rounding errors over time and “drift”. A linear application will only

accumulate error for the length of travel then “rewind” as the axis reverses.

5.02 Overtravel Limit Switch. Selects whether the DSM300 Series module uses the

hardware over travel limit switch inputs.

DISABLED, the faceplate overtravel inputs (IN09 and IN10) may be used as general-

purpose motion program flow control and program branching inputs (assigned to

CTL01- CTL24).

ENABLED, indicates that the DSM300 will check the axis over travel inputs

continuously, every 10 milliseconds whenever the %I Drive Enabled input is true. If

either limit switch opens (the input goes to logic zero, Off) all motion is immediately

commanded to stop. No deceleration control is active; the servo velocity command

is set to zero. The solid-state axis enable relay will not open until after the %Q Enable

Drive command is set to zero. An error code indicating which limit is tripped is

reported to the %AI Axis Error Code. At this point, only one DSM314 action is

allowed: the appropriate %Q Jog and %Q Clear Error bits may be used simultaneously

to back away from the Limit Switch. The %Q Clear Error bit must be maintained ON

to Jog off the limit switch. The user may also manually move the disabled axis off the

limit switch. After the alarm is cleared, normal operation may resume.

CAUTION

Force D/A commands ignore the limit switches and should be used with caution.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 113

5.03 Drive Ready Input. Enables or disables the Drive Ready input for Analog Servos. This

configuration item is ignored for a Digital Servo or Auxiliary axis, If the Drive Ready

input is enabled, the Drive Ready faceplate input signal (IN4) must be turned on (set

to 0v) within 1 second after the Enable Drive %Q bit is turned on. If the Drive Ready

faceplate input is turned off while the Drive Enabled %I bit is on, error code C0h will

be reported and the axis will stop. The Drive Ready Input configuration should be set

to Disabled for Analog Servos that do not provide a compatible Drive Ready output

signal.

5.04 High Position Limit. (User Units). When moving in the positive direction, the Actual

Position will roll over to the low limit when this value is reached. The Position Limits

can be used for continuous rotary applications when the Software End of Travel

configuration is set to Disabled. The High Position Limit should always be set one

User Unit smaller than the desired cycle. For example, a 360° machine would have a

High Position Limit setting of 359. At the next count past 359, the count would roll

over to the value set in the Low Position Limit parameter (0 in this example). For

proper operation, the rollover modulus (High Position Limit - Low Position Limit +1)

must always be greater than the distance traveled by the axis in one position loop

sample time (normally 2 ms). See Appendix C for considerations when using an

absolute mode encoder. Default: 8,388,607.

5.05 Low Position Limit. Low Pos Limit (User Units). When moving in the negative

direction, the Actual Position will roll over to the high limit when this value is

reached. . The Position Limits can be used for continuous rotary applications when

the Software End of Travel configuration is set to Disabled. For proper operation, the

rollover modulus (High Position Limit - Low Position Limit +1) must always be

greater than the distance traveled by the axis in one position loop sample time

(normally 2 ms). See Appendix C for considerations when using an absolute mode

encoder. Default: - 8,388,608.

5.06 High Software EOT Limit. High Software End of Travel Limit (User Units). If the limit

is enabled and the DSM314 is programmed to go to a position greater than the High

Software EOT value, an error will result and the DSM314 will not allow axis motion.

If the Follower control loop is enabled, the High Software EOT Limit is ignored for

slave axis motion resulting from master axis commands. The limit only applies to

slave axis motion resulting from internally generated jog and motion program

commands. The limit is always ignored for Move at Velocity %AQ commands.

Default: +8,388,607.

In Analog or Digital Servo modes, the High Software EOT limit is used only when the

Software End of Travel configuration is set to Enabled. If the High Software EOT Limit

is enabled and its value is more positive than the High Position Limit, the High

Software EOT Limit will internally be set equal to the High Position Limit. Axis error

code 17h will also be reported, indicating that the limit has been adjusted. The High

Software EOT Limit is ignored for Jog commands if the Position Valid %I bit is off.

In Auxiliary Axis mode, the High Software EOT limit has separate purposes

depending on the setting for Software End of Travel:

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 114

Software End of Travel set to Enabled - Motion Programs and Jog commands

are restricted to the High Software EOT Limit value. A Move at Velocity %AQ

Command can cause Commanded Position to exceed the EOT limit.

Commanded Position will roll over at the maximum positive and negative

position values (-2,147,483,648 …+2,147,483,647 at 1:1 scaling).

Software End of Travel set to Disabled - The High Software EOT Limit is used as

the rollover value for Commanded Position. Motion Program, Jog and Move at

Velocity commands will all cause Commanded Position to roll over at the High

Software EOT Limit.

5.07 Low Software EOT Limit. Low Software End of Travel Limit (User Units). If the limit is

enabled and the DSM314 is programmed to go to a position less than the Low

Software EOT, an error will result and the DSM314 will not allow axis motion. If the

Follower control loop is enabled, the High Software EOT Limit is ignored for slave

axis motion resulting from master axis commands. The limit only applies to slave axis

motion resulting from internally generated jog and motion program commands.

The limit is always ignored for Move at Velocity %AQ commands. Default: -

8,388,608

In Analog or Digital Servo modes, the Low Software EOT limit is used only when the

Software End of Travel configuration is set to Enabled. If the Low Software EOT Limit

is enabled and its value is more negative than the Low Position Limit, the Low

Software EOT Limit will internally be set equal to the Low Position Limit Axis error

code 17h will also be reported, indicating that the limit has been adjusted. The Low

Software EOT limit is ignored for Jog commands if the Position Valid %I bit is off.

In Auxiliary Axis mode, the Low Software EOT limit has separate purposes depending

on the setting for Software End of Travel:

Software End of Travel set to Enabled - Motion Programs and Jog commands

are restricted to the Low Software EOT Limit value. A Move at Velocity %AQ

Command can cause Commanded Position to exceed the EOT limit.

Commanded Position will roll over at the maximum positive and negative

position values (-2,147,483,648 …+2,147,483,647 at 1:1 scaling).

Software End of Travel set to Disabled - The Low Software EOT Limit is used as

the rollover value for Commanded Position. Motion Program, Jog and Move at

Velocity commands will all cause Commanded Position to roll over at the Low

Software EOT Limit.

5.08 Software End of Travel. Enables or disables the High Software EOT Limit and Low

Software EOT Limit. Default: Disabled

5.09 Velocity Limit. Axis Velocity Limit (User Units/sec). The Velocity Limit applies to the

sum of all velocity command sources for an axis, including the internal path

generator and external follower master axis commands. If a servo velocity command

exceeds the limit, error code F2h will be reported and the servo command will

internally be set to the limit value. Default: 1,000,000

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 115

5.10 Command Direction. Allows an axis to be configured for unidirectional or bi-

directional operation. If unidirectional operation is selected (Positive Only or

Negative Only), servo commands in the opposite direction will not be sent to the

servo position loop. Default: Bi- directional

5.11 Axis Direction For all digital servos, a configured axis direction of Normal defines the

positive axis direction as counterclockwise (CCW) motor shaft rotation when viewed

looking into the motor shaft. A configured axis direction of Reverse defines the

positive axis direction as clockwise (CW) shaft rotation.

For analog servos, a configured axis direction of Normal defines the positive axis

direction as encoder channel A leading channel B. A configured axis direction of

reverse defines the positive axis direction as encoder channel B leading channel A. In

practice, the axis direction configuration allows the user to easily reverse the motion

caused by all commands without having to change the motion program. Default:

Normal

5.12 Feedback Source. This configuration item is unused in the present DSM314

firmware. It must be set to Default.

5.13 Feedback Mode. Only used when the Axis Mode is set to Digital Servo. This item

configures Incremental or Absolute feedback type for the serial encoder.

Incremental means the serial encoder is being used as an incremental encoder and

encoder battery alarms will not be reported. Absolute means the serial encoder is

being used as an absolute encoder (encoder backup battery installed), which

maintains position if system power is cycled. In Absolute mode, encoder battery

alarms will be reported. See appendix C, Position Feedback Devices, for more

information. Default: Incremental

5.14 Reversal Compensation. A compensation factor that allows the servo to reverse

direction and still provide accurate positioning in systems exhibiting backlash.

Backlash is exhibited by a servomotor that must move a small amount (lost motion)

before the load begins moving when direction is reversed. For example, consider a

dead bolt door lock. Imagine the servo controls the key in the lock and the feedback

reports bolt movement. When the servo turns the key counterclockwise, the bolt

moves left. However, as the

servo turns the key clockwise, the bolt does not move until the key turns to a certain

point. The Reversal Compensation feature adds in the necessary lost motion to

quickly move

the servo to where motion will begin on the feedback device. The DSM314 removes

the compensation distance when a move in the negative direction is commanded

and adds the compensation distance before a move in the positive direction.

Default: 0.

Note: Reversal compensation is not available if the Follower Control Loop configuration is set
to Enabled.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 116

5.15 Drive Disable Delay. Servo Drive Disable Delay (milliseconds). The time delay from

the time the zero-velocity command is received until the drive enable (digital servo

MCON) signal switches off. Disable Delay is effective when the Enable Drive %Q bit is

turned off or certain error conditions (Stop Mode) occur. Disable Delay should be

longer than the worst-case deceleration time of the servo from maximum speed.

Because turning OFF the Enable Drive %Q bit stops the DSM314 from commanding

the servo, there are times when the drive enable signal should stay ON. For example,

if the servo runs into an End of Travel Limit and the drive enable signal was

immediately turned OFF due to the error, the servo may continue moving until it

coasted to a stop. Thus, to allow the DSM314 to command and control a fast stop,

the Drive Disable Delay should be longer than the deceleration time of the servo

from maximum speed.

The disable delay may be used to control when torque is removed from the motor

shaft. Applications using an electro-mechanical brake generally need time for the

brake to engage prior to releasing servo torque. The delay should be set to a value

longer than the engagement time for the brake. Default: 100.

5.16 Jog Velocity. Jog Velocity (User Units/second). The velocity at which the servo moves

during a Jog operation. Jog Velocity is used by motion programs when no Velocity

command is included in the program. Jog Velocity is always used by the %AQ Move

Command (27h). Default: 1000.

5.17 Jog Acceleration. Jog Acceleration Rate (User Units/second/second). The

acceleration and deceleration rate used during Jog, Find Home, Move at Velocity,

Abort All Moves and Normal Stop operations. A Normal Stop occurs when the PLC

switches from Run to Stop or after certain programming errors (refer to Appendix

A). Jog Acceleration is used by motion programs when no Acceleration command is

included in the program. Jog Acceleration is always used by the %AQ Move

Command (27h). The value of Jog Acceleration should be set high enough to

perform satisfactorily during Abort all Moves and Normal Stop operations. Default:

10000.

Note: A minimum value after scaling is used in the DSM314. This value is determined by the
rule: Jog Acc * (user units/counts) >= 32 counts/sec/sec.

5.18 Jog Acceleration Mode. Jog Acceleration Mode (LINEAR or S-CURVE). The

acceleration mode for Jog, Find Home, Move at Velocity, Abort All Moves and

Normal Stop operations. A Normal Stop occurs when the PLC switches from Run to

Stop or after certain programming errors (refer to Appendix A). LINEAR (constant

acceleration) causes commanded velocity to change linearly with time. S-CURVE

(jerk limited acceleration) causes commanded velocity to change more slowly than

the linear mode at the beginning and end of acceleration intervals. Motions using S-

Curve acceleration require twice the time and distance to change velocity compared

to motions using the same acceleration value with Linear acceleration. In order to

maintain equal machine cycle times, an S-Curve motion profile requires an

acceleration value (and peak motor torque) twice as large as the equivalent Linear

acceleration motion profile. Therefore, a tradeoff between motor cost and machine

cycle time may be necessary. Default: LINEAR.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 117

5.19 Home Position. Home Position (User Units). The value assigned to Commanded

Position when a Find Home cycle completes.

5.20 Home Offset. Home Position Offset (User Units). A value added to or subtracted

from the servo’s final stopping point when a Find Home cycle completes. Home

Offset adjusts the final servo stopping point relative to the encoder marker. See

chapter 6 for details on the home cycle. Default: 0.

5.21 Final Home Velocity. Final Home Velocity (User Units/second). The velocity at which

the servo seeks the final Home Switch transition and Encoder Marker pulse at the

end of a Find Home cycle. This velocity is also used for the home cycle MOVE+ and

MOVE- modes. See chapter 6 for details on the home cycle. Final Home Velocity

must be slow enough to allow a 10 millisecond (filter time) delay between the final

Home Switch transition and the Encoder Marker pulse. Default: 500

5.22 servo seeks the initial Home Switch transitions during the Find Home cycle when the

Home Mode is configured for HOMESW. If desired, Find Home Velocity can be set to

a high value to allow the servo to quickly locate the Home Switch. Default: 2000

5.23 Home Mode. Find Home Mode. The method used to find home during a Find Home

cycle. HOME SWITCH indicates that a Home Switch is to be monitored to Find Home.

MOVE+ and MOVE– specify direct positive and negative movement to the next

encoder marker at the Final Home Velocity. See chapter 6, “Non-Programmed

Motion,” for details on the Home Cycle, Home Switch, move+, and Move- Modes.

Default: HOMESW.

5.24 Return Data 1 Mode and Offset, Return Data 2 Mode and Offset. These configuration

parameters allow alternate data to be reported in the User Selected Data 1 and User

Selected Data 2 %AI location for each axis. The alternate data includes information

such as Parameter memory contents and the DSM314 Firmware Revision.

There are two Return Data configuration parameters, a mode selection and an offset

selection. The mode parameter selects the Return Data type. The offset parameter

is only used when the Parameter Data mode (18h) is selected. Mode default = 0

(Torque Command). Offset default = 0. The following Return Data selections are

allowed:

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 118

Table 34: User Selected Return Data

Digital Analog

Torque

Analog

Velocity

Selected Return Data Data

Mode

Data Offset

Y Y N Torque Command 00h not used

Y Y Y DSM Firmware Revision 10h not used

Y Y Y DSM Firmware Build ID No. (hex) 11h not used

Y N N Absolute Feedback Offset (cts) 17h not used

Y Y Y Parameter Data 18h Parameter

Number (0–255)

Y Y Y CTL bits 1-32 19h not used

Y Y Y Analog Inputs - Axis 1 1Ch not used

Y Y Y Analog Inputs - Axis 2 1Dh not used

Y Y Y Analog Inputs - Aux 3 1Eh not used

Y Y Y Analog Inputs - Aux 4 1Fh not used

Y Y Y Commanded Position (user units) 20h not used

Y Y Y Follower Program Command

Position (cts)

21h not used

Y Y Y Unadjusted Actual Position (cts) 28h not used

Y Y Y Unadjusted Strobe 1 Position (cts) 29h not used

Y Y Y Unadjusted Strobe 2 Position (cts) 2Ah not used

Torque Command is scaled so that +/- 10000 = +/- 100% torque.

DSM Firmware Revision is interpreted as two separate words for major-minor

revision codes.

DSM Firmware Build ID is interpreted as a single hex word.

Absolute Feedback Offset is the position offset (in counts) that is used to initialize

Actual Position when a digital Absolute Encoder is used. Actual Position = Absolute

Encoder Data + Absolute Feedback Offset.

Analog Inputs provides two words of data for each axis: low word = AIN1 and high

word = AIN2. The data is scaled so that +/- 32000 = +/- 10.0v.

Commanded Position (user units) is a copy of the Commanded Position %AI data

reported for each axis. Refer to Chapter 5.

Follower Program Command Position (cts) is the active commanded position (in

feedback counts) updated and used by the internal motion command generator.

Refer to Chapter 9 - Combined Follower and Commanded Motion.

Unadjusted Actual Position is the accumulated actual position (in counts, not user

units) with a 32-bit binary rollover value of -2,147,483,648 … +2,147,483,647. A

Find Home or Set Position command sets the Unadjusted Actual Position to a value

equal to the %AI Actual Position data scaled to counts. For details on the operation

of Unadjusted Actual Position, refer to “Return Data” in Chapter 5.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 119

Unadjusted Strobe 1 Position is the value of Unadjusted Actual Position captured

when a Strobe 1 input occurs.

Unadjusted Strobe 2 Position is the value of Unadjusted Actual Position captured

when a Strobe 2 input occurs.

At least three PLC sweeps or 10 milliseconds (whichever represents more time) must

elapse before the new Selected Return Data is available in the PLC.

5.25 Cam Master Source. This configuration item is unused in the present DSM314

firmware.

5.26 Follower Control Loop. When this configuration item is set to Enabled, the servo axis

will follow a master axis input in addition to the standard internally generated

motion functions. Default: Disabled

5.27 Ratio A Value and Ratio B Value. (Follower Control Loop must be Enabled) The A over

B ratio sets the follower slave/master gear ratio.

The range for A is –32,768 to +32,767 and B is 1 to +32,767. When A is negative, the

slave axis will move in the opposite direction from the master. The DSM firmware

supports A/B slave/master follower ratios in the ranges of 32:1 to 1:10,000. Default:

1:1.

5.28 Follower Master Source 1. (Follower Control Loop must be Enabled.) Configures

follower Master Axis Source 1. Allowed choices are Commanded or Actual Position

for any of the 4 axes (as long as it’s a configured axis). Follower Master Source 1 is

active when the Follower Master Source Select %Q bit is OFF.

Cmd Position or Actual Position of a slave axis should not be selected as a master

source for that axis. If an unconfigured axis is selected for Follower Master Source 1,

it will be ignored. Default: None. Refer to Chapter 8 for information on follower

mode.

5.29 Follower Master Source 2. (Follower Control Loop must be Enabled.) Configures

follower Master Axis Source 2. Allowed choices are Commanded or Actual Position

for any of the 4 axes (as long as it’s a configured axis). Follower Source 2 is active

when the Follower Master Source Select %Q bit is ON.

Cmd Position or Actual Position of a slave axis should not be selected as a master

source for that axis. If an unconfigured axis is selected for Follower Master Source 2,

it will be ignored. Default: None. Refer to Chapter 8 for information on follower

mode.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 120

5.30 Follower Enable Trigger. Follower Enable Trigger Input. Selects the control bit,

CTL01-CTL32, to be used as the Follower Enable trigger input. The follower axis is

enabled when the selected trigger input transitions ON and the Enable Follower %Q

bit is also ON. After Follower is enabled, the PLC Enable Follower %Q bit and an

optional Follower Disable trigger bit controls the active state of the following

function. None means the follower axis is enabled only by the Enable Follower %Q

bit. Default: None.

5.31 Follower Disable Trigger. Follower Disable Trigger Input. Selects the control bit,

CTL01-CTL32, to be used as the Follower Disable trigger input. The trigger input is

tested only when the Enable Follower %Q bit is ON. When the Enable Follower %Q bit

is ON, an OFF to ON transition of the trigger bit will disable the follower. Turning OFF

the Enable Follower %Q bit immediately disables the follower, regardless of the

disable trigger configuration. Default: None.

5.32 Follower Disable Action. Stop means the follower will immediately decelerate to

zero velocity at the configured Follower Ramp Acceleration rate. Inc Position means

the follower will continue at its present velocity, then decelerate and stop after a

specified distance has elapsed. The incremental distance is specified in a parameter

register for each axis:

P227 = Axis 1 Incremental distance

P235 = Axis 2 Incremental distance

P242 = Axis 3 Incremental distance

P250 = Axis 4 Incremental distance

The incremental distance represents the total actual position change that will occur

from the point where the follower is disabled until it stops.

A configuration of Abs Position is not supported in the present DSM314 firmware.

Default: Stop

5.33 Ramp Makeup Acceleration. Follower Ramp Makeup Acceleration (uu/sec2).

Specifies the acceleration used to:

— Accelerate the follower axis to match master velocity after the follower is

enabled (sector AB in Figure 60),

— Make up the master command counts lost during follower acceleration (sector

BC and DE in Figure 60),

— Decelerate to a stop after the follower is disabled (sector FG in Figure 60).

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 121

Figure 60: Velocity profile during the follower ramp cycle

5.34 Ramp Makeup Mode. Choices are Makeup Time or Makeup Velocity, explained

below.

— Makeup Time Mode – in this mode the makeup process takes the amount of

time specified by Ramp Makeup Time parameter (refer to Figure 60). This is the

default mode.

— Makeup Velocity Mode – This mode is reserved for future use.

5.35 Ramp Makeup Time. Follower Acceleration Ramp Makeup Time (milliseconds).

Specifies the time in milliseconds used to make up the master command counts lost

during a follower acceleration ramp. If the distance correction is not possible in the

configured makeup time (because the value is too small) then the correction time is

longer, and a warning error is reported. This setting only has an effect when the

Ramp Makeup Mode is set to Makeup Time.

If an acceleration ramp without any correction for lost counts is desired,

Makeup Time should be set to 0. In this case, the motor will synchronize

velocity relative to the master, but will not attempt to correct for any positional

deviation that occurs while the follower axis is accelerating.

Makeup time has a minimum value of 10, so for values entered in the range of

1…10 use 10 instead.

Default: 0.

Refer to Chapter 8, Follower Motion, Follower Axis Acceleration Ramp Control

section, for a much more detailed discussion of this feature

5.36 Ramp Makeup Velocity. This field is reserved.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 122

4.3.7 Tuning Data
The DSM314 Tuning tabs are used to configure Servo axis tuning data. Parameters such as

Motor Type, Velocity at Max Cmd, Velocity Feed Forward Percentage, and Position Loop

Time Constant are configured in these tabs. From one to four Tuning tabs may appear in the

DSM314 configuration window, one tab for each Servo axis configured in the Settings tab.

The numbers in the “Ref” column of the table below refer to item numbers in this chapter.

Table 35: Tuning Tab Items

Configuration Parameter Description Values Defaults Units Ref

Motor Type Motor Type 0…65535 0 N/A 6.01

Analog Servo Command Analog Servo Command Type Velocity

Torque (Note 1)

Velocity N/A 6.02

Position Error Limit Position Error Limit 100...60,000 60,000 User Units 6.03

In Position Zone In Position Zone 1…60,000 10 User Units 6.04

Pos Loop Time Constant Position Loop Time Constant 0…65535 1000 0.1 mSec 6.05

Velocity at MaxCmd Velocity at Maximum

Command

256.. MaxVelUu (Note 2) 100,000 User Units 6.06

Velocity Feed Forward

Percentage

Velocity Feed Forward

Percentage

0…12000 0 .01% 6.07

Acceleration Feed Forward

Percentage

Acceleration Feed Forward

Percentage

0…12000 0 .01% 6.08

Integrator Mode Position Loop Integrator

Mode

Off

Continuous

Servo Null

Off N/A 6.09

Integrator Time Constant Position Loop Integrator Time

Constant

0…10000 0 mSec 6.10

Velocity Loop Gain Velocity Loop Gain 0…65535 16 N/A 6.11

Note:

• Torque Mode is supported in DSM firmware version 3.0 or later

• See Table 37 for calculating MaxVelUu.

6.01 Motor Type. Selects the type of AC servomotor to be used with the DSM314 in

Digital Mode ONLY. The DSM314 internally stores setup motor parameter tables for

each of the motors supported. A motor type of 0 disable s digital servo control by

the DSM314 for the digital servo axis. Motor type must be set to 0 when no digital

servo is attached if any %Q bit commands or %AQ data commands will be sent to the

axis. Supported Motor types are listed in the tables below.

The Motor Type must be 0 for ANALOG Mode or if no motor is attached to the axis.

Default: 0.

Motor part numbers are used to determine the proper Motor type code and are in

the form ZA06B-xxxx-yyyy, where xxxx represents the motor specification field. For

example: When reading a motor number from a motor label of ZA06B-0032-B078,

the motor specification digits 0032 indicate the motor model of 2/3000. The 

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 123

Series table references the Motor Type Code (36) needed for the configuration field.

Supported Motor types are listed in the tables below. The list of supported motors

may be expanded in future releases.

 Series Servo Motor

Motor Type Code Motor Model Motor Specification

61  1/3000 0371

46  2/2000 0372

62  2/3000 0373

15  3/3000 0123

16  6/2000 0127

17  6/3000 0128

18  12/2000 0142

19  12/3000 0143

27  22/1500 0146

20  22/2000 0147

21  22/3000 0148

28  30/1200 0151

22  30/2000 0152

23  30/3000 0153

30  40/2000 0157

29  40/FAN 0158

 L Series Servo Motor

Motor Type Code Motor Model Motor Specification

56  L3/3000 0561

57  L6/3000 0562

58  L9/3000 0564

59  L25/3000 0571

60  L50/2000 0572

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 124

 C Series Servo Motor

Motor Type Code Motor Model Motor Specification

7  C3/2000 0121

8  C6/2000 0126

9  C12/2000 0141

10  C22/1500 0145

 HV Series Servo Motor

Motor Type Code Motor Model Motor Specification

3  12HV/3000 0176

4  22HV/3000 0177

5  30HV/3000 0178

 M Series Servo Motor

Motor Type Code Motor Model Motor Specification

24  M3/3000 0161

25  M6/3000 0162

26  M9/3000 0163

 Series Servo Motor

Motor Type Code Motor Model Motor Specification

13  0.5/3000 0013

35  1/3000 0031

36  2/3000 0032

33  3/3000 0033

34  6/2000 0034

M Series Servo Motor

Motor Type Code Motor Model Motor Specification

115 M 0.5/5000 0115

116 M 1/5000 0116

6.02 Analog Servo Command. The Analog Servo Command determines whether the

analog command issued by the DSM300 series module is a velocity or torque

command. The torque command selection is supported in the DSM314 firmware 3.0

or later. Default: Velocity

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 125

6.03 Position Error Limit. Position Error Limit (User Units). The Position Error Limit is the

maximum Position Error (Commanded Position - Actual Position) allowed when the

DSM314 is controlling a servo. Position Error Limit should normally be set to a value

10% to 20% higher than the highest Position Error encountered under normal servo

operation. Default: 60000.

The Position Error Limit range formula is:

256 x (user units/counts) Position Error Limit 60,000 x (user units/counts)

If Velocity Feedforward is not used, Position Error Limit can be set to a value

approximately 20% higher than the Position Error required to produce a 4000-rpm

command. The Position Error (User Units) required to produce a 4000-rpm

command with 0% Velocity Feed forward is:

Position Error (user units) = Position Loop Time Constant (ms) x Servo Velocity @ 4000 rpm

(user units/sec)

1000

Example

The user units counts ratio is 2:1 and the Position Loop Time Constant is 50 ms.

Step 1:

Calculate servo velocity at 4000 rpm = (2 user units/count) x (8192 counts/rev) x (4000 revs/minute)

(60 seconds/minute)

= 1,092,266 user units/second

Step 2:

Calculate Position Error at 4000 rpm = (50 milliseconds) x (1,092,266 user units/second)

1000 milliseconds/second

= 54613 user units

If Velocity Feedforward is used to reduce the following error, a smaller error limit

value can be used, but in general, the error limit value should be 10% - 20% higher

than the largest expected following error.

Note: An Out of Sync error will occur and cause a fast stop if the Position Error Limit Value is exceeded
by more than 1000 counts. The DSM314 attempts to prevent an Out of Sync error by temporarily
halting the internal command generator whenever position error exceeds the Position Error Limit.
Halting the command generator allows the position feedback to catch up and reduce position
error below the error limit value.

If the feedback does not catch up and the position error continues to grow, the Out of Sync
condition will occur. Possible causes are:

1. Erroneous feedback wiring

2. Feedback device coupling slippage

3. Servo drives failure.

4. Mechanically forcing the motor/encoder shaft past the servo torque

capability.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 126

5. Commanded motor acceleration or motor deceleration that is greater

than system capability.

6.04 In Position Zone. In Position Zone (User Units). When the Position Error is less than

or equal to the active In Position Zone value, the In Zone %I bit will be ON. Default:

10.

6.05 Pos Loop Time Constant (0.1ms). Position Loop Time Constant (units = 0.1

milliseconds). The desired servo position loop time constant. This value configures

the amount of time required for the servo velocity output to reach 63% of its final

value when a step change occurs in the Velocity command. The lower the value, the

faster the system response. Values that are too low will cause system instability and

oscillation. Default: 1000 = 100 ms.

Note: For accurate commanded velocity profile tracking, Pos Loop Time Constant should be 1/4
to 1/2 of the MINIMUM system acceleration or deceleration time. For example, if the
fastest acceleration that must occur occupies 100msec of time the Pos Loop Time
Constant should be between 25 to 50msec. To maintain system stability, use the largest
value possible.

For users familiar with servo bandwidth expressed in rad/sec:

Bandwidth (rad/sec) = 1000 / Position Loop Time Constant (ms)

For users familiar with servo gain expressed in ipm/mil:

Gain (ipm/mil) = 60 / Position Loop Time Constant (ms)

Table 36: Gain / Bandwidth / Position Loop Time Constant

Gain (ipm/mil) Bandwidth (rad/sec) Position Loop Time Constant (ms)

0.5 8.5 120

0.75 12.5 80

1.0 16.6 60

1.5 25.1 40

2.0 33.4 30

2.5 41.8 24

3.0 50 20

For applications that do not require feedback control or employ very crude

positioning systems, an Open Loop Mode exists. Setting a zero Position Loop Time

Constant, which indicates that the positioning loop is disabled, selects this mode.

Note that in Open Loop Mode, the only way to generate motion is to program a non-

zero Velocity Feedforward. The Position Error is no longer used to generate motion

because Position Error is based on position feedback and Open Loop Mode ignores

all feedback.

CAUTION

For Analog Axes, the Position Loop Time Constant will not be accurate unless the

Velocity at Max Cmd value is set correctly.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 127

6.06 Velocity at MaxCmd (User Units/Second.) All DSM314 analog servo functions

depend on this value being correct for proper operation.

For Digital Servo Mode, the Velocity at Max Cmd configuration field is not used.

For Analog Servo Mode in Velocity Mode, the Velocity at Max Cmd configuration

field is the Actual Servo Velocity (User Units/second) desired for a 10 Volt DSM314

analog velocity command output to the servo. The Force D/A Output %AQ

Immediate Command and the Actual Velocity %AI status word can be used for a

command voltage to empirically determine the proper configuration value if

necessary.

For Analog Servo Mode in Torque Mode, the Velocity at Max Cmd configuration field

is the maximum velocity that the user desires the servo to be able to run. The value

is determined by the capabilities of the servo system being controlled and the

capabilities of the driven load.

In Digital Mode only, if the user sends the DSM314 a velocity command that exceeds

the servo system capability, the DSM314 will clamp that command value at the

appropriate maximum motor velocity boundary. Note that no error will be reported

back to the DSM314.

See Appendix D, “Start-up and Tuning Digital and Analog Servo Systems,” for more

information on determining the correct value.

Default: 100000.

CAUTION

The Velocity at 10V must be configured correctly in order for the analog servo Pos

Loop Time Constant and Velocity Feedforward factors to be accurate.

6.07 Velocity Feed Forward (0.01%). Velocity Feed forward gain (units = 0.01 percent).

The Commanded Velocity percentage that is added to the DSM314’s position loop

velocity command output. Increasing Velocity Feedforward causes the servo to

operate with faster response and reduced position error. The optimum value for

each system has to be determined individually. For Digital Servos, 95 % Velocity Feed

Forward Percentage value is a good starting point. For analog servos, 70% is a good

starting point. The servo system capabilities will determine the optimum value. If

Velocity Feed Forward is changed, Pos Err Limit may require adjustment. Default: 0.

CAUTION

For Analog Axes, the Velocity Feed Forward Percentage will not be accurate unless

the Velocity at MaxCmd value is first set correctly.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 128

6.08 Acceleration Feed Forward Percentage. This configuration item is not used in the

current DSM314 firmware.

6.09 Integrator Mode Integrator Mode. Position loop position error integrator operating

mode. Off means the integrator is not used. Continuous means the integrator runs

continuously even during servo motion. Servo Null means the integrator only runs

when the Moving %I status bit is OFF. Integrator Mode should normally be set to Off.

Continuous mode may be used for Follower operation only when a constant or

slowly changing master velocity is expected. This parameter should not be used to

dampen disturbances in the position loop feedback. Never select Continuous for

point to point positioning applications. Default: OFF.

6.10 Integrator Time Constant Integrator Time Constant (milliseconds). This is the

position loop position error integrator time constant. This value indicates the time

required to reduce the position error by 63%. For example, if the Integrator Time

Constant is 1000 (1 second), the Position Error would be reduced to 37% of its initial

value after 1 second. A value of zero turns off the integrator. If used, the Integrator

Time Constant should be 5 to 10 times greater than the Position Loop Time Constant

to prevent instability and oscillation. Default: 0.

6.11 Velocity Loop Gain Used to set velocity loop gain. This applies to Digital Servos and

Analog Torque Mode Servos only. This parameter is not used for Analog Servos in

Velocity Mode. The formula

can be used to select an initial velocity loop gain value. The allowable value range is

0 to 255. The value of 0 should be used if the motor shaft is not attached to a load.

Default: 16 (load inertia equals motor inertia).

4.3.8 Computing Data Limit Variables
The data limit values for parameters MaxPosnUu, MaxVelUu, and MaxAccUu, referred to in

some of the tables in this chapter, can be calculated using the following formulas:

Table 37: Computing Data Limit Variables

Formulas for Computing Data Limit Variables

Position Limit MaxPosnUu Velocity Limit MaxVelUu Acceleration Limit

MaxAccUu

If uu:cts >= 1:1

MaxPosnUu = 536,870,912

Else (uu:cts < 1:1)

MaxPosnUu = 536,870,912 *

uu/cts

MaxVelUu = 1,000,000*

uu/cts

If uu:cts >= 1:1

MaxAccUu = 1,073,741,823

Else (uu:cts < 1:1)

MaxAccUu = 1,073,741,823*

uu/cts

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 129

4.3.9 Advanced Tab Data
The Advanced Tab allows up to 16 custom tuning parameters and associated data to be

entered for each axis. Although the Advanced Tab has 16 rows for entering axis tuning

parameter data, the DSM314 Release 1.0 firmware only allows Entry rows 1 and 2 to be

used. The figure below shows data in the cells for Axis 1 on Entry rows 1 and 2. DSM firmware

version 3.0 or later removes this restriction.

Figure 61: Advanced Tab

Tuning Parameter 1: Sets Digital Encoder Resolution (for digital servos only). Settings other

than 0 result in a derating of the maximum supported motor speed. Note that, for settings

0 and 1, some motors’ maximum speed ratings are below the maximum supported speed

shown in the table. Range of allowable settings: 0 – 3. In Figure 61 above, Tuning Parameter

1 is set to a value of 2 for Axis 1.

Table 38: Tuning Parameter 1 Values

Tuning Parameter 1 Values Counts/Revolution Maximum Supported Motor Speed

0 8192 44001,2

1 16384 36622

2 32768 1831

3 65536 915

Note:

• Default setting

• Some motors’ maximum speed rating is lower than the value in the table

Tuning Parameter 3: Sets minimum velocity output (millivolts) for analog servos. Allowed

data range is 0 -1000 millivolts. The recommended setting is 5 - 10mv, or just enough to

make the servo pull in to +/- 1 count of position error. In Figure 4.2 above, Tuning

Parameter 3 is set to a value of 10 for Axis 1.

User Manual Chapter 4
GFK-1742F Jan 2020

Configuration 130

Tuning Parameter 6: Sets the encoder resolution. The parameter is only used in torque

mode. For correct torque mode operation, this value must be set to the number of

quadrature encoder counts (4X encoder lines) generated by the motor feedback device per

revolution. The user can determine the value from the feedback device specification. As a

double check, the user may wish to connect the feedback device to the DSM and manual

rotate the motor shaft one revolution. The reading on the DSM %AI data for actual position

should closely match (variations are caused by the accuracy of manual turning shaft one

revolution) the value placed in this parameter. The allowed range is 100-32767

counts/revolution. The default value is 4096 counts per revolution

Tuning Parameter 7: Sets the velocity regulator proportional gain. The parameter is only

used in torque mode. The proportional gain is multiplied by velocity error (velocity

command - velocity feedback) to generate the portion of the torque command due to the

proportional term. Correctly setting this value will determine how well the velocity

regulator performs in the control system. Appendix D describes a method to correctly tune

this parameter. The allowable range for the velocity loop proportional gain term is 0-32767.

The default value is 1500.

Tuning Parameter 8: Sets the velocity regulator integral gain. The parameter is only used in

torque mode. The integral gain is the term multiplied by the area of the velocity error

(velocity command - velocity feedback) to generate the portion of the torque command

due to the integral term. Correctly setting this value will determine how well the velocity

regulator performs in the control system. Appendix D describes a method to correctly tune

this parameter. The allowable range for the velocity loop proportional gain term is 0-32767.

The default value is 0.

Tuning Parameter 10: Sets the Torque Command Filter setting. The torque command filter

allows the user to activate a low pass filter for the velocity regulator output. . The filter is

typically used to keep the controller from exciting a machine resonance. The allowable

range for torque filter settings is 0 – 3. The default value is 0.

Table 39: Tuning Parameter 10 Values

Tuning Parameter 10 Values Torque Command Low Pass Filter Setting

0 OFF1

1 Low Bandwidth Filter (150 Hz 3db point)

2 Medium Bandwidth Filter (250 Hz 3db point)

3 High Bandwidth Filter (350 Hz. 3db point)

4.3.10 Power Consumption Data
This is a display-only tab that indicates the power required by the DSM314 module.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 131

Chapter 5: DSM314 to Host Controller

Interface
This chapter defines the data that is transferred between the CPU and the Motion Mate

DSM314 automatically each host controller sweep, without user programming. This data is

categorized as follows:

• Input Status Data (Transferred from Motion Mate DSM314 to CPU)

— Status Bits: 32 (1 Axis), 48 (2 Axes),64 (3 Axes), 80 (4 Axes) bits of %I data

— Status Words: 24(1 Axis),44 (2 Axes) ,64 (3 Axes) ,84 (4 Axes) words of % AI

data

• Output Command Data (Transferred from CPU to Motion Mate DSM314)

— Discrete Commands: 32(1 Axis),48(2 Axes),64(3 Axes),80(4 Axes) bits of %Q

data

— Immediate Commands: 3(1 Axis),6(2 Axes),9(3 Axes),12 (4 Axes) words of %AQ

data

Note: Throughout this chapter words shown in italics refer to actual host controller machine data
references (%I, %A, %AI, %AQ).

5.1 Section 1: %I Status Bits
The following %I Status Bits are transferred automatically from the DSM314 to the CPU each

sweep. The actual addresses of the Status Bits depend on the starting address configured

for the %I reference (see Table 40, “Settings Tab”). The bit offsets listed in the following table

are offsets to this starting address. All reference section designations pertain to this chapter.

Table 40: %I Status Bits

Bit

Offset

Description Axis Ref. Bit

Offset

Description Axis Ref.

00 Module Error Present N/A 1.01 40 Position Error Limit Servo 2 1.12

01 Local Logic Active N/A 1.02 41 Torque Limit Servo 2 1.13

02 New Configuration Received N/A 1.03 42 Servo Ready / IN4_B (5v) Servo 2 1.14

03 Reserved 43 Reserved

04 CTL01 (function selected by config) N/A 1.04 44 Follower Enabled Servo 2 1.15

05 CTL02 (function selected by config) N/A 1.04 45 Velocity Limit Servo 2 1.16

06 CTL03 (function selected by config) N/A 1.04 46 Follower Ramp Active Servo 2 1.17

07 CTL04 (function selected by config) N/A 1.04 47 Reserved

08 CTL05 (function selected by config) N/A 1.04 48 Axis OK Servo 3 1.05

09 CTL06 (function selected by config) N/A 1.04 49 Position Valid Servo 3 1.06

10 CTL07 (function selected by config) N/A 1.04 50 Drive Enabled Servo 3 1.07

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 132

Bit

Offset

Description Axis Ref. Bit

Offset

Description Axis Ref.

11 CTL08 (function selected by config) N/A 1.04 51 Program Active Servo 3 1.08

12 CTL13 (function selected by config) N/A 1.04 52 Moving Servo 3 1.09

13 CTL14 (function selected by config) N/A 1.04 53 In Zone Servo 3 1.10

14 CTL15 (function selected by config) N/A 1.04 54 Strobe 1 Flag (5v) Servo 3 1.11

15 CTL16 (function selected by config) N/A 1.04 55 Strobe 2 Flag (5v) Servo 3 1.11

16 Axis OK Servo 1 1.05 56 Position Error Limit Servo 3 1.12

17 Position Valid Servo 1 1.06 57 Reserved

18 Drive Enabled Servo 1 1.07 58 Servo Ready/IN4_C Input Servo 3 1.14

19 Program Active Servo 1 1.08 59 Reserved

20 Moving Servo 1 1.09 60 Follower Enabled Servo 3 1.15

21 In Zone Servo 1 1.10 61 Velocity Limit Servo 3 1.16

22 Strobe 1 Flag (5v) Servo 1 1.11 62 Follower Ramp Active Servo 3 1.17

23 Strobe 2 Flag (5v) Servo 1 1.11 63 Reserved Servo 3

24 Position Error Limit Servo 1 1.12 64 Axis OK Servo 4 1.05

25 Torque Limit Servo 1 1.13 65 Position Valid Servo 4 1.06

26 Servo Ready / IN4_A (5v) Servo 1 1.14 66 Drive Enabled Servo 4 1.07

27 Reserved 67 Program Active Servo 4 1.08

28 Follower Enabled Servo 1 1.15 68 Moving Servo 4 1.09

29 Velocity Limit Servo 1 1.16 69 In Zone Servo 4 1.10

30 Follower Ramp Active Servo 1 1.17 70 Strobe 1 Flag (5v) Servo 4 1.11

31 Reserved 71 Strobe 2 Flag (5v) Servo 4 1.11

32 Axis OK Servo 2 1.05 72 Position Error Limit Servo 4 1.12

33 Position Valid Servo 2 1.06 73 Reserved Servo 4

34 Drive Enabled Servo 2 1.07 74 Servo Ready / IN4_D (5v) Servo 4 1.14

35 Program Active Servo 2 1.08 75 Reserved Servo 4

36 Moving Servo 2 1.09 76 Follower Enabled Servo 4 1.15

37 In Zone Servo 2 1.10 77 Velocity Limit Servo 4 1.16

38 Strobe 1 Flag (5v) Servo 2 1.11 78 Follower Ramp Active Servo 4 1.17

39 Strobe 2 Flag (5v) Servo 2 1.11 79 Reserved Servo 4

1.01 Module Error Present. This status bit is set when the DSM314 detects any error.

Errors related to a specific Servo or Auxiliary Axis will be identified in the associated

Axis n Error Code %AI word. Module errors not related to a specific axis will be

identified in the Module Status Code %AI word. See section 2, “%AI Status Words”,

for more details. The Clear Error %Q bit is the only command that will clear the

Module Error Present %I status bit and the associated Module Status Code and Axis

n Error Code %AI word(s). If the condition causing the error is still present, the

Module Error Present %I status bit will not be cleared.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 133

1.02 Local Logic Active. When this status bit is ON, it indicates that a Local Logic

program is executing.

1.03 New Configuration Received. The New Configuration Received %I status bit is set

whenever the host controller sends a reset command or new configuration to the

DSM314. New Configuration Received should be cleared by a host controller

program before any %AQ Immediate commands such as In Position Zone or Position

Loop Time Constant have been sent to the DSM314. The status bit can then be

monitored by the host controller. If the bit is set, then the DSM314 has been reset

or reconfigured. The host controller should clear the bit and then re-send all

necessary %AQ commands. The bit is cleared by %AQ Immediate command 49h.

Refer to section 4, “%AQ Immediate Commands,” later in this chapter, for more

details about the %AQ immediate command interfaces.

1.04 Configurable %I Status Bits. These inputs indicate the state of configurable CTL bits

CTL01-CTL08 and CTL13-CTL16. The default CTL bit assignments report the level of

external input devices connected to faceplate signals. All CTL bits may be tested

during the execution of motion program Wait and Conditional Jump commands.

CTL bits can also be used to trigger the follower ramp enable / disable functions. The

CTL bit assignments are selected through configuration. Consult Chapters 4 and 14

for additional information. Default CTL01-CTL08 and CTL13-CTL16 assignments are

shown in Table 41.

Table 41: Defaults for Configurable %I Status Bits

Bit

Name

Signal

Name

Signal Use Input

Type

Faceplate

Connector Pin

Digital Servo

TB Pin

Analog Servo / Aux

Axis TB Pin

CTL01 IN9_A Servo Axis 1 (+) Overtravel 24v A-16 6 16

CTL02 IN10_A Servo Axis 1 (-) Overtravel 24v A-34 14 34

CTL03 IN11_A Servo Axis 1 Home Switch 24v A-17 7 17

CTL04 IN1_A Servo Axis 1 Strobe 1 Level 5v A-1, 19 1,9 9

CTL05 IN9_B Servo Axis 2 (+) Overtravel 24v B-16 6 16

CTL06 IN10_B Servo Axis 2 (-) Overtravel 24v B-34 14 34

CTL07 IN11_B Servo Axis 2 Home Switch 24v B-17 7 17

CTL08 IN1_B Servo Axis 2 Strobe 1 Level 5v B-1,19 1,9 9

CTL13 IN9_C Servo Axis 3 (+) Overtravel 24v C-16 NA 16

CTL14 IN10_C Servo Axis 3 (-) Overtravel 24v C-34 NA 34

CTL15 IN11_C Servo Axis 3 Home Switch 24v C-17 NA 17

CTL16 IN5_C Servo Axis 3 Strobe 1 Level 5v C-9 NA 9

1.05 Axis OK. The Axis OK status bit is ON when the DSM314 is ready to receive

commands and control a servo. An error condition that stops the servo will turn Axis

OK OFF. When Axis OK is OFF, no commands other than the Clear Error %Q bit will

be accepted by the axis.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 134

1.06 Position Valid. For a Servo Axis, the Position Valid status bit indicates that a Set

Position command or successful completion of a Find Home cycle has initialized the

position value in the Actual Position % AI status word. For a Servo Axis, Position Valid

must be ON in order to execute a motion program.

For an Auxiliary Axis, the Position Valid status bit indicates that an Aux Encoder Set

Position command or successful completion of a Find Home cycle has initialized the

position value in the Actual Position % AI status word. For an Aux Axis, Position Valid

is not required to be ON in order to execute a motion program.

If the DSM314 is configured to use an absolute feedback digital encoder ( or 

Series servo with optional encoder battery), Position Valid is automatically set

whenever the digital encoder reports a valid absolute position. See Appendix C for

details of operation when absolute mode digital encoders are used.

1.07 Drive Enabled. The Drive Enabled status bit indicates the state of the Enable Drive

%Q bit and the solid-state relay output supplied by the DSM314. The ON state of the

Drive Enabled %I bit corresponds to the CLOSED state of the relay output and the ON

state of the associated faceplate EN LED. In Digital mode, the solid-state relay

provides the MCON signal to the Digital Servo through the servo command cable.

Drive Enabled is cleared following power-up or an error condition that stops the

servo.

1.08 Program Active. The Program Active status bit for each axis indicates that a Motion

Program (1-10) or a Move %AQ command (27h) is executing on that axis. Executing

a multi- axis program will set the Program Active %I bits for both Axis 1 and Axis 2.

1.09 Moving. The Moving status bit is ON when Commanded Velocity is non-zero,

otherwise it is OFF. All Move, Jog, and Move at Velocity commands will cause the

Moving bit to be set to ON. The Force Servo Velocity %AQ command and Follower

acceleration ramp will not set the Moving bit.

In Follower mode, Moving is ON for the conditions described above and is not

affected by the enabled or disabled state of the follower master input. When the

Follower acceleration / deceleration ramp is active, a separate %I bit, Follower Ramp

Active, is ON. Refer to Chapter 8, Follower Motion, for additional information on the

Follower Acceleration Ramp.

1.10 In Zone. Operation of the In Zone bit depends only on the Position Error value and is

not related to the state of the Moving bit. In Zone will be ON whenever Position Error

is less than or equal to the configured In Position Zone value. In Zone (ON) can be

used in combination with the Moving bit (OFF) to determine when the axis has

arrived at its destination.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 135

Table 42: In Zone Bit Operation

Cmd Generator Active

(Moving %I bit ON)

Position Error ≤ In

Position Zone

In Zone bit Axis at Destination

No No OFF No

No Yes ON Yes

Yes No OFF No

Yes Yes ON No

1.11 Strobe 1 Flag, Strobe 2 Flag. The Strobe 1 Flag and Strobe 2 Flag status bits indicate

that an OFF to ON transition has occurred at the associated faceplate Strobe Input.

When this occurs, an axis position is captured and reported in the Strobe n Position

%AI status word, where “n” is Axis 1 - Axis 4. The Strobe n Flag %I bit is cleared by the

associated Reset Strobe n %Q bit. A maximum of 2 host controller sweeps is required

for the Strobe n Flag %I bit to be cleared in the host controller after a Reset Strobe n

%Q bit is turned ON. Once the Strobe n Flag bit is cleared, new data may be captured

by another Strobe Input. The position capture resolution is +/- 2 counts with an

additional 10 microseconds of variance for the strobe input filter delay.

Note: The Strobe n Flag bits do not indicate the logic level of the faceplate input, they only indicate that
an OFF to ON transition has occurred on the input.

1.12 Position Error Limit. The Position Error Limit status bit is set when the absolute value

of the position error exceeds the configured Position Error Limit value. When the

Position Error Limit status bit is set, Commanded Velocity and Commanded Position

are frozen to allow the axis to” catch up” to the Commanded Position.

1.13 Torque Limit. The Torque Limit status bit is set when the commanded torque

exceeds the torque limit setting for the configured motor type.

1.14 Servo Ready. This status bit is set when faceplate signal IN4 of the associated

connector (A, B, C or D) is ON (active low: ON = 0v, OFF = +5v). For each Servo Axis,

this input reports the Servo Ready state of the servo amplifier.

1.15 Follower Enabled. This status bit indicates when the Follower is enabled for the axis.

The Enable Follower % Q bit and an optional CTL01-CTL32 faceplate trigger input

enable the Follower function. If follower ramp acceleration control is active when

Follower Enabled turns on, the axis will accelerate to the master velocity command,

and when it turns off, the axis will decelerate to zero master velocity command. Both

acceleration and deceleration during the ramp process will utilize the configured

Follower Ramp Acceleration.

1.16 Velocity Limit. The Velocity Limit status bit is set if the velocity requested by any axis

command (internal path generator or internal/external follower source) exceeds the

configured velocity limit. Therefore, Velocity Limit is an indication that the axis is no

longer locked to its position command. If Follower is enabled, an error code is

reported in the associated axis Error Code variable when Velocity Limit is set.

An exception exists when unidirectional motion is configured by setting Command

Direction to Positive Only or Negative Only. Positive Only means that the velocity

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 136

limit is zero for negative motion. Negative Only means that the velocity limit is zero

for positive motion. No error is generated for the limit that is set to zero. For

example, if Command Direction is set to Negative Only and + Counts are

commanded, the Velocity Limit Status bit is set, but no Status Error code is reported.

1.17 Follower Ramp Active. When the follower is enabled, Follower Ramp Active is ON

during initial acceleration and distance makeup. When the follower is disabled,

Follower Ramp Active is ON until the Follower Disable Action incremental distance

(if selected) has been traveled and the follower has decelerated to zero velocity.

5.2 Section 2: %AI Status Words
The following %AI Status Words are transferred automatically from the DSM314 to the CPU

each sweep. The total number of the %AI Status Words is configured with the Configuration

Software to be a length of 24, 44, 64 or 84. The actual addresses of the Status Words depend

on the starting address configured for the %AI references. See Table 40, “Settings Tab.” The

word numbers listed in the following table are offsets to this starting address. All reference

section designations pertain to this chapter. All %AI data except Actual Velocity is updated

within the DSM314 at the position loop sampling rate (2 ms for digital servos, 0.5 ms or 1.0

ms for some analog servo configurations). Actual Velocity is updated once every 128

milliseconds.

Table 43: %AI Status Words

Word

Offset

Description Axis Ref Word

Offset

Description Axis Ref

00 Module Status Code N/A 2.01

01-03 Reserved

04 Axis 1 Error Code Servo 1 2.02 44 Axis 3 Error Code Servo 3 2.02

05 Command Block Number Servo 1 2.03 45 Command Block Number Servo 3 2.03

06-07 Commanded Position Servo 1 2.04 46-47 Commanded Position Servo 3 2.04

08-09 Actual Position Servo 1 2.05 48-49 Actual Position Servo 3 2.05

10-11 Strobe 1 Position Servo 1 2.06 50-51 Strobe 1 Position Servo 3 2.06

12-13 Strobe 2 Position Servo 1 2.06 52-53 Strobe 2 Position Servo 3 2.06

14-15 Position Error Servo 1 2.07 54-55 Position Error Servo 3 2.07

16-17 Commanded Velocity Servo 1 2.08 56-57 Commanded Velocity Servo 3 2.08

18-19 Actual Velocity Servo 1 2.09 58-59 Actual Velocity Servo 3 2.09

20-21 User Selected Data 1 Servo 1 2.10 60-61 User Selected Data 1 Servo 3 2.10

22-23 User Selected Data 2 Servo 1 2.11 62-63 User Selected Data 2 Servo 3 2.11

24 Axis 2 Error Code Servo 2 2.02 64 Axis 4 Error Code Servo 4 2.02

25 Commanded Block Number Servo 2 2.03 65 Command Block Number Servo 4 2.03

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 137

26-27 Commanded Position Servo 2 2.04 66-67 Commanded Position Servo 4 2.04

28-29 Actual Position Servo 2 2.05 68-69 Actual Position Servo 4 2.05

30-31 Strobe 1 Position Servo 2 2.06 70-71 Strobe 1 Position Servo 4 2.06

32-33 Strobe 2 Position Servo 2 2.06 72-73 Strobe 2 Position Servo 4 2.06

34-35 Position Error Servo 2 2.07 74-75 Position Error Servo 4 2.07

36-37 Commanded Velocity Servo 2 2.08 76-77 Commanded Velocity Servo 4 2.08

38-39 Actual Velocity Servo 2 2.09 78-79 Actual Velocity Servo 4 2.09

40-41 User Selected Data 1 Servo 2 2.10 80-81 User Selected Data 1 Servo 4 2.10

42-43 User Selected Data 2 Servo 2 2.11 82-83 User Selected Data 2 Servo 4 2.11

2.01 Module Status Code. Module Status Code indicates the current DSM314 operational

status. When the Module Error Present %I flag is set, and the error is not related to a

specific axis, an error code number is reported in the Module Status Code that

describes the condition causing the error. A new Module Status Code will not replace

a previous Module Status Code unless the new Module Status Code has Fast Stop or

System Error priority.

The Module Status Code word is also used to report System Status Errors. These are

of the format Dxxx, Exxx, and Fxxx. For details on System Status Error codes, refer to

Appendix A.

For a list of Motion Mate DSM314 error codes refer to Appendix A.

2.02 Axis 1 - Axis 4 Error Code. The Servo Axis n Error Code, where n = Axis 1 - Axis 4,

indicates the current operating status of each axis. When the Module Error Present

%I flag is set, and the error is related to a particular axis, an error code number is

reported, which describes the condition causing the error. A new Axis Error Code will

replace a previous Axis Error Code if it has equal or higher priority (Warning, Normal

Stop, Fast Stop) compared to the previous Axis Error Code.

For a list of Motion Mate DSM314 error codes refer to Appendix A.

2.03 Command Block Number. Command Block Number indicates the block number of

the command that is presently being executed in the active Program or Subroutine.

It changes at the start of each new block as the program commands are executed,

and thus identifies the present operating location within the program. Block

numbers are displayed only if the motion program uses them. Additionally, the most

recently used block number will be displayed until superseded by a new value. The

Command Block Number is set to zero on power cycle or reset.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 138

2.04 Commanded Position. Commanded Position (user units) is where the axis is

commanded to be at any instant in time. For a Servo Axis, the difference between

Commanded Position and Actual Position is the Position Error value that produces

the Velocity Command to drive the axis. The rate at which the Commanded Position

is changed determines the velocity of axis motion.

If Commanded Position moves past either of the count limits, it will roll over to the

other limit and continue in the direction of the axis motion.

2.05 Actual Position. Actual Position (user units) is a value maintained by the DSM314 to

represent the physical position of the axis. It is set to an initial value by the Set

Position %AQ Immediate command or to Home Position by the Find Home cycle.

When digital absolute encoders are used, Actual Position is automatically set

whenever the encoder reports a valid position. The motion of the axis feedback

device continuously updates the axis Actual Position.

If Actual Position moves past either of the count limits, it will roll over to the other

limit and continue in the direction of the axis motion.

2.06 Strobe 1, 2 Position. Strobe 1 Position and Strobe 2 Position (user units) contain the

axis actual position when a Strobe 1 Input or Strobe 2 Input occurs. When a Strobe

Input occurs, the Strobe 1Flag or Strobe 2 Flag %I bit is set to indicate to the host

controller that new Strobe data is available in the related Strobe 1 Position or Strobe

2 Position status word. The host controller must set the proper Reset Strobe 1 or

Reset Strobe 2 Flag %Q bit to clear the associated Strobe 1,2 Flag %I bit.

Strobe 1, 2 Position will be maintained and will not be overwritten by additional

Strobe Inputs until the Strobe 1, 2 Flag %I bit has been cleared. If the Reset Strobe

Flag %Q bit is left in the

ON state (thus holding the Strobe 1, 2 Flag %I bit in the cleared state), then each

Strobe Input that occurs will cause the axis position to be captured in Strobe 1, 2

Position.

The Strobe 1, 2 Position actual position values are also placed in data parameter

registers for use with motion programs commands. The data parameter register

assignments are as follows:

 Servo Axis 1 Servo Axis 2 Servo Axis 3 Servo Axis 4

Strobe 1 Position P224 P232 P240 P248

Strobe 2 Position P225 P233 P241 P249

This feature allows the strobe input to trigger a Conditional JUMP in a program

block using the Strobe 1 Position or Strobe 2 Position as the destination of a

CMOVE or PMOVE command.

See Chapter 1, “Product Overview, DSM314 Position Strobes,” for information on

strobe latency and processing times.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 139

2.07 Position Error. Position Error (user units) is the difference between Commanded

Position and Actual Position. In the servo control loop, Position Error is multiplied by

a gain constant to provide the servo velocity command.

2.08 Commanded Velocity. Commanded Velocity (user units/sec) is a value generated by

the DSM314 axis command generator. Commanded Velocity indicates the

instantaneous velocity command that is producing axis motion. At the beginning of

a move it will increase at the acceleration rate, and once the programmed velocity

has been reached, it will stabilize at the programmed velocity value.

In Follower mode, Commanded Velocity only represents the output of the axis

command generator. The Follower Master Axis input or the Follower Acceleration

Ramp controller does not affect Commanded Velocity.

2.09 Actual Velocity. Actual Velocity (user units/sec) represents the axis velocity derived

from the Feedback device and is updated by the DSM314 once every 128

milliseconds.

2.10 User Selected Data 1. There is one of these words for each of the four axes. The

information reported in User Selected Data 1 is determined by module

configuration (see Chapter 4) or the Select Return Data 1 %AQ command (see

Section 4, “%AQ Immediate Commands,” in this chapter).

2.11 User Selected Data 2. There is one of these words for each of the four axes. The

information reported in User Selected Data 2 is determined by module

configuration (see Chapter 4) or the Select Return Data 2 %AQ command (see

Section 4, “%AQ Immediate Commands,” in this chapter). Refer to Section 4 “%AQ

Immediate Commands” for additional information.

5.3 Section 3: %Q Discrete Commands
The %Q Outputs listed in Table 44 represent Discrete Commands that are sent automatically

to the DSM314 from the CPU each host controller sweep. A command is executed by turning

on its corresponding Output Bit. The actual addresses of the Discrete Command bits depend

on the starting address configured for the %Q references. See Table 40, “Settings Tab.” The

Bit Offsets listed in the following table are offsets to this starting address. Numbers in the

“Ref” columns pertain to sections in this chapter.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 140

Table 44: %Q Discrete Commands

Bit

Offset

Description Axis Ref Bit

Offset

Description Axis Ref

00 Clear Error N/A 3.01 40 OUT1_B / Config. CTL bit src. Servo 2 3.12

01 Enable Local Logic N/A 3.02 41 OUT3_B / Config. CTL bit src. Servo 2 3.13

02 Execute Motion Program 1 N/A 3.03 42 Reserved

03 Execute Motion Program 2 N/A 3.03 43 Reserved

04 Execute Motion Program 3 N/A 3.03 44 Enable Follower Servo 2 3.14

05 Execute Motion Program 4 N/A 3.03 45 Select Follower Master

Source

Servo 2 3.15

06 Execute Motion Program 5 N/A 3.03 46 Reserved

07 Execute Motion Program 6 N/A 3.03 47 Reserved

08 Execute Motion Program 7 N/A 3.03 48 Abort All Moves Servo 3 3.05

09 Execute Motion Program 8 N/A 3.03 49 Feed Hold (Pause Program) Servo 3 3.06

10 Execute Motion Program 9 N/A 3.03 50 Enable Drive / MCON Servo 3 3.07

11 Execute Motion Program 10 N/A 3.03 51 Find Home Servo 3 3.08

12 Configurable CTL bit source N/A 3.04 52 Jog Plus Servo 3 3.09

13 Configurable CTL bit source N/A 3.04 53 Jog Minus Servo 3 3.10

14 Configurable CTL bit source N/A 3.04 54 Reset Strobe 1 Servo 3 3.11

15 Configurable CTL bit source N/A 3.04 55 Reset Strobe 2 Servo 3 3.11

16 Abort All Moves Servo 1 3.05 56 OUT1_C / Config. CTL bit src. Servo 3 3.12

17 Feed Hold (Pause Prgm) Servo 1 3.06 57 OUT3_C / Config. CTL bit src. Servo 3 3.13

18 Enable Drive / MCON Servo 1 3.07 58 Reserved

19 Find Home Servo 1 3.08 59 Reserved

20 Jog Plus Servo 1 3.09 60 Enable Follower Servo 3 3.14

21 Jog Minus Servo 1 3.10 61 Select Follower Master Source Servo 3 3.15

22 Reset Strobe 1 Servo 1 3.11 62 Reserved

23 Reset Strobe 2 Servo 1 3.11 63 Reserved

24 OUT1_A / Config. CTL bit src. Servo 1 3.12 64 Abort All Moves Servo 4 3.05

25 OUT3_A / Config. CTL bit src. Servo 1 3.13 65 Feed Hold (Pause Program) Servo 4 3.06

26 Reserved 66 Enable Drive / MCON Servo 4 3.07

27 Reserved 67 Find Home Servo 4 3.08

28 Enable Follower Servo 1 3.14 68 Jog Plus Servo 4 3.09

29 Select Follower Master Source Servo 1 3.15 69 Jog Minus Servo 4 3.10

30 Reserved 70 Reset Strobe 1 Servo 4 3.11

31 Reserved 71 Reset Strobe 2 Servo 4 3.11

32 Abort All Moves Servo 2 3.05 72 OUT1_B / Config. CTL bit src. Servo 4 3.12

33 Feed Hold (Pause Program) Servo 2 3.06 73 OUT3_B / Config. CTL bit src. Servo 4 3.13

34 Enable Drive / MCON Servo 2 3.07 74 Reserved Servo 4

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 141

35 Find Home Servo 2 3.08 75 Reserved Servo 4

36 Jog Plus Servo 2 3.09 76 Enable Follower Servo 4 3.14

37 Jog Minus Servo 2 3.10 77 Select Follower Master Source Servo 4 3.15

38 Reset Strobe 1 Servo 2 3.11 78 Reserved Servo 4

39 Reset Strobe 2 Servo 2 3.11 79 Reserved Servo 4

3.01 Clear Error. When an error condition is reported, this command is used to clear the

Module Error Present %I status bit as well as the associated Module Status Code and

Axis 1-Axis 4 Error Code %AI status words. Error conditions that are still present (such

as an End of Travel limit switch error) will not be cleared and must be cleared by some

other corrective action. If the Clear Error bit is maintained ON, a Jog command can

be used to move away from an open hardware overtravel limit switch.

3.02 Enable Local Logic. This command enables the current Local Logic program within

the DSM to execute. Refer to Chapter 4 for information on configuring the Local

Logic program name.

3.03 Execute Motion Program 1 - 10. These commands are used to select stored motion

programs for immediate execution. Each command uses a one-shot action; thus a

command bit must transition from OFF to ON each time a program is to be

executed. Programs may be temporarily paused by a Feed Hold command.

When a program begins execution, Rate Override is always set to 100%. A Rate

Override %AQ command can be sent on the same sweep as the Execute Motion

Program n %Q bit and will be effective as the program starts.

Only one Motion Program can be executed at a time per axis. The Program Active %I

status bit must be OFF, or Motion Program execution will not be allowed to start. A

multi-axis Motion Program uses both axis 1 and axis 2, so both Program Active bits

must be OFF to start a multi-axis Motion Program.

3.04 Configurable CTL Bit Sources. %Q bit offsets 12-15 are configurable as sources for

CTL bits CTL01-CTL24. Refer to Chapter 4 for additional information. The default

configuration is:

%Q bit offset 12: CTL09

%Q bit offset 13: CTL10

%Q bit offset 14: CTL11

%Q bit offset 15: CTL12

3.05 Abort All Moves. This command causes any motion in progress to halt at the

current Jog Acceleration rate and configured Jog Acceleration Mode. Therefore it is

important to use a Jog Acceleration that will provide deceleration in a satisfactory

distance. Any pending programmed or immediate command is canceled and

therefore not allowed to become effective. The abort condition is in effect as long

as this command is on. If motion was in progress when the command was received,

the Moving status bit will remain set until the commanded velocity reaches zero.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 142

3.06 Feed Hold (On Transition). This command causes any motion programs in progress

to stop at the active program acceleration rate. The Feed Hold command does not

stop motion commanded by a master source in Follower Enabled Mode. Once the

motion is stopped, the Moving status bit is cleared, and the In-Zone status bit is set

when the In Zone condition is attained. Jog commands are allowed when in the Feed

hold condition. After an ON transition, program motion will stop, even if the

command bit transitions back OFF before motion stops.

Feed Hold (Off Transition). This command causes any motion programs interrupted

by Feed Hold to resume at the programmed acceleration and velocity rate.

Additional program moves will then be processed, and normal program execution

will continue. Feed Hold OFF behaves in a similar fashion to an Execute Program

command except the path generation software uses only the remaining distance in

the program.

If jogging occurred while Feed Hold was ON, the interrupted Move command will

resume from where the axis was left after the Jog. The Move finishes at the correct

programmed velocity and continues to the original programmed position as if no

jog displacement occurred.

3.07 Enable Drive / MCON. If the Module Error Present and Drive Enabled %I status bits

are cleared, this command will cause the Drive Enable relay contact to close and the

Drive Enabled %I bit to be set. When the Drive Enabled %I bit is set, the path

generation and position control functions are enabled, and servo motion can be

commanded. A signal will be sent (MCON) to the digital servo enabling the drive.

Enable Drive must be maintained ON to allow normal servo motion (except when

using Jog commands). If using the Force Analog Output immediate command (see

Section 4.06, “Force Analog Output”), the applicable Enable Drive signal must be on

to produce an analog output with this command.

3.08 Find Home. This command causes the DSM314 to establish the Home Position. A

Home Limit Switch Input from the I/O connector roughly indicates the reference

position for Home, and the next encoder marker encountered indicates the exact

home position. When the Home Mode axis configuration is set to MOVE+ or MOVE-

, the Home Limit Switch input will be ignored. For a Servo Axis, the configured Home

Offset defines the location of Home Position as the offset distance from the Home

Marker. The Position Valid %I bit indication is set at the conclusion of the Home

Cycle. See Chapter 6 for additional Home Cycle information. See Appendix C for

absolute encoder information.

3.09 Jog Plus. When this command bit is ON, the axis moves in the positive direction at

the configured Jog Acceleration and Jog Velocity rates. Turning Jog Plus OFF causes

the axis to decelerate and stop. If Jog Plus is momentarily turned off, even for one

host controller sweep, the axis will decelerate to a stop then accelerate and continue

jogging. The axis will move as long as the Jog Plus command is maintained and the

configured Positive End Of Travel software limit or Positive Overtravel switch is not

encountered. The Overtravel switch inputs can be disabled using the OT Limit

configuration parameter. Jog Plus may be used to jog off of the Negative Overtravel

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 143

switch if the Clear Error %Q bit is also maintained on. See Chapter 6, Non-

Programmed Motion, for more information on Jogging with the DSM314.

3.10 Jog Minus. When this command bit is ON, the axis moves in the negative direction

at the configured Jog Acceleration and Jog Velocity rates. Turning Jog Minus OFF

causes the axis to decelerate and stop. If Jog Minus is momentarily turned off, even

for one host controller sweep, the axis will decelerate to a stop then accelerate and

continue jogging. The axis will move as long as the Jog Minus command is

maintained and the configured Negative End Of Travel software limit or Negative

Overtravel switch is not encountered. The Overtravel switch inputs can be disabled

using the OT Limit configuration parameter. Jog Minus may be used to jog off of the

Positive Overtravel switch if the Clear Error %Q bit is also maintained on. See Chapter

6, “Non-Programmed Motion,” for more information on Jogging with the DSM314.

3.11 Reset Strobe 1, 2 Flag. The Strobe n Flag %I status bit flag informs the host controller

that a Strobe Input has captured an axis position that is now stored in the associated

Strobe n Position %AI status word. When the host controller acknowledges this data,

it may use the Reset Strobe n Flag %Q command bit to clear the Strobe n Flag %I

status bit flag. Once the Strobe n Flag %I bit is set, additional Strobe Inputs will not

cause new data to be captured. The flag must be cleared before another Strobe

Position will be captured. As long as the Reset Strobe n Flag %Q command bit is set,

the Strobe n Flag bit will be held in the cleared state. In this condition, the latest

Strobe Input position is reflected in the Strobe n Position status word, although the

flag cannot be used by the host controller to indicate when new data is present.

3.12 OUT1_A, B, C, D Output Control / Configurable CTL Bit Source. Each axis connector

has a 24-vdc solid state relay (SSR) output rated at 125 ma. The OUT1_A, OUT1_B,

OUT1_C and OUT1_D Output Control %Q bits can control the state of the associated

output, but only if the associated Output Bits configuration is set for host controller

Control. Refer to Chapter 4 for configuration information.

For each axis, the following connector terminals are assigned:

 Faceplate

Connector Pin

Auxiliary TB

IC693ACC336 Terminal

Servo TB IC693ACC335

Terminal

OUT1 SSR (+)

terminal

18 18 18

OUT1 SSR (-)

terminal

36 36 16

These %Q bits are also available as sources for configurable CTL bits, independent

of the Output Bits configuration. Refer to Chapter 4 for information on configuring

the CTL01-CTL24 bit sources.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 144

Note: The OUT_1A, B, C, D bits will not control the faceplate outputs unless the associated
Output Bits configuration is set for host controller Control. Refer to Chapter 4 for
configuration information.

3.13 OUT3_A, B, C, D Output Control / Configurable CTL Bit Source. Each axis connector

has a differential 5-vdc output that is suitable for driving 5v TTL or CMOS loads. The

OUT3_A, OUT3_B, OUT3_C and OUT3_D Output Control %Q bits control the state

of the associated output, but only if the associated Output Bits configuration is set

for PLC Control. Refer to Chapter 4 for configuration information.

For each axis the following connector terminals are assigned:

 Faceplate

Connector Pin

Auxiliary TB

IC693ACC336 Terminal

Servo TB IC693ACC335

Terminal

OUT3 (+)

terminal

14 14 5

OUT3 (-)

terminal

32 32 13

Note: The OUT_3A, B, C, D bits will not control the faceplate outputs unless the associated
Output Bits configuration is set for PLC Control. Refer to Chapter 4 for configuration
information.

These %Q bits are also available as sources for configurable CTL bits, independent of

the Output Bits configuration. Refer to Chapter 4 for information on configuring the

CTL01-CTL24 bit sources.

3.14 Enable Follower. When this bit is set and the Follower Enabled %I status bit indicates

the Follower is enabled, motion commanded by the external or internal master will

act as an input to the follower loop. An optional Follower Trigger bit may be

configured to initiate follower motion. When a Follower Trigger is used, Enable

Follower must be ON for the trigger condition to be tested. Clearing Enable Follower

disconnects the follower loop from the master source. Jog, Move at Velocity, and

Execute Program n commands will be allowed regardless of the state of Enable

Follower. When the Follower is enabled, Jog, Move at Velocity, or Execute Program

n commands will be superimposed on the master velocity or position command.

Find Home is not allowed unless Enable Follower is cleared. Refer to Chapter 8 for

additional information. This bit is only used by follower mode.

3.15 Select Follower Master Source. This bit switches the follower master axis source

from Follower Master Source 1 (bit OFF) to Follower Master Source 2 (bit ON). The

Follower Master sources are configurable as Commanded Position or Actual Position

from any of the 4 axes.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 145

5.4 Section 4: %AQ Immediate Commands
The following %AQ Immediate Command words are transferred each host controller sweep

from the CPU %AQ data to the DSM314. The number of %AQ words configured (6, 9, or 12)

depends upon the number of controlled axes configured. The actual addresses of the

Immediate Command words depend on the starting address configured for the %AQ words.

See Table 40, “Settings Tab.” The word offset numbers listed in the following table are

offsets to this starting address. The words are assigned as follows:

Table 45: %AQ Word Assignments

Word Offset Description Axis

00 Immediate Command Word Servo 1

01-02 Command Data Servo 1

03 Immediate Command Word Servo 2

04-05 Command Data Servo 2

06 Immediate Command Word Servo 3

07-08 Command Data Servo 3

09 Immediate Command Word Servo 4

10-11 Command Data Servo 4

Only one %AQ Immediate command may be sent to each axis of the DSM314 every host

controller sweep, the only exception being the Load Parameter Immediate command,

which is axis independent. The number of Load Parameter Immediate commands that can

be sent in one sweep depends upon the number of %AQ words configured (see Table 47 for

details).

Even though the commands are sent each sweep, the DSM314 will act on a command ONLY

if it changed since the last sweep. When any of the 3 words change, the DSM314 will accept

the data as a new command and respond accordingly.

The Axis OK %I bit must be ON for an axis to accept a new %AQ Immediate Command. Under

some conditions such as a disconnected digital encoder, un-powered servo amplifier, or un-

cleared error, Axis OK will be OFF and the %AQ command processing for that axis will be

disabled. If Digital Servo Axis 1 or 2 is not used for motor control, the configured Motor Type

must be set to 0 or an error will be reported, and Axis OK will stay OFF.

The 6-byte format for the Immediate Commands is defined in Table 46. The actual

addresses of the Immediate Command Words depend on the starting address configured

for the %AQ references. The word numbers listed in the following table are offsets to this

starting address.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 146

The word offsets are shown in reverse order and in hexadecimal to simplify the data entry.

The following example sends the Set Position command to axis 1. The first word, word 0,

contains the actual command number. For the Set Position command, the command

number is 0023h. The second and third words contain the data for the Set Position

command that is a position. The second word, word 1, is the least significant word of the

position and the third word, word 2, is the most significant word.

Example:

To set a position of 3,400,250, first convert the value to hexadecimal. 3,400,250 decimal

equals 0033E23A hexadecimal. For this value, 0033 is the most significant word and E23A is

the least significant word. The data to be sent to the DSM314 would be:

Word 2 Word 1 Word 0 Command

0033 E23A 0023 Set Position 3,400,250

Setting up word 0 as a hexadecimal word and words 1 and 2 as a double integer in a

Reference View Table display will simplify immediate command entry.

The data limit values MaxPosnUu, MaxVelUu and MaxAccUu are computed as shown

below:

Formulas for Computing Data Limit Variables

Position Limit MaxPosnUu Velocity Limit MaxVelUu Acceleration Limit MaxAccUu

If uu:cts >= 1:1

MaxPosnUu = 536,870,912

Else (uu:cts < 1:1)

MaxPosnUu = 536,870,912 *

uu/cts

MaxVelUu = 1,000,000*

uu/cts

If uu:cts >= 1:1

MaxAccUu = 1,073,741,823

Else (uu:cts < 1:1)

MaxAccUu = 1,073,741,823*

uu/cts

In the following %AQ command table, only the word offsets for Servo Axis 1 are listed.

Word offsets for the other axes are computed by adding 3 (Servo Axis 2), 6 (Servo Axis 3),

or 9 (Servo Axis 4) to the listed word offsets. The Ref column numbers refer to sections in

this chapter.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 147

Table 46: %AQ Immediate Commands Using the 6-Byte Format

Word 2 Word 1 Word 0 Immediate Command Definition Ref

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

xx xx xx xx 00 00h Null 4.01

xx xx xx RO% 00 20h Rate Override

RO% = 0 ...120%

4.02

xx xx * Incr 00 21h Position Increment Without Position Update

Incr. = -128 ... +127 User Units

4.03

Velocity 00 22h Move At Velocity

Vel. = -MaxVelUu … +MaxVelUu

4.04

Position 00 23h Set Position

Pos. = -MaxPosnUu ... + MaxPosnUu-1

4.05

xx xx Analog Output 00 24h Force Analog Output

Analog Output = -32,000 ... + 32,000

4.06

xx xx * Incr. 00 25h Position Increment With Position Update

Incr. = -128 ... +127 User Units

4.07

xx xx xx In Posn Zone 00 26h In Position Zone

Range = 0 ... 255

4.08

Position or Parameter # Move

Type

27h Move Command

Pos. = -MaxPosnUu ... + MaxPosnUu-1

Par # = 0 ... 255

4.09

Velocity 00 28h Jog Velocity

Vel. = +1 … +MaxVelUu

4.10

Acceleration 00 29h Jog Acceleration

Acc. = +1 ... + MaxAccUu

4.11

xx xx Time Constant

(0.1 ms units)

00 2Ah Position Loop Time Constant

Time Constant = 0 - 65535 (0.1 ms

units)

4.12

xx xx VFF (0.01%

units)

00 2Bh Velocity Feedforward

VFF = 0 ... 12000 (0.01% units)

4.13

xx xx Integr. TC 00 2Ch Integrator Time Constant

Time Constant = 0, 10 ... 10,000 ms

4.14

Ratio B Ratio A 00 2Dh Follower A/B Ratio

Ratio A = –32,768 … +32,767

Ratio B = +1 ... +32,767

4.15

xx xx xx VLGN 00 2Eh Velocity Loop Gain (Digital mode only)

VLGN = 0 ... 255

4.16

xx xx Torque Limit

(0.01% units)

00 2Fh Torque Limit (Digital mode and Analog Torque

Mode only)

Range = 0-10000 (0.01% units)

4.17

Position 00 31h Set Aux Encoder Position 4.18

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 148

Word 2 Word 1 Word 0 Immediate Command Definition Ref

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Pos. = -MaxPosnUu ... + MaxPosnUu-1

xx xx Servo Velocity Cmd

Note: Not used in

Analog Velocity
Mode - See
Force D/A
Output
command

00 34h Force Servo Velocity

Servo Velocity Cmd = -4,095 ...

+4,095 RPM

4.19

xx xx Offset Mode 40h Select Return Data 1 4.20

xx xx Offset Mode 41h Select Return Data 2 4.21

xx xx Make-Up Time 00 42h Follower Ramp Distance Make-Up Time

Active Range = 0, 10 ... 32000 ms

4.22

xx xx KpVel 07 46h Velocity Regulator Proportional Gain (Analog

Torque Mode Only)

KpVel = 0 - 32767

4.23

xx xx KiVel 08 46h Velocity Regulator Integral Gain (Analog

Torque Mode Only)

KiVel = 0 - 32767

4.24

xx xx TqFilt mode 0A 46h Torque Command Filter (Analog Torque Mode

Only)

TqFilt = 0 - 3

4.25

xx xx Mode Axis 47h Select Analog Output Mode (Digital mode

only)

4.26

xx xx xx xx 00 49h Clear New Configuration Received 4.27

Parameter Data Par #h 50h Load Parameter Immediate

Par # = 0 ... 255

Parameter Data = Range depends on

parameter usage.

4.28

* = Only 00 or FFh are acceptable.

xx = don’t care

4.01 Null. This is the default %AQ Immediate command. Since the %AQ words are

automatically transferred each CPU sweep, the Null command should always be

used to avoid inadvertent execution of another %AQ Immediate command.

4.02 Rate Override. This command immediately changes the % feedrate override value,

which will modify the commanded velocity for all subsequent programmed moves.

This new value will become effective immediately when received by the DSM314. It

is stored and will remain effective until overwritten by a different value. A rate

override has no effect on non- programmed motion or acceleration. Rate Override

is set to 100% whenever a program is initiated. The Rate Override command can be

sent on the same CPU sweep as an Execute Program %Q bit and the Override value

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 149

will immediately take effect. Rate Override can be used to adjust the programmed

velocity (not acceleration) of a particular move or a set of moves on any given axis.

4.03 Position Increment Without Position Update. (User units) This command offsets the

axis position from -128 to +127 user units without updating the Actual Position,

Unadjusted Actual Position (UAP), or Commanded Position. The DSM314 will

immediately move the axis by the increment commanded if the servo is enabled.

Position Increments can be used to make minor machine position corrections to

compensate for changing actual conditions. See Chapter 6, “Non-Programmed

Motion,” for more information on using Position Increment Commands with the

DSM314.

Note: The %AQ Position Increment without Position Update command (21h) does not change
the UAP. If an application uses this command, the UAP will no longer match Actual
Position. For details on the operation of UAP, see page 156.

4.04 Move At Velocity. (User units/sec) This command is executed from the CPU to move

the axis at a constant velocity. The active Jog Acceleration rate and configured Jog

Acceleration Mode are used for Move at Velocity commands. Axis actual position

data will roll over at the configured Hi or Lo Limit when reached during these moves.

See Chapter 6, “Non-Programmed Motion, for more information on the Move at

Velocity Command.”

4.05 Set Position. (User units) This command changes the axis position register values

without moving the axis. Operation of the command depends on the axis

configuration:

Servo Axis - The Commanded Position and Actual Position values will both be

changed so that no motion command will be generated. The Actual Position will be

set to the value designated and the Commanded Position will be set to the value +

Position Error. Set Position cannot be performed when the Moving %I bit or the

Program Active %I bit is ON. Set Position is allowed if the In Zone %I bit is OFF as long

as Actual Velocity is ≤ 100 cts/sec. The position value must be within the End of

Travel Limits and Count Limits or a status error will be reported. The Position Valid

%I bit is set after a successful Set Position command. See Appendix C for

considerations when using absolute mode encoders. The Set Position command is

commonly used to set the starting position reference point to zero (or another

value) without homing the axis.

Aux Axis - Commanded Position is set to the command data. For an Aux Axis, Actual

Position is independent of Commanded Position and is not affected by Set Position.

Refer to paragraph 4.18 Set Aux Encoder Position to set Actual Position for an Aux

axis encoder. Set Position cannot be performed when the Moving %I bit or the

Program Active %I bit is ON. The position value must be within the End of Travel

Limits or a status error will be reported.

Note: When a digital servo system with absolute encoder (Feedback Mode = Absolute) is first
powered up after removal or replacement of the encoder battery, the encoder must be
rotated past its internal reference point. If this is not done the Set Position command will
be ignored and Error Code 53h (Set Position before encoder passes reference point) will
be reported.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 150

4.06 Force Analog Output. Each axis connector supports one analog output signal. The

Force Analog Output immediate command may be used in the CPU application

program to set the value of this DC voltage output. The Force Analog Output

command operates one of the analog outputs on DSM faceplate connector C or D in

Digital mode, or in Analog Velocity mode, on connector A, B, C, or D. Multiple Force

Analog Output commands can be used to operate outputs on different connectors

by using the appropriate %AQ word offsets (see the paragraph before Table 46). A

Force Analog Output command has a range of +32000 (+10.00 Vdc) to -32000 (-

10.00 Vdc). When the axis is configured for Analog Torque mode the Force Analog

output command is NOT available.

Note: It is necessary to enable the applicable %Q “Enable Drive” bit (there is one for each axis)
to activate the analog output value set by this command. This differs from IC693DSM302
functionality.

There are two requirements to sustain the forced analog output voltage: (1) the

Force Analog Output command and value must remain continuously in the %AQ

data, and (2) the associated %Q “Enable Drive” bit must be on. The %Q “Enable

Drive” bit can be used to switch the analog output voltage on and off.

When a Force Analog Output command is active for a given axis, any other %AQ

immediate command for that axis will remove the Force Analog Output command

and turn off the associated analog output.

There are some differences between the Digital and Analog Axis Modes when using

this command, which are detailed below:

Digital Mode

• The Force Analog Output command can only be used on connectors C and D

in Digital mode (in Digital mode, both Axis 1 and Axis 2, on connectors A and

B respectively, must be digital). In fact, Force Analog Output is the default

signal on connectors C and D in Digital mode.

• If Axes 1 and 2 (connectors A and B) are configured for digital servo, their

analog outputs are used only for servo tuning, and this function cannot be

overridden by the Force Analog Output command. Issuing a Force Analog

Output command to a digital axis (connector A or B) will have no effect, and

no error will be reported.

• In Digital mode, a Force Analog Output signal can be overridden if another

signal is routed to connector C or D by the Select Analog Output Mode

command. If the default Force Analog Output command has been overridden

on connectors C or D, it can be reinstated by either (1) issuing the immediate

command Select Analog Output (Signal Code 00) to each affected axis or (2)

power cycling the DSM314. See Section 4.25, “Select Analog Output Mode.”

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 151

Force Analog Output (Digital Mode) Example

In this example, Axes 1 and 2 are configured as Digital, the beginning DSM314 %Q

address is configured as %Q1, and the beginning %AQ address is configured as

%AQ1. Connectors C and D are set at their default analog output condition (Force

Analog Output).

To force an analog output of +5VDC on connector D, the Force Analog Output

immediate command will be issued in the ladder logic program. Since the first %AQ

word was configured as %AQ1, the three words that apply to Connector D (“Axis 4”),

are %AQ10, %AQ11, and %AQ12 (see the paragraph above Table 46 for details).

Since %Q1 was configured as the first %Q bit, the Enable Drive (Servo 4) bit for Axis 4

is %Q67 (see Table 44, “%Q Discrete Commands”).

So the following values must be moved into the applicable words, using Move

instructions in ladder logic (using a WORD type Move instruction makes it easier to

move a hex number):

%AQ10 Set to 24h (which specifies the Force Analog Output command)

%AQ11 Set to +16000 (which equals +5VDC)

%AQ12 Set to 0 (this word is not used to convey significant data)

Additionally, the %Q67 bit (Enable Drive) must be set to logic 1.

Figure 62

Analog Velocity Mode

• In Analog Velocity mode, the Force Analog Output command can be used on

all four connectors to force a voltage output.

• The Select Analog Output command, discussed in the “Digital Mode” section

above, does not work in Analog mode.

Analog Torque Mode

• In Analog Torque mode, the Force Analog Output command is NOT available.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 152

4.07 Position Increment with Position Update. (User units) This command is similar to the

Position Increment Without Position Update command (#21h) except that Actual

Position and Commanded Position (returned in %AI data) are both updated by the

increment value. If the servo is enabled, the DSM314 will immediately move the axis

by the increment value. Position Increments can be used to make minor machine

position corrections to compensate for changing actual conditions. See Chapter 6,

“Non-Programmed Motion, for more information on Position Increment

Commands with the DSM314.”

4.08 In Position Zone. (User Units) This command can be used to set the active In Position

Zone to a value different than the configured value.

The DSM314 compares In Position Zone to the Position Error in order to control the

In Zone %I bit. When the Position Error is ≤ In Position Zone, the In Zone %I bit is ON.

If the DSM314 is power cycled or the host controller CPU is reset for any reason, the

value set by this command will be lost and the In-Position zone value set by

configuration software will be reinstated.

4.09 Move Command. This command will produce a single move profile that will move

the axis to the position commanded each time it is sent. The current Jog

Acceleration and Jog Velocity (which can also be changed by %AQ commands) will

be used for the move. A PMOVE command does not complete (Program Active %I

bit turns OFF) until Commanded Position has reached the destination and the In

Zone %I bit is on. A CMOVE command completes (Program Active %I bit turns off)

whenever Commanded Position reaches the destination even if In Zone is OFF.

Therefore, a CMOVE will complete even if Actual Position has not yet reached the

CMOVE destination. The Program Active %I bit can be monitored to determine when

an AQ Move command is active.

The data field for this command may contain the move position or distance in bytes

2-5 with the command type (in hexadecimal format) as defined below:

Move Type (byte 1):

00h = Abs, Pmove, Linear

01h = Abs, Cmove, Linear

10h = Abs, Pmove, Scurve

11h = Abs, Cmove, Scurve

40h = Inc, Pmove, Linear

41h = Inc, Cmove, Linear

50h = Inc, Pmove, Scurve

51h = Inc, Cmove, Scurve

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 153

The data field for this command may contain a parameter number in byte 2 (bytes

3-5 unused) with the command type as defined below:

Move Type (byte 1):

80h = Abs, Pmove, Linear

81h = Abs, Cmove, Linear

90h = Abs, Pmove, Scurve

91h = Abs, Cmove, Scurve

C0h = Inc, Pmove, Linear

C1h = Inc, Cmove, Linear

D0h = Inc, Pmove, Scurve

D1h = Inc, Cmove, Scurve

The Move Command is executed as a single move motion program. Therefore, all

the restrictions that apply to motion program execution also apply to the Move

Command. For example, if a program is already active for axis 1, then an attempt to

send this command for axis 1 will result in an error condition being reported.

4.10 Jog Velocity. (User units/sec) This command sets the velocity used when a Jog %Q

bit is used to jog in the positive or negative direction. Jog Velocity is used by motion

programs when no Velocity command is included in the program. Jog Velocity is

always used by the %AQ Move Command (27h). A host controller reset, or power

cycle returns this value to the configured data.

4.11 Jog Acceleration. (User units/sec/sec) This command sets the acceleration value

used by Jog, Find Home, Move at Velocity, Abort All Moves and Normal Stop

operations. A Normal Stop occurs when the host controller switches from Run to

Stop or after certain programming errors (refer to Appendix A). Jog Acceleration is

used by motion programs when no Acceleration command is included in the

program. Jog Acceleration is always used by the %AQ Move Command (27h). A host

controller reset, or power cycle returns this value to the configured data.

Note: A minimum value after scaling is used in the DSM314. This value is determined by the
rule:

Jog Acc * (user units/counts) >= 32 counts/sec/sec.

4.12 Position Loop Time Constant. (0.1 Milliseconds) This command allows the servo

position loop time constant to be changed from the configured value. The lower the

Position Loop Time Constant value, the faster the system response. Values that are

too low will cause system instability and oscillation. For accurate tracking of the

commanded velocity profile, the Position Loop Time Constant should be 1/4 to 1/2

of the MINIMUM system acceleration or deceleration time. For Analog mode, the

“Vel at Max Cmd” configuration value must be set correctly for proper operation of

the Position Loop Time Constant. A host controller reset, or power cycle returns this

value to the configured data.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 154

4.13 Velocity Feedforward. This command sets the Velocity Feedforward gain (0.01

percent). It is the percentage of Commanded Velocity that is added to the DSM314

velocity command output. Increasing Velocity Feedforward causes the servo to

operate with faster response and reduced position error. Optimum Velocity

Feedforward values are 90-100 %. For analog servos, the “Vel at Max Cmd”

configuration value must be set correctly for proper operation of the Velocity

Feedforward gain factor. A host controller reset or power cycle returns this value to

the configured data.

4.14 Integrator Time Constant. (Milliseconds) This command sets the Integrator Time

Constant for the position error integrator. The value specifies the amount of time in

which 63% of the Position Error will be removed. The Integrator Time Constant

should be 5 to 10 times greater than the Position Loop Time Constant to prevent

instability and oscillation. It is recommended that the position error integrator only

be used in continuous follower applications. Use of the integrator in point to point

positioning applications may result in position overshoot when stopping.

4.15 Follower A/B Ratio. This command allows the host controller to update the slave:

master A/B ratio used in each follower loop. “A” is a 16-bit signed integer with a

minimum value of - 32,768 and a maximum value of +32,767. “B” is a 16-bit integer

with a minimum value of 1 and a maximum value of 32,767. The magnitude of the

A/B ratio must be in the range 32:1 to 1:10,000 or a status error will be generated.

Refer to Chapter 8 for additional information about the A/B ratio.

4.16 Velocity Loop Gain. (VLGN) Digital Mode and Analog Torque Mode only. The velocity

control loop gain for a digital servo axis and Analog Torque mode servo may be set

with the Velocity Loop Gain command. The VLGN value is used to match the load

inertia (JL) to the motor inertia (JM). VLGN is defined with a default value of 16

representing an inertia ratio of 1 to 1. The VLGN value is calculated assuming that

the load is rigidly applied to the motor. Therefore, in actual machine adjustment the

required value may significantly differ from the calculated value due to rigidity,

friction, backlash, and other factors. A host controller reset or power cycle returns

VLGN to the value set in the configuration software. A suggested starting point for

Velocity Loop Gain is:

The allowed range of Velocity Loop Gain is 0 to 255.

For example: The motor inertia (JM) of a particular servo is 0.10 lb-in-s2. The load

inertia (JL) in this application is 0.05 lb-in-s2. VLGN = (0.05 / 0.10) * 16 = 8

The default Velocity Loop Gain is set using the Velocity Loop Gain setting in the

configuration software.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 155

CAUTION

An incorrect VLGN value may cause an axis to be unstable. Care should be used when

making any change to the VLGN value.

4.17 Torque Limit. (0.01 percent) Digital Mode and Analog Torque Mode only. The

Torque Limit Command provides a method of limiting the torque produced by the

servomotor. In Analog Torque Mode, the Torque limit value limits the torque

command to a percentage of the full-scale torque command value. Specifically, it

limits the full scale of the analog output where full scale equals 10 volts. The DSM314

will set the Torque Limit at the default 10000 (100 %) whenever a power cycle or

reset occurs. The host controller application logic must set any other value for

desired Torque Limit. The valid range for Torque Limit is 0 to 10000 in units of 0.01%.

This represents 0 - 100 % of peak torque at commanded velocity. If an over- range

value of 10001 - 65535 is sent, the torque limit will be set to 10000. Torque Limit

can be changed during axis motion and takes effect immediately. Refer to the

appropriate servo motor manual for the motor torque curve to determine the actual

value of torque output available at a given velocity. A simple example would be the

use of Torque Limit to prevent over-tightening on a machine.

4.18 Set Aux Encoder Position. (User Units) This command sets the Actual Position value

for an Aux Axis Encoder without using a Find Home operation. The Position Valid %I

bit for the Aux Axis will be set when the command is received.

4.19 Force Servo Velocity. (RPM) Digital Mode and Analog Torque Mode only. This

command bypasses the position loop and forces a velocity command to the digital

servo for tuning purposes. In Analog Torque Mode it bypasses the position loop and

forces a velocity command to the velocity regulator. Acceleration control is not used

and changes in velocity take effect immediately. A Force Servo Velocity command

value of +4095 will produce a motor velocity of + 4,095 RPM and -4095 will produce

a motor velocity of -4,095 RPM (depending on individual motor maximum

velocities). The digital servo control loops may limit actual motor speed to a lower

value. Care should be taken not to operate a servomotor past the rated duty cycle.

The Enable Drive %Q bit must be active with no other motion commanded for the

Force Servo Velocity command to operate. The command must remain

continuously in the %AQ data for proper operation. When a Force Servo Velocity

command is active for a given axis, any other %AQ immediate command for that axis

will remove the Force Servo Velocity data and halt the servo. Chapter 6, Non-

Programmed Motion, also contains information on Force Servo Velocity.

4.20 Select Return Data 1. This command allows alternate data to be reported in the User

Selected Data 1 %AI location for each axis. The alternate data includes information

such as Parameter memory contents and the DSM314 Firmware Revision.

The Select Return Data 1 command uses a mode selection and an offset selection.

The mode selection (byte offset +1 of the six-byte command) determines the Return

Data type. The offset selection (byte offsets +2, +3 of six-byte command) selects an

individual data item for some modes. Setting the mode to 00h causes the default

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 156

Torque Command to be reported. The default mode and offset for User Selected

Data 1 can be set in the module configuration software.

4.21 Select Return Data 2. This command allows alternate data to be reported in the User

Selected Data 2 %AI location for each axis. The alternate data includes information

such as Parameter memory contents and the DSM314 Firmware Revision.

The Select Return Data 2 command uses a mode selection and an offset selection.

The mode selection (byte offset +1 of the six-byte command) determines the Return

Data type. The offset selection (byte offsets +2, +3 of six-byte command) selects an

individual data item for some modes. Setting the mode to 00h causes the default

Torque Command to be reported. The default mode and offset for User Selected

Data 2 can be set in the module configuration software.

The following selections are allowed for Select Return Data 1 and Select Return

Data 2.

Return Data

Digital Analog

Torque

Analog

Velocity

Selected Return Data Data

Mode

Data Offset

Y Y N Torque Command 00h not used

Y Y Y DSM Firmware Revision 10h not used

Y Y Y DSM Firmware Build ID No.

(hex)

11h not used

Y N N Absolute Feedback Offset

(cts)

17h not used

Y Y Y Parameter Data 18h Parameter

Number (0–255)

Y Y Y CTL bits 1-32 19h not used

Y Y Y Analog Inputs - Axis 1 1Ch not used

Y Y Y Analog Inputs - Axis 2 1Dh not used

Y Y Y Analog Inputs - Aux 3 1Eh not used

Y Y Y Analog Inputs - Aux 4 1Fh not used

Y Y Y Commanded Position (user

units)

20h not used

Y Y Y Follower Program Command

Position (cts)

21h not used

Y Y Y Unadjusted Actual Position

(cts)

28h not used

Y Y Y Unadjusted Strobe 1

Position (cts)

29h not used

Y Y Y Unadjusted Strobe 2

Position (cts)

2Ah not used

Torque Command is scaled so that +/- 10000 = +/- 100% torque.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 157

DSM Firmware Revision is interpreted as two separate words for major-minor

revision codes.

DSM Firmware Build ID is interpreted as a single hex word.

Absolute Feedback Offset is the position offset (in counts) that is used to initialize

Actual Position when a digital Absolute Encoder is used. Actual Position = Absolute

Encoder Data + Absolute Feedback Offset.

Analog Inputs provides two words of data for each axis: low word = AIN1 and high

word = AIN2. The data is scaled so that +/- 32000 = +/- 10.0v.

Commanded Position (user units) is a copy of the Commanded Position %AI data

reported for each axis. Refer to paragraph 2.04 in Chapter 5.

Follower Program Command Position (cts) is the active commanded position (in

feedback counts) updated and used by the internal motion command generator.

Refer to Chapter 9 - Combined Follower and Commanded Motion.

Unadjusted Actual Position (UAP) is the accumulated actual position (in counts, not

user units) with a 32 bit binary rollover value of -2,147,483,648 … +2,147,483,647.

A Find Home or Set Position command sets the UAP to a value equal to the Actual

Position data scaled to counts.

UAP is initialized or reset when a Set Position or Home operation is completed. It

tracks actual motor rotation after these operations within the 32 bit raw encoder

count range with rollover, regardless of how the rotation is commanded (except for

the Position Increment without Position Update command).

If a Set Position command is executed or a Find Home cycle is completed, the UAP is

set to the raw counts equivalent to the Set Position data or the configured Home

Position after scaling by the Counts to User Units ratio on the individual axis tab of

the DSM configuration. That is, the raw counts are calculated as:

UAP = (Set Position data or Home Position value) x (Counts) / (User Units),

rounded to the nearest integer value.

The Home Offset configuration parameter, which is provided to allow the actual

stopping position on a homing cycle to be offset from the encoder marker location,

does not affect the UAP, since this added move takes place before the home position

is set.

The UAP value is maintained through power cycles as long as the encoder backup

battery power is maintained, even if the axis is moved while power is off. (The DSM

reads the encoder absolute data as part of the power on sequence.) It is also

maintained during axis E- Stop and emergency stop fault conditions including out of

sync.

Note: The %AQ Position Increment without Position Update command (21h) does not change
the UAP. If an application uses this command, the UAP will no longer match Actual
Position.

Unadjusted Strobe 1 Position is the value of Unadjusted Actual Position captured

when a Strobe 1 input occurs.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 158

Unadjusted Strobe 2 Position is the value of Unadjusted Actual Position captured

when a Strobe 2 input occurs.

Note: At least three host controller sweeps or 10 milliseconds (whichever represents more time)
must elapse before the new Selected Return Data is available in the host controller.

4.22 Follower Ramp Distance Make-Up Time. When the Follower Ramp feature has been

selected and the follower is enabled, the following axis is ramped up to the Master

velocity at the configured Follower Ramp Acceleration rate when the Master

Velocity is non-zero at the time the Follower is enabled. The master counts that

accumulate during acceleration of the follower axis are stored. In this mode, the

follower axis will accelerate to a velocity that exceeds the Master Velocity in order to

make up the position error that accumulated while the Follower axis was

accelerating to the Master Velocity. This make-up distance correction has a

trapezoidal velocity profile determined by the Follower Ramp Distance Make-Up

Time and Ramp Makeup Acceleration at the beginning of the correction. This mode

is used when the Follower axis must be position-and-velocity-synchronized to the

Master position at the instant the Follower mode was enabled.

If the Follower Ramp Distance Make-Up Time is too short, then the velocity profile is

a triangular profile. If during the distance correction, velocity exceeds 80% of the

velocity limit, then the automatically calculated velocity will be clamped at 80% of

the configured velocity limit. In both cases a warning message is reported, and the

real distance make-up time is longer than programmed, but the distance is still

corrected properly.

Setting a Follower Ramp Distance Make-Up Time of 0 allows the Ramp feature to

accelerate the axis without making up any of the accumulated counts. In this

instance, the Follower axis velocity will not exceed the master velocity. For

applications where the Follower axis only needs to be synchronized to the master

velocity and lost counts do not matter, set the distance make-up time = 0.

Typical velocity profile during the follower ramp cycle is shown below.

Figure 63

See Chapter 8, “Follower Motion, Follower Axis Acceleration Ramp Control”

section, for a much more detailed discussion of this feature.

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 159

4.23 Velocity Loop Proportional Gain. Analog Torque Mode only. The Velocity Loop

Proportional Gain AQ command allows the user to set the velocity regulator

proportional gain in Analog Torque mode. The proportional gain is multiplied by

velocity error (velocity command - velocity feedback) to generate the portion of the

torque command due to the proportional term. Correctly setting this value will

determine how well the velocity regulator performs in the control system. Appendix

D describes a method to correctly tune this parameter. The allowable range for the

velocity loop proportional gain term is 0-32767. The default value is 1500.

4.24 Velocity Loop Integral Gain. Analog Torque Mode only The velocity loop integral

gain AQ command allows the user to set the velocity regulator integral gain in

Analog Torque mode. The integral gain is the term multiplied by the area of the

velocity error (velocity command - velocity feedback) to generate the portion of the

torque command due to the integral term. Correctly setting this value will

determine how well the velocity regulator performs in the control system. Appendix

D describes a method to correctly tune this parameter. The allowable range for the

velocity loop proportional gain term is 0-32767. The default value is 0

4.25 Torque Command Filter. Analog Torque Mode only. The torque command filter AQ

command allows the user to activate a low pass filter for the velocity regulator

output (Torque Command). The filter is typically used to keep the controller from

exciting a machine resonance. The allowable setting for the Torque Command filter

are shown in Table 48.

Table 47: Torque Filter Commands

TqFilt Mode Torque Command Low Pass Filter Setting

0 OFF1

1 Low Bandwidth Filter (150 hz 3db point)

2 Medium Bandwidth Filter (250 hz 3db point)

3 High Bandwidth Filter (350 hz. 3db point)

1 Default setting

4.26 Select Analog Output Mode. Digital Mode only. For digital servos, this command lets

you choose what analog signals will be sent to the Analog Output pins (pins 6 and

24) on the four DSM faceplate connectors. The Select Analog Output Mode

command uses a Signal Code to specify the signal to be sent, and a Connector Code

to specify the DSM connector to receive the signal. This command is particularly

useful for servo tuning. This command can be sent from the Command registers for

any axis (1-4).

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 160

Use the following structure to set up the 6-byte %AQ Immediate Command

(described in Table 46):

• Byte 0 contains the Select Analog Output Mode command code (47h).

• Byte 1 contains the Connector Code, a hex number.

• Bytes 2-3 contain the Signal Code, a decimal number.

• Bytes 4-5 are not used and should contain 0.

Connector Codes

Connector Code Connector Selected Connector Pins

01h Connector A Pin 6 = OUT

Pin 24 = COM (Ref. to 0V)

Refer to the I/O Connection

Diagrams in Chapter 3 for

Terminal Board connections.

02h Connector B

03h Connector C

04h Connector D

Signal Codes

Note in the following Signal Code table that only some of the signals have a default

output.

Signal Code Signal Description Default Output to:

00 decimal* %AQ Force Analog Output data* Connector C or D

10 decimal Servo Axis 1 Torque Command None

15 decimal Servo Axis 1 Actual Velocity Connector A

20 decimal Servo Axis 2 Torque Command None

25 decimal Servo Axis 2 Actual Velocity Connector B

* Cannot be re-routed. This signal code can only be used to restore this signal

back to its default output.

Note: The analog output is not available for user control on digitally controlled axes. Issuing
the Force Analog Output or the Select Analog Output commands for digital axes will have
no effect on these analog outputs.

The Select Analog Output Mode has three basic uses:

1. Re-route either Servo Axis 1 Actual Velocity or Servo Axis 2 Actual Velocity

from its default output to a different output. The %AQ Force Analog Output

data signal cannot be re-routed to a different connector; however, it can be

replaced on its default output connector (C or D) by another signal that is

routed there by the Select Analog Output Mode command.

2. Route one of the two signals lacking a default output, Servo Axis 1 Torque

Command and Servo Axis 2 Torque Command, to one of the outputs, thus

replacing the previous signal on that output. This is shown in Example 2,

below.

3. Restore signals with default outputs that were replaced by a re-routed signal.

In Example 2, the %AQ Force Analog Output signal, which is normally found

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 161

on Connector D by default, is replaced by the Servo Axis 1 Torque Command

signal that was routed to connector D by the Select Analog Output Mode

command. In Example 3, the %AQ Force Analog Output signal is restored to

Connector D by using the Select Analog Output Mode command.

Example 1:

In this example, the Servo Axis 1 Actual Velocity signal (Signal Code=15) is re-routed

from its default output on Connector A to Connector B (Connector Code=02h),

replacing any previous signal on Connector B. This is accomplished by placing the

following data in the %AQ immediate command words:

Figure 64

Example 2:

In this example, the Servo Axis 1 Torque Command signal (Signal Code=10) is

selected as the Analog Output on Connector D (Connector Code=04h), replacing

any previous signal on Connector D. To accomplish this, place the following data in

the %AQ immediate command words:

Figure 65

User Manual Chapter 5
GFK-1742F Jan 2020

DSM314 to Host Controller Interface 162

Example 3:

In Example 2, the %AQ Force Analog Output default signal was replaced as the

Analog Output on Connector D by the Servo Axis 1 Torque Command signal. To

restore the %AQ Force Analog Output signal (Signal Code=00) to Connector D

(Connector Code=04h), place the following data in the %AQ immediate command

words:

Figure 66

4.27 Clear New Configuration Received. This command clears the New Configuration

Received %I bit. Once cleared, the Configuration Complete bit is only set when the

host controller resets or reconfigures the module. The host controller can monitor

the bit to determine if it must re-send other %AQ commands, such as In Position

Zone or Jog Acceleration. This would only be necessary if the %AQ commands were

used to override DSM314 configuration data programmed with the host controller

configuration software. This command can be sent from the Command registers for

any axis (1-4).

4.28 Load Parameter Immediate. This command is executed from the host controller to

immediately change a DSM314 data parameter value. It can be sent from the

Command registers for any axis (1-4). Data parameters are only used by motion

programs. Each parameter change requires a command. Byte 1 of Word 0 contains

the Parameter Number (in hexadecimal format) to be changed. The DSM314

contains 256 double word parameters, numbered 0-255 (decimal). For details, see

“Parameters (P0-P255) in the DSM314” in chapter 7.

Table 48: Number of Load Parameter Immediate Commands Permitted per

Sweep

Number of Axes

Configured

Number of %AQ

Words

Number of Load Parameter Immediate

Commands Permitted per Sweep

2 6 2

3 9 3

4 12 4

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 163

Chapter 6: Non-Programmed Motion
The DSM314 can generate motion in an axis in one of several ways without using a motion

program.

• Find Home and Jog Plus/Minus use the %Q bits to command motion.

• Move at Velocity, Move, Force Servo Velocity, Force Analog Output, and Position

Increment use %AQ immediate commands.

During Jog, Find Home, Move at Velocity, Move and Force Servo Velocity, any other

commanded motion, programmed or non-programmed, will generate an error. The only

exception is the Position Increment %AQ command, which can be commanded any time.

See the description of Position Increment motion below for more details.

Non-programmed motions (Abort All Moves, Jog Plus/Minus, Move at Velocity, AQ Move

Cmd and Normal Stop) use the Jog Acceleration and Jog Acceleration Mode. The Feed Hold

%Q command uses the programmed acceleration and acceleration mode.

6.1 DSM314 Home Cycle
A home cycle can be used to establish a correct Actual Position relative to a machine

reference point. The configured Home Offset defines the location of Home Position as the

offset distance from the Home Marker.

The Enable Drive %Q bit must be ON during an entire home cycle. However, the Find Home

%Q bit does not need to be held ON during the cycle; it may be turned on momentarily with

a one-shot. Note that turning ON the Find Home %Q bit immediately turns OFF the Position

Valid %I bit until the end of the home cycle. The Abort All Moves %Q bit halts a home cycle,

but the Position Valid bit does not turn back ON. No motion programs can be executed

unless the Position Valid bit is ON.

6.1.1 Home Switch Mode
If the Find Home Mode is configured as HOMESW (HOME Switch), the Home Switch input

from the axis I/O connector is used first to roughly indicate the reference position for home.

Then, the next encoder marker encountered when traveling in the negative direction

indicates the exact location. An open Home Switch input indicates the servo is on the

positive side of the home switch and a closed Home Switch input indicates the axis is on the

negative side of the home switch. An OFF to ON transition of the Find Home %Q command

yields the following home cycle. Unless otherwise specified, acceleration is at the current

Jog Acceleration and configured Jog Acceleration Mode.

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 164

Find Home Routine for Home Switch

If initiated from a position on the positive side of the home switch, in which case the home

switch must be OPEN (Logic 0), the Find Home routine starts with step 1 below. (All of the

first several steps of the following routine are necessary to allow for a variety of possible

home switch designs and starting positions.) If the Find Home routine is initiated from a

position on the negative side of the home switch, in which case the home switch must be

CLOSED (Logic 1), the routine starts with step 3 below.

1. The axis is moved in the negative direction at the configured Find Home Velocity

until the Home Switch input closes.

2. The axis decelerates and stops.

3. The axis is accelerated in the positive direction and moved at the configured Find

Home Velocity until the Home Switch input opens.

4. The axis decelerates and stops.

5. The axis is accelerated in the negative direction and moved at the configured Final

Home Velocity until the Home Switch input closes.

6. The axis continues negative motion at the configured Final Home Velocity until a

marker pulse is sensed. The marker establishes the home reference position.

7. The axis decelerates and stops (at a position past the marker pulse).

8. The axis is moved, at the current Jog Velocity, the number of user units specified by

the Home Offset value from the home reference position. If Home Offset = 0, the

axis moves back to the position of the marker pulse.

9. The axis decelerates and stops.

10. The DSM314 sets the Commanded Position and Actual Position %AI status words to

the configured Home Position value. Finally, the DSM314 sets the Position Valid %I

bit to indicate the home cycle is complete.

Home Switch Example

Many different home switch designs are possible. The switch may be normally open or

normally closed and may be mounted in one of several possible locations. The example

given in this section illustrates a fairly common arrangement used for linear axes. In the

following picture, the home switch is a normally open proximity switch, mounted near the

end of the machine slide’s travel range (in the negative direction). The imaginary line that

divides the home switch’s positive and negative sides is the home switch’s operating point,

located approximately on the switch’s centerline. If the machine slide travels in the negative

direction far enough so that the right-hand edge of the home switch cam causes the home

switch to close, we consider the machine slide as having crossed over to the “negative side”

of the home switch. The home switch cam is long enough so that while the machine slide is

on the negative side of the home switch, it will keep the normally open home switch closed.

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 165

Note the relationships of the home position, the negative overtravel position, and the

positive stop position. A small amount of distance is provided in the negative direction

between the home position and the negative overtravel position. This is to allow some

“working room” for adjustment and setup of these positions and for the “find home”

routine, which requires that its final move be in the negative direction.

Distance is also provided between the overtravel limit position and the positive stop.

Enough distance should be allowed here to prevent the machine slide from hitting the

positive stop. The correct distance needs to be greater than the worst-case stopping

distance required by the machine slide after it reaches the overtravel limit position.

In this example, the machine slide’s working range is on the positive side of the home

switch. If the DSM’s Home Position parameter was set to 0, this would simplify

programming absolute positioning commands since only positive numbers would be used.

Often, the home position needs to be set to an exact distance from a reference point on the

machine. To facilitate this adjustment, the home switch cam could be made with slotted

mounting holes that would allow a coarse adjustment of the cam to bring the calibration to

within one turn of the encoder. Then, the small remaining distance would be accurately

measured, and the value obtained would be entered into the DSM’s Home Offset

parameter.

Figure 67: Home Switch Example

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 166

6.1.2 Move+ and Move– Modes
If Find Home Mode is configured as MOVE+ or MOVE–, the first encoder marker pulse

encountered when moving in the appropriate direction (positive for MOVE+, negative for

MOVE–) after the find home command is given is used to establish the exact location. In this

mode, the operator usually jogs the axis to a position close (within one revolution of the

encoder) to the home position first, then initiates the find home command. To assist the

operator in jogging to the correct position, a set of alignment marks indicating a close

proximity to the home position is sometimes placed on the machine and machine axis.

Move – (Minus) Home Cycle Example

The next picture shows an example of the Home Position parameter set to Move – (minus).

In this example, the operator jogs the axis until the moveable mark on the machine slide

lines up with the stationary mark on the alignment plate mounted to the machine frame.

(Note that the marks align on the positive side of home position since the Home Position

parameter is set to Move –). Then the operator initiates the find home routine, which causes

the axis to move in the negative direction until the marker pulse occurs.

Figure 68: Move – (Minus) Home Position Example

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 167

Find Home Routine for Move + or Move –

When the find home command (an OFF to ON transition of the Find Home %Q bit) is

initiated, the following sequence of events occurs:

1. The axis is accelerated at the Jog Acceleration rate and moved at the configured Final

Home Velocity (positive direction for MOVE+, negative direction for MOVE–) until a

marker pulse is sensed. This marker pulse establishes the home reference position.

2. The axis is stopped (at a position past the marker pulse) using the configured Jog

Acceleration rate and with the configured Jog Acceleration Mode.

3. The axis is moved, at the configured Jog Velocity and with the configured Jog

Acceleration rate and Jog Acceleration Mode, the number of user units specified by

the Home Offset value from the home reference position. If Home Offset = 0, the

axis moves back to the position of the marker pulse.

4. The axis is stopped at the configured Jog Acceleration rate and with the configured

Jog Acceleration Mode.

5. The DSM314 sets the Commanded Position and Actual Position %AI status words to

the configured Home Position value; the DSM314 sets the Position Valid %I bit to

indicate the home cycle is complete.

6.2 Jogging with the DSM314
The Jog Velocity, Jog Acceleration, and Jog Acceleration Mode are configuration parameters

in the DSM314. These values are used whenever a Jog Plus or Jog Minus %Q bit is turned ON.

Note that if both bits are ON simultaneously, no motion is generated. The Jog Acceleration

and Jog Acceleration Mode are also used during Find Home, Move at Velocity, Abort All

Moves and Normal Stop. Programmed motions use the Jog Velocity and Jog Acceleration as

defaults.

A Jog Plus/Minus %Q command can be performed when no other motion is commanded, or

while programmed motion is temporarily halted due to a Feed Hold %Q command. The

Enable Drive %Q bit does not need to be ON to jog, but it can be ON. Turning on a Jog

Plus/Minus %Q bit will automatically close the Enable Relay and turn on the Drive Enabled %I

bit. When an overtravel limit switch is OFF, Jog Plus/Minus and Clear Error %Q bits may be

turned on simultaneously to move away from the open limit switch. Thus, a Jog Plus %Q

command will not work while the positive end of travel switch is open and Jog Minus will not

work while the negative end of travel switch is open. Turning a Jog %Q bit OFF causes the

axis to decelerate and stop. If a Jog %Q bit is momentarily turned off, even for one CPU

sweep, the axis will decelerate to a stop then accelerate and continue jogging.

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 168

6.3 Move at Velocity Command
A Move at Velocity %AQ command is generated by placing the value 22h in the first word of

%AQ data assigned to an axis. The second and third words together represent a signed 32-

bit velocity. Note that the third word is the most significant word of the velocity. Once the

command is given, the %AQ data can be cleared by sending a NULL command or changed

as desired. Move at Velocity will not function unless the servo drive is enabled (Enable Drive

%Q command and Drive Enabled %I status bit are set).

The listing of %AQ immediate commands shows the words in reverse order to make

understanding easier. For example, to command a velocity of 512 user units per second in a

DSM314 configured with %AQ data starting at %AQ1, the following values should be used:

0022h (34 decimal) in %AQ1, 0200h (512 decimal) in %AQ2, and 0 in %AQ3. When the

DSM314 receives these values, if Drive Enabled %I is ON, Abort All Moves %Q is OFF, and no

other motion is commanded it will begin moving the axis at 512 user units per second in the

positive direction using the current Jog Acceleration and Acceleration Mode.

The Drive Enabled %I bit must be ON before the DSM314 receives the immediate command

or an error will occur. Also, if a Move at Velocity command is already in the %AQ data, the

velocity value must change while the Drive Enabled bit is ON for the DSM314 to accept it.

The DSM314 detects a Move at Velocity command when the %AQ values change.

When the DSM314 is performing a Move at Velocity command, it ignores the software end

of travel limits (Pos EOT and Neg EOT). Hardware overtravel limits must be ON if they are

enabled.

A Move at Velocity command can be stopped without causing an error in two ways: a Move

at Velocity command with a velocity of zero, or turning the Abort All Moves %Q bit ON for at

least one CPU sweep.

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 169

6.4 Force Servo Velocity Command (DIGITAL

Servos; Analog Torque Mode)
This command bypasses the position loop and forces a velocity RPM command to the digital

servo or Analog Torque Interface for tuning purposes. Acceleration control is not used and

changes in velocity take effect immediately. A Force Servo Velocity command value of

+4095 will produce a motor velocity of + 4,095 RPM and -4095 will produce a motor velocity

of -4,095 RPM (depending on individual motor maximum velocities). The digital servo

control loops may limit actual motor speed to a lower value.

CAUTION

Care should be taken not to operate a servomotor beyond its rated duty cycle.

The Enable Drive %Q bit must be active with no other motion commanded for the Force

Servo Velocity command to operate. The command must remain continuously in the %AQ

data for proper operation. When a Force Servo Velocity command is active for a given axis,

any other %AQ immediate command for that axis will remove the Force Servo Velocity data

and halt the servo. A one-shot Force Servo Velocity command will therefore only operate

during the sweep in which it appears.

Refer to Chapter 5, Motion Mate DSM314 to Host Controller Interface, for more information

on this command.

Note: The Force Analog Output command, described below, is used for analog servos with a Velocity
command interface.

6.5 Force Analog Output Command (ANALOG

Velocity Interface Servos)
In Analog Velocity Interface mode, the Force Analog Output %AQ immediate command

operates the analog output on the DSM faceplate connectors A, B, C, or D. A Force Analog

Output value of +32000 will produce +10.00 Vdc and a Force Analog Output value of -32000

will produce -10.00 Vdc.

Force Analog Output operates only while the %AQ data is active. When a Force Analog

Output command is active for a given axis, any other %AQ immediate command for that axis

will remove the Force Analog Output command and turn off the associated analog output.

Refer to Chapter 5, “Motion Mate DSM314 to Host Controller Interface”, for more

information on this command.

User Manual Chapter 6
GFK-1742F Jan 2020

Non-Programmed Motion 170

6.6 Position Increment Commands
To generate small corrections between the axis position and the DSM314 tracking, the

Position Increment %AQ commands can be used to offset Actual Position by a specific

number of user units. If the Drive Enabled %I bit is ON, the axis will immediately move the

increment amount. If the position increment without position update is used (%AQ

command 21h), the Actual Position %AI status word reported by the DSM314 will remain

unchanged. If the Position Increment with Position Update is used (%AQ command 25h),

the Actual Position and Commanded Position %AI status words reported by the DSM314 will

be changed by the increment value. Position Increment can be used at any time, though

simultaneous use with the Force Servo Velocity command is impossible because the Force

Servo Velocity command must remain in the %AQ command data area or the servo will be

stopped.

6.7 Other Considerations
Other considerations when using non-programmed motion are as follows:

• The Abort All Moves %Q bit, when ON, will prevent any non-programmed motion

from starting.

• Turning ON the Abort All Moves %Q bit will immediately stop any current non-

programmed motion at the current Jog Acceleration.

• A Set Position %AQ command during non-programmed motion will cause a status

error.

• Turning OFF the Enable Drive %Q bit while performing a home cycle or executing a

Move at Velocity %AQ command will cause a stop error.

• The Feed Hold %Q bit has no effect on non-programmed motion.

• The Rate Override %AQ command has no effect on non-programmed motion.

• Changing the Jog Velocity or Jog Acceleration will not affect moves in progress.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 171

Chapter 7: Programmed Motion
A motion program consists of a group of user-programmed motion command statements

that are stored to and executed in the DSM314. The DSM314 executes motion program

commands sequentially in a block-by-block fashion once a program is selected to run.

The motion program is executed autonomously from the host controller, although the host

controller starts the DSM314 motion program and can interface with it (with parameters

and certain commands) during execution. In addition, external inputs (CTL bits) connected

directly to the DSM314 faceplate or controlled by Local Logic can be used in motion

programs to delay or alter program execution flow. The host controller receives status

information (such as position, velocity, and Command Block Number) from the DSM314

during program execution. Motion programs 1—10 and subroutines 1—40 are created using

the host controller programming software and are stored along with the module’s

configuration settings to the DSM314 via the host controller backplane.

For further information, please refer to the online help for your software, or the software

user manual, PAC Machine Edition Logic Developer-PLC Getting Started, GFK-1918.

7.1 Single-Axis Motion Programs and Subroutines
A single-axis program contains program statements for one axis only. The programmed axis

is specified in the first line of the program, for example: PROGRAM 1 AXIS1. The DSM314

may operate up to four single-axis programs. These programs may run independently or

simultaneously. For example, motion Program 1 may be written for Axis 1 and motion

Program 2 written for Axis 2. Each axis may be home referenced and the motion program

for each axis may execute independently without regard to the state of the other axis.

Alternately, Program 1 and Program 2 may start simultaneously (via the run program %Q

bits) during the same CPU sweep.

DSM314 motion programs support the subroutine feature, which may include all the

available motion program commands including the CALL command. The SYNC Block

command is reserved for multi-axis (Axis 1 and 2) programs and subroutines. Subroutines

can be nested, using CALL statements, to a maximum of eight levels. Single-axis

subroutines, similar to motion programs, contain commands for only one axis. The

difference is that the axis number is not specified in a single-axis subroutine. A single-axis

motion program may CALL any single-axis subroutine stored in module memory. For

example, single-axis motion Program 1, operating Axis 1, may include a CALL statement to

single-axis Subroutine 1. Additionally, single-axis motion Program 2, operating Axis 2, may

include a CALL statement to single-axis Subroutine 1. Single-axis motion programs cannot

CALL multi-axis subroutines.

The motion program and subroutine structure allow flexibility in execution and axis control

in the DSM314 module. The practical limitation is that each axis may only execute one

program at a time. For example, if Program 1 is enabled to run in Axis 1, it must either

complete or abort prior to enabling Program 2 to run in Axis 1.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 172

7.2 Multi-Axis Motion Programs and Subroutines
The term multi-axis is specified in the definition statement (on the first line) of a program or

subroutine, for example: PROGRAM 2 MULTI-AXIS, or SUBROUTINE 7 MULTI-AXIS. Axis 1 and

Axis 2 are the only two axis numbers permitted in a multi-axis program or subroutine. Both

axes must be home referenced and meet the remaining prerequisites (see the section

“Prerequisites for Programmed Motion” on page 173) before a program can be executed. A

multi-axis motion program may CALL only multi-axis subroutines. One motion program

instruction, SYNC Block, is available only in a multi-axis motion program or subroutine.

Subroutine “nesting” limitations are the same as for a single-axis motion program. In a

multi-axis program, there are two categories of moves: 1-Axis moves, and 2-Axis moves.

1-Axis moves: When two consecutive 1-Axis moves are programmed, the second move will

begin execution within 2 milliseconds after the first move finishes.

2-Axis moves: A 2-Axis move is programmed with three consecutive blocks. The first of the

three blocks must contain the SYNC Block command. The next two blocks contain the move

commands, one for Axis 1, and one for Axis 2. When the SYNC Block command is executed,

the two moves will be started “together” (within 2 milliseconds). Note that only the start of

the moves is synchronized.

More information about multi-axis programming, program block structure, flow control

(JUMP), and the SYNC Block command, is provided later in this chapter.

7.3 Motion Program Command Types
The motion program commands are grouped into four categories:

Type 1 Commands

CALL (Subroutine) JUMP

Type 2 Commands

Block number

SYNC (Block Synchronization)

LOAD (Parameter)

ACCEL (Acceleration)

VELOC (Velocity)

Type 3 Commands

PMOVE (Positioning Move)

CMOVE (Continuous Move)

DWELL

WAIT

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 173

Program/Subroutine Definition Commands

PROGRAM

ENDPROG

SUBROUTINE

ENDSUB

Type 1 commands can redirect the program path execution, but do not directly affect

positioning.

• Call (Subroutine) executes a subroutine before returning execution to the next

command.

• Jumps may be conditional or unconditional. An unconditional jump always

redirects execution to a specified program location. A conditional jump is assigned

a CTL bit to check. If the CTL bit is ON, the jump redirects execution to a specified

program location. If the CTL bit is OFF, the jump is ignored.

Type 2 commands also do not affect position.

• Block numbers provide an identification or label for the Type 3 command that

follows. Block numbers are required with JUMP commands; otherwise, they are

optional. If a program block does not contain a block number, the previous block

number, if any, remains in effect.

• The SYNC (synchronize block) command is a two-axis synchronization command

(this may or may not delay motion on one axis).

• The Load Parameter command allows the user to load a value into a parameter

register.

• The Velocity (VELOC) and Acceleration (ACCEL) commands specify velocity and

acceleration rates for the Type 3 MOVE command or commands that follow.

Velocity and Acceleration commands remain in effect until changed.

Type 3 commands start or stop motion and thus affect positioning control.

• Positioning (PMOVE) and Continuous (CMOVE) moves command motion.

• The Dwell, Wait, and End of Program commands stop motion.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 174

7.4 Program Blocks and Motion Command

Processing
A program block consists of and is defined as one (and only one) Type 3 command with any

number and combination of preceding Type 1 and 2 commands.

A block number has two primary uses: (1) it provides a Jump-To identification (label), and

(2) it identifies the section of the program that is currently executing via the Block Number

%AI Status words for each axis. Type 2 commands are optional; a program block can contain

a single Type 3 command. Type 2 commands and Conditional Jumps do not take effect until

the DSM executes the next Type 3 command.

While the DSM314 is executing a program block, the following program block is processed

into a buffer command area. This buffering feature minimizes block transition time. Thus,

parameters used in a move must be loaded before the move command that was

programmed two blocks earlier completes execution. In other words, in order to minimize

the block-to-block transition time, a new block is pre-processed during previous block

execution. Program block parameters must be loaded before the preceding block begins

execution.

When a DSM314 is executing a multi-axis program, the program commands are scanned

independently by each axis and only the data designated for that axis is executed. Note that

some multi-axis program commands do not specify an axis (Block number, Jump, Call, and

End) and therefore apply to both axes.

A multi-axis program can contain SYNC commands to synchronize the axes at designated

points. When the first axis reaches a SYNC block (a block containing a SYNC command), it

will not execute the next block until the other axis has also reached the SYNC Block. Refer to

Example 18, “Multi-axis Programming”, later in this chapter, for an example of this.

7.5 Prerequisites for Programmed Motion
The following conditions must be satisfied before a motion program can be initiated (for a

multi-axis program, the conditions must be met for both axes):

• The Enable Drive %Q bit must be ON

• The Drive Enabled %I bit must be ON

• The Position Valid %I bit must be ON

• The Moving %I bit must be OFF

• The Program Active %I bit must be OFF

• The Abort All Moves %Q bit must be OFF

• The axis position must be within the configured end of travel limits (High Software

EOT and Low Software EOT), unless the Software End of Travel mode is configured

as Disabled

• The Overtravel Limit Switch inputs must be ON (24V input is high) if enabled

• A Force Digital Servo Velocity %AQ command must not be active

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 175

• The program to be executed must be a valid program stored in the DSM314

7.6 Conditions That Stop a Motion Program
A motion program will immediately cease when one of the following conditions occurs:

• The Abort All Moves %Q bit turns ON

• The Enable Drive %Q bit turns OFF

• An Overtravel Limit Switch turns OFF when OT Limit Switch is ENABLED via

configuration.

• The next programmed move, either PMOVE or CMOVE, will pass a Software EOT

Limit (unless the Software End of Travel mode is configured as Disabled)

• A Stop Normal or Stop Fast Response Method Error occurs. See Appendix A, “Error

Reporting.”

7.7 Motion Program Basics
Number of Programs, Subroutines, and Statements

The DSM314 supports 10 motion programs, 40 subroutines, and a maximum total of 1000

motion program statements.

Format

• Motion programs and subroutines are written using ASCII text.

• Only one motion language statement is permitted per line, and a motion language

statement may not span more than one line. Normal comments may span multiple

lines.

• White space and blank lines may be used to improve readability and to separate

certain items.

• The Motion Editor is not case sensitive.

• All motion programs and subroutines must be contained in a single file.

Single-axis and multi-axis programs and subroutines

A given single-axis program must have the capability to be run on any one axis specified in

the Program definition statement. Therefore, motion language commands in single-axis

programs and subroutines will not specify an axis. Rather, the axis specified in the PROGRAM

statement is used for all motion commands in the program. Multi-axis programs and

subroutines can only call multi-axis subroutines. Likewise, single-axis programs and

subroutines can only call single-axis subroutines.

Program and subroutine definition statements

The Motion Editor requires “Program” and” Subroutine” definition statements that specify

program/subroutine number and axis configuration (PROGRAM 1 AXIS2 or SUBROUTINE 2

MULTI-AXIS). These statements are placed on the first line of the program or subroutine.

Programs are terminated with an ENDPROG statement, subroutines are terminated with

and ENDSUB statement. These statements serve as separators between programs and

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 176

subroutines, identify the program and subroutine numbers, and indicate the type of

program (single-axis or multi-axis).

Block numbers and sync blocks

Block numbers will be suffixed with a colon (1: for example). Sync blocks are identified by a

line with a block number followed by the SYNC command (2: SYNC for example). Block

numbers may appear alone on a line or preceding a motion command on the same line.

7.7.1 Motion Language Syntax and Commands

White space

White space has no significance and is ignored, except where necessary to use as a

separator. For example, in “CMOVE AXIS1 50000, ABS,S-CURVE” a space is required as a

separator between CMOVE and AXIS1, but is not required in the phrase 50000,ABS because

the comma separates the parameters. Blanks, blank lines, and tabs are considered white

space.

Numeric Constants

Numeric constants are limited to 32-bit integer values, which may be signed or unsigned

depending on the context in which they are used. All motion commands further limit this

range. Numeric constants may be entered as decimal, hexadecimal, or binary values.

Hexadecimal and binary constants are identified by the prefixes, 16# and 2#, respectively

(do not use a space between the prefix and the number). Hexadecimal and binary constants

cannot be prefixed with a negative sign. Therefore, negative values must be entered in two’s

complement form. Numeric constants may contain single underline characters (e.g.

5_000_000) between digits to improve the readability of large numbers or to represent

implied decimal points in fixed point numbers.

Comments

The (* character pair introduce a normal comment, which terminates with the *) character

pair. These comments may appear anywhere white space can, for example within or

following a motion program statement, alone on a line, or spanning several lines. These

comments do not nest. The // character pair introduces a single line comment. All text

following the // to the end of the line is ignored by the Motion Editor. However, if using the

//, do not force a break to the next line (by using a Return) or an error will result. If you wish

to make long comments readable on the Motion Editor screen without the need for scrolling

to the right, you can use the (* and *) symbols (required for multi-line comments) along

with Returns (created by pressing the Enter key), which force the text to break to the next

line.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 177

Motion Program Key Words

The following words have special significance in the motion programming language.

ABS AXIS3 ENDSUB MULTI-AXIS SUB

ABSOLUTE AXIS4 ENDS PMOVE SYNC

ACCEL CALL INCR PROGRAM VELOC

ACC CMOVE INCREMENTAL PROG VEL

ACCELERATION DWELL JUMP S-CURVE VELOCITY

AXIS1 ENDP LINEAR SINGLE-AXIS WAIT

AXIS2 ENDPROG LOAD SUBROUTINE

Variables

Motion Programs support a limited set of predefined variables: the parameter data registers

and the CTL bits. In the following table, x represents a decimal value in the specified range.

The value x is interpreted based on its numeric value. Therefore, a given variable may be

referenced several ways. For example, P1 and P001 both refer to Parameter Data Register 1

and will be accepted by the Motion Editor.

Variable Constraints

Px 0 ≤ x ≤ 255

CTLx 01 ≤ x ≤ 32

Separators

Separators are used to separate elements or are added to elements to indicate that they

serve a unique function.

Separator Function

, Separate command parameters

: Identifies a constant as a block number

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 178

7.7.2 Motion Program Commands
This section describes the motion commands. Most motion commands have two forms,

multi-axis and single-axis. The multi-axis form is used in multi-axis programs and

subroutines and requires the axis to be specified as a parameter in certain commands (for

example: VELOC AXIS1 5000). In single-axis programs the axis number is specified in the

program header (for example: PROGRAM 2 AXIS1) and must not be specified within the

program.

Some of the command keywords have aliases. The alias command keywords are

functionally equivalent to the actual keywords. Alias usage is optional and largely a matter

of personal preference.

Items that appear within angle brackets (“<”, “>”) represent classes of items, and are

described in more detail. Items that appear in square brackets (“[”, “]”) are optional. Items

that appear in curly brackets (“{”, “}”) are required for multi-axis programs and subroutines

but are illegal when used in single-axis programs or subroutines.

The general format of motion language commands is KEYWORD {axis} <parameter [,

parameter]>. If the axis is specified, it immediately follows the command keyword.

Command parameter(s) follow the axis, if specified. If there are multiple parameters, they

are separated by commas.

Note: The DSM314 does not support the NULL command or Program Zero.

ACCEL

The ACCEL statement sets the axis acceleration for subsequent moves and remains in effect

in a given program unless changed. If an ACCEL statement is not used in a program, the

moves will accelerate at the current Jog Acceleration value. Moves programmed before the

first ACCEL statement will accelerate at the current Jog Acceleration. Moves programmed

after an ACCEL statement will use the value in the ACCEL statement.

Note: ACCEL commands for a given axis in a program or subroutine must be separated by a PMOVE
statement, CMOVE statement, or an unconditional jump.

Syntax:

ACCEL {<axis>} <acceleration>

Parameter Description

<axis> The axis number can only be specified in a multi-axis program or

subroutine. The axis may be specified using the keywords or constants.

<acceleration> The acceleration is specified by using either an unsigned constant in the

range of 1 - 1,073,741,823 or by using a parameter data register.

Aliases:

ACC, ACCELERATION

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 179

Errors:

1. ACCEL commands must be separated by at least one move command.

2. Specified acceleration constant is not in the range of 1 - 1,073,741,823

3. Parameter data register is not in the range of 0 - 255.

4. Axis specified in single-axis program.

5. No axis specified in multi-axis program.

6. Specified axis does not support programmed motion.

Block Number

Block numbers may be used as the destination of JUMP commands. They may appear

alone on a line, or preceding a command.

Syntax:

<block num>: [<command>]

Parameter Description

<block num> Block number must be in the range of 1 – 65535

< command> Any command except PROGRAM, SUBROUTINE, ENDPROG, ENDSUB, or another

block number may follow a block number on the same line

Aliases:

None

Errors:

1. All block numbers and synch block numbers must be unique within a program or

subroutine.

2. Block number must be in the range of 1 – 65535.

CALL

The CALL command calls a subroutine from a program or subroutine.

Syntax:

CALL <subroutine destination>

Parameter Description

<subroutine destination> A subroutine destination specified as a constant, 1 – 40, or a parameter

data register.

Aliases:

None

Errors:

1. Subroutine number must be in the range of 1 – 40, or parameter data register 0 –

255.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 180

2. If caller is a subroutine, it cannot call itself (no recursive calls) or call another

subroutine that directly or indirectly references it.

3. Call destination subroutine must be defined in the same file.

4. Single-axis programs and subroutines can only call single-axis subroutines. Multi-

axis programs and subroutines can only call multi-axis subroutines.

CMOVE

The CMOVE command programs a continuous move using the specified position and

acceleration mode.

Syntax:

CMOVE {<axis>} <position>, <positioning mode>, <acceleration mode>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine.

The axis may be specified using the AXISx keywords or constants.

<position> The destination positions. May be a constant or a parameter data

register.

<positioning mode> Specifies incremental (INCR) or absolute (ABS) positioning.

<acceleration mode> Specifies linear (LINEAR) or s-curve (S-CURVE) acceleration for the

move.

Aliases:

None

Errors:

1. Axis specified in single-axis program.

2. No axis specified in multi-axis program.

3. Position must be in the range of –536,870,912 – 536,870,911, or parameter data

register 0 - 255.

4. Positioning mode must be either INCR or ABS.

5. Acceleration mode must be either LINEAR or S-CURVE.

6. Specified axis does not support programmed motion.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 181

DWELL

DWELL causes motion to cease for a specified time period before processing the next

command. Specifying a dwell of zero (either as a constant or the value in a parameter data

register) causes no dwell to occur (this is a change from APM and DSM302 functionality).

A single DWELL command only applies to one axis. Therefore, in a multi-axis program, you

must designate an axis number for each DWELL command. For example: DWELL AXIS1

2000. If you wish to pause both axes in a multi-axis program, you must use a DWELL

command for each axis.

Syntax:

DWELL {<axis>} <delay>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The

axis may be specified using the AXISx keywords or constants.

<delay> Delay in milliseconds specified as a constant or a parameter data

register. Range is 0-60,000 ms. A value of 0 is interpreted as a null

command.

Aliases:

None

Errors:

1. Axis specified in single-axis program.

2. No axis specified in multi-axis program.

3. Delay must be in the range of 0 – 60,000 or parameter data register 0 - 255.

4. Specified axis does not support programmed motion.

ENDPROG

The ENDPROG statement terminates a motion program definition.

Syntax:

ENDPROG

Aliases:

ENDP

ENDSUB

The ENDSUB statement terminates a motion subroutine definition.

Syntax:

ENDSUB

Aliases:

ENDS

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 182

JUMP

Jump to a block number or sync block within the current program or subroutine. The jump

may be conditional, based on the state of a CTL bit, or unconditional.

Syntax:

JUMP <condition>, <destination>

Parameter Description

<condition> Jump condition, must specify CTL01 – CTL32 or UNCOND

<destination> Destination block or synch block number

Aliases:

None

Errors:

1. Jump condition must be CTL in the range of 1 – 32, or keyword UNCOND.

2. Destination block must be in the range of 1 - 65535 and must be defined within the

same program or subroutine as the JUMP statement.

LOAD

Initializes or changes a parameter data register with 32-bit twos-complement integer value.

Syntax:

LOAD <parameter data register>, <load value>

Parameter Description

<parameter data register> Parameter data register to be initialized. Restricted to registers P000 –

P255.

<load value> 32-bit numeric constant.

Aliases:

None

Errors:

1. Parameter data register must be in the range of P000 – P255.

2. Load value must be in the range of a 32-bit twos-complement value.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 183

PMOVE

The PMOVE command programs a positioning move using the specified position and

acceleration mode.

Syntax:

PMOVE {<axis>} <position>, <positioning mode>, <acceleration mode>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The

axis may be specified using the AXISx keywords or constants.

<position> The destination positions. May be a constant or a parameter data register.

<positioning mode> Specifies incremental (INCR) or absolute (ABS) positioning.

<acceleration mode> Specifies linear (LINEAR) or s-curve (S-CURVE) acceleration for the move.

Aliases:

None

Errors:

1. Axis specified in single-axis program.

2. No axis specified in multi-axis program.

3. Position must be in the range of –536,870,912 – 536,870,911, or parameter data

register 0 - 255.

4. Positioning mode must be either INCR or ABS.

5. Acceleration mode must be either LINEAR or S-CURVE.

6. Specified axis does not support programmed motion.

PROGRAM

The PROGRAM statement is the first statement in a motion program. The program

statement identifies the program number (1-10) and the axis configuration. Program

definitions cannot nest.

There are two types of motion programs, single axis in which all commands are directed to

the same axis, and multi-axis, which may contain commands for axis 1 and axis 2. The

program type is specified by the PROGRAM statement. A single-axis program is identified

by specifying the target axis following the program number (for example, PROGRAM 3

AXIS1). A multi-axis program is identified by the word MULTI-AXIS following the program

number (for example, PROGRAM 4 MULTI-AXIS).

The program axis configuration is used to enforce whether or not the axis parameter must

be supplied in the program’s motion commands. It also restricts multi-axis programs to

calling multi-axis subroutines, and single-axis programs to calling single-axis subroutines.

The axis specified in a single-axis program is used by any subroutine it calls; therefore, an

axis number should not be specified anywhere within a single-axis subroutine.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 184

Syntax:

PROGRAM <program number> <axis configuration>

Parameter Description

<program number> The program number must be a decimal value in the range of 1 – 10. Within a

source file, each PROGRAM defined must have a unique number.

<axis configuration> The axis configuration must have a value of MULTI-AXIS for multi-axis programs,

or axis designation (for example, AXIS1) for single-axis programs. Axes may be

specified using the AXISx keywords or constants, where x = 1-4.

Aliases:

PROG

SUBROUTINE

The SUBROUTINE statement is the first statement in a motion subroutine. The subroutine

statement identifies the subroutine number (1-40) and the axis configuration. Subroutine

definitions cannot nest.

There are two types of motion subroutines, single axis in which all commands are directed

to the same axis, and multi-axis, which may contain commands for axis 1 and axis 2. The

subroutine type is specified by the SUBROUTINE statement. A single-axis subroutine is

identified by the word SINGLE-AXIS following the subroutine number. A multi-axis

subroutine is identified by the word MULTI-AXIS following the subroutine number.

The subroutine axis configuration is used to enforce whether or not the axis parameter must

be supplied in the subroutine’s motion commands. It also restricts multi-axis subroutines to

calling multi-axis subroutines, and single-axis subroutines to calling single- axis subroutines.

A single-axis subroutine uses the axis number specified in the calling program.

Syntax:

SUBROUTINE <subroutine number> <axis configuration>

Parameter Description

<subroutine number> The subroutine number must be a decimal value in the range of 1 – 40.

Within a source file, each subroutine defined must have a unique number.

<axis configuration> The axis configuration must have a value of MULTI-AXIS or SINGLE-AXIS.

Aliases:

SUB

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 185

Sync Block

A sync block is a special case of a block number. A sync block may only be used in a multi-

axis program.

A sync block is identified by a block number followed by the command SYNC. The SYNC

command must appear on the same line as the block number.

Syntax:

<block num>: SYNC

Parameter Description

<block num> Block number must be in the range of 1 – 65535

Aliases:

none

Errors:

1. Sync blocks can only appear in multi-axis programs.

2. All block numbers and synch block numbers must be unique within a program or

subroutine.

3. Sync blocks and block numbers cannot appear in consecutive statements without

an intervening command.

4. Sync block numbers must be in the range of 1 – 65535.

VELOC

Sets the axis velocity used by subsequent motion program move commands and remains in

effect until changed by another VELOC statement. If a VELOC statement is not used in a

program, moves will use the current Jog Velocity value. Also, moves programmed before

the first VELOC statement will use the current Jog Velocity.

Note: VELOC commands for a given axis in a program or subroutine must be separated by a PMOVE
statement, CMOVE statement, or an unconditional jump.

Syntax:

VELOC {<axis>} <velocity>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The axis may be

specified using the AXISx keywords or constants.

<velocity> The desired velocity. May be a constant or a parameter data register.

Aliases:

VEL, VELOCITY

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 186

Errors:

1. Axis specified in single-axis program.

2. No axis specified in multi-axis program.

3. Velocity must be a constant in the range of 1 – 8388607.

4. VELOC commands must be separated by at least one move command.

5. Specified axis does not support programmed motion.

WAIT

Permits synchronization with some external event through the CTL bits. Execution of the

next command is suspended until the specified CTL is set.

A single WAIT command only applies to one axis. Therefore, in a multi-axis program, you

must designate the axis number that a WAIT applies to. For example: WAIT AXIS1 CTL01. If

you wish to make both axes wait in a multi-axis program, you must use a separate WAIT

command for each axis.

Syntax:

WAIT {<axis>} <ctl>

Parameter Description

<axis> The axis can only be specified in a multi-axis program or subroutine. The axis may be

specified using the AXISx keywords or constants.

<ctl> Specifies CTL01 – CTL32.

Aliases:

none

Errors:

1. Axis specified in single-axis program.

2. No axis specified in multi-axis program.

3. CTL must be in the range of 1 – 32.

4. Specified axis does not support programmed motion.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 187

7.7.3 Program and Subroutine Structure
Single-axis Program Structure

• PROGRAM definition statement. It must be the first line of the program. It must

identify the program number and axis number. The program number has a space

between the PROGRAM keyword and the number. In contrast, the axis number must

not have a space within it. For example:

PROGRAM 1 AXIS3

• Body. The program body contains the actual program commands. Note that in a

single-axis program, you must not specify an axis number in any of the commands.

Doing so will generate an error. An example of correct syntax for a single-axis

program is:

ACCEL 50000

• End of Program. Uses the ENDPROG statement. This statement clearly identifies the

end of the program and helps separate one program or subroutine from another.

The ENDPROG should be the only thing on the last line of any program:

ENDPROG

Single-Axis Program Example

Note that the axis number is specified in the first line and is not specified in the program

body. Note also, that there is no space in the term AXIS1.

PROGRAM 2 AXIS1

ACCEL 50000

VELOC 5000

PMOVE 10000, ABS, LINEAR

DWELL 6000

PMOVE 5000, ABS, LINEAR

ENDPROG

Multi-Axis Program Structure

• PROGRAM definition statement. Must be the first line of the program. It must

identify the program number and the fact that this is a multi-axis program by using

the MULTI-AXIS term. For example:

PROGRAM 3 MULTI-AXIS

• Body. Contains the actual program commands. Note that in a multi-axis program,

you must specify an axis number in many of the commands. Failure to do so will

generate an error. The axis number term, such as AXIS1, must not have a space

within it. An example of correct syntax for a multi-axis program command is:

ACCEL AXIS1 50000

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 188

• End of Program. Uses the ENDPROG statement. This statement clearly identifies the

end of the program and helps separate one program or subroutine from another.

The ENDPROG should be the only thing on the last line of any program:

ENDPROG

Multi-Axis Program Example

Note that the term MULTI-AXIS must be used in the PROGRAM statement on the first line,

and that axis numbers are specified in the applicable commands in the program body.

PROGRAM 1 MULTI-AXIS

ACCEL AXIS1 500000

VELOC AXIS1 5000

1: CMOVE AXIS2 –100000, ABS, LINEAR DWELL AXIS2 6000

JUMP CTL31, 1

CALL P255

LOAD P215, 2000

PMOVE AXIS1 8388607, INCR, S-CURVE

ENDPROG

Single-axis Subroutine Structure

• SUBROUTINE definition statement. It must be the first line of the subroutine. It must

identify the subroutine number and contain the SINGLE-AXIS statement. For

example:

SUBROUTINE 3 SINGLE-AXIS

• Body. The subroutine body contains the actual programmed commands. Note that

in a single-axis subroutine, you must not specify an axis number in any of the

commands. Doing so will generate an error. An example of correct syntax for a

single-axis subroutine command is:

ACCEL 50000

• End of Subroutine. Uses the ENDSUB statement. This statement clearly identifies the

end of the subroutine and helps separate one subroutine or program from another.

The ENDSUB should be the only thing on the last line of any subroutine:

ENDSUB

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 189

Single-Axis Subroutine Example

An axis number should not be specified in a single-axis subroutine. That is because a single-

axis subroutine will apply to the axis specified in the single-axis program that calls it. This

allows a subroutine to be used by different single-axis programs, regardless of the particular

axis number they specify.

SUBROUTINE 15 SINGLE-AXIS

ACCEL 50000

VELOC 10000

PMOVE 200000, ABS, LINEAR

DWELL 3000

PMOVE 50000, ABS, LINEAR

ENDSUB

Multi-Axis Subroutine Structure

• SUBROUTINE definition statement. It must be the first line of the subroutine. It must

identify the subroutine number and the fact that this is a multi-axis program by using

the MULTI-AXIS term. For example:

SUBROUTINE 7 MULTI-AXIS

• Body. The subroutine body contains the actual programmed commands. Note that

in a multi-axis subroutine, you must specify an axis number in many of the

commands. Failure to do so will generate an error. An example of correct syntax for

a multi-axis subroutine command is:

ACCEL AXIS2 50000

• End of Subroutine. Uses the ENDSUB statement. This statement clearly identifies the

end of the subroutine and helps separate one subroutine or program from another.

The ENDSUB should be the only thing on the last line of any subroutine:

ENDSUB

Multi-Axis Subroutine Example

SUBROUTINE 2 MULTI-AXIS

ACCEL AXIS2 P100

VELOC AXIS2 P105

2: SYNC

CMOVE AXIS2 P001, INCR, S-CURVE

DWELL AXIS2 P001

JUMP CTL01, 2

PMOVE AXIS2 P214, ABS, LINEAR

ENDSUB

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 190

7.7.4 Command Usage Examples
The following examples are not complete programs. For example, in many cases the

PROGRAM and ENDPROG statements are not shown. These statements (in correct context)

would need to be added to make the program compile successfully. Programmed moves

have three parameters:

1. The distance (data) to move or position to move to,

2. The type of positioning reference (command modifier) to use for the move, and

3. The type of acceleration (command modifier) to use while performing the move.

Note: Motion programs can contain statements that use constants as data associated with commands
or variables that are also referred to as parameters (P0-P255).

Absolute or Incremental Positioning

Absolute Positioning

In an absolute positioning move, the first parameter is the position to move to. The

following is an absolute positioning move example.

PMOVE 5000, ABS, LINEAR

In this example, the axis will move from its current position, whatever it may be, to the

position 5000. Thus, the actual distance moved depends upon the axis’ current position

when the move is encountered. If the initial position is 0, the axis will move 5000 user units

in the positive direction. If the initial position is 8000, the axis will move 3000 user units in

the negative direction. If the initial position is 5000, the axis will not move.

Incremental Positioning

In an incremental move, the first parameter specifies the distance to move from the current

position. The DSM314 translates incremental move distances into absolute move positions.

This eliminates error accumulation. The following is an incremental positioning move

example.

PMOVE 5000, INCR, LINEAR

In this example, the axis will move from its current position to a position 5000 user units

greater. With an incremental move, the first parameter specifies the actual number of user

units the axis moves.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 191

Types of Acceleration

Linear Acceleration

A sample linear move profile that plots velocity versus time is shown in Figure 69. As

illustrated, a linear move uses constant (linear) acceleration. The area under the graph

represents the distance moved.

Figure 69: Sample Linear Motion

S-Curve Acceleration

An S-Curve motion sample, plotting velocity versus time, is shown below. As illustrated, S-

Curve acceleration is non-linear. When the move begins, the acceleration starts slowly and

builds until it reaches the programmed acceleration. This should be the midpoint of the

acceleration. Then, the acceleration begins decreasing until it is zero, at which time the

programmed velocity has been reached. An S-Curve move requires twice the time and

distance to accelerate and decelerate that a comparable linear move need. The area under

the graph represents the distance moved.

Figure 70: Sample S-Curve Motion

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 192

7.7.5 Types of Programmed Move Commands
The following examples are not complete programs. For example, in many cases the

PROGRAM and ENDPROG statements are not shown. These statements (in correct context)

would need to be added to make the program compile successfully.

Positioning Move (PMOVE)

A PMOVE must always come to a complete stop. The stop must long enough to allow the In

Zone %I bit to turn ON before the next move can begin.

A PMOVE uses the most recently programmed velocity and acceleration. If a VELOC

command has not been encountered in the motion program, the Jog Velocity is used as

default. If an ACCEL command has not been encountered in the motion program, the Jog

Acceleration is used as default.

Continuous Move (CMOVE)

A CMOVE does not stop when completed unless it is followed by a DWELL or a WAIT, the

next programmed velocity is zero, or it is the last program command. It does not wait for In

Zone %I bit to turn ON before going to the next move. A normal CMOVE is a command that

reaches its programmed position at the same time that it reaches the velocity of the

following Move command.

A CMOVE uses the most recently programmed velocity and acceleration. If a VELOC

command has not been encountered in the motion program, the Jog Velocity is used as

default. If an ACCEL command has not been encountered in the motion program, the Jog

Acceleration is used as default.

A special form of the CMOVE command can be used to force the DSM314 to reach the

programmed CMOVE position before starting the velocity change associated with the next

move command (that is, execute the entire CMOVE command at a constant velocity).

Programming an incremental CMOVE command with an operand of 0 (for example: CMOVE

0, INCR, LINEAR) will delay the servo velocity change until the next move command in

sequence. The following sequence of commands illustrates this effect (assume ACCELs are

chosen to allow motions to complete normally):

Command Data Comments

VELOC 10000 //Set velocity of first move = 10000

CMOVE 15000, ABS, LINEAR //Reach velocity of second move (20000) at position = 15000

VELOC 20000 //Set velocity of second move = 20000

CMOVE 30000, ABS, LINEAR (*Stay at velocity = 20000 until position = 30000, then

change to velocity = 5000*)

CMOVE 0, INCR, LINEAR (*Flag to signal the DSM314 to wait for next move before

changing to the next velocity*)

VELOC 5000 //Set velocity of third move = 5000

PMOVE 40000, ABS, LINEAR //Final stop position = 40000

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 193

Note: White space characters (blank spaces, tabs, etc.) were used in the program above to improve
readability.

Figure 71: Example 1, Before Inserting CMOVE (0)

Figure 72: Example 2, After Inserting CMOVE (0)

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 194

Programmed Moves

By combining CMOVEs and PMOVES, absolute and incremental moves, and linear and s-

curve motion, virtually any motion profile can be generated. The following examples show

some simple motion profiles, as well as some common motion programming errors.

Example 1: Combining PMOVEs and CMOVEs

This example shows how simple PMOVEs and CMOVEs combine to form motion profiles.

Figure 73: Combining PMOVEs and CMOVEs

The first PMOVE accelerates to program velocity, moves for a distance, and decelerates to a

stop. This is because motion stops after all PMOVEs. When the first move stops, it is at the

programmed distance.

The second move is an s-curve PMOVE. It, like the first, accelerates to the programmed

velocity, moves for a time, and decelerates to zero velocity because it is a PMOVE.

The next move is a linear CMOVE. It accelerates to program velocity, moves for a time, and

then decelerates to a lower velocity using linear acceleration. When a CMOVE ends, it will

be at the programmed position of the move just completed, and at the velocity of the next

move. Thus when the fourth move begins, it is already at its programmed velocity.

The fourth move is a CMOVE, so as it approaches its final position, it accelerates to be at the

velocity of the fifth move when it completes. The graph shows the acceleration of the fourth

move is s-curve.

Finally, the fifth move begins and moves at its programmed velocity for a time until it

decelerates to zero. Any subsequent moves after the fifth would begin at zero velocity

because the fifth move is a PMOVE.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 195

Example 2: Changing the Acceleration Mode During a Profile

The following example shows how a different acceleration, and an even acceleration mode,

can be used during a profile using CMOVEs. The first CMOVE accelerates linearly to the

programmed velocity. Because the second CMOVE’s velocity is identical to the first, the first

CMOVE finishes its move without changing velocity. The acceleration of the second move is

S-curve as it decelerates to zero velocity.

Figure 74: Changing the Acceleration Mode During a Profile

Example 3: Not Enough Distance to Reach Programmed Velocity

CMOVES and PMOVES can be programmed that do not have enough distance to reach the

programmed velocity. The following graph shows a CMOVE that could not reach the

programmed velocity. The DSM314 accelerates to the point where it must start

decelerating to reach the programmed position of C1 at the velocity of the second

CMOVE.

Figure 75: Not Enough Distance to Reach Programmed Velocity

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 196

Example 4: Hanging the Move When the Distance Runs Out

A serious programming error involves “hanging” (i.e. leaving no desirable options for the

command generator) the move at a high velocity when the distance runs out. In the

following example, the first CMOVE accelerates to a high velocity. The second CMOVE has

an identical velocity. However, the distance specified for the second CMOVE is very short.

Thus, the axis is running at a very high velocity and must stop in a short distance. If the

programmed acceleration is not large enough, the following profile could occur. The

DSM314 attempts to avoid overshooting the final position by commanding a zero velocity.

This rapid velocity change is undesirable and can cause machine damage.

Figure 76: Hanging the DSM314 When the Distance Runs Out

DWELL Command

A DWELL command is used to generate no motion for a specified number of milliseconds.

The DWELL command may use a value stored in a designated parameter.

A DWELL after a CMOVE will make the CMOVE stop before the next move, unless the

specified dwell duration is zero milliseconds. A DWELL is treated as a “null” command and

skipped (CMOVE continues to the next Move following the DWELL) if the DWELL command

has a value of zero, or references a parameter register that has a value of zero.

A single DWELL command only applies to one axis. Therefore, in a multi-axis program, you

must designate an axis number with each DWELL command. For example: DWELL AXIS1

2000. If you wish to pause both axes in a multi-axis program, you must use a DWELL

command for each axis.

Example 5: DWELL

A simple motion profile, which moves to a specific point, waits, and returns to the original

point is shown below.

Figure 77: Dwell Command Example

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 197

Wait Command

The WAIT command is similar to the DWELL command. Instead of generating no motion for

a specified period of time, a WAIT stops program motion until a specified CTL bit turns ON.

Thus motion stops any time a WAIT is encountered, even if the CTL bit is ON before the WAIT

is reached in the program. The trigger to continue the program can be any of the twelve CTL

bits.

If, in the previous example, WAIT were substituted for DWELL, the motion profile would be

the same except the second PMOVE would not start until the CTL bit turned ON. If the CTL

bit was ON when the program reached the WAIT, the second PMOVE would begin

immediately after the first PMOVE finished.

Also, if WAIT were used instead of DWELL in the previous example, CMOVEs and PMOVEs

would generate similar velocity profiles. The WAIT will stop motion whether the previous

move is a CMOVE or PMOVE.

A single WAIT command only applies to one axis. Therefore, in a multi-axis program, you

must designate an axis number with each WAIT command. For example: WAIT AXIS1

CTL001. If you wish to have both axes wait in a multi-axis program, you must use a separate

WAIT command for each axis.

Subroutines

The DSM314 can store up to ten separate programs and forty subroutines. Subroutines can

be defined as two types: single-axis and multi-axis. Subroutines are available for all motion

programs created with the Motion Editor. Commands within single-axis subroutines do not

contain an axis number; this allows single-axis subroutines to be called from any single-axis

program (the commands in the subroutine use the axis number specified by the calling

program). Commands within multi-axis subroutines contain axis numbers just like

commands within multi-axis programs. Multi-axis subroutines can only be called from

multi-axis programs or subroutines. Single-axis subroutines can only be called from single-

axis programs or subroutines. For example, a single-axis program for axis 1 and a single-axis

program for axis 2 can call the same single-axis subroutine simultaneously. Each subroutine

must be assigned a unique number between 1 and 40.

Subroutines are programmed using the CALL command, which specifies the subroutine

number to be called. When a CALL is encountered during program execution, program

execution is redirected to the subroutine. When the subroutine completes, program

execution resumes at the command after the CALL command. Subroutines can be called

from another subroutine, but once a subroutine has been called, it must complete before it

can be called again for the same axis. Thus, recursion is not allowed.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 198

Block Numbers and Jumps

Block numbers are used as reference points within a motion program and to control jump

testing. A %AI data word displays the current block number which can be monitored to

ensure correct program execution or to determine when events should occur. A block

number can also serve as a JUMP command destination. Jumps may be unconditional or

conditional. An unconditional jump command simply tells the DSM314 to continue

program execution at the destination block number. A conditional jump only executes if the

specified condition occurs. Examples of both types of jumps follow.

Unconditional Jumps

Example 6: Unconditional Jump

In the example below, the program executes a PMOVE, dwells for 2 seconds, then

unconditionally jumps back to the beginning of the program at block 1. Thus, the PMOVE

repeats until an end of travel limit (High Software EOT or Low Software EOT) or Overtravel

Limit Switch is reached. An Abort All Moves %Q bit command could also be used to halt the

program.

Figure 78: Unconditional Jump

Conditional Jumps

A conditional jump is a JUMP command with a CTL bit specified in the command. Conditional

jumps are Type 1 commands in that they affect program path execution, but they are also

similar to Type 2 commands because they do not take effect until a Type 3 command

following the JUMP command is executed. When a conditional JUMP command is executed,

the DSM314 examines the specified CTL bit. If the bit is ON, program execution jumps to the

destination block number; if the bit is OFF, the program continues executing the command

after the JUMP. Note that the Type 3 command after the conditional jump and at the jump

destination will affect jump behavior.

Conditional Jump commands should not be used with multi-axis programs containing SYNC

blocks unless the JUMP is triggered while both axes are testing the same JUMP command.

Failure to follow this recommendation can result in unpredictable operation.

Conditional Jump testing starts when the next PMOVE, CMOVE, DWELL, or WAIT command

following a Conditional JUMP becomes active.

When Conditional Jump testing is active, the designated CTL bit is tested at the position loop

update rate (0.5, 1.0 or 2.0 milliseconds depending on configuration).

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 199

Conditional Jump testing ends when the designated CTL bit turns ON (Jump Trigger occurs)

or when a new Block Number becomes active.

If more than one Conditional Jump is programmed without an intervening PMOVE, CMOVE,

DWELL, or WAIT command, only the last Conditional Jump will be recognized.

A Conditional Jump cannot be used as the last line of a Subroutine (or on the line before an

Unconditional Jump to the end of a subroutine) because jump testing terminates when the

End Subroutine command is processed.

In summary, a Conditional Jump transfers control to a new program block on the basis of

one of the external CTL input bits turning ON. Tests for CTL bit status can be carried out once

or continuously during the following Type 3 command if it is in the same program block.

Multiple Conditional Jumps are not supported within the same program block (the following

example illustrates this incorrect usage of the Conditional Jump command).

Conditional Jump Example 1:

PROGRAM 1 MULTI-AXIS

VELOC AXIS1 10000

ACCEL AXIS1 10000

1: JUMP CTL01, 2 //This JUMP command will be ignored

JUMP CTL02, 3 //This JUMP command will be recognized

CMOVE AXIS1 +40000, INCR, LINEAR

2: CMOVE AXIS2 +20000, INCR, LINEAR

3: PMOVE AXIS2 +100000, ABS, LINEAR

4: DWELL AXIS2 100

ENDPROG

The first JUMP is not programmed correctly because (1) it is not followed by an intervening

Type 3 command, and (2) it is in the same block as another JUMP command. When a new

Block Number becomes active AFTER a Conditional JUMP command, Jump testing will occur

one final time.

Conditional Jump Example 2:

PROGRAM 2 AXIS1

VELOC 10000

ACCEL 10000

1: CMOVE 20000, ABS, LINEAR

JUMP CTL01, 3

2: PMOVE 40000, ABS, LINEAR //CTL01 tested only once

3: DWELL 100

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 200

ENDPROG

In the example above, The CTL01 bit test occurs just once because the PMOVE following the

JUMP contains a new Block Number (2). However, changing the location of Block Number 2

causes CTL bit testing throughout the PMOVE following the JUMP, as seen in the following

example:

Conditional Jump Example 3:

PROGRAM 3 AXIS1

VELOC 10000

ACCEL 10000

1: CMOVE 20000, ABS, LINEAR

2: JUMP CTL01, 3

PMOVE 40000, ABS, LINEAR //CTL01 tested throughout PMOVE

3: DWELL 100

ENDPROG

In this example, the CTL01 bit is tested throughout the PMOVE because the PMOVE and

JUMP commands are in the same Block.

The DSM314 can perform a Conditional JUMP from an active CMOVE to a program block

containing a CMOVE or PMOVE without stopping. For the axis to jump without stopping,

the distance represented by the CMOVE or PMOVE in the Jump block must be greater than

the servo stopping distance. The servo stopping distance is computed using the present

commanded velocity and the acceleration parameters that would be in effect when the

jump block became active.

The axis will STOP before jumping if a Conditional Jump trigger occurs under any of the

following conditions:

• When a PMOVE is active

• When a CMOVE is active and the Jump destination block contains a CMOVE or

PMOVE representing motion in the opposite direction.

• When a CMOVE is active and the Jump destination block contains a CMOVE or

PMOVE representing motion in the same direction with insufficient distance for the

axis to stop.

• When a CMOVE is active and the Jump destination block contains a DWELL, WAIT or

END (program) command.

If the axis does STOP before a Conditional Jump, the current programmed acceleration and

acceleration mode will be used.

Unconditional Jumps do not force the axis to stop before jumping to a new program block.

For example, a CMOVE followed by a JUMP Unconditional to another CMOVE will behave just

as if the two CMOVEs occurred without an intervening Unconditional JUMP.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 201

If Conditional Jump testing is active when the DSM314 command processor encounters a

CALL SUBROUTINE command, the axis will stop and terminate jump testing before the CALL

is executed.

If Conditional Jump testing is active when the DSM314 command processor encounters an

END SUBROUTINE command, the axis will stop and terminate jump testing before the END

SUBROUTINE is executed.

Jump Testing

Conditional jumps perform jump testing. If the CTL bit is ON, the jump is immediately

performed. If the CTL bit is OFF, the DSM314 watches the CTL bit and keeps track of the

JUMP destination. This monitoring of the CTL bit is called jump testing. If during jump

testing the CTL bit turns ON before a BLOCK command, another JUMP command, or a CALL

command is encountered, the jump is performed. These commands will end jump testing.

Example 7: Jump Testing

Consider the following two single-axis program section examples. In Example 1, the move

to position 2000 is completed before jump testing begins. The block number occurring

immediately after the JUMP command ends jumps testing. Thus, the duration for which the

CTL bit is monitored is very short. However, in Example 2, the JUMP command is

encountered before the CMOVE command. This starts the jump testing before motion

begins, and jump testing continues as long as the move lasts. If the CTL bit turns ON while

the move is being performed, the jump will be performed. After the move completes, the

next block number is encountered, which ends jump testing, and program execution

continues normally. If additional moves were programmed ahead of the next block number,

jump testing would continue during those moves until the next block number was

encountered.

Example 1 Example 2

ACCEL 5000

VELOC 1000

ACCEL 5000

VELOC 1000

1:

CMOVE 2000, ABS, LINEAR

JUMP CTL01, 3

2:

1:

JUMP CTL01, 3

CMOVE 2000, ABS, LINEAR

2:

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 202

Normal Stop Before JUMP

A conditional jump command is similar to Type 2 commands in that jump testing does not

start until the Type 3 command immediately after the JUMP is executed. If this Type 3

command would normally stop motion, then motion will stop before jump testing begins.

Type 3 commands that will stop motion are: DWELL, WAIT, ENDPROG, and moves in the

opposite direction.

Thus, even though the CTL bit may be ON before the block with the conditional JUMP and

Type 3 command is executed, axis motion will stop before program execution continues at

the jump destination. This stopping is NOT a Jump Stop, which is described in Example 10.

Example 8: Normal Stop Before JUMP

The following example contains a jump followed by a DWELL command. The DSM314,

because it processes ahead, knows it must stop after the CMOVE command. Thus, it comes

to a stop before the DWELL is executed. Since jump testing does not begin until the DWELL

is executed, testing begins after motion stops. Jump testing ends when the following

CMOVE begins due to the associated BLOCK command. The dashed lines in the velocity

profile indicate when jump testing takes place. In this example, the CTL03 bit does not turn

ON during the program execution.

Figure 79: Normal Stop Before JUMP

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 203

Jumping Without Stopping

If the Type 3 command following a conditional jump is a CMOVE and the Type 3 command

at the destination is a move command with sufficient distance to fully decelerate to zero

when completed, the jump will be executed without stopping. This is the only way to sustain

motion when a jump is performed.

Example 9: JUMP Without Stopping

This is a simple example of a conditional jump from one CMOVE to another. While jump

testing the CTL03 bit, the first CMOVE accelerates to the programmed velocity. Before the

dashed line, the CTL03 bit is OFF, but at the dashed line the CTL03 bit turns ON. Program

execution is immediately transferred to block 3 and the CMOVE there begins. Because the

velocity at the jump destination is different, the velocity changes at the acceleration

programmed of the jump destination block. Finally, as the second CMOVE completes,

velocity is reduced to zero and the program ends.

Figure 80: JUMP Without Stopping

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 204

Jump Stop

A jump stop is a stop that is caused by a jump. When a jump stop occurs, the current

programmed acceleration and acceleration mode are used. Note that s-curve motion will

achieve constant velocity before beginning to decelerate. See the s-curve jump examples

for more details. There are two ways of generating a jump stop each described below.

A conditional JUMP triggered during a PMOVE will always generate a jump stop. Because a

PMOVE always stops before continuing to a subsequent motion, a jump stop always occurs

when a jump takes place during a PMOVE.

When a conditional jump trigger occurs during a CMOVE, however, a jump stop will not

occur if the motion programmed at the jump destination is a PMOVE or CMOVE

representing sufficient distance in the same direction. A jump stop will occur if the PMOVE

or CMOVE at the jump destination does not represent sufficient distance or represents

motion in the opposite direction.

In an s-curve move, a jump stop will do one of two things. If the jump takes place after the

midpoint of the acceleration or deceleration, the acceleration or deceleration is completed

before the jump stop is initiated. If the jump occurs before the midpoint of the acceleration

or deceleration, the profile will immediately begin leveling off. Once acceleration or

deceleration is zero, the jump stop begins. See the s-curve jump examples.

Example 10: Jump Stop

The following is an example conditional jump with a jump stop. An enhancement on

Example 5, DWELL, would be to watch an external CTL bit that would indicate a problem

with the positive motion. If the CTL bit never turns on, the profile for the following program

will be identical to the profile shown in the DWELL example. If the CTL bit turned on during

the first PMOVE or the DWELL, the reverse movement would immediately commence.

The following profile would appear if the CTL bit turned on during the first PMOVE, at the

dashed line. Because the first move completed early due to the CTL bit turning on, the

second move would not have to move as far to get back to 0 position as it did in the DWELL

example. Note that because the motion programmed at the jump destination is in the

opposite direction as the initial motion, the profile would be identical if the moves were

CMOVEs instead of PMOVEs.

Figure 81: Jump Stop

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 205

Example 11: Jump Followed by PMOVE

In this JUMP example, the command after the JUMP is a PMOVE in the same direction. The

velocity profile below shows the acceleration and movement for the first CMOVE and the

deceleration to the PMOVE’s velocity. The CTL01 bit, OFF when the PMOVE begins, turns

ON at the second dashed line. Motion stops after a PMOVE, even if a conditional jump goes

to another block. Thus the CTL01 bit triggers a deceleration to zero before the final CMOVE

begins.

Figure 82: Jump Followed by PMOVE

S-CURVE Jumps

Jumps during linear motion and jumps during s-curve motion at constant velocities

immediately begin accelerating or decelerating to a new velocity. Jumps during a s-curve

acceleration or deceleration, however, require different rules in order to maintain a s-curve

profile. What happens when a jump occurs during an s-curve move while changing velocity

depends on whether the jump occurs before or after the midpoint (the point where the

acceleration magnitude is greatest) and whether the velocity at the jump destination is

higher or lower than the current velocity.

S-CURVE Jumps after the Midpoint of Acceleration or Deceleration

If the jump occurs after the midpoint of the change in velocity, the change will continue

normally until constant velocity is reached; then the velocity will be changed to the new

velocity using the acceleration mode of the move at the jump destination.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 206

Example 12: S-CURVE - Jumping After the Midpoint of Acceleration or

Deceleration

In the following example, a jump occurs during the final phase of deceleration, at the dashed

line. The deceleration continues until constant velocity is reached and then the acceleration

to the higher velocity begins.

Figure 83: Jumping After the Midpoint of Acceleration or Deceleration

S-CURVE Jumps before the Midpoint of Acceleration or Deceleration

If a jump takes place before the midpoint of acceleration or deceleration, the result depends

on whether the velocity at the jump destination is higher or lower than the velocity before

the jump took place. In the first case, when accelerating but the new velocity is lower, or

decelerating and the new velocity is greater, the DSM314 will immediately begin reducing

the acceleration or deceleration to zero. Once at zero velocity, the DSM314 will use the

jump destination acceleration and velocity and change to the new velocity.

Example 13: S-CURVE - Jumping Before the Midpoint of Acceleration or

Deceleration

In the following example, during the acceleration of the first CMOVE, a jump takes place at

the first dashed line. Because the velocity at the jump destination is lower than the velocity

of the first CMOVE the DSM314 slows the acceleration to zero. Constant velocity, zero

acceleration, occurs at the second dashed line. There, the DSM314 begins decelerating to

the new velocity using the acceleration at the jump destination. Finally, the second CMOVE

finishes.

Figure 84: Jumping before the Midpoint of Acceleration or Deceleration

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 207

S-CURVE Jumps to a Higher Acceleration while Accelerating or a lower

Deceleration while Decelerating

The second case involves jumping to a higher velocity while accelerating or a lower velocity

while decelerating. When this occurs, the DSM314 continues to the first move’s

acceleration or deceleration. This acceleration or deceleration is maintained, similar to be a

linear acceleration, until the axis approaches the new velocity. Then the normal S-curve is

used to reduce acceleration or deceleration to zero.

Example 14: S-CURVE - Jumping to a Higher Velocity While Accelerating or

Jumping to a Lower Velocity While Decelerating

In this example, a JUMP command is triggered during the initial phase of acceleration (at the

first dashed line) and the velocity at the jump destination is higher than that of the current

move. The first dashed line indicates the maximum acceleration of the first CMOVE. This

value is held as the axis continues to accelerate until it s-curves back to constant velocity.

Constant velocity, the second dashed line, indicates the beginning of the second CMOVE.

This move continues until it decelerates to zero at the end of the program.

Figure 85: Jumping to a Higher Velocity While Accelerating, or Jumping to a Lower

Velocity While Decelerating

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 208

7.7.6 Other Programmed Motion Considerations
The following examples are not complete programs. For example, in many cases the

PROGRAM and ENDPROG statements are not shown. These statements (in correct context)

would need to be added to make the program compile successfully.

Maximum Acceleration Time

The maximum time for a programmed acceleration or deceleration is 131 seconds. If the

time to accelerate or decelerate is computed to be longer than this time, the DSM314 will

compute an acceleration to be used based on 131 seconds. To obtain longer acceleration

times, multiple CMOVEs with increasing or decreasing velocities must be used.

Example 15: Maximum Acceleration Time

The following two program examples are only valid for a DSM314 using a 2ms position loop

update time. They show a hypothetical problem with a very long acceleration time in

Example1, and a possible solution in Example 2. In Example 1 below, 240 seconds is required

to reach the programmed velocity of 24,000 at an acceleration rate of 100 (24000 ÷ 100 =

240). Since this is greater than the DSM’s limit of 131 seconds per acceleration or

deceleration, the DSM will calculate a value within its limit. In this case, the DSM calculates

that to reach a velocity of 24,000 in 131 seconds, an acceleration of 183 would be required.

The Example 1 solid line velocity profile shows the higher (183) acceleration rate used by

the DSM. The dashed line profile in that drawing indicates the desired (programmed)

acceleration rate and velocity profile that could not be attained.

Figure 86: Maximum Acceleration Time Example 1

One solution (which requires some extra calculations) for obtaining a low acceleration for a

long period of time breaks a move up into separate continuous moves (using CMOVE

commands), with each move’s acceleration time being less than 131 seconds. In the

problem introduced in Example 1, the programmed move would require 240 seconds each

for acceleration and deceleration. Dividing this time in half by using two moves with

acceleration or deceleration times of 120 seconds each, places the moves within the DSM’s

limit of 131 seconds. This scheme is used in the following example.

Example 2 shows how the result desired in Example 1 could be obtained by replacing

Example 1’s single move with four moves. Four moves are required since both the

acceleration and deceleration portions of the profile must each be divided into two moves.

To divide the total acceleration (or deceleration) time in half, calculate the distance at the

midpoint of either slope, when velocity is 12000, to be 720,000 user units.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 209

The distance traveled during acceleration or deceleration is calculated using the formula:

(For 240 seconds is needed to reach a velocity of 24,000, a velocity of 12,000 can be reached

in 120 seconds.) The initial CMOVE and the final PMOVE both use this distance. A second

CMOVE “takes over” at the midpoint of the acceleration slope from the first CMOVE and

accelerates to the target velocity of 24,000. A third CMOVE is required for dividing up the

deceleration portion of the profile. The final move, a PMOVE, “takes over” from the third

CMOVE at the deceleration midpoint distance (720,000 user units from the final position).

The third CMOVE, as it approaches its final position, will automatically decelerate to the

PMOVE’s velocity of 12,000. The dashed lines in the Example 2 drawing separate the four

moves. To calculate the distances of the second and third CMOVEs, subtract the distances

calculated for the first CMOVE and final PMOVE (720,000 each for a total of 1,440,000) from

the final distance of 8,000,000. This gives a remaining distance of 6,560,000, which is

divided equally between the second and third CMOVES (3,280,000 each).

Figure 87: Maximum Acceleration Time Example 2

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 210

7.7.7 Feedhold with the DSM314
Feedhold is used to temporarily pause program execution without ending the program,

often to examine some aspect of a system. It causes all axis motion to end at the

programmed acceleration. When Feedhold is ended, program execution resumes.

Interrupted motion will resume at the programmed acceleration and velocity.

Feedhold is asserted by turning ON the Feed Hold %Q bit and lasts until the %Q bit is turned

OFF. The Abort All Moves %Q bit turning ON or an error that would normally cause a stop

error will end feedhold as well as terminate the program. During Feedhold, jogging positive

and negative is allowed, but no other motion. When Feedhold is terminated and program

execution resumes, the DSM314 remembers and will move to its previous destination.

Example 16: Feedhold

The following example illustrates a motion profile when Feedhold is applied. The linear

move accelerates to the programmed velocity at the programmed rate. Feedhold is applied

at the dashed line, so velocity decreases at the programmed acceleration to zero. Then, a

Jog is performed using the Jog Minus %Q bit. This is evident because the jog velocity is

negative. Note that the acceleration used during the Jog is the current Jog Acceleration,

which is different than the programmed acceleration. Note also, the Feed Hold %Q

command must be applied during the entire duration of the Jog. After the jog motion has

ceased, the Feedhold is ended and the program continues to completion.

Figure 88: Feedhold Example

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 211

7.7.8 Feedrate Override
Some applications require small modifications to a programmed velocity to handle outside

changes. A Rate Override %AQ immediate command, which is sent to the DSM through

ladder logic, allows changes to a programmed feedrate (velocity) during program

execution. (Details about the Rate Override command are found in Chapter 5.) When a

program begins executing, the override rate is initially set to 100%. Thus, changes to

feedrate before the execute program bit is turned ON will be ignored. However, a rate

override commanded on the same sweep as an execute program bit will be effective.

A percentage can be assigned to the feedrate override of from 0% to 120%. When a Rate

Override is commanded, the DSM314 internally multiplies the feedrate percentage by

programmed velocity to obtain a new velocity. If the axis is moving, the current move’s Jog

Acceleration Mode is used to change velocity to the new velocity. All future move velocities

will be affected by the feedrate change. Note that when a feedrate of 0% is applied, no

motion will be generated until a new feedrate is commanded. Also note the Moving %I bit

stays ON when the feedrate is 0%.

Rate Override has no effect on non-programmed motion such as Jog, Find Home, or Move

at Velocity.

Example 17: Feedrate Override

During execution of this program, feedrate changes of + or -10% are commanded. Dotted

lines indicate -10%, dashed lines indicate +10%.

Figure 89: Feedrate Override Example

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 212

7.7.9 Multi-axis Programming
Sync Blocks can be used in a multi-axis program to synchronize the axis motion commands

at positions where timing is critical.

Example 18: Multi-axis Programming

This example assumes that axis 1 controls vertical motion and axis 2 controls horizontal

motion. The objective is to move a piece of material from point A to point E as quickly as

possible while avoiding the obstacle that prevents a direct move between those points.

A simple way would be to move straight up from point A to point C, and then from point C

to point E. This sequence, however, wastes time. A better way would begin the horizontal

movement before reaching point C. It has been determined that after axis 1 has moved to a

position of 30,000, user units (to point B), axis 2 could then start and still clear the obstacle.

The program segment could be programmed as follows:

10: CMOVE AXIS1 30000, INCR, LINEAR

20: SYNC

PMOVE AXIS1 50000, INCR, LINEAR

PMOVE AXIS2 120000, INCR, LINEAR

When Block 10 is executed, axis 1 begins its 30,000-unit move while axis 2 pauses. When

the axis 1 move completes, two things occur: axis 1 begins the 50,000-unit PMOVE

commanded in Block 20 (SYNC) without stopping (because the first move was a CMOVE),

and axis 2 begins its 120,000-unit move. In the figure below, the axis 1 first move transfers

the part from point A to point B. At point B, axis 1 continues moving (performing its second

move) and axis 2 begins its move, bringing the part to point D. Axis 1 completes its second

move at point D and stops; however, axis 2 continues, and moves the part to point E.

Figure 90: Feedrate Override Example

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 213

If this program segment is not at the beginning of a program, and for some reason axis 2 has

not yet reached Block 20 when axis 1 has moved 30,000 counts, an error would occur. Axis

1 would continue to 80,000 counts, and the DSM314 would report a “Block Sync Error

during a CMOVE” in the Status Code.

If it is imperative that the axes synchronize at Block 20, changing Block 10 to a PMOVE would

guarantee synchronization, but then axis 1 would stop at 30,000 counts.

7.7.10 Parameters (P0-P255) in the DSM314
The DSM314 maintains 256 double word parameters (0 through 255) in memory. These

parameters can be used as variables in ACCEL, VELOC, DWELL, PMOVE, and CMOVE motion

commands. Be aware that range limits still apply, and errors may occur if a parameter

contains a value out of range. Parameters 216-255 are special purpose parameters. Some

of the special purpose parameters are automatically written by the DSM314. For example,

P224 is automatically updated when Position Strobe 1 on Axis 1 occurs. The following table

describes the function of the special purpose parameters.

Table 49: Special Purpose Parameters

Parameter Number Special Purpose Function Axis Units

216-223 Reserved

224 Position Strobe 1 Axis 1 user units

225 Position Strobe 2 Axis 1 user units

226 Commanded Position at Follower Enable Trigger Axis 1 user units

227 Follower Incremental Stop Distance Axis 1 user units

228-231 Reserved

232 Position Strobe 1 Axis 2 user units

233 Position Strobe 2 Axis 2 user units

234 Commanded Position at Follower Enable Trigger Axis 2 user units

235 Follower Incremental Stop Distance Axis 2 user units

236-239 Reserved

240 Position Strobe 1 Axis 3 user units

241 Position Strobe 2 Axis 3 user units

242 Commanded Position at Follower Enable Trigger Axis 3 user units

243 Follower Incremental Stop Distance Axis 3 user units

244-247 Reserved

248 Position Strobe 1 Axis 4 user units

249 Position Strobe 2 Axis 4 user units

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 214

Parameter Number Special Purpose Function Axis Units

250 Commanded Position at Follower Enable Trigger Axis 4 user units

251 Follower Incremental Stop Distance Axis 4 user units

252-255 Reserved

Parameters are all reset to zero after a power cycle or after a DSM314 configuration is stored

by the host controller. Parameters can be assigned in three ways:

• The motion program LOAD command.

• The Load Parameter Immediate %AQ command.

• The COMM_REQ function block. This is the preferred way if you need to send

multiple parameters per scan. The COMM_REQ function block is described in

Appendix B.

Assigning a value to a parameter overwrites any previous value. Parameter values can be

changed during program execution, but the change must occur before the DSM314 begins

executing the Type 3 command (Move, Wait or Dwell) previous to the Type 3 command that

uses the parameter. This is due to the pre-processing of Type 3 commands that occurs

within the DSM314. Note that a JUMP command clears preprocessing and forces the

program commands at the jump target to be processed.

Below is an example of a motion program using Parameters. The values of Parameters 1-5

are pre-loaded with a COMREQ command from the host controller at least two program

blocks before usage.

(Remember that “program blocks” are not the same as sections of the motion program that

are labeled with the BLOCK # command.)

Block/Command/Data Comments

1: VELOC P001 // Set velocity of first move = value in Parameter 1

ACCEL P002 // Set acceleration of first move = value in Parameter 2

CMOVE P003, ABS, LINEAR // Reach velocity of 2nd move (20000) at position = Par. 3

2: VELOC 20000 // Set velocity of second move = 20000

PMOVE 20000, INCR, LINEAR // Normal PMOVE

DWELL P004 // Dwell for Parameter 4 time

PMOVE P005, INCR, LINEAR // PMOVE to value in Parameter 5

(* Strobe #1 occurs on Axis-1 during move to Param. 5 position *)

DWELL 1000 // Dwell for one second

LOAD P006,2000 // Load Parameter 6 parameter

3: MOVE P224, INCR, LINEAR // Move to strobed position for Strobe #1 on axis-1

DWELL 2000 // Dwell for two seconds

PMOVE P006, ABS, S-CURVE // Final stop position = value in Parameter 6

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 215

7.7.11 Calculating Acceleration, Velocity and Position Values
One method of determining the value for APM or DSM motion program variables such as

Acceleration, Velocity or Position is to plot the desired move or move segment as a velocity

profile. A velocity profile plots time on the horizontal axis of a graph and velocity on the

vertical axis. The key to understanding profile generation is to break the complete move into

smaller segments that may be analyzed geometrically. Most applications will use the

economical trapezoidal move, velocity profile as illustrated below. To move as quickly as

possible, use a triangular velocity profile if the servo has sufficient speed range. A triangular

move would accelerate half the distance then decelerate the remaining half. Another

alternative is to use a trapezoidal profile with a shorter slew segment.

Kinematic Equations

Kinematics is the branch of mechanics that studies the motion of a body or a system of

bodies without consideration given to its mass or the forces acting on it. The following table

includes transformations of the basic linear equations as applied to the acceleration portion

of motion profiles. Use these formulae to calculate the velocity and acceleration for the

acceleration portions of the move.

Table 50: Linear Equation Transformations

 Given

Solve For

A, X A, V A, t V, t V, X X, t

Acceleration V/t V2/2X 2X/t2

Velocity At 2X/t

X (Distance) V2/2A At2/2 Vt/2

time V/A 2X/V

Figure 91 provides an example of a trapezoidal move. Beginning at zero velocity the axis

accelerates in a positive direction (ta), run (slew) at velocity for some time (ts), then

decelerate back to zero velocity (td). That’s a complete move or move segment. By looking

at the figure, you can easily separate the different portions of the move. A common rule of

thumb is to divide the trapezoidal move into three-time portions, one-third for acceleration,

one-third at slew velocity and the remaining third to decelerate. The slew (Xs) section of an

equally divided trapezoidal velocity profile represents ½ of the distance moved and the

acceleration and deceleration portions each represent ¼ of the total distance. The rule of

thirds minimizes the RMS torque current in the motor and is the most economical use of

energy.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 216

Figure 91: Trapezoidal Move

Once the move segment outline is drawn, you will need to examine specifications or

physical restrictions applicable to the move. For instance, the move may have to complete

in a certain time interval (ta + ts + td) or move a fixed distance (X). The maximum velocity

(Vpk) of the servomotor is one example of a physical limitation. Given any two known values

of the acceleration portion of the move segment, a remaining variable can be found using

the kinematic equations as illustrated in the example below.

Trapezoidal Velocity Profile Application Example

For this example, assume that a complete move of 16 inches must be made in three seconds

and the maximum motor velocity, translated through the gearing is 15 inches per second.

Using the rule of thumb for trapezoidal moves, divide the move’s time into thirds: ta = 1 sec,

ts = 1 sec and td = 1 sec. You can also subdivide the 16-inch move into three distances. The

slew (Xs) section of an equally divided trapezoidal velocity profile represents ½ of the

distance moved and the acceleration (Xa) and deceleration (Xd) portions each represent ¼

of the total distance: Xa =4 in, Xs =8 in and Xd =4 in.

To calculate peak Velocity (Vpk), the first acceleration portion of the move must travel a

given distance (Xa) in a given time (ta). From the above Kinematic Velocity formula (2X/t)

using the given, Xa =4 inches and ta = 1 second, (2*4 inches) / 1 second = 8 inches/second.

To calculate Acceleration the simplest formula is (V/T)=(8 inches/second / 1 second)=8

inches/second/second.

The Position (Distance = X) is the entire distance moved (Xa + Xs + Xd) or 16 inches.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 217

Triangular Velocity Profiles

The triangular velocity profile minimizes servo acceleration rate and requires a higher

servomotor velocity when compared to a trapezoidal profile of the same distance and

time. Use a triangular profile for fast short moves.

Figure 92: Triangular Velocity Profile

Non-Linear or S-Curve Acceleration

S-Curve or jerk limited acceleration calculation is simple to do if the linear calculation is

accomplished first. The APM and DSM motion controllers use 100% jerk limiting. To convert

a linear acceleration to 100% jerk limited acceleration you either double the Acceleration

value (2*A) or double the time used for acceleration (2ta). Using S-Curve acceleration at the

same acceleration rate (A) as linear acceleration will require twice the time (ta) reaching

velocity. If the time duration of the move must remain the same and the servo has sufficient

peak torque, use twice the acceleration (2*A) to reach velocity in the same amount of time.

Figure 93: S-Curve Acceleration

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 218

7.7.12 Motion Editor Error and Warning Messages
The editor will generate three types of error messages; syntax errors, semantic errors, and

warnings. These are explained below.

The editor will only generate program code if your source motion program contains no

syntactic or semantic errors. If the editor detects unrecognized syntax or semantic errors, it

will generate an error message that can be used to troubleshoot the program. The last page

of this chapter discusses this subject (“Using Error Messages to Troubleshoot Motion

Programs”).

Error messages displayed in the Status window contain a numeric error code. The following

listing matches error code, error description, and common cause information.

The Motion Editor enforces maximum limits for position, velocity, and acceleration based

8:1 uu/cts scaling.

Syntax Errors

The programming software’s motion editor translates programs into the code used by the

DSM314. If the source code violates the syntactic rules, the editor cannot recognize the

code and generates syntax errors. Syntax errors will attempt to describe the error source.

Semantic Errors

This section describes parse errors reported by the motion parser and their typical causes.

(M200) Undefined identifier

Text string is not a recognized motion program variable or keyword.

(M201) Parameter register must be in range of P000 - P255

Motion program referenced a parameter register outside the range of P000 - P255.

(M203) CTL variable must be in range CTL01 - CTL32 (DSM314)

Motion program referenced a CTL bit outside the valid range.

(M204) Invalid motion program input

Motion program file contains an invalid character. Motion program files must contain only

ASCII text or white space.

(M210) Hexadecimal constants must be in range of 16#0 - 16#FFFFFFFF

Motion program contains a hexadecimal number outside the valid range.

(M211) Binary constants must be in range of 0 to (2^32)-1

Motion program contains a binary number outside the valid range. A binary number

cannot contain more that 32 binary digits.

(M212) Integer constants must be in range of 0 to 4294967294

Motion program contains an unsigned integer value that cannot be represented in 32 bits.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 219

(M213) Signed integer constants must be in range of -2147483648 to 2147483647

Motion program contains a signed integer value that cannot be represented in 32 bits.

(M214) SYNC Statement is only valid in multi-axis programs and subroutines

A single-axis motion program or subroutine attempted to define a sync block.

(M215) Multi-axis programs do not support Axis 3 or 4

Commands in multi-axis programs can only reference axis 1 or 2.

(M220) Specified axis is out of range

A single-axis motion program can only reference axis 1, 2, 3, or 4.

(M221) Acceleration must be in range 1 – 1073741823

An ACCEL command has specified an acceleration outside the valid range.

(M222) Velocity must be in range 1 – 8388607

A VELOC command has specified a velocity outside the valid range.

(M223) Position must be in range -536870912 – 536870911

A CMOVE or PMOVE command has specified a position outside the valid range.

(M224) Dwell must be in range 0 – 60000

A DWELL command has specified a dwell outside the valid range.

(M225) Block number must be in range 1 – 65535

A motion program or subroutine has attempted to define a block number outside the valid

range.

(M230) Must specify an axis in a multi axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a multi-axis program or

subroutine must specify an axis.

(M231) Cannot specify axis in a single-axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a single-axis program or

subroutine must not specify an axis.

(M233) Acceleration reassignment without intervening move command

It is illegal to change the acceleration for a given axis if there is not an intervening PMOVE or

CMOVE command.

(M234) Velocity reassignment without intervening move command

It is illegal to change the velocity for a given axis if there is not an intervening PMOVE or

CMOVE command.

(M235) Block number already defined in this program unit

The motion program or subroutine has attempted to define a block number that has already

been defined.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 220

(M236) Jump destination block not defined

The motion program or subroutine has a JUMP statement to a block number that has not

been defined.

(M237) Call destination subroutine not defined

The motion program or subroutine contains a call to a subroutine that has not been defined.

(M238) Program must be in range 1 – 10

A PROGRAM statement is attempting to define a program number that is outside the valid

range.

(M239) Attempt to redefine program. Program already defined

A PROGRAM statement is attempting to define a program using a program number that is

already defined.

(M240) End program definition with ENDPROG statement

A PROGRAM has been terminated with an ENDSUB statement, or an ENDSUB statement was

encountered within a program.

(M242) Missing ENDPROG statement

A PROGRAM had not been terminated with an ENDPROG statement when the end of file was

encountered.

(M243) Subroutine must be in range 1 – 40

A SUBROUTINE statement is attempting to define a subroutine number that is outside the

valid range.

(M244) Attempt to redefine subroutine. Subroutine already defined

A SUBROUTINE statement is attempting to define a program using a subroutine number

that is already defined.

(M245) End subroutine definition with ENDSUB statement

A SUBROUTINE has been terminated with an ENDPROG statement, or an ENDPROG

statement was encountered within a subroutine.

(M246) No subroutine is being defined

The program block contains an ENDSUB command, but there is no open SUBROUTINE.

(M247) Subroutine cannot call itself

The DSM does not support any kind of recursion. Once invoked a subroutine cannot call

itself or be called by a subroutine that it has invoked.

(M248) Axis definition of subroutine must match caller

An attempt has been made to call a single-axis subroutine from a multi-axis program or

subroutine, or call a multi-axis subroutine from a single-axis program or subroutine.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 221

(M249) Already defining program or subroutine

A PROGRAM or SUBROUTINE statement has been encountered within an unterminated

PROGRAM or SUBROUTINE.

(M280) Instruction limit exceeded, max 1000

A motion program block can contain no more that 1000 program statements. This error is

issued if the number of statements exceeds that limit.

(M281) File must contain at least one program

A motion program block must contain at least one PROGRAM; otherwise, there is no way to

invoke it. This error is issued if a motion program block does not contain any PROGRAMs.

(M282) Statement must be within a program or subroutine

This error is issued if motion program commands occur outside a PROGRAM or

SUBROUTINE.

(M283) This instruction is invalid for the specified module type

A motion program block contains an instruction that is invalid for the destination module.

(M293) Maximum error count exceeded.

The motion program parser reports up to 30 errors when parsing a motion program block.

When that limit is reached, this error is issued and no more errors are reported.

(M300) Parse directives must precede any executable statements

A #pragma directive must be issued at the beginning of the motion program block, i.e.

preceding any motion program statements.

(M301) Invalid directive option

An invalid #pragma directive has been specified.

(M302) Invalid directive parameter

An invalid option has been specified as #pragma directive parameter.

Warnings

Warnings are generated for code that seems questionable but does not specifically cause

an error. This section describes parse warnings reported by the motion parser and their

typical causes.

(M482) Unexpected end of program: unclosed comment

A comment was not terminated when an end of file was encountered.

(M483) Nested comments.

The motion parser does not support nesting comments. A warning is issued if a comment

is defined within a comment.

User Manual Chapter 7
GFK-1742F Jan 2020

Programmed Motion 222

(M490) Program contains no executable statements

A warning is issued if a program block contains no executable statements.

Using Error Messages to Troubleshoot Motion Programs

After creating motion programs or subroutines in the Motion Editor window, you can check

for basic errors by clicking the Block Check icon on the toolbar.

The editor checks the motion program block and report any errors it detects in the

Information window. The next figure shows an example of an error detected during the

check.

Figure 94: Using Error Messages to Troubleshoot Motion Programs

The error shown in the above figure, “Error: (M231) Cannot specify axis in a single-axis

program: 1,” refers to the last line of the program, just before the ENDPROG statement.

Notice that AXIS1 is found on this line. Since PROGRAM 2 is a single-axis program, the use

of axis numbers within the program is not allowed so an error was generated.

In the above example, the error message was double clicked, as indicated by the fact that it

is highlighted in reverse video. When this is done, the cursor jumps to the place in the

program that produced the error. You will note the presence of the cursor at the start of the

line containing the AXIS1 statement.

For further help in troubleshooting errors, the “Motion Editor Error and Warning Messages”

section of this chapter lists common causes for the various error codes. For example, the

listing for error (M231), seen in the example above, states:

(M231) Cannot specify axis in a single-axis program

ACCEL, VELOC, CMOVE, PMOVE, DWELL, and WAIT commands in a single-axis program or

subroutine must not specify an axis.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 223

Chapter 8: Follower Motion
Configuring the DSM314 for Follower Control Loop = Enabled (in the configuration software

Axis Configuration tab) allows each Servo Axis (slave) to respond to a Master Axis input using

a programmable slave: master ratio. The DSM314 defines the slave: master ratio as the ratio

of two integer numbers A and B. The basic formula for computing Follower motion is:

Follower Servo Axis motion (slave axis) = Master Axis motion x (A/B)

or

slave : master ratio = A : B ratio

If a Jog, Move at Velocity or Execute Motion Program command is also initiated, the axis

motion will represent the combination of the Master Axis motion and the internally

commanded motion. This Chapter provides details of servo motion related to the Master

Axis input. Refer to Chapter 9 for additional information about combined Follower and

commanded motion.

When the Enable Follower %Q bit is turned ON, an axis will immediately begin following the

selected Master Source unless a Follower Enable Trigger input has been selected. If a

Follower Enable Trigger input has been selected, then the Enable Follower %Q bit must be

ON and an OFF to ON transition of the trigger input must occur. The external trigger input

CTL01 - CTL032 is selected in the configuration software.

The DSM314 always operates the follower axis in “ramp makeup” mode. If the master axis

has a nonzero velocity when the follower is enabled, the slave axis will accelerate at the

configured Ramp Makeup Acceleration to a speed that allows it to catch up to the master

axis.

8.1 Master Sources
A DSM314 Servo Axis can be configured to follow any two of eight possible master input

sources. The two sources are identified as Source 1 and Source 2. A Follower Master Source

Select %Q bit determines whether Source 1 or Source 2 is the active source. The available

selections for Source 1 and Source 2 are:

• Axis 1 Commanded Position

• Axis 1 Actual Position

• Axis 2 Commanded Position

• Axis 2 Actual Position

• Axis 3 Commanded Position

• Axis 3 Actual Position

• Axis 4 Commanded Position

• Axis 4 Actual Position

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 224

Note that follower motion is summed with Jog, Move at Velocity, or Motion Programs. If a

slave axis is following a master input at velocity V1, and a Jog is commanded at velocity V2,

the axis will move at velocity V1 + V2.

8.2 External Master Inputs
Actual Position for Axis 1 - Axis 4 represent external master axis sources. An encoder

connected to the axis or the feedback of a servo system may be used as an actual position

source. The DSM314 follower loop allows a slave axis to follow a selected external source as

shown in this example:

8.2.1 Example 1: Following Axis 3 Actual Position Master Input
In this example, a graph of velocity (v) versus time (t) shows the velocities of the master

input (Actual Position 3), and the slave axis that is following the master. The DSM314 is

configured with Follower Master Source 1 = Actual Position 3 and the Select Master Source

%Q bit is OFF. The A:B ratio is 1:1. The velocity profile of the following (slave) axis is identical

to the master input.

Figure 95: Following Encoder 3 Master Input

8.3 Internal Master Axis Command Generators
Commanded Position for Axis 1 - Axis 4 represent internal master axis sources. The DSM314

follower loop will allow a slave axis to follow a selected internal command source as shown

in this example:

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 225

8.3.1 Example 2: Following an Internal Master command
In this example, Axis 1 of the DSM314 is configured with Follower Master Source 2 =

Commanded Position 2 and the Select Internal Master %Q bit is ON. The A:B ratio is 1:2.

Axis 2 is commanded to Move at Velocity 12000 and then 0. Axis 1 follows axis 2 at half of

the axis 2 velocity and acceleration and moves only half the distance that axis 2 has moved.

Figure 96: Following Servo Axis 2 Encoder

8.4 A:B Ratio
A DSM314 axis following a master input can do so at a wide range of slave : master (A:B)

ratios. The “A” value can be any number from –32768 to 32767. The “B” value can be

anywhere between 1 and 32767. The magnitude of the A:B ratio can be from 1:10,000 to

32:1. Thus very precise ratios such as 12,356:12,354 or 32,000:1024 can be used.

The Follower A/B Ratio %AQ command can be used to change the A:B ratio at any time,

even while following. However, an invalid ratio will generate a status error and be ignored.

An invalid ratio is a ratio with B equal to or less than zero or A:B magnitude greater than

32:1 or less than 1:10,000.

When following with a non 1:1 ratio, the velocity profile of the master and follower will

look somewhat different. Horizontal lines, indicating constant velocity, and slanted lines,

indicating acceleration and deceleration, will be different. If the A:B ratio is less than 1:1,

the follower velocity and acceleration will be less than the master. Likewise, if the A:B ratio

is greater than 1:1, the follower velocity and acceleration will be greater than the master.

The duration of motion, and time that the slave axis will accelerate, decelerate, or stay at

constant velocity are the same for the master and follower.

The distance moved, which in a velocity profile is the area between the graph and the time

axis, will be that of the master multiplied by the A:B ratio. If A is zero, no following motion

will be generated. If A is negative, the following axis will move with the direction of motion

reversed.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 226

8.4.1 Example 3: Sample A:B Ratios
All of the following samples are following the master source input at various A:B ratios.

Figure 97: Sample A:B Ratios

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 227

Example 4: Changing the A: B Ratio

One example of variable A:B ratios is to use one ratio while moving positive, and another

when moving negative. Note that determination of positive and negative velocity and

update of the A:B ratio must be done in the host controller or the DSM314 Local Logic

program. In the profile below, the following axis uses a 2:1 ratio when moving positive and

a 1:2 ratio when moving negative.

Figure 98: Changing the A:B Ratio

8.5 Velocity Clamping
Velocity clamping is available using the Velocity Limit set in the Configuration software.

When the master velocity exceeds the configured limit, the following axis will continue to

move at the limit velocity multiplied by the A:B ratio. The Velocity Limit %I bit is set and a

status error is generated to indicate that the slave axis is no longer locked to the master

input positioning. The slave axis has essentially fallen behind the master input.

8.5.1 Example 5: Velocity Clamping
The Velocity Limit is set to 100,000 in this example. Thus, the slave axis velocity is clamped

at 100,000 user units/sec in either direction. When the master axis peaks greater than the

limits, the following axis stays at the limit. After the master slows to under the limit, the

following axis continues tracking the master axis velocity. Counts generated in excess of the

Velocity Limit are lost to the follower. The horizontal dashed lines indicate the velocity

limits. The shaded area indicates the times when the In-Velocity Limit bit is ON and the

following axis is falling behind the master.

Figure 99: Velocity Clamping

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 228

8.6 Unidirectional Operation
Setting the axis Command Direction configuration to Positive Only or Negative Only results

in unidirectional follower motion. Any master axis counts in the zero limited direction are

ignored. No error is generated by counts in the zero limited direction. The In Velocity Limit

%I bit, however, does reflect the presence of a master command in the zero limited

direction.

8.6.1 Example 9: Unidirectional Operation
In this example, the Command Direction configuration is set to Positive Only. As shown in

the velocity profile below, the slave axis follows the positive counts, but ignores the negative

counts. Note that when the master is moving negative, the In Velocity Limit %I bit is ON, but

no status error is generated.

Figure 100: Unidirectional Operation

8.7 Enabling the Follower with External Input
Any CTL bit CTL01- CTL32 can be configured as an enable trigger for the follower axis. If a

CTL bit source is configured as an external faceplate input, that input can be used to start

the follower. When no input is selected, the follower is enabled and disabled directly by the

Enable Follower %Q bit. When an input is selected for the Enable Trigger and the Enable

Follower %Q bit is set, the next positive transition of the defined input will instantly enable

the follower. The follower will remain enabled until the Enable Follower %Q bit is cleared.

The faceplate 24v inputs have 5 ms filters that result in a Follower Enable Trigger response

time of 5-7 milliseconds. The faceplate 5v inputs do not have these filters and will provide

an Enable Trigger response time of 2 millisecond or less.

When the Enable Follower trigger occurs, the Commanded Position at that point is captured

in a parameter register so that it can be used in a Programmed Move command. The

position is captured in parameter 226 (for Servo Axis 1), parameter 234 (for Servo Axis 2),

parameter 242 (for Servo Axis 3) or parameter 250 (for Servo Axis 4).

Follower Enabled status is returned in a %I bit for each axis.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 229

8.8 Disabling the Follower with External Input
Any CTL bit CTL01- CTL32 can be configured as a Disable Trigger for the follower axis. The

trigger input is tested only when the Enable Follower %Q bit is ON. When the Enable Follower

%Q bit is ON, an OFF to ON transition of the trigger bit will disable the follower. Turning OFF

the Enable Follower %Q bit immediately disables the follower, regardless of the disable

trigger configuration.

8.9 Follower Disable Action Configured for

Incremental Position
Configuring the Follower Disable Action for Inc Position allows the follower axis to perform

an Incremental Registration Move. Disabling the follower with the Enable Follower %Q bit or

optional Disable Trigger will cause the axis to continue at its present velocity, then

decelerate and stop after a specified distance has elapsed. The incremental distance is

specified in a parameter register for each axis:

P227 = Axis 1 Incremental distance

P235 = Axis 2 Incremental distance

P242 = Axis 3 Incremental distance

P250 = Axis 4 Incremental distance

The incremental distance represents the total actual position change that will occur from

the point where the follower is disabled until it stops. Superimposed motion commands

(Jog, Move at Velocity or Motion Programs) should not be active during a Follower

Registration Move.

8.10 Follower Axis Acceleration Ramp Control
For applications where the Follower is enabled after the Master command is already up to

speed, the Follower Ramp feature can be used to apply a controlled acceleration rate to

bring the follower axis up to speed. This may be done without losing any Master command

counts from the point at which the Follower was enabled. During the automatically

generated Follower Ramp Control make-up move, the acceleration/deceleration does not

exceed the configured Follower Ramp Acceleration value and provides a smooth motion.

When the follower is enabled, the slave axis is ramped up to the master velocity at the active

configured Follower Ramp Acceleration rate. This function is most useful when the master

source is in motion before the follower mode is enabled. In addition to the host controller

Enable Follower %Q bit, a CTL bit (CTL01-CTL32) may be configured as the enable follower

signal for position registration functions. When the Enable Follower %Q bit is ON, then the

CTL bit chosen acts as a rising edge trigger to enable follower mode. After Follower is

enabled, only the host controller Enable Follower %Q bit controls the active state of the

following function. When the follower axis is enabled to a moving master source, some

master source counts cannot be used immediately. The master counts that accumulate

during acceleration of the follower axis are stored. When the follower axis reaches the

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 230

master velocity, they will be inserted during make-up distance correction motion. This

motion has an automatically calculated trapezoidal velocity profile determined by the

Follower Ramp Distance Makeup Time, the amount of accumulated counts, and the

configured Follower Ramp Acceleration. Set the Follower Ramp Distance Make-up Time to

the desired time in the configuration software or it can be changed with the host controller

%AQ Command 42h.

If the Follower Ramp Distance Makeup Time is too short, then the automatically generated

velocity profile is triangular in profile. If during the distance correction velocity exceeds 80%

of the configured Velocity Limit, then the automatically calculated move velocity will be

clamped at 80% of the limit value. Clamping the makeup move velocity at 80% of the

velocity limit allows the system some reserve velocity capacity for continued tracking of the

master source velocity. In both cases a warning message is reported, and the real distance

make-up time is longer than programmed, but the distance is still corrected properly.

Setting a Follower Ramp Distance Make-Up Time of 0 allows the Ramp feature to accelerate

the axis without making up any of the accumulated counts. In this instance velocity will not

exceed the master velocity. For applications where lost counts do not matter, set the

distance make-up time = 0.

By default, the superimposed motion profile that is automatically generated by the follower

ramp function (with non-zero makeup time) is trapezoidal using the Follower Ramp

Acceleration and a distance derived from the active Ramp Makeup Time.

The value of the Velocity Limit may affect functionality differently depending on the

relationships of the master source velocity. The following case examples illustrate these

points.

Case 1: The master source velocity is less than 80% of the configured Velocity Limit and the

makeup time (Mkup Time) is a long enough interval so that the resultant velocity remains

less than 80% of the Vlim. This is the preferred operation; no errors are reported, and the

over speed move of the ramp function occurs within the specified makeup time. The

follower axis velocity will not exceed 80% of the Vlim unless the master source velocity

increases.

Case 2: The master source velocity is below 80% of the configured Velocity Limit but the

makeup time interval is too short to allow operation as in case 1. A status only error (ECh)

will be returned when the follower velocity matches the master command velocity. The

makeup move will accelerate using the active Follower Ramp Acceleration to 80% of the

velocity limit (Vlim). The makeup move will occur, and all accumulated counts stored during

initial acceleration will be used.

Case 3: The master source velocity is greater than 80% of the configured Velocity Limit when

the follower velocity matches the master command velocity. A status only error (EAh) is

returned and no makeup correction move is attempted.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 231

Case 4: At the time when the follower velocity matches the master command velocity and

the makeup move is to occur and conditions are the same as in Case 1 or Case 2 and the

makeup move has initiated, the master source increases to >80% of the Velocity Limit. The

amount of accumulated counts and the active makeup time value will determine if the

makeup move will complete in the specified makeup time. A status only error (F2h) will

occur if the combined master command velocity and the makeup move velocity reach 100%

of the velocity limit. The master command velocity will not exceed 100% of the Velocity

Limit value. Accumulated counts may be lost and the makeup move will not complete.

The Follower Ramp Active %I bit indication is turned on while the ramp control is in effect for

both the ramp up/make-up and ramp down.

The Follower Enabled and Follower Ramp Active %I bits can be monitored by the host

controller to determine which part of the follower ramp up/ramp down cycle is active. The

following figure shows the state of Follower Enabled and Follower Ramp Active during a

follower cycle.

Figure 101: Follower Ramp Up/Ramp Down Cycle (Case 2)

The programmed make-up time can be too short for the required distance correction. In

this case a warning error is reported (in the point B of the trajectory), but system continues

acceleration up to the speed, insuring the minimum possible distance correction time. The

velocity profile for such case is shown on the figure 106.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 232

Figure 102: Follower Ramp Up/Ramp Down Cycle – Case 2 with make-up time too

small.

During the ramp phase of the distance correction, the velocity limit is controlled. If

calculated velocity is too high, then the velocity is clamped, and warning error code is set (in

the point C of the trajectory). Figure 107 shows the velocity profile during the follower ramp

cycle for this case.

Figure 103: Follower Ramp Up/Ramp Down Cycle - case with active velocity limit.

If the acceleration time (sector BC of the trajectory in figure 107) exceeds 128 seconds, then

another warning error will be reported. In this case the distance also will be corrected

accurately.

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 233

8.10.1 Follower Mode Command Source and Connection

Options
The diagrams on the following pages illustrate a variety of Master axis and Follower slave

axis loop connection options.

The diagram below illustrates the three DSM314 analog axes connected in parallel with

Actual Position for Axis #4. The reader should note that with this configuration, the Local

Logic function can be run. This is because the command generator for axis #4 is not required

for this configuration. The Master Source Configuration items are all set to Actual Position

Axis #4. This is not a requirement. However, it does eliminate a source of error due to the

master source select bit being set incorrectly.

Figure 104: 3-Axis Analog Follower / Parallel Structure / Follower Source = Actual

Position 4

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 234

The diagram below illustrates the three DSM314 analog axes connected in parallel with

Commanded Position for Axis #4. The reader should note that with this configuration, the

Local Logic function cannot be run. This is because the command generator for axis #4 is

required for this configuration. The Master Source Configuration items are all set to

Commanded Position Axis #4. This is not a requirement. However, it does eliminate a source

of error due to the master source select bit being set incorrectly.

Figure 105: 3-Axis Analog Follower / Parallel Structure / Source = Commanded

Position 4

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 235

The diagram below illustrates the two DSM314 digital axes connected in parallel with

Commanded Position or Actual Position for Axis #3. The reader should note that with this

configuration the Local Logic function can be run. This is because the command generator

for axis #4 is not required for this configuration.

Figure 106: 2-Axis Digital Follower / Parallel Structure / Source = Commanded or

Actual Position 3

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 236

The diagram below illustrates two DSM314 digital axes connected in parallel with

Commanded Position from Axis 1 driving servo loops for Axis 1 and Axis 2. This will allow

both axes to run from the same commanded path. Note that Axis 1 is configured with

Follower Control Loop = Disabled. This configuration does not allow for load sharing

between axes that are tightly coupled. The reader should note that with this configuration

the Local Logic function can be run. This is because the command generator for axis #4 is

not required for this configuration.

Figure 107: 2-Axis Digital Follower / Parallel Structure / Source = Commanded Position

1

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 237

The diagram below illustrates the four DSM314 analog axes connected in two parallel pairs.

The reader should note that with this configuration the Local Logic function cannot be run.

This is because the servo position loop for axis #4 is required for this configuration.

Figure 108: Four-Axis Analog Follower / Parallel Structure / Src = Cmd Pos 1 & Cmd

Pos 3

User Manual Chapter 8
GFK-1742F Jan 2020

Follower Motion 238

Follower Control Loop Block Diagram

Figure 109: Follower Axis Control Loop Block Diagram

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 239

Chapter 9: Combined Follower and

Commanded Motion
Combined motion consists of Follower motion commanded from a master axis combined

with one of these internally commanded motions:

• Jog Plus/Minus %Q Command

• Move at Velocity %AQ Command

• Move %AQ Command

• Stored Motion Program

Combined motions are additive. The slave axis motion is equal to the sum of the motion

commanded by the master axis and the internally commanded motion.

9.1 Example 1: Follower Motion Combined with Jog
In this example, the Enable Follower %Q bit is set, causing the slave axis to follow the master

input. While the slave axis is following, the Jog Plus %Q bit is set. The following axis

accelerates from its master’s velocity to its master’s velocity added to the current Jog

Velocity. This acceleration will be just as if the axis was not following a master source at the

time. When the Jog Plus %Q bit is cleared, the following axis decelerates to its master’s

velocity. In the velocity profiles below, the dotted lines indicate when the Jog Plus %Q bit is

turned ON and then OFF.

Figure 110: Combined Motion (Follower + Jog)

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 240

9.2 Follower Motion Combined with Motion

Programs
Motion commands from stored programs or the Move %AQ command can also be

combined with the master command to drive the follower axis. These point-to-point move

commands can come from one of the stored motion programs 1 through 10 and any stored

subroutines they may call. The Move %AQ command is treated as a single line motion

program, which uses the present Jog Velocity and Jog Acceleration. Program execution is

started by the host controller setting an Execute Program n %Q bit or sending a Move %AQ

command.

If there is no master command, the axis can be commanded solely from the stored motion

program data. Thus, with no master input to Servo Axis 2 and Commanded Position 2

selected as the master source for Servo Axis 1, a stored program can be used to control

Servo Axis 2 with Servo Axis 1 following per the designated ratio.

When PMOVEs are executed with Follower not enabled, the In Zone %I bit must be set at the

end of the move before programmed motion will continue. When Follower is enabled, since

In Zone may not turn on while also following a master command, the In Zone indication will

not be required to continue. The next Move will take place when the commanded distance

for the previous move has completed. The In Zone %I bit will always indicate the true in zone

condition.

The active commanded position updated and used by the stored motion program is

referred to as Program Command Position. Each time a program is selected for execution,

this position register is initialized in one of the two ways listed below.

1. If the follower is not enabled, the Program Command Position is set to the current

Commanded Position = Actual Position + Position Error.

2. If the follower is enabled, the Program Command Position is set to the Program

Reference Position (0). Since the Program Command Position is only updated by

internally generated commands (and not by the master command), it will then

indicate the position commanded by the stored program. Absolute move

commands from the stored program will be referenced to the Program Reference

Position.

Therefore when an absolute move is the first move in a program, it will behave like

an incremental move when the follower is enabled. Additional absolute moves

within a program will be referenced to the current Program Command Position,

which is updated by each move. Once a motion program finishes, executing another

program with follower enabled will again cause the Program Command Position to

be initialized to zero.

Position ranges (in counts) for the Actual and Program Command Position registers are

indicated in the figure below.

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 241

Figure 111: Combined Motion (Follower + Jog)

With sustained commanded motion in the same direction, the Program Command Position

will roll over at +2,147,483,647 or –2,147,483,648 counts.

The Actual Position, however, will be confined by the configured High Position Limit and

Low Position Limit.

Table 51 below indicates which source commands affect these position registers and the

actual and commanded velocities. Program Command Position is updated only by internally

generated move commands (program commands, Jog Plus Minus, Find Home, and Move at

Velocity). The Commanded Velocity (returned in %AI data) also only indicates velocity

commanded by these internally generated move commands. Actual Position and Actual

Velocity %AI return data reflect the combination of the master input and the move

commands. In other words, counts coming from the master source affect only the Actual

Position and Actual Velocity. If there are no internally generated move commands, the

Commanded Velocity will be 0 and the Program Command Position will not change.

Table 51: Command Input Effect on Position Registers

COMMAND

Input

Follower

Enabled

Follower Registers Affected by input

Master Commands

(from selected

Master source)

No None affected

Yes Actual Position %AI status word is updated

Commanded Position %AI status word is updated

(Actual Position + Position Error)

Program Command Position is Not affected

Actual Velocity %AI status word is updated

Commanded Velocity %AI status word is Not affected

Program

Commands

No Actual Position %AI status word is updated

Commanded Position %AI status word is updated

Actual Position + Position Error)

Program Command Position is updated

Actual Velocity %AI status word is updated

Commanded Velocity %AI status word is updated

(by Program commanded velocity only)

Yes Actual Position %AI status word is updated

(by Program command + Master command)

Commanded Position %AI status word is updated

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 242

COMMAND

Input

Follower

Enabled

Follower Registers Affected by input

(Actual Position + Position Error)

Program Command Position is updated

(by Program command only)

Actual Velocity %AI status word is updated

(by Program command velocity + Master command

velocity)

Commanded Velocity %AI status word is Updated

(by Program command velocity only)

Other Internally

Generated Move

Commands

(Home, Jog, and

Move at Velocity)

No Actual Position %AI status word is updated

Commanded Position %AI status word is updated

(Actual Position + Position Error)

Program Command Position is updated but not used

Actual Velocity %AI status word is updated.

Commanded Velocity %AI status word is updated

(by Internal command velocity only)

Yes

(Find Home

is not

allowed)

Actual Position %AI status word is updated

(by Internal command + Master command)

Commanded Position %AI status word is updated

(Actual Position + Position Error)

Program Command Position is updated but not used

Actual Velocity %A status word is updated

(by Internal command velocity + Master command

velocity)

Commanded Velocity %AI status word is updated

(by Internal command velocity only)

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 243

The Program Command Position can be synchronized to the Actual Position %AI value in

three ways:

• Find Home %Q command execution

• Set Position %AQ command

• Execute Motion Program n %Q command (if the follower is not enabled)

The effect of these commands is indicated in Table 52 below.

Table 52: Actions Affecting Program Command Position

ACTION Follower

Enabled

Resulting Updates to Follower Position Registers

Home Found No Actual Position %AI status word is set to Home Value

Program Command Position is set to Actual Position + Position

Error

Yes Find Home %Q command is Not allowed

Status Error is returned

Set Position %AQ

Command

Not

applicable

Actual Position %AI status word is set to %AQ Value

Program Command Position is set to Actual Position + Position

Error

Note: Set Position is not allowed if the Moving %I bit is ON.

Execute Program No Actual Position %AI status word is NOT affected

Program Command Position is set to Actual Position + Position

Error

Yes Actual Position %AI status word is NOT affected

Program Command Position is set to Reference Position (0)

Program moves will execute in a continuous fashion such that incremental PMOVE or

CMOVE commands past the limits will roll over at the limit and continue. Absolute PMOVE

or CMOVE commands can also be used for applications that do not require going beyond

the high/low count limits.

Any internally generated move command can be immediately terminated by the Abort All

Moves %Q command.

The User Selected Data %AI status word can be changed to report the Program Command

Position by using the Select Return Data %AQ command. Refer to Chapter 5 for details.

The following application example illustrates how a stored program can be used to control

positioning operations relative to the detected edge of a moving object as it moves at a rate

detected by the master axis (Aux Axis 3) encoder input.

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 244

9.3 Example 2: Follower Motion Combined with

Motion Program
Applications that require modifying parts on the fly (such as notching, marking, riveting,

spot welding, spot gluing, and so forth) would make use of the point-to-point moves

superimposed on follower motion and enable follower at input features. A typical

configuration and control sequence required for these applications is shown below.

Figure 112

Control Sequence

1. With Enable Follower %Q bit OFF, the host controller commands Follower axis to

home position where Actual Position & Program Command Position are

synchronized and set to Home Position value. Position Valid %I bit indicates when

this step is complete.

2. The host controller sets the Enable Follower %Q bit command.

Note: The CTL01- CTL24 bit to which the part edge sensor is connected would already have been
configured in the Follower Enable Trigger configuration parameter.

3. When the Part edge sensor trips, the DSM314 enables the Follower axis to start

following the master (Aux Axis 3) encoder inputs. The Follower Enabled %I bit

indicates when the axis is following the master command. Note that the Accel Ramp

and Make-Up Time feature could be used to allow the follower axis to catch up to

the master axis if required.

4. Once the follower is enabled, the host controller sends the Execute Motion Program

n %Q bit to start execution of the selected program for the follower axis. At the time

the program is selected, Program Command Position will be set to program

reference position (0) because the follower is enabled. Program execution is then

relative to the moving part edge as the follower axis tracks the part. Program

Command Position now contains the position of the follower axis relative to the part

edge and Actual Position indicates the total distance the follower axis has moved

from the Home point (master +/– program commands).

5. At the end of program, the host controller turns Enable Follower %Q bit OFF and

loops back to step 1 to repeat for next part.

User Manual Chapter 9
GFK-1742F Jan 2020

Combined Follower and Commanded Motion 245

Note:

Since the DSM314 saved the Follower enable input trigger Commanded Position in a parameter
register (#226 for axis 1, #234 for axis 2), step 1 this time could be used to execute another
program with an absolute move command back to the parameter value position and continuing
with step 2. In this case, the Moving and In Zone %I bit indications could be used to indicate when
step 1 is complete.

This method is possible because the Program Command Position is set to the Actual Position +
Position Error when Execute Motion Program is commanded with the follower disabled.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 246

Chapter 10: Introduction to Local Logic

Programming
This chapter contains an introduction to the basic local logic programming concepts. The

DSM and the DSM motion programming language are not discussed in detail in this chapter.

These concepts are discussed in other chapters within this manual.

10.1 Local Logic Programming
The local logic program works in conjunction with the host controller logic program and

motion program to yield a flexible programming environment. Specifically, local logic

programs provide the user with the ability to perform math and logic that is deterministic

and synchronized with the DSM Position Loop execution rate. This ability is critical to many

applications where the accuracy and/or speed require this tight synchronization.

The DSM local logic function provides the user the ability to execute basic logic and

mathematical functions within the DSM module. Additionally, local logic permits fast

read/write access to local DSM digital and analog I/O. Consult Chapters 13 and 14 for a

complete listing of available I/O. The local logic program execution method guarantees the

local logic program runs at the position loop sample rate and completes each sample

period. Note: If the module is unable to complete the local logic program execution within

the allotted time the module generates an error message. Chapter 13 and Appendix E

contain more information concerning program execution times. Additionally, the local logic

program runs in parallel with normal DSM motion programs. The parallel program

execution allows the local logic program to supervise the motion program. Thus, local

logic programs are also called supervisory logic blocks (SLB). The local logic program

execution versus motion program execution is shown in Figure 113.

Figure 113: Local Logic Versus Motion Program Execution

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 247

It is important to understand the concept shown in Figure 113. before writing local logic

programs. The local logic program runs to completion each position loop sample period.

The program then re-executes the complete local logic program the next position loop

sample period. This execution method differs from the motion program execution method.

The motion programs execute each command to completion in a sequential fashion,

without any time guarantees. This concept is illustrated in Table 53. , which lists the first four

local logic execution periods for the local logic and motion programs shown in Figure 113.

In the example, note that the local logic program executes to completion each position loop

sample period. The motion program statements execute until the controlled motion

achieves the desired result. For additional details concerning motion program statement

execution, consult chapter 7.

Table 53: Local Logic – Motion Program Execution Example

Position Loop Sample

Number

Active Motion Program

Statement

Local Logic Program

Statements

n CMOVE ##,ABS,S-CURVE Position_Loop_TC_1:=50;

 IF Actual_Position_1>4000 THEN

 Digital_Output1_1:=ON;

 END_IF;

 IF Actual_Position_1>=4500 THEN

 Digital_Output1_1:=OFF;

 END_IF;

 IF Actual_Position_1> 6000 THEN

 Digital_Output3_1:=ON;

 END_IF;

 IF Actual_Position_1>=7500 THEN

 Digital_Output3_1:=OFF;

 END_IF;

n+1 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;

 IF Actual_Position_1>4000 THEN

 Digital_Output1_1:=ON;

 END_IF;

 IF Actual_Position_1>=4500 THEN

 Digital_Output1_1:=OFF;

 END_IF;

 IF Actual_Position_1> 6000 THEN

 Digital_Output3_1:=ON;

 END_IF;

 IF Actual_Position_1>=7500 THEN

 Digital_Output3_1:=OFF;

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 248

Position Loop Sample

Number

Active Motion Program

Statement

Local Logic Program

Statements

 END_IF;

n+2 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;

 IF Actual_Position_1>4000 THEN

 Digital_Output1_1:=ON;

 END_IF;

 IF Actual_Position_1>=4500 THEN

 Digital_Output1_1:=OFF;

 END_IF;

 IF Actual_Position_1> 6000 THEN

 Digital_Output3_1:=ON;

 END_IF;

 IF Actual_Position_1>=7500 THEN

 Digital_Output3_1:=OFF;

 END_IF;

n+3 CMOVE ##,ABS,SCURVE Position_Loop_TC_1:=50;

 IF Actual_Position_1>4000 THEN

 Digital_Output1_1:=ON;

 END_IF;

 IF Actual_Position_1>=4500 THEN

 Digital_Output1_1:=OFF;

 END_IF;

 IF Actual_Position_1> 6000 THEN

 Digital_Output3_1:=ON;

 END_IF;

 IF Actual_Position_1>=7500 THEN

 Digital_Output3_1:=OFF;

 END_IF;

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 249

10.2 When to Use Local Logic Versus Ladder Logic
The local logic programming language contains basic mathematical and logical constructs.

The capabilities are not designed to replace the host controller’s logic capabilities. Instead,

local logic is designed to complement the host controller’s logic and mathematical abilities.

Specifically, local logic is designed to solve a small logic and mathematical set that requires

tight synchronization with the controlled motion. The local logic program must run to

completion each sample period. Thus, local logic programs are limited in size. The default

local logic program size limit is 150 lines. The Local Logic build process will generate an error

message when the 150-line limit is exceeded. A warning message is generated when 100

lines are exceeded. If the program is very large and computationally intensive it may exceed

the allowed execution time and result in a watchdog timer warning/error (refer to Appendix

E). In contrast, the host controller’s program size is limited only by available memory.

However, as host controller program sizes increase, the host controller sweep times

increase. (For additional information concerning sweep times, please consult the

PACSystems CPU Reference Manual, GFK-2222 or the Series 90-30/20/Micro PLC CPU

Instruction Set Reference Manual, GFK-0467.) This is not true with local logic programs.

Local Logic programs always execute to completion every position loop sample period.

When using host controller logic, the added latency associated with the host controller

sweep times for time-critical logic operations that are tightly coupled to motion can be

unacceptable or limit process performance. These tightly coupled and time-critical

processes are potential Local Logic applications. Each process will have to be evaluated on

an individual basis to determine which sections to write in host controller logic and which

sections to write in Local Logic.

10.3 Getting Started with Local Logic and Motion

Programming
The sections that follow provide information on getting started with the Local Logic Editor

and Motion program editors. The sections concentrate on program usage with an emphasis

on program creation, syntax check, and program download.

10.3.1 Requirements
The Local Logic and Motion Program editors are integrated within the programming

software environment. You need one of the following software packages. Please refer to the

software documentation for installation instructions.

• Machine Edition Logic Developer – PLC version 2.1 or later

• VersaPro version 1.1 or later (Series 90-30 only. For details, refer to Appendix H.)

The DSM314 feature set also requires:

— PACSystems firmware release 2.8 or later, or

— 90-30 CPU firmware release 10.0 or later.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 250

10.3.2 Creating a Local Logic Program
The Local Logic editor is integrated into the programming software environment. The editor

allows you to easily create, edit, store, and download a Local Logic program. You create a

Local Logic program in a VersaPro folder or a Machine Edition project. Refer to the software

documentation for details on how to create or open a project.

For details on getting started with Machine Edition, refer to “Machine Edition

Configuration” in chapter 2. For details on using VersaPro, refer to Appendix H.

1. To create a local logic program, open your project in Machine Edition.

2. In the Project tab of the Navigator window, right click the Target containing the

DSM314, choose Add Component, and then choose Motion.

Figure 114

The Motion Program folder appears in the Navigator.

3. Expand the Motion Program folder. Select Local Logic and choose New. A local

logic block is created in the Local Logic folder and the local logic editor opens.

Figure 115

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 251

4. To change the name of your local logic block, edit the name in the Block Properties,

which is displayed in the Inspector window.

Figure 116: Local Logic Editor Main Screen Layout, Machine Edition

10.4 Local Logic Variable Table
The programming environment includes a window that contains the Local Logic variables.

The Local Logic Variable table (LLVT) allows you to drag and drop or cut and paste the text

from the table into a program. (Reference Figure 123.).

• To open the LLVT in Machine Edition, right click the Local Logic folder in the

Navigator and choose Local Logic Variable Table.

Figure 117

• To open the LLVT in VersaPro, select Local Logic Variable Table from the View

menu, press Alt + 6, or click the Toggle Local Logic Variable Table button on

the toolbar.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 252

The table has several tabs that group the variables by category. The categories are:

• Axis 1 – Variables specific to axis number one

• Axis 2 – Variables specific to axis number two

• Axis 3 – Variables specific to axis number three

• Axis 4 – Variables specific to axis number four

• Global – Global data such as Module Status Code

• CTL bits – DSM general purpose control/status bits

• Parameter Registers - DSM Parameter data

Figure 118: Local Logic Variable View Table

The table has six columns. The columns are as follows:

• Name – This column contains the variable name that is valid to be used within a local

logic program

• Type – This is the data type for this variable. For example 32 Bits means that this

variable is a 32 bit variable.

• Group – This is the group this variable is placed in. For example, FacePlate I/O means

that this variable refers to a point on the module faceplate.

• Description – This column contains a textual description of the variable. If the user

hovers the mouse pointer over the description a tool tip will be generated that

allows the user too easily read the description.

• R – This column indicates if the variable can be Read by a Local Logic program

• W- This column indicates if the variable can be Written by a Local Logic program

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 253

10.5 Connecting the Local Logic Editor to the DSM
The configuration/programming software has several communications options. One

communications option is to connect directly to the host controller SNP port, shown in

Figure 119 below. Ethernet options are also available. All DSM314 programming is done

through the software interface, yielding single point of programming for the module. (The

DSM314 also has a serial port on the module faceplate, which is used only for updating the

DSM314’s firmware.) Local Logic and Motion programs are stored to a dedicated memory

space inside the host controller CPU. The DSM314 then requests these programs by name

from the CPU during configuration. The link to the programs the DSM314 requests from the

CPU is contained in the Hardware Configuration for the host controller rack. The benefit is

that programs are not module-specific but are rack/slot specific. Thus, if there is a need to

swap DSM314s within a host controller, or to replace a DSM314, you need to perform the

following three steps: (1) turn off power to the host controller, (2) change out the DSM314

modules, and (3) reapply power to the host controller. Upon powering up, the host

controller will send the correct programs and configuration settings to the DSM314s.

Figure 119: Programmer Connection Diagram

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 254

10.6 Building a Local Logic Program
The programming software provides a self-contained environment that allows the user to

perform all the actions necessary to create, edit, and download a local logic program to a

DSM314 module.

10.6.1 Creating a Local Logic Program
Create a Local Logic program named Example. For details on how to do this, see: Section

“Machine Edition Configuration”.

“Starting VersaPro”.

The resulting display is like the figure below.

Figure 120: Machine Edition New Local Logic Program

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 255

The Local Logic editor is a free-form text editor that allows you to enter programs in the style

that you prefer. This example is a very simple Local Logic program that does not represent a

fully functional application because it is intended for instructional purposes only. The

example program is a simple timer application that relies on the digital servos position loop

sample period (2 mSec) as a time base. See Chapter 1 for position loop sample periods for

other configurations.

Sample Local Logic Program

Once you type the above program into the text editor, the editor screen will look similar to

Figure 121. .

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 256

Figure 121: Local Logic (LLExample)

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 257

10.6.2 Checking Local Logic Syntax
At this point, you should validate the program to verify correct language syntax.

To check the language syntax, select Target, then Validate <Target Name>. You can also

press F7 anywhere in the Machine Edition window. All logic blocks in the active target are

checked. Results of syntax checking are displayed in the Feedback Zone. (If the Feedback

Zone is not already open, starting the Validate process opens it.)

In the following example, the line “First_Local_Logic_Sweep” is incorrectly typed as

“First_Local_Logic_Swee.”

Figure 122

Tip

To cycle through the warning and error messages in the Feedback Zone, press F4.

To go to the line that caused the error in the local logic program, double click the error

description in the Feedback Zone. The focus shifts to the Local Logic Editor window and the

cursor moves to the beginning of the line that has the error.

Chapter 12 contains details and corrective actions for syntax errors and warnings.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 258

10.6.3 Setting up Hardware Configuration for Local Logic
Once a successful syntax check has occurred, you need to set up the hardware configuration

that allows the example program to be downloaded to the correct DSM314 module. Note

that this is not the typical order in which these steps are done. Most users first set up their

hardware configuration and then generate the programming statements. However, the

order in this example is reversed to better illustrate the link between hardware configuration

and the Local Logic program name in the DSM314 hardware configuration.

For details on how to perform steps 1 and 2, see the following:

• VersaPro Configuration: Appendix H

• Machine Edition Configuration: Chapter 4

1. If you have not already done so, open the hardware configuration and configure a

CPU that supports PACSystems RX3i Release 2.8 (or later) or Series 90-30 Release

10.0 (or later) firmware and an appropriate power supply for your application. Add

a DSM314 to your rack configuration. This operation adds the DSM314 to the rack

and opens the DSM314 configuration screens, which allow you to customize the

DSM314 to your particular application.

Note: For details concerning the DSM314 configuration settings, refer to chapter 4.

2. On the “Settings” tab, set the “Local Logic Mode” parameter to Enabled and type

the name of the example program, “LLExample” in the “Local Logic Block Name

field. The resulting Hardware Configuration screens will be as shown in Figure 123.

Note: This method of linking the DSM314 to a Local Logic program allows you to easily specify multiple

DSM314s that use the same Local Logic program. This example has only one DSM314. However,
if you have multiple DSM314s that need to run the same Local Logic program, simply indicate that
in the configuration for each DSM314 that needs to execute this program. This allows the
programmer to have one Local Logic source file for multiple DSM314s. Also note that this does
not preclude DSM314s from executing different programs.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 259

Figure 123: Hardware Configuration DSM314 Settings Tab (RX3i version shown)

3. Configure return data.

The example Local Logic program shown on page 254 uses parameter registers

P001, P003, and P004 as counters that contain values representing time. To view

these parameter registers in the DSM return data registers, you need to configure

return data. To configure return data:

A. Select the Axis #1 tab and input 18 in Return Data 1 Mode. This tells the DSM

that you want to return parameter registers. In Return Data 1 Offset, enter a 1.

This tells the DSM to return parameter P001.

The LLExample program returns P001, P003 and P004. However, the grouping is

better if you return P003 and P004 in Axis #2. Therefore, you can either leave Return

Data 2 Mode and Return Data 2 Offset at the default values or enter in 18 in Return

Data 2 Mode and 2 in Return Data 2 Offset to tell the DSM to return P002. Note that

Select Return Data 1 Axis1 is returned in %AI memory offset 21 while Return Data 2

for Axis 1 is returned in % AI offset 23.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 260

Figure 124: Hardware Configuration DSM314 Axis#1 Tab

The above steps must be repeated for P003 and P004.

B. Select the Axis #2 tab and input 18 in Return Data 1 Mode. This tells the DSM

that you want to return parameter registers. In Return Data 1 Offset, enter a 3.

This tells the DSM to return parameter P003.

C. On the Axis #2 tab, enter in 18 in Return Data 2 Mode and 4 in Return Data 2

Offset to tell the DSM to return P004.

Note: Select Return Data 2 Axis 2 is returned in %AI memory offset 41 while Return Data 2 for Axis 2 is
returned in % AI offset 43.

Figure 125: Hardware Configuration DSM314 Axis #2 Tab

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 261

4. Configure the CTL bit.

The sample Local Logic program shown on page 254 controls CTL01, which is used

to signal the Motion Program that a second has passed. The CTL bit must be

configured to be under Local Logic Control. To do this, access the CTL Bits tab in

hardware configuration. Select “CTL01 Config” and choose Local_Logic_Controlled.

The resulting CTL01 tab is shown in Figure 126.

Figure 126: Hardware Configuration DSM314 CTL Bits Tab

5. This completes the configuration changes necessary for the example. Close the

Hardware Configuration tool and save the folder. The link between the example

Local Logic program and the DSM314 module is now complete. You can now create

any required ladder logic and then perform a Check All on the programs.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 262

10.7 Downloading a Local Logic Program
To perform the download operation, first make sure that the communications port is

properly configured. To access communications setup, click on the target you want to

connect to in the Navigator window. Using Machine Edition, in the Inspector window, select

the Physical Port you want to connect through. (For information on downloading using

VersaPro, see Appendix H.)

Figure 127: Communications Setup

After configuring the communications port, the local logic program can be downloaded

(stored) to the Host Controller CPU. To store the current folder to the Host Controller,

choose Target from the Menu Bar and Go Online with “<Target>” from the submenu. Once

connected, choose Target from the Menu Bar and Download “<Target>” to PLC from the

submenu. The store operation begins the folder transfer process from the programmer to

the Host Controller CPU. When you initiate the store operation, a dialog box is presented

that allows you to choose what to store to the Host Controller. In this case, you want to store

the Local Logic program, Hardware configuration, and any Host Controller logic. To perform

this operation, select, in the dialog box, Store hardware configuration and motion to the

PLC and Store logic to PLC.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 263

Note: The Local Logic and Motion programs are transferred as part of the Hardware configuration
process. Thus to download an updated Local Logic program and/or Motion program, select the
Hardware Configuration and Motion item in the Download to PLC dialog box.

Figure 128: Machine Edition Download Dialog Box

Machine Edition will then check any blocks that have changed. If the build procedure is

successful, it will download the files to the Host Controller. Machine Edition will indicate any

errors or that it has successfully downloaded the program in the Feedback Zone window.

When the programs are downloaded to the host controller, you can interact with the DSM

to verify that the Local Logic program is working correctly. The Reference View Table (RVT)

display can be used for this operation. To create an RVT, right click on the Reference View

Tables folder in the Navigator window and select New from the menu. The new RVT is added

to the project.

Figure 129: Creating a New Reference View Table

You can insert variables, select variable display formats, toggle data points, and send AQ

commands, among other actions. Consult the Machine Edition documentation for details

on RVT construction. A sample RVT that is useful for this program is shown below.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 264

Figure 130: Reference View Table

10.8 Executing Your Local Logic Program
Once the download operation is complete, the module is ready to execute the local logic

program. To cause the DSM module to execute the local logic program you must set the Q

bit offset 1 from the host controller, while the host controller is in RUN mode. At this point,

the local logic program is active and running within the DSM.

Note: The LLExample sample program is a simple counter application. The user can use the RVT to look
at the passed parameters to verify that the program is active and functioning correctly. From the
RVT, you can see that 1 Minute 8 Seconds have passed since Local Logic was started (see %AI0043
and %AI0041, respectively). Additionally, 68370 milliseconds have passed as shown in %AI0021.
Additional details concerning the interface between the DSM and the host controller are contained
in chapter 5. You should save the folder once the program has been verified to work correctly.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 265

10.9 Using the Motion Program Editor
Now that you have successfully gotten the Local Logic program working, it would be useful

to link in a Motion Program. The Motion Program editor is accessed in a manner very similar

to the Local Logic editor. The editor allows you to easily create, edit, store, and download

Motion programs.

10.9.1 Creating a Motion Program
To create a Motion program in Machine Edition, expand the Motion Program folder in the

Navigator, then right click the Motion Blocks folder and choose New. The new Motion block

appears in the Navigator.

Figure 131: Creating a Motion Program in Machine Edition

To open the Motion editor, double click the Motion block.

Figure 132: Motion Program Editor

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 266

The Motion editor is a free-form text editor that allows you to enter a program in the style

that you prefer. The example uses a very simple Motion program. The example does not

represent a functional application and is for instructional purposes. The example is linked

with the Local Logic program entered in “Creating a Local Logic Program.” The Local Logic

program from page 254 is repeated for reference:

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 267

The Local Logic program causes CTL01 to transition from logic 0 to logic 1 every second. For

this simple Motion program example, the motor shaft rotates 1/60 of a revolution for each

CTL01 transition. The motion program will therefore make the motor shaft act like the

second hand on a quartz clock.

Before writing the Motion Program, you will need to determine axis scaling. The first variable

you need to determine is the user units to counts ratio. The User Units to Counts ratio sets

the number of programming units for each position feedback count. This allows the user to

program the DSM314 in application-specific units. The User Units and Counts values must

be within the range of 1 to 65,535. The User Units to Counts ratio must be within the range

of 8:1 to 1:32. For example, if there is 1.000 inch of travel for 8192 feedback counts, a

1000:8192 User Units: Counts ratio sets 1 User Unit equal to 0.001 inch.

To set the User Units to Counts ratio the first piece of information required is the number of

counts per revolution of the feedback device. This example uses a Beta 0.5 motor. The Beta

0.5 has a feedback resolution of 8192 counts per revolution. Now perform the calculation

to determine the ratio. The basic equation is:

For this example:

This ratio is a problem since it violates the rule that the minimum User Units to Counts Ratio

is . The problem is easy to fix: change the programming units from 60th of a revolution

to a 600th of a revolution. This will make 1 programming unit equal to revolution .

Repeat the above calculation:

Thus, to have the motor travel of a revolution, you must enter 10 units in the motion

program. Additional information on setting the User Units to Counts ratio is provided in

Chapter 4.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 268

The next item you need to determine is the motor top speed. This is a relatively simple

calculation.

Next, you need to calculate the velocity and acceleration required for the move. In this

example, a triangular velocity profile is chosen to minimize time. The equations to calculate

the parameters are shown below.

Figure 133: Motion Program Editor

Applying the numbers from this example to the triangular velocity equations gives the

following:

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 269

Given :

You are now ready to write a motion program. The code for the sample program is as

follows.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 270

When the above program has been typed into the text editor, the editor will look similar to

Figure 134. .

Figure 134: Motion Editor MPExample

Note: When the cursor is in the motion editor window, the line and column numbers appear in the
status bar at the bottom of the Logic Developer window.

At this point, you should check the program to verify correct language syntax. T At this

point, the user needs to check the program to verify correct language syntax. The language

syntax verification is done by selecting Target from the main menu, and then selecting

Validate ‘<Target>’.

The information window displays the output of the syntax check operation. If the sample

program has been entered correctly, you should receive a message indicating zero errors

and zero warnings.

If the information window indicates a syntax error has occurred, press F4 to cycle through

the warnings and errors. While the information window has focus, double click the error

message. This causes the editor window to automatically go to the line in the program that

caused the error.

Chapter 12 contains additional details that cover corrective actions for syntax errors and

warnings. Once the program passes the syntax check, you need to set up the hardware

configuration that will allow the program to be downloaded to the correct DSM314 module.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 271

10.9.2 Setting Motion Program Parameters in Hardware

Configuration
The section describes the parameters that must be set in the Hardware configuration to

allow the motion program to function. For details concerning the DSM314 configuration

settings, consult chapter 4.

The order in which the example is done is not typical for most installations. Most users will

first set up their hardware configuration and then generate the programming statements.

However, this example is intended to illustrate the Motion programs and reverses the order

to better illustrate the link between hardware configuration and the Motion program name

in the DSM314 hardware configuration.

The first field you need to edit is the “Motion Program Block Name” on the Settings tab. This

field identifies to the DSM314 the Motion program name to be downloaded to the module.

Type the name of the example program, “MPExample,” into this field.

Note: This example has only one DSM314. However, if you have multiple DSM314s that need to run the
same Motion program, you can indicate that in the configuration for the each DSM314. This
allows the programmer to have one Motion program source file for multiple DSM314s. This does
not prevent DSM314s from executing different programs.

Since the example uses the Beta 0.5, set Axis1 Mode to Digital Servo.

Figure 135: Hardware Configuration DSM314 Settings Tab

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 272

You also need to configure the DSM with the values calculated above for User Units to

Counts and top speed. The example also configures Axis direction and high position limit.

These are optional. Consult chapter 4 for information on these configuration fields. To add

these values, type the following into the fields on the Axis#1 tab.

UserUnits: 600

Counts: 8192

High Position Limit: 599 (Optional, causes position to roll over every revolution)

Velocity Limit: 30000

Axis Direction: Reverse (Optional causes servo to turn clockwise)

Figure 136: Hardware Configuration DSM314 Axis#1 Tab

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 273

To finish the configuration, enter the following values in Tuning#1 tab.

Motor Type: 13

Position Error Limit: 200 (Optional. See Configuration information for additional

information.)

In Position Zone: 5 (Optional. See Configuration information for additional

information.)

Pos Loop Time Const: 200 (Note: Based upon application/mechanics. Refer to Chapter

4 and Appendix D)

Velocity FeedForward: 9000 (Note: Based upon application/mechanics. Refer to

Chapter 4 and Appendix D)

The resulting display should be similar to Figure 10-20. .

Figure 137: Hardware Configuration Tuning#1 Tab

To save your work, select the File from the main menu and then select Save All from the file

menu.

The link between the example Motion program, Local Logic program, and the DSM314

module is now complete. Create any required ladder logic, validate the programs and

download them to the host controller.

User Manual Chapter 10
GFK-1742F Jan 2020

Introduction to Local Logic Programming 274

10.10 Executing Your Motion Program
Once the download operation is complete, the module is ready to execute the Motion and

Local Logic programs. To cause the DSM module to execute the local logic program, set the

Q bit offset to 1 from the host controller, while the host controller is in RUN mode. This

activates the Local Logic program within the DSM. The next thing you need to do is perform

a Set Position command. This references the module and allows it to execute the desired

motion program. To perform this function, open the RVT (RVTExample) created in the Local

Logic section and enter 0023 hex in AQ offset 1. This enters the Set Position command. Then

enter 0 in AQ offset 2. Refer to Chapter 5 for additional information concerning entering AQ

commands. The resulting display should be similar to the following figure.

Figure 138: RVTExample Screen

At this point, if there are no errors, you can execute the motion program. Enter a 1 (or

toggle) Q bit offset 2 (%Q00003). The motor should execute the motion program and

advance 1/60 of a revolution each second.

Additional details concerning the interface between the DSM and the host controller are

contained in Chapter 5.

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 275

Chapter 11: Local Logic Tutorial
The Local Logic programming language supports assignment, conditional statements,

arithmetic, logical, and relational operations. The Local Logic program runs synchronously

with the motion module position loop and therefore is deterministic. The language includes

constructs that allow the Local Logic program to communicate information between the

Logic program, the Motion Program, and the host controller. The tutorial focuses on the

local logic language and its communication with motion programs. Chapter 7 provides

additional information concerning the motion programmer language.

11.1 Statements
The Local Logic programming language supports assignment and conditional statements.

Assignment statements permit arithmetic results and bitwise logical operations to be

assigned to a variable. Conditional statements permit conditional local logic code

execution. Conditional execution is based on the value of a constant or variable, or the result

of a relational or bitwise logical expression.

Assignment statements use the “:=” operator. The following example multiplies two

parameter registers and assigns the result to another parameter register.

P001:= P210 * P107;

Note: Assignment statements require a semi-colon terminator as shown above.

Conditional statements use the IF-THEN-END_IF keyword combination. The END_IF

keyword concludes the conditional statement. The following example checks the Block_1

variables value and conditionally sets a value in a parameter register. Specifically, if the

Block_1 variable’s value equals 5 then the parameter P010 value is set to 100.

IF Block_1 = 5 THEN

P010 := 100;

END_IF;

The IF, THEN, and END_IF keywords are case sensitive, and the END_IF statement is

terminated with a semi-colon. IF statements may be nested up to eight levels and the body

of the IF statements may contain one or more statements. Refer to Chapter 12 for a detailed

description of these statements.

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 276

11.2 Comments
Comments allow the programmer to describe program operation, or any information that

the programmer wishes to embed in the program. Comment text begins with the (*

character pair and terminates with the *) character pair and may appear anywhere within

the program. For example:

(* Valid Comment Structure *)

The DSM during program execution ignores comments. Thus, comment lines do not count

when determining local logic program length.

11.3 Variables
Local Logic provides the user access to motion controller data, control and status bits, and

parameters using a fixed set of variables. The language also supports decimal, hexadecimal,

and binary constants. Hexadecimal and binary value representations are unsigned

constants in program statements, but are ALWAYS interpreted as signed two’s complement

in mathematical expressions. To assign a value to a variable the user would enter the

following

Torque_Limit_1 :=5000; (* Sets Torque Limit Axis 1 to 50% *)

or in hexadecimal form

Torque_Limit_1:=16#1388; (* Set Torque Limit Axis 1 to 50% *)

When variables are assigned a numeric value they are automatically limit checked to a

signed 32-bit value. For example the following values represent the largest positive and

negative values that are acceptable.

P001:=16#7FFFFFFF; (* P001=2147483647 *)

or in decimal form

P001:=2147483647; (* P001=16#7FFFFFFF *)

To assign the maximum negative value the user would enter

P002:=16#80000000; (* P002=-2147483648 *)

or in decimal form

P002:=-2147483648; (* P002=16#80000000 *)

If the user enters a number that exceeds the above numerical limits an error will be

generated indicating that the constant is out of range.

Local Logic variables have a read, write, or read/write “directional” attribute. (Additional

information concerning the variables and their type are contained in chapter 13.) As an

example, the variable Positive End of Travel for Axis 1 (Positive_EOT_1) is a read only

variable. As such, the following is a valid construct:

P001:=Positive_EOT_1; (* P001 = Positive End of Travel Axis 1 *)

However, the following is an invalid construct:

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 277

Positive_EOT_1:=1;

The Local Logic Parser generates an error if the program attempts to write to a read only

variable, or attempts to read a write only variable.

In addition, Local Logic variables have a size attribute ranging from Boolean (1-bit) to double

integer (64-bits). The Local Logic Parser generates a warning message when a non-Boolean

value is assigned to a Boolean variable. The warning indicates that data may be lost, due to

truncation, when this assignment occurs. The user should note that double integer variables

(64-bit) variables may only be used as the destination of a multiply operation, or the

numerator of a divide or modulus operation.

Consult chapter 13 for additional information concerning Local Logic variables. Additionally,

the Local Logic Variables Table (LLVT) within the programming software contains the

information on the variables size, type and Read/Write properties.

11.4 Operators
Local logic provides three classes of operators. The operators are arithmetic, relational, and

bitwise logical operators. An introduction to each operator follows. A more detailed

discussion of the operators is contained in Chapter 12.

11.4.1 Arithmetic Operators
Local Logic provides the user with the ability to perform basic arithmetic operations. The

language supports 32-bit integer operations and limited use of 64/32 bit operations where

appropriate to maintain precision. All arithmetic functions, except the ABS function, require

two operands.

Local Logic supports addition, subtraction, multiplication, division, absolute value, and

modulus operations.

Example constructs are:

P010 := Commanded_Velocity_1 - P009; (* P010=Commanded Velocity Axis 1 –

P009*)

The user should note that the following would be an invalid mathematical construct:

Commanded_Velocity_1 := P010 - P009; (* Commanded_Velocity_1=P010-P009*)

The reason this is invalid is that the mathematical expression is attempting to assign the

result (P010-P009) to Commanded_Velocity_1 which is a read-only variable.

Storing intermediate results into parameter registers provides the flexibility necessary to

solve complex mathematical expressions.

For example, the following construct is invalid since it contains more than one operation

(Multiply and Subtraction):

P005: = Torque_Limit_1 *(P001 – P010);

To achieve the same result, the user can enter the following:

P004: = P001 – P010;

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 278

P005: = Torque_Limit_1 * P004;

11.4.2 Relational Operators
Relational operators compare two operands in a conditional statement. The < (less than), >

(greater than), <= (less than or equal), >= (greater than or equal), = (equal), and <> (not

equal) operators are valid relational operators. The IF statement body execution takes place

when the conditional expression is a true. In the example, the variable Torque_Limit_1 is set

to 10000 if the variable Block_1 equals 3. If the Block_1 value is not equal to 3 then the

expression evaluates to false and program execution continues after the END_IF program

statement.

Example:

IF Block_1 = 3 THEN

Torque_Limit_1 := 10000; (* Set Torque Limit = 100% @ Block 3 *)

END_IF;

Complex relations may be solved by nesting IF statements. For example, to set Axis 1 torque

limit (Torque_Limit_1) to 10000=100% (i.e. same scaling as in AQ command processing)

when the motion program block 3 is active and axis 1 commanded velocity

(Commanded_Velocity_1) is less than 1000, the following construct is valid:

IF Block_1 = 3 THEN

IF Commanded_Velocity_1 < 1000 THEN

Torque_Limit_1 := 10000; (* Set Torque Limit = 100% @ Block 3 *)

END_IF;

END_IF;

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 279

11.4.3 Bitwise Logical Operators
Bitwise logical operators mask or invert an individual bit or groups of bits. The BWAND (and),

BWOR (or), BWXOR (exclusive or), and BWNOT (ones-complement) operators are valid

constructs. BWAND, BWOR, and BWXOR require two operands. The BWNOT operator

requires one operand.

As an example, the following code segment isolates a copy of several bits in the

CTL_1_to_32 word and assigns them to a parameter register.

Then, the least significant four bits of that value are tested and P002 is assigned a value 4985

if any are set.

P001 := CTL_1_to_32 BWAND 16#0000A005;

IF P001 BWAND 16#F THEN

P002 := 4985;

END_IF;

Specifically, the statements perform the following operations. The first statement uses

16#0000A005 as a mask. The mask corresponds to a binary value as follows:

16# 0000A005 = 2#0000 0000 0000 0000 1010 0000 0000 0101

Thus, the statement

P001:=CTL_1_to_32 BWAND 16#0000A005

isolates bits 1,3,14, and 16 from CTL_1_to_32 and places the result in P001.

The next statement performs a bitwise test to see if any of the bits in the least significant

byte are set. The test value corresponds to a binary value as follows:

16#F = 2#1111

Thus the statement

IF P001 BWAND 16#F THEN

performs a bitwise test with the least significant byte of P001 and if any of the bits in the

least significant byte are set to a logical true (value = 1) then statements in the IF block are

evaluated.

In this example, since CTL_1_to_32 is masked in the previous statement, the IF condition

only tests bit 1 and bit 3 of CTL_1_to_32.

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 280

11.5 Local Logic / Host Controller / Motion Program

Communication
The Local Logic program or host controller communicates with the motion program using

parameters, CTL bits and Motion Program Block Numbers. These methods are used as

follows:

• Parameter Data – The Parameter data (P000-P255) are accessible from Local Logic,

host controller, and Motion Programs. The Parameter data are similar to variables in

a program. For example, a motion program can DWELL a period of time that is

determined by a parameter. The Local Logic program or the host controller can write

the parameter that determines the DWELL time in motion program.

• CTL Bits – CTL Bits allow the Local Logic program or host controller to signal the

Motion Program to start an event. For example, CTL bits are used to control Motion

Program flow with the JUMP command.

• Motion Program Block Numbers – The Motion Program (when block numbers are

used within the Motion Program) makes the current block number available to the

Local Logic program or host controller. The current Block number can be used within

the Local Logic program or host controller to make an action occur only during a

specific Motion Program section.

The signaling constructs between programs (host controller, Motion, and Local Logic) allow

them to interact and perform operation between programs. These signaling constructs are

important for the programming examples that follow. For additional information on the

host controller-to-motion program communications and program interactions the reader

should consult chapter 5 and Chapter 7.

11.6 Local Logic Programming Examples
The preceding sections introduced the base local logic language constructs. To illustrate

these concepts, the following sections contain program examples. These programs are for

illustration only and do not necessarily represent functional applications. Additional details

concerning the available local logic statements, variables and constructs are contained in

chapters 12 and 13.

11.6.1 Torque Limiting Program Example
The following example illustrates a method to use local logic in concert with a motion

program to perform torque limiting based upon a block number within a motion program.

In the example, the servo axis 1 applies a nut on the threaded shaft. At the beginning the

axis moves a little backward to improve the nut and shaft threads engagement. This motion

has the torque limit set to the maximum value. Next the nut is twisted until tight with the

torque limited to 30% of the maximum value. During this operation the motion command

destination point usually is not reached and the axis stops when the load friction is greater

then the torque limit. Subsequently, to release all tension in the mechanics, the torque is

set to 0 and after 0.1 second the signal “screw operation done” is turned “on”. When the

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 281

“nut gripper released” signal is turned on by the host controller, the axis moves to the initial

position with the full torque.

Torque Limiting Local logic program.

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 282

11.6.2 Gain Scheduler Program Example
The following example illustrates a method to use local logic to implement a simple

gainscheduling algorithm. Care should be taken whenever one implements an algorithm

that dynamically changes the control characteristics. In many situations, dynamically

changing the control characteristics can cause the controlled process to go unstable. Note

that the Velocity_Loop_Gain control variable may be written multiple times in the same

sweep in the following program. However, the final value written in a given sweep is the

active value since variables are updated at the conclusion of Local Logic execution. Refer to

Chapters 12 and 13 for a detailed description of the Local Logic control variables and

outputs.

11.6.3 Programmable Limit Switch Program Example
The following example illustrates a method to use local logic to perform a programmable

limit switch function. This particular programmable limit switch turns on/off an output

based upon the current motor position and block within a motion program

Figure 139: Programmable Limit Switch Example

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 283

Programmable Limit Switch Local Logic Program

The motion program segment corresponding with the above local logic program is shown

below.

Programmable Limit Switch Example Motion Program Segment

11.6.4 Trigger Output Based Upon Position Program Example
The following example illustrates a method to use Local Logic to trigger a timed output

based upon the current motor position. The reader should note that the timer

implementation uses a counter within the program. The counter counts the number of

times the program has been executed since the counter was last reset. Since local logic

programs are executed every position loop sample period, the counter time period is based

upon this period. This example uses digital servos, which have 2 mSec position loop sample

periods. Therefore, the counter will count in 2 mSec increments. For other configurations,

consult Chapter 1 for the position loop sample periods. Additionally, Local Logic allows the

program to write a variable multiple time within a program. The last state that the variable

is in at program completion is the one written to the output (refer to Chapter 12, section on

Local Logic Outputs/Commands). This is important in the following program. The second

IF-THEN-END_IF block turns the digital output for axis 1 (Digital_Output1_1) on when actual

position for axis 1 (Actual_Position_1) is greater than 4000 regardless of the current timer

value (P008). However, the last IF-THEN-END_IF block in the program checks the current

timer value (P008) and turns the digital output 1 for axis 1 (Digitial_Output_1) off if the

timer exceeds 500. The application is shown pictorially in Figure 140.

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 284

Figure 140: Timer Output Based Upon Position Example

Timer Output Based Upon Position Local Logic Program

The motion program segment corresponding with the above local logic program is shown

below.

Timer Output Based Upon Position Example Motion Program Segment

User Manual Chapter 11
GFK-1742F Jan 2020

Local Logic Tutorial 285

11.6.5 Windowing Strobes Program Example
The following example illustrates a method to use local logic to perform a windowing strobe

function. The example ignores the strobe command unless the current motor position is

inside the window (Actual Position > 4000 but less than 5000). If the motor position is inside

the aforementioned window, the first strobe occurrence causes the current motor position

to be captured within the strobe register. The application is shown pictorially in Figure 141.

Figure 141: Windowing Strobes Example

Windowing Strobes Local Logic Program

The motion program segment corresponding with the above local logic program is shown

below.

Windowing Strobes Example Motion Program Segment

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 286

Chapter 12: Local Logic Language Syntax
This chapter describes the Local Logic programming language syntax, rules, and language

elements. The language uses free-format text-based constructs derived from the IEC 1131

structured text standard. The sections that follow describe the available commands and the

command syntax.

12.1 Syntactic Elements
The local logic language syntax is described in the following sections. The syntax is easy to

learn and provides a rich feature set that allows the user to accomplish the programming

task. Chapter 11 contains many examples that will further aid the reader in understanding

the syntax and its application. The first-time user may also wish to consult the section on

“Building Your First Local Logic Program” program contained in chapter 10 and the sample

programs in the Chapter 11 tutorial as additional aids.

12.1.1 Numeric Constants
The local logic programming language supports decimal, hexadecimal, and binary

constants. The DSM treats all constants as 32-bit signed twos-complement integer values.

Single underline characters (i.e. 16#7fff_ffff) may be inserted between digits to improve the

readability of large numbers.

Decimal constants must be in the range of –2147483648 to 2147483647. Only integer

values are supported, therefore constants do not have a decimal point. Thus, as in all

integer-based systems the decimal points are implied and the programmer must keep track

of them if fractional math is needed.

Examples:

523 Positive decimal constant

-1048 Negative decimal constant

1_745_245 Positive decimal constant with embedded underscores

Hexadecimal (base 16) constants are identified by a 16# prefix and must have a value that

can be represented in 32-bits (8 hexadecimal digits). Hexadecimal constants cannot have a

sign (+/-) prefix. Hexadecimal digits A-F are not case sensitive, upper or lower case may be

used.

Examples:

16#FFFF Hexadecimal constant

16#7fff_ffff Hexadecimal constant with embedded underscores

Binary (base 2) constants are identified by a 2# prefix and must have a value that can be

represented in 32-bits (32 binary digits). Binary constants cannot have a sign (+/-) prefix.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 287

Examples:

2#1010 Binary constant

2#11111110_11101101_10111110_11101111 Binary constant with embedded

underscores

A local logic program may have a maximum of 50 unique constants whose value is greater

than 2047 or less than –2048. If a local logic program declares more than 50 unique

constants, the build process generates an error. Most programs use much less than 50

constants, so this is generally not a constraint.

12.1.2 Local Logic Variables
The local logic language supports a number of predefined variables that allow access to the

DSM I/O data, CTL bits, and other status and control information. A detailed description of

the local logic variable set is contained in chapter 13 Each variable has two attributes, size

and direction. Local Logic variables range in size from 1 Bit (Bit Operands) to 64 bits.

All Local Logic parameter registers are one of the following types.

• Double integer variables hold signed 32 bit values (–2147483648 to 2147483647).

There are 256 Parameter registers (P000-P255).

• Long integer variables hold signed 64 bit values (+/-9.22 x 1018). The long integer

variables are unique in that they may only be used for the result of a multiply or as

the numerator in a divide or modulus operation. There are 8 long integer registers

(D00-D07).

All Local Logic variables have one of the following directional attributes.

• Read-only variables may not be used as the destination of an assignment operation.

• Write-only variable may only be used as the destination of an assignment statement.

• Read-write variables may be used as a source or destination.

Refer to Chapter 13 for a list of all the Local Logic variable size and direction attributes.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 288

12.1.3 Local Logic Statements
The Local Logic language supports two kinds of statements: Assignment and Conditional. A

Local Logic program supports 150 statements. The Local Logic check block will generate an

error message when the 150 line limit is exceeded. Warnings are issued when the Local Logic

program exceeds 100 lines. The warning message can be turned off with the #pragma

directive. Reference the #pragma sections for additional details. Semicolons separate

program statements.

Local Logic Assignment Statements

Assignment statements permit simple arithmetic and bitwise operations to be performed

with the result being assigned to a variable. An assignment statement has the following

format.

<destination> := <expression>;

The <destination> operator may consist of any read-write or write-only variable. The

<expression> may be a simple constant or variable, a mathematical or bitwise logical

operation on two operands, an ABS function, or a bitwise NOT operation. Write-only

variables can not be the expression for an assignment operation.

Examples:

P032 := Strobe1_Position_1 + 5000;  This construct is okay.

P001 := ABS(Analog_Input1_1);  This construct is okay.

Reset_Strobe1_1 := BWNOT Strobe1_Flag_1;  This construct is okay.

P040 := 2#11111010_1011000;  This construct is okay.

P011 := 3 * Strobe1_Position_1 + 20;  This construct is ILLEGAL – too

many operations.

If complex operations are required, perform the operation using a series of steps that use

parameter registers to store intermediate results.

Examples:

To set Velocity_Loop_Gain_2 equal to (1+75000/Actual_Velocity_2), the programmer uses

a series of statements similar to the following...

P012 := 75000 / Actual_Velocity_2;

Velocity_Loop_Gain_2 := 1 + P012;

The build process will issue a warning if a Boolean variable is used as the destination for an

expression containing non-Boolean variables or a constant whose value is not zero or one. A

warning is generated because the DSM will assign the Boolean variable the value of the least

significant bit of the expression.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 289

Local Logic Conditional Statements

Conditional statements permit conditional code execution based on simple relational and

bitwise logical operations. A conditional statement has the following format.

IF <expression> THEN

Local Logic Statements

END_IF;

The <expression> may consist of a constant, a variable, a relational or bitwise logical

operation on two variables, or a bitwise complement of a constant or variable. Write-only

variables are not allowed in the expression. If the relational expression is true, or if a bitwise

operation, variable or constant has a non-zero value, the Local Logic statements in the body

of the IF statement are executed. Any number of program statements may appear in the

body of an IF statement (subject to the total limit). Each IF-THEN statement must have an

accompanying END_IF.

Examples:

IF P226 THEN  This construct is okay.

IF CTL_1_to_32 BWAND 2#1010 THEN  This construct is okay.

IF Strobe1_Level_1 = TRUE THEN  This construct is okay.

IF BWNOT P100 THEN  This construct is okay.

IF BWNOT P001 <> P002 THEN  This construct is ILLEGAL – too

many operations.

If statements may nest up to 8 levels deep. When counting the number of program

statements, the IF-THEN and END_IF statements count as two separate statements.

Table 54: Valid Operators

Statement Type Valid Operators

Conditional Relational <, >, <=, >=, <>, =

Bitwise Logical BWAND, BWOR, BWXOR, BWNOT

Assignment Arithmetic +, -, /, *, MOD

Bitwise Logical

Abs Function

BWAND, BWOR, BWXOR, BWNOT

ABS ()

12.1.4 Whitespace
Blanks, end-of-lines, and tabs are considered whitespace. Whitespace is ignored, except

when used to separate adjacent syntactic elements, and may be used to improve program

readability by the use of indention and blank lines.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 290

12.1.5 Comments
Comments may be used to add information to the program that is ignored by the Local

Logic program execution engine. Two types of comments are supported.

The (* character pair introduce a normal comment, which terminates with the *) character

pair. These comments may appear anywhere whitespace can, for example within or

following a local logic statement, alone on a line, or spanning several lines. These comments

do not nest.

The // character pair introduces a single line comment. All text following the // to the end of

the line is ignored by the Local Logic execution engine.

Note: You should be aware that one can enter a local logic program and inadvertently comment out the
code that one wants to execute. The common scenario that causes this to happen is as follows:

In the above code segment, the end comment structure, line shown in bold/italic for

illustrative purpose, is incorrect because the asterisk in the close comment structure is

absent. The error causes the following line to be considered a comment as well. Thus, the

statement Digital_Output_1:=0 is considered a comment and not executed. The color

scheme within the Local Logic editor can be very useful to help find these types of problems.

The coloring scheme by default will color the comments a different color than the

programming statements. Thus, the user will have a visual method to help find these errors.

Please consult chapter 2 for information on how to change the default color scheme for the

editor.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 291

12.1.6 PRAGMA Directive
The #pragma directive is used to configure the Local Logic parser. The directive is NOT

required for the parser to operate. However, if the user wishes to turn off warning messages

the #pragma directive allows this to occur. The #pragma directive MUST be the first line of

the program. Additionally, no white space should be present prior to the directive.

To turn ALL Local Logic warnings off, issue the following command:

#pragma errorsonly 1

or

#pragma errorsonly ON

To turn warning messages back ON either delete the directive or change the directive as

follows:

#pragma errorsonly 0

or

#pragma errorsonly OFF

12.1.7 Local Logic Keywords and Operators
The following keywords and operators have special significance in the Local Logic

programming language. Keywords are case-sensitive and use only upper-case letters.

These are discussed in further detail in the following sections.

Table 55: Local Logic Keywords

ABS TRUE + >

BWAND FALSE - <

BWOR IF / >=

BWXOR THEN * <=

BWNOT END_IF 16# =

ON MOD 2# <>

OFF ; :=

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 292

12.2 Enabling and Disabling Local Logic
Local Logic execution is enabled using a host controller Q bit. For example if a DSM is

configured with a starting %Q reference of %Q0001 then the Local Logic enable bit is

%Q0002 (beginning reference + offset of 1). The Local Logic program name must be

specified in the hardware configuration software and the field for Local Logic

Enabled/Disabled must be set to Enabled. Refer to Chapter 10 for a detailed description of

configuring Local Logic in hardware configuration.

Local Logic executes only while the host controller is in RUN mode. If The host controller is

switched to STOP mode or if the enable Local Logic Q bit is turned off, Local Logic execution

is halted and all Digital Outputs, Control bits (Jog, Feedhold, Strobe Resets, Follower Enable)

and CTL bits that are under the control of Local Logic are disabled.

Attempting to execute Local Logic in the First CPU Sweep will result in an error being

reported. For example, switching from Stop Mode to Run Mode while the Local Logic Enable

bit is on will generate an error and the Local Logic program will not execute. Toggle the

Enable Q bit to run the Local Logic program.

Note: The Local Logic Engine will not run if any custom Local Logic functions are enabled via the
Advanced Parameters in Hardware Configuration. The custom function will normally not be
available and is developed for application specific use only by Emerson.

12.3 Local Logic Outputs/Commands
DSM command bit outputs (Jog, Feedhold, Follower Enable and Strobe Resets) are OR’ed

between the host controller command and the Local Logic command. Therefore, either the

host controller or Local Logic can control them i.e. the command bit output is active if either

the host controller or Local Logic has turned it on.

AQ commands are accepted on a last-write basis. For example, if both the host controller

(%AQ) and Local Logic issue a Follower Ratio command the last value written will be active.

DSM faceplate digital outputs (real outputs switched by the DSM) are individually

configurable to be either under Local Logic control or host controller control, but not both

simultaneously. Refer to Chapter 14 for a detailed description on configuring the Digital

Outputs.

Local Logic digital outputs, immediate commands and command bits are updated at the

end of each Local Logic Sweep (refer to Chapter 13 for a list of the command Variables and

digital output variables). Therefore if the Local Logic program writes to the same command

variable or digital output variable multiple times in the same sweep, the last value written

will be the effective command.

For example, the sample code below shows the Jog_Plus variable, the Strobe_Reset variable

and the Follower_Ratio being written multiple times within the same sweep. In all cases the

final value written is the active value.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 293

Example:

Jog_Plus_1 := TRUE; (* Turn on Jog Plus for Axis 1 *)

Strobe_Reset1_3 := 0; (* Turn off the Strobe 1 reset bit for Axis 3 *)

(* Some more code here *)

Follower_Ratio_A_1 := 10; (* Set the Follower Ratio A for Axis 1 to 10 *)

Jog_Plus_1 := FALSE; (* Turn off Jog Plus for Axis 1*)

Strobe_Reset1_3 := 1; (* Turn on the Strobe 1 reset bit for Axis 3 *)

Follower_Ratio_A_1 := 20; (* Set the Follower Ratio A for Axis 1 to 20 *)

For each of the output commands shown above, the last value written is acted upon by the

Logic Engine at the end of each sweep. Thus Jog_Plus_1 is turned OFF, Strobe_Reset1_3 is

turned ON and Follower_Ratio_A_1 is set to 20.

12.4 Local Logic Arithmetic Operators
The Local Logic language contains familiar constructs to perform basic signed integer

arithmetic computations. The language supports 32-bit arithmetic in the Local Logic

program and limited use of 64/32-bit arithmetic. All operations require two operands

except for the ABS function, which returns the absolute value of a variable or numeric

constant.

Table 56: Arithmetic Operators

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Integer Division

MOD Modulus

ABS Absolute Value

Arithmetic expressions may only be used in assignment statements with one operation per

statement.

The arithmetic operations do not require data type conversion functions since the motion

module automatically does this operation.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 294

12.4.1 Operator +
Adds source1 to source2 and stores the result in destination

Syntax

destination := source1 + source2;

The + operator syntax has these parts:

Overflow – Set if the result of an addition is greater than 2,147,483,647 or less than -

2.147,483,648. The Module_Status_Code is set to a value of 16#0095, which is a status-

only error.

12.4.2 Operator -
Subtracts source2 from source1 and stores the result in destination

destination := source1 – source2;

The – operator syntax has these parts:

Overflow – Set if the result of a subtraction is greater than 2,147,483,647 or less than -

2,147,483,648. The Module_Status_Code is set to a value of 16#0095, which is a status-

only error.

Remarks

The – operator may not be used as a unary operator except with a decimal (base 10)

constant (e.g. P001 := -P003; is illegal). To negate a variable, subtract it from zero, e.g. P001

:= 0 – P003;.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 295

12.4.3 Operator *
Performs a signed multiply of source1 and source2 generating a signed 64-bit result. The

result may be stored to a 32-bit or 64-bit destination.

Syntax 1

destination := source1 * source2;

Syntax 2

double destination := source1 * source2;

The * operator syntax has these parts:

Overflow – Never set.

Remarks

If the result is assigned to a 32-bit variable, the least significant 32-bits are stored. Any

excess is truncated.

The second syntax may be used for multiplication operations where the result will fall

outside the range of +/- 2 billion.

12.4.4 Operator MOD
The MOD operator returns the remainder resulting from the signed integer division of

source1 by source2. A double precision (64-bit) parameter register may be used as the

numerator.

Syntax 1

destination := source1 MOD source2;

Syntax 2

destination := double source1 MOD source2;

The MOD operator syntax has these parts:

Overflow - See remarks below.

Remarks

In case of a divide by zero, the Module_Status_Code is set to 16#2093. In case of a divide

overflow, the Module_Status_Code is set to 16#2094.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 296

The modulus (remainder) is calculated by performing an integer division, therefore the

MOD operator has the same error conditions as the divide operator.

A divide overflow occurs when the quotient of a divide operation cannot be correctly be

represented as a signed 32-bit value. This can only occur when using a double operand as

the numerator. A divide by zero occurs when the denominator of the divide has a value of

zero.

A divide overflow or divide by zero are Stop Fast errors. Local Logic is immediately aborted,

and motion is aborted by setting the servo velocity command to zero.

12.4.5 Function ABS
The ABS function returns the unsigned magnitude of the variable or constant parameter.

Syntax

destination := ABS(parameter);

The ABS operator syntax has these parts:

Overflow – Set if the operand has a value of –2,147,483,648. The Module_Status_Code is

set to a value of 16#0096, which is a status-only error.

12.5 Local Logic Bitwise Logical Operators
All logical operations are performed on a bit-by-bit basis, for example the result of a

BWAND operation is composed of 32 and operations between each of the corresponding

bits of the operands. The logic operators are prefixed with ‘BW’ to highlight the fact that

they are not Boolean operators.

Table 57: Bitwise Logical Operators

Operator Meaning

BWAND Bitwise Logical AND

BWOR Bitwise Logical OR

BWXOR Bitwise Logical Exclusive OR

BWNOT Bitwise Logical NOT (one’s-complement)

Expressions using bitwise logical operators may be used in assignment or conditional

statements. Only one bitwise logical operator may be used per expression.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 297

12.5.1 Operator BWAND
Performs a bitwise and of source1 and source2.

Syntax 1

destination:= source1 BWAND source2;

Syntax 2

IF source1 BWAND source2 THEN

The BWAND operator syntax has these parts:

Remarks

Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.

12.5.2 Operator BWOR
The BWOR operator returns the bitwise or on source1 and source2.

Syntax 1

destination:= source1 BWOR source2;

Syntax 2

IF source1 BWOR source2 THEN

The BWOR operator syntax has these parts:

Remarks

Syntax 1 is used for assignment, syntax 2 is used in a conditional evaluation.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 298

12.5.3 Operator BWXOR
The BWXOR operator returns the bitwise exclusive or of source1 and source2.

Syntax 1

destination: = source1 BWXOR source2;

Syntax 2

IF source1 BWXOR source2 THEN

The BWXOR operator syntax has these parts:

Remarks

Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.

12.5.4 Operator BWNOT
The BWNOT operator returns the one’s complement of the source parameter.

Syntax 1

destination:= BWNOT source;

Syntax 2

IF BWNOT source THEN

The BWNOT operator syntax has these parts:

Remarks

Syntax 1 is used for assignment; syntax 2 is used in a conditional evaluation.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 299

12.6 Comparison Operators
The comparison operators form a relational assertion between two operands. The

comparison expression evaluates the conditional based on the operands signed integer

value.

Table 58: Relational Operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal to

<> Not Equal to

Comparison operators may only be used as expressions in conditional statements, and only

one comparison operator may be used per expression.

IF source1 ComparisonOp source2 THEN

Comparison operators have these parts:

Remarks

The following table contains a list of the comparison operators and the conditions that

determine whether the result evaluates to True or False:

Table 59: Local Logic Comparison Operators

Relational Operator True if False if

Less than < source1 < source2 source1 >= source2

Less than or equal to <= source1 <= source2 source1 > source2

Greater than > source1 > source2 source1 <= source2

Greater than or equal to >= source1 >= source2 source1 < source2

Equality = source1 = source2 source1 <> source2

Inequality <> source1 <> source2 source1 = source2

Null Operator (IF Variable

THEN….)

N/A Variable is Non-Zero Variable is Zero

Bitwise Logical Operators BWAND, BWOR,BWXOR,

BWNOT

Result is Non-Zero Result is Zero

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 300

12.7 Local Logic Runtime Errors

12.7.1 Overflow Status
Some arithmetic operations may have results that cannot be correctly represented as a

signed 32-bit value. An example is shown in the following code segment.

In the first line, P001 is loaded with 2,147,483,647, the largest value that can be represented

as a 32 bit signed two’s-complement value. In the second line, one is added to that value.

The total, represented in hexadecimal, is 16#8000_0000. This value, interpreted as a 32-bit

signed two’s complement number represents the negative value – 2,147,483,648, not the

positive value 2,147,483,648! In many situations, this result would be unexpected and have

undesirable effects in subsequent program statements.

Three variables are available to the Local Logic program to detect overflows. The Overflow

variable is a read-write Boolean variable available only to the local logic program (refer to

Chapter 13, Section on “Local Logic System Variables”). When an overflow error occurs, and

the Overflow variable is not cleared before the end of the Local Logic sweep, the DSM’s

Module Status Code %AI word (local logic variable Module_Status_Code) is set. The error

code indicates the type of overflow and the Module Error Present %I bit (local logic variable

Module_Error_Present) is set. The Module Status Code %AI word and the Module Error

Present %I bit are not set until the current Local Logic sweep has finished executing. In

contrast, the Overflow variable is set immediately following an instruction which causes an

overflow. The Local Logic program may clear the Overflow variable by assigning it a value of

zero. The Module Status Code must be cleared by the host controller by setting the

module’s Clear Error %Q bit.

Overflow and computation errors are Status Only errors with two exceptions. A divide by

zero or divide overflow (the quotient cannot be represented in 32 bits) are Stop Fast errors.

In the case of status only errors, Local Logic processing and path generation continue

normally. A stop fast error will cause Local Logic processing to be aborted before proceeding

to the next instruction, and any motion will be aborted by setting the servo velocity

command to zero. Note: Clearing the Overflow variable has no effect on Stop Fast errors.

Refer to Table 63 for a listing of all Runtime Local Logic error codes.

Divide By Zero

The Logic Engine flags Divide By Zero operations as a Fast Stop Error, since the result of the

operation is undefined. Local Logic execution and servo motion is halted. An error code

16#2093 is reported in the module status code and 16#2x9A in the Per-Axis error codes if

the drives were enabled.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 301

Watchdog Timeout Warning / Error

Local Logic programs are constrained to complete execution within 300 microseconds in

the Logic Engine. This is to allow sufficient processing time in the module for Path

Generation and other tasks. Refer to Appendix E for a detailed listing of the execution times

for all valid Local Logic operations. The user can compute the execution time required for a

given program using the data tables supplied in Appendix E. The Logic Engine reports a

warning (Status Only) error code if the execution time takes more than 275 microseconds

but less than 300 microseconds. A Fast Stop error is generated if the program execution

time exceeds 300 microseconds. Refer to Table 63 for a list of the runtime warnings and

error codes.

Note: Local Logic execution is halted if there are any Local Logic Fast Stop errors (see Table 61) and all
Digital Outputs, Control bits (Jog, Feedhold, Strobe Resets, Follower Enable) and CTL bits that are
under the control of Local Logic are disabled. Local Logic execution resumes from the start when
the user clears the error (via the error clear %Q bit).

12.8 Local Logic Error Messages

12.8.1 Local Logic Build Error Messages
The local logic program build process communicates the build status through the local

logic, editor error log window. In the event an error occurs, the build process reports the

error and attempts to continue the build process.

Error messages generated by the local logic build process fall into three categories; syntax

errors, parse errors, and parse warnings.

Parser error messages have several common elements.

Filename (Line): [Severity] [error message]

Filename is the filename of the current file being built.

Line is the line number in the file that the error was detected on.

Severity describes error severity. Errors prevent a binary creation. Warnings are

informational.

Error Message is a short, general description of the error

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 302

12.8.2 Local Logic Syntax Errors
The build process enforces the local logic syntax. If the source program fails to meet this

criterion, the build process reports a syntax error. The error message identifies the error as

a syntax error. The syntactic element type found followed one or more of the syntactic

elements the parser was expecting is contained within the error message. It is common for

syntax errors to actually be reported on a line following the line with the actual error. Missing

semi-colons are a typical example.

Example:

scratch.llp (3): Error :syntax error

actual: IF expecting: ;

In this case, line 2 is actually missing the semicolon. Since the semi-colon may actually follow

on another line, the parser does not report the error until it sees a meaningful syntactic

element that isn’t a semi-colon.

Because of their nature, a single syntax error can cause “cascading errors.” Correcting one

syntax error may eliminate several syntax error messages. To avoid confusion, when

debugging Local Logic programs with syntax errors, correct the first error and rebuild the

program to refresh the list of errors before proceeding.

12.8.3 Local Logic Parse Errors
Parse errors occur when the program syntax is correct, but there is a semantic problem. For

example, it is invalid to assign a value to a double precision variable except as the result of a

multiplication operation.

Examples:

Error (P203) Invalid assignment to Double precision var: D00

In this case the error message is followed by a string that identifies the token that caused

the error. A list of Parse errors and typical causes follows:

Table 60: Local Logic Parse Errors

Error Number Error Description

(P200) Undefined identifier

The program contains an unrecognized variable or keyword. Check spelling and

command syntax.

(P201) Parameter register must be in range of P000 - P255

This error is generated when the program specifies an undefined parameter

register, for example P278.

(P202) CTL variable must be in range CTL01 - CTL32

This error is generated when the program specifies an undefined CTL variable,

for example CTL35.

(P203) Invalid assignment to Double precision var

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 303

Error Number Error Description

The program has attempted an invalid usage of one of the double precision

registers. Double precision registers may only be assigned values as the result of

a multiply operation.

(P204) Invalid use of Double precision var

The program has attempted an invalid usage of one of the double precision

registers. Double precision registers in expressions may only be used as the

divisor in a divide or MOD operation.

(P205) Assignment to read-only variable

The program has attempted to assign a value to a read-only variable.

(P206) Attempt to read write-only variable

The program has attempted to use a write-only variable as one of operands in an

arithmetic, logic, or relational expression.

(P207) Subscripted variables are not supported

Variables of the form Data_Table_Int[xx] are not supported. Data table

operations require the use of the Data_Table_Ptr variable.

(P208) Identifier name exceeds 50 chars

The program has used attempted to reference a variable with an identifier length

in excess of 50 characters.

(P209) Double Precision register must be in range D00 - D07

This error is generated when the program specifies an undefined double

precision register, for example D08.

(P220) Hexadecimal constants must be in range of 16#0 - 16#FFFFFFFF

The program has defined a hexadecimal constant that cannot be represented in

32 bits

(P221) Binary constants must be in range of 0 to (2^32)-1

The program has defined a binary constant that cannot be represented in 32 bits

(P222) Integer constants must be in range of -2147483648 to 2147483647

The program has defined a decimal constant that cannot be represented in 32

bits

(P223) Constant table overflow

A program can contain a maximum of 50 unique constants greater than 2047 or

less than –2048 (i.e. numbers that cannot be represented in less than 12 bits). A

program may contain any number of constants in the range of –2048 to 2047.

(P230) IF nesting limit of 8 levels exceeded.

IF statements cannot nest more than 8 levels deep.

(P231) Illegal term in IF statement

The program has an arithmetic operator in an IF statement.

(P232) Missing END_IF statement

There is an IF statement that is missing a matching END_IF statement. This error

is only detected at the end of the program.

(P233) Unmatched END_IF encountered

An END_IF statement has been found that doesn’t have a corresponding IF

statement.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 304

Error Number Error Description

(P240) Assignment to constant

The program has attempted to use a constant as the destination of an

assignment statement.

(P241) Invalid operator, assignment expected

Another operator was encountered where the assignment operator (:=) was

expected.

(P242) Relational operator not allowed in assignment statement

A comparison operation was attempted in an assignment statement. An

assignment based on a relational may be performed by assigning a Boolean

value in an IF statement.

(P260) Invalid logic operator. Use BWAND, BWOR, BWXOR, or BWNOT - <operator>

The program has used AND, OR, XOR, or NOT keywords, rather than BWAND,

BWOR, BWXOR, or BWNOT, respectively.

(P280) Instruction limit exceeded, max 150

A local logic program may be a maximum length of 150 statements. This error is

reported if the program exceeds that length.

(P290) Address out of range in direct memory access reference

A direct memory variable has specified an invalid offset.

(P291) Invalid direct memory address variable

An invalid direct memory variable has been specified.

(P292) Direct memory access var requires subscript

The program has referenced a direct memory variable without specifying an

offset

(P293) Maximum error count exceeded.

The Local Logic parser will report a maximum of 30 errors. When that limit has

been exceeded this message is displayed and no further errors are reported.

298-(P299) Internal Error. Contact Emerson Technical Support.

If the parser reports error 298 or 299 for a user program, please notify Emerson

technical support. Provide a copy of the program and error log.

(P300) Parse directives must precede any executable statements.

#pragma directives must appear before any executable statements in the Local

Logic program block.

(P301) Invalid directive option

The specified #pragma directive is not recognized by the Local Logic Parser.

(P302) Invalid directive parameter

An invalid argument to the #pragma errors only directive was specified. The

argument must be 1, ON, 0, or OFF.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 305

12.8.4 Local Logic Parse Warnings
Parse warnings are generated for conditions that may have unexpected results or indicate a

possible oversight in the Local Logic Program.

Table 61: Local Logic Parse Warnings

Error

Number

Error Description

(P400) Assignment to binary variable may result in loss of data

This message is generated when a Boolean variable is assigned from a non-Boolean

variable or constant, or an expression containing non-Boolean variables.

(P410) Check instruction execution time

This warning is generated for programs exceeding 100 statements. While there is a

maximum instruction limit of 150 statements, it is possible to write a Local Logic

program that takes too long to execute.

For instruction times, refer to appendix A in the PACSystems CPU Reference Manual,

GFK-2222 or Series 90-30 CPU Reference Manual, GFK-0467

(P481) Obsolete syntax: function parameter requires parentheses

The parameter of an ABS function call is not enclosed in parentheses.

(P482) Unexpected end of program: unclosed comment

A comment initiated with the “(*” character pair was not closed when the end-of-

program was encountered.

(P483) Nested comments

This warning is generated if a Local Logic program has defined comment text within

another comment.

(P490) Program contains no executable statements

The program contains only white space and/or comments.

12.8.5 Local Logic Download Error Messages
The following errors may be reported in the Module Status Code when a Local Logic

program is downloaded into the module.

Table 62: Local Logic Configuration Error Codes

Error Code

(Hexadecimal)

Response Description Error Type

0A System Error Invalid Digital Output Configuration Module

0B System Error Invalid CTL Bit Configuration Module

Note: Refer to Chapter 14 for a detailed description on configuring CTL bits and Digital Outputs for
Local Logic.

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 306

Table 63: Local Logic Preprocessing Error Codes

Error Code

(Hexadecimal)

Response Description Error

Type

F0A0 System Error Local Logic Program Header Error Module

F0A1 System Error Local Logic Program Terminator Error Module

F0A2 System Error Local Logic Program Constant Header Error Module

F0A3 System Error Local Logic Program Constant Terminator Error Module

F0A4 System Error Local Logic Program Constant Pointer Error Module

F0A5 System Error Local Logic Program Compiled Code Limit Exceeded Module

F0A6 System Error Local Logic Program Unmatched IF_THEN Error Module

F0A7 System Error Local Logic Program Unmatched END_IF Error Module

F0A8 System Error Local Logic Program Nesting Limit Exceeded Module

F0A9 System Error Local Logic Program Scan Error Module

F0AA System Error Local Logic Program Reserved Class Error Module

F0AB System Error Local Logic Program Invalid Parameter Register Module

F0AC System Error Local Logic Program Invalid Double Precision

Register

Module

F0AD System Error Local Logic Program Digital Output Error Module

F0AE System Error Local Logic Program CTL Bit Error Module

F0B0 System Error Local Logic Program Invalid Primary Operator Module

F0B1 System Error Local Logic Program Invalid Secondary Operator Module

F0B2 System Error Local Logic Program Invalid Secondary Source Module

F0B3 System Error Local Logic Program Invalid Primary Source Module

F0B4 System Error Local Logic Program Invalid Source Module

F0B5 System Error Local Logic Program Source Write Only Error Module

F0B6 System Error Local Logic Program Direct Memory Address Error Module

F0B7 System Error Local Logic Program Invalid Destination Module

F0B8 System Error Local Logic Program Destination Read Only Module

User Manual Chapter 12
GFK-1742F Jan 2020

Local Logic Language Syntax 307

12.8.6 Local Logic Runtime Errors
The following errors and warnings may be reported when a Local Logic program is executed

in the module.

Table 64: Local Logic Runtime Error Codes

Error Code

(Hexadecimal)

Response Description Error Type

91 Fast Stop Local Logic Program System Halt Commanded Module

92 Fast Stop Local Logic Execution Time Limit Exceeded Module

93 Fast Stop Local Logic Divide By Zero Module

94 Fast Stop Local Logic Divide Overflow Module

95 Status Only Local Logic Add/Subtract Overflow Module

96 Status Only Local Logic Absolute value (ABS) overflow Module

97 Status Only Local Logic Execution Time Limit Warning Module

98 Status Only Local Logic Execute on First Sweep Error Module

99 Status Only Local Logic Invalid Program Name or Not Enabled in

Hardware Configuration

Module

9A Fast Stop Local Logic Stop Error Per-Axis

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 308

Chapter 13: Local Logic Variables
This chapter describes the local logic variable types, identifies the local logic system

variables, double precision 64-bit registers, the local logic user data table, and digital

outputs/CTL variables.

13.1 Local Logic Variable Types
Local Logic accesses the motion controller variables and parameter registers using pre-

defined variable names. Refer to Table 15H13-1 through Table 20H13-6 for a complete

listing of all Local Logic variables.

Examples:

IF Actual_Position_2 > 5000 THEN ...;

IF Strobe1_Level_2 = ON THEN ...;

Storing values to variables is performed by using the “:=” assignment operator:

Examples:

Torque_Limit_2 := 8500; (* Set Torque Limit to 85% *)

Position_Loop_TC_1 := 2500 / Actual_Velocity_1;

Local Logic variables are broken down into two categories: Global Variables and Per-Axis

Variables. There are four sets of axis variables (Axis1 - Axis4). Each set of variables is

subdivided into Control variables, Status variables and Faceplate I/0 (refer to Table 65

through Table 70). A description of the terms used in the Variable Tables follows:

Variable Attribute

The attribute for each Local Logic variable is listed in Table 65 through Table 70. Variables

can be Read-Only, Write-Only or Read-Write. The Parser reports an error if the user attempts

to write to a Read-Only variable or read from a Write-Only variable.

Variable Size

Local Logic variables range in size from 1 bit (Bit Operands) to 64 Bits (for the Double

Precision Dxx registers). Refer to Table 69 through Table 70 for a listing of the size of each

Local Logic variable. Attempting to write a value larger than a given variable size will result

in the value being truncated. For example, if the result of a math operation is 32 bits long

and is assigned to a 16-bit variable only the low 16 bits will be stored. The Parser reports a

warning if a Bit Operand is used as the destination variable in a non-Boolean Math operation

(only the least significant bit of the result would be stored).

Note: The AQ command variables (Torque Limit, Velocity Loop Gain, Follower Ratio, Position Increment
and Position Loop Time Constant) may have an allowed range that is smaller than the Local Logic
variable size. The module reports a warning error code and rejects any invalid values if the
program attempts to write a value outside the valid range of an AQ command. Refer to Chapter 4
for a description of the allowed %AQ command ranges.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 309

Variable Sign

Local Logic variables that are less than 32 bits long are either Signed or Unsigned (except Bit

Operands, which are always Unsigned). All Math/Logic operations in the Logic Engine are

signed 32 bit operations (except the 64 bit signed Divide and Modulus operations). Signed

variables that are less than 32 bits long are automatically sign extended to 32 bits when they

are loaded by the Logic Engine. Unsigned variables are not sign extended. Thus the Logic

Engine handles all data conversion and limit checking automatically.

13.2 Local Logic System Variables
The First_Local_Logic_Sweep, Overflow and System_Halt variables are used exclusively in

the Logic engine and are described below.

13.2.1 First_Local_Logic_Sweep Variable
The First_Local_Logic_Sweep variable is a Read-Only Bit Operand (refer to Table 69). It is set

by the Logic Engine during the first execution sweep when Local Logic is enabled and the

host controller is in RUN mode. It is reset to zero for subsequent sweeps. Thus it can be used

in the Local Logic program to initialize some variables. For example, the code below

initializes some parameter registers and Control variables in the first sweep using the

First_Local_Logic_Sweep variable.

IF First_Local_Logic_Sweep THEN (* If it’s the First execution sweep then *)

P001 := 0; (* Initialize P001 to 0 *)

P015 := 1000; (* Initialize P015 to 1000 *)

Velocity_Loop_Gain_1 := 20; (* Set the Velocity Loop Gain for Axis 1 to 20 *)

END_IF;

13.2.2 Overflow Variable
The Overflow variable is a Read-Write Bit Operand (refer to Table 69). It is set by the Logic

Engine when an Addition, Subtraction or Absolute value (ABS) overflow occurs. A warning

error code is also reported in the Module Status Code if the Overflow flag is set and an

overflow error occurs (refer to Chapter 12). Note that the user can prevent

Add/Subtract/ABS overflow warnings from being reported by setting the Overflow variable

to zero at the end of the Local Logic program. Similarly the user can test for Overflow errors

within the Local Logic program by reading the Overflow variable and performing some

appropriate action. The Overflow variable is cleared under the following circumstances:

1. It is automatically cleared when Local Logic starts running, before the first execution

sweep.

2. It can be cleared by the user in the Local Logic program (by setting Overflow := 0;).

3. It is cleared when the user toggles the error clear Q bit.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 310

13.2.3 System_Halt Variable
The System_Halt variable is a Write-Only Bit Operand (refer to Table 69). If the Local Logic

program writes a 1 to the System_Halt variable servo motion and Local Logic execution is

halted. An error code is also reported in the Module Status Code (refer to Chapter 12). Thus

the System_Halt variable can be used to trap for fatal error conditions and perform error

recovery. The sample code below shows a possible scenario in which the System_Halt

variable might be used:

IF Overflow THEN (* Trap for an overflow *)

System_Halt := TRUE; (* Halt Local Logic Execution and Servo Motion *)

END_IF;

13.3 Double Precision 64 Bit Registers
Local Logic provides eight 64-bit registers (D00-D07) in addition to the 255 32-bit registers

(refer to Table 69). This is to allow the user to store the result of multiplying two 32-bit

numbers in a Dxx register and then perform a Divide/Modulus operation on the result.

Thus the 64 bit registers may be used under the following circumstances:

1. As the Destination register for a multiply operation.

2. As the Dividend (numerator) in a Divide/Modulus operation.

The Parser will flag an error if it is used in other operations. Example code for the use of the

Dxx registers is shown below:

D01:= P001 * 2147483647; (* Perform a Multiply operation and store in a 64 bit register

*)

P010:= D01 / 12500; (* Divide the result and store in a 32 bit register *)

Note that the above scenario may result in a Divide Overflow, if the result does not fit in a

32-bit register. A Divide Overflow will halt Local Logic execution and servo motion, since the

result of the operation is undefined (refer to Chapter 12). An error code will also be reported

in the Module Status Code.

Note: The contents of the 64-bit data registers (D00-D07) and 32-bit writeable data registers (P000-
P255) are not automatically initialized by Local Logic when it starts running. The user should
initialize any required variables using a separate Local Logic program or the
First_Local_Logic_Sweep variable or host controller ladder program.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 311

13.4 Local Logic User Data Table
Local Logic provides an 8192 Byte Circular Buffer which can be used to store and retrieve

data by the Local Logic program. Refer to Table 69 for a listing of the Data_Table variables.

The data table is accessed using indirect memory addressing. The Data_Table_Ptr variable

(the “Pointer”) is used to point to the correct Byte location in the 8192 Byte buffer.

Therefore, the Data_Table_Ptr variable size is 13 bits (0-8191 allowed range). The Pointer is

automatically incremented when a value is read from or written to the Circular Buffer. The

amount by which the pointer is incremented depends on the size of the variable accessed.

The Data_Table_Ptr is automatically initialized to 0 when Local Logic starts, before the first

execution sweep. Thus, the Data Table variables can be used to access a large pre-loaded

block of data in the Local Logic program. The following variables are used to access the

Circular Buffer:

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 312

13.5 Digital Outputs / CTL Variables
The eight Digital Outputs in the module (2 per axis) are individually configurable to be either

under host controller control (PLC Control - default) or under Local Logic (DSM) control. If

the Local Logic program writes to a particular Digital_Output variable (refer to Table 15H13-

1 through Table 20H13-6) it must be configured for DSM control. The DSM module will

reject any Local Logic programs that are downloaded with an incorrect Digital Output

configuration. Refer to Chapter 14 for a detailed description on configuring the Digital

Outputs.

CTL01-CTL24 are also individually configurable to have different input sources. Refer to

Chapter 14 for a detailed description of the configuration options. CTL25 through CTL32 are

not configurable and are always under Local Logic Control. The DSM module will reject any

Local Logic programs that are downloaded with an incorrect CTL configuration. For

example, if the Local Logic program has a statement that writes to CTL16 (e.g. CTL16 := 1;),

then CTL16 must be configured as “Local Logic Controlled” in Hardware Configuration.

CTL01 through CTL32 and the Motion program Block Numbers (variables Block_1, Block_2,

Block_3, Block_4) can be used to synchronize the Motion Program and the Local Logic

program.

Table 65: Axis 1 Variables

Local Logic Variable Name Attribute Size

FacePlate I/O

Strobe1_Level_1 Read Only Bit Operand

Strobe2_Level_1 Read Only Bit Operand

Positive_EOT_1 Read Only Bit Operand

Negative_EOT_1 Read Only Bit Operand

Home_Switch_1 Read Only Bit Operand

Digital_Output1_1 (1) Write Only Bit Operand

Digital_Output3_1 (1) Write Only Bit Operand

Analog_Input1_1 Read Only Signed 16 Bits

Analog_Input2_1 Read Only Signed 16 Bits

Control Variables

Velocity_Loop_Gain_1 Read/Write Unsigned 8 Bits

Position_Loop_TC_1 Write Only Unsigned 16 Bits

Torque_Limit_1 Write Only Unsigned 16 Bits

Follower_Ratio_A_1 Write Only Signed 16 Bits

Follower_Ratio_B_1 Write Only Signed 16 Bits

Position_Increment_Cts_1 (2) Write Only Signed 16 Bits

Reset_Strobe1_1 Write Only Bit Operand

Reset_Strobe2_1 Write Only Bit Operand

Enable_Follower_1 Write Only Bit Operand

Jog_Plus_1 Write Only Bit Operand

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 313

Local Logic Variable Name Attribute Size

Jog_Minus_1 Write Only Bit Operand

FeedHold_1 Write Only Bit Operand

Status Variables

Error_Code_1 Read Only Unsigned 16 Bits

Block_1 Read Only Unsigned 16 Bits

Actual_Position_1 Read Only 32 Bits

Commanded_Position_1 Read Only 32 Bits

Position_Error_1 Read Only 32 Bits

Strobe1_Position_1 Read Only 32 Bits

Strobe2_Position_1 Read Only 32 Bits

Actual_Velocity_1 Read Only 32 Bits

Commanded_Velocity_1 Read Only 32 Bits

Commanded_Torque_1 Read Only 32 Bits

User_Selected_Data1_1 Read Only 32 Bits

User_Selected_Data2_1 Read Only 32 Bits

UnAdjusted_Actual_Position_Cts_1 Read Only 32 Bits

UnAdjusted_Strobe1_Position_Cts_1 Read Only 32 Bits

UnAdjusted_Strobe2_Position_Cts_1 Read Only 32 Bits

Axis_OK_1 Read Only Bit Operand

Position_Valid_1 Read Only Bit Operand

Strobe1_Flag_1 Read Only Bit Operand

Strobe2_Flag_1 Read Only Bit Operand

Drive_Enabled_1 Read Only Bit Operand

Program_Active_1 Read Only Bit Operand

Moving_1 Read Only Bit Operand

In_Zone_1 Read Only Bit Operand

Position_Error_Limit_1 Read Only Bit Operand

Torque_Limited_1 Read Only Bit Operand

Servo_Ready_1 Read Only Bit Operand

Follower_Enabled_1 Read Only Bit Operand

Follower_Velocity_Limit_1 Read Only Bit Operand

Follower_Ramp_Active_1 Read Only Bit Operand

Note:

1. These Digital Outputs must be configured for Local Logic control in Hardware Configuration in
order to be write-able by Local Logic.

2. The Position_Increment_Cnts_n variable has a maximum range of ±1023 counts.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 314

Table 66: Axis 2 Variables

Local Logic Variable Name Attribute Size

FacePlate I/O

Strobe1_Level_2 Read Only Bit Operand

Strobe2_Level_2 Read Only Bit Operand

Positive_EOT_2 Read Only Bit Operand

Negative_EOT_2 Read Only Bit Operand

Home_Switch_2 Read Only Bit Operand

Digital_Output1_2 (1) Write Only Bit Operand

Digital_Output3_2 (1) Write Only Bit Operand

Analog_Input1_2 Read Only Signed 16 Bits

Analog_Input2_2 Read Only Signed 16 Bits

Control Variables

Velocity_Loop_Gain_2 Read/Write Unsigned 8 Bits

Position_Loop_TC_2 Write Only Unsigned 16 Bits

Torque_Limit_2 Write Only Unsigned 16 Bits

Follower_Ratio_A_2 Write Only Signed 16 Bits

Follower_Ratio_B_2 Write Only Signed 16 Bits

Position_Increment_Cts_2 (2) Write Only Signed 16 Bits

Reset_Strobe1_2 Write Only Bit Operand

Reset_Strobe2_2 Write Only Bit Operand

Enable_Follower_2 Write Only Bit Operand

Jog_Plus_2 Write Only Bit Operand

Jog_Minus_2 Write Only Bit Operand

FeedHold_2 Write Only Bit Operand

Status Variables

Error_Code_2 Read Only Unsigned 16 Bits

Block_2 Read Only Unsigned 16 Bits

Actual_Position_2 Read Only 32 Bits

Commanded_Position_2 Read Only 32 Bits

Position_Error_2 Read Only 32 Bits

Strobe1_Position_2 Read Only 32 Bits

Strobe2_Position_2 Read Only 32 Bits

Actual_Velocity_2 Read Only 32 Bits

Commanded_Velocity_2 Read Only 32 Bits

Commanded_Torque_2 Read Only 32 Bits

User_Selected_Data1_2 Read Only 32 Bits

User_Selected_Data2_2 Read Only 32 Bits

UnAdjusted_Actual_Position_Cts_2 Read Only 32 Bits

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 315

Local Logic Variable Name Attribute Size

UnAdjusted_Strobe1_Position_Cts_2 Read Only 32 Bits

UnAdjusted_Strobe2_Position_Cts_2 Read Only 32 Bits

Axis_OK_2 Read Only Bit Operand

Position_Valid_2 Read Only Bit Operand

Strobe1_Flag_2 Read Only Bit Operand

Strobe2_Flag_2 Read Only Bit Operand

Drive_Enabled_2 Read Only Bit Operand

Program_Active_2 Read Only Bit Operand

Moving_2 Read Only Bit Operand

In_Zone_2 Read Only Bit Operand

Position_Error_Limit_2 Read Only Bit Operand

Torque_Limited_2 Read Only Bit Operand

Servo_Ready_2 Read Only Bit Operand

Follower_Enabled_2 Read Only Bit Operand

Follower_Velocity_Limit_2 Read Only Bit Operand

Follower_Ramp_Active_2 Read Only Bit Operand

Note:

1. These Digital Outputs must be configured for Local Logic control in Hardware Configuration in
order to be write-able by Local Logic.

2. The Position_Increment_Cnts_n variable has a maximum range of ±1023 counts.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 316

Table 67: Axis 3 Variables

Local Logic Variable Name Attribute Size

FacePlate I/O

Strobe1_Level_3 Read Only Bit Operand

Strobe2_Level_3 Read Only Bit Operand

Positive_EOT_3 Read Only Bit Operand

Negative_EOT_3 Read Only Bit Operand

Home_Switch_3 Read Only Bit Operand

Digital_Output1_3 * Write Only Bit Operand

Digital_Output3_3 * Write Only Bit Operand

Analog_Input1_3 Read Only Signed 16 Bits

Analog_Input2_3 Read Only Signed 16 Bits

Control Variables

Reset_Strobe1_3 Write Only Bit Operand

Reset_Strobe2_3 Write Only Bit Operand

Status Variables

Error_Code_3 Read Only Unsigned 16 Bits

Actual_Position_3 Read Only 32 Bits

Strobe1_Position_3 Read Only 32 Bits

Strobe2_Position_3 Read Only 32 Bits

Actual_Velocity_3 Read Only 32 Bits

Axis_OK_3 Read Only Bit Operand

Position_Valid_3 Read Only Bit Operand

Strobe1_Flag_3 Read Only Bit Operand

Strobe2_Flag_3 Read Only Bit Operand

* These Digital Outputs must be configured for Local Logic control in Hardware Configuration

in order to be write-able by Local Logic.

Note: For Axis 3, the DSM314 Version 2.0 only supports the variables in Table 67.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 317

Table 68: Axis 4 Variables

Local Logic Variable Name Attribute Size

FacePlate I/O

Strobe1_Level_4 Read Only Bit Operand

Strobe2_Level_4 Read Only Bit Operand

Positive_EOT_4 Read Only Bit Operand

Negative_EOT_4 Read Only Bit Operand

Home_Switch_4 Read Only Bit Operand

Digital_Output1_4 * Write Only Bit Operand

Digital_Output3_4 * Write Only Bit Operand

Analog_Input1_4 Read Only Signed 16 Bits

Analog_Input2_4 Read Only Signed 16 Bits

* These Digital Outputs must be configured for Local Logic control in Hardware Configuration,

in order to be writeable by Local Logic.

Note: For Axis 4, the DSM314 Version 2.0 only supports the variables in Table 68.

Table 69: Global Variables

Local Logic Variable Name Attribute Size

Overflow (1) Read / Write Bit Operand

System_Halt (1) Write Only Bit Operand

Data_Table_Ptr (2) Read / Write 13 Bits

Data_Table_sint (2) Read / Write Signed 8 Bits

Data_Table_usint (2) Read / Write Unsigned 8 Bits

Data_Table_int (2) Read / Write Signed 16 Bits

Data_Table_uint (2) Read/ Write Unsigned 16 Bits

Data_Table_dint (2) Read / Write 32 Bits

Module_Error_Present Read Only Bit Operand

New_Configuration_Received Read Only Bit Operand

First_Local_Logic_Sweep (1) Read Only Bit Operand

Module_Status_Code Read Only Unsigned 16 Bits

CTL_1_to_32 (3) Read Only 32 Bits

P000-P255 Read / Write 32 Bits

D00-D07 (4) Read / Write 64 Bits

Note:

1. Refer to the Section on “Local Logic System Variables”.

2. Refer to the Section on “Local Logic User Data Table”.

3. The CTL_1_to_32 variable can be used to read all 32 CTL bits into a register.

4. Refer to the Section on ”Double Precision 64 Bit Registers”.

User Manual Chapter 13
GFK-1742F Jan 2020

Local Logic Variables 318

Table 70: CTL Bits

Local Logic Variable Name Attribute Size

CTL01 ** Read / Write Bit Operand

CTL02 ** Read / Write Bit Operand

CTL03 ** Read / Write Bit Operand

CTL04 ** Read / Write Bit Operand

CTL05 ** Read / Write Bit Operand

CTL06 ** Read / Write Bit Operand

CTL07 ** Read / Write Bit Operand

CTL08 ** Read / Write Bit Operand

CTL09 ** Read / Write Bit Operand

CTL10 ** Read / Write Bit Operand

CTL11 ** Read / Write Bit Operand

CTL12 ** Read / Write Bit Operand

CTL13 ** Read / Write Bit Operand

CTL14 ** Read / Write Bit Operand

CTL15 ** Read / Write Bit Operand

CTL16 ** Read / Write Bit Operand

CTL17 ** Read / Write Bit Operand

CTL18 ** Read / Write Bit Operand

CTL19 ** Read / Write Bit Operand

CTL20 ** Read / Write Bit Operand

CTL21 ** Read / Write Bit Operand

CTL22 ** Read / Write Bit Operand

CTL23 ** Read / Write Bit Operand

CTL24 ** Read / Write Bit Operand

CTL25 Read / Write Bit Operand

CTL26 Read / Write Bit Operand

CTL27 Read / Write Bit Operand

CTL28 Read / Write Bit Operand

CTL29 Read / Write Bit Operand

CTL30 Read / Write Bit Operand

CTL31 Read / Write Bit Operand

CTL32 Read / Write Bit Operand

** CTL bits 1 through 24 are individually configurable in Hardware Configuration (refer to the

Chapter 14 “Local Logic Configuration”). CTL01-24 can be written by Local Logic only if

configured as “Local Logic Controlled” in Hardware Configuration.

User Manual Chapter 14
GFK-1742F Jan 2020

Local Logic Configuration 319

Chapter 14: Local Logic Configuration

14.1 CTL Bit Configuration
The programming software environment allows you to configure the input source for CTL

bits (CTL01-CTL24) using the Hardware Configuration screen. From the Hardware

Configuration screen, select the DSM314 module you wish to configure. Refer to chapter 4

for information on using Hardware configuration. The DSM314 configuration screens

contain a tab called CTL Bits. Selecting this tab results in a display similar to the one shown

in Figure 142.

Figure 142: CTL Bits Configuration

The configuration screen allows the user to select the CTL bit configuration that

corresponds with the Motion Program and Local Logic program. The sections that follow

provide additional information concerning the CTL bit configuration process.

User Manual Chapter 14
GFK-1742F Jan 2020

Local Logic Configuration 320

14.2 CTL bits CTL01-CTL32
• CTL01 - CTL24 are configurable CTL bits.

• CTL25 - CTL32 are non-configurable CTL bits providing Local Logic read and Local

Logic write.

Table 71: CTL Bit Summary for DSM314

Identifier %I Bit Faceplate

Inputs

%Q bit Local Logic

Read

Local Logic

Write

SNAP1 Write SNAP1 Read

CTL01-CTL08 X Config Config X Config Config X

CTL09-CTL12 Config Config X Config Config

CTL13-CTL16 X Config Config X Config Config

CTL17-CTL24 Config Config X Config Config

CTL25-CTL32 X X

1 Series 90-30 only feature. SNAP is equivalent to Fast Backplane Status Access (FSBA). See GFK-0467L or later for

details.

The figure below illustrates the sources that write to CTL bits and the destinations that

read CTL bits:

Figure 143: CTL Bit Source/Destinations

User Manual Chapter 14
GFK-1742F Jan 2020

Local Logic Configuration 321

14.3 CTL01-CTL24 Bit Configuration Selections
Each of the bits CTL01-CTL24 are individually configurable. CTL17-CTL24 default to the %Q

digital output control bits for axis 1 - axis 4. The configuration choices are shown in the

following table.

Table 72: CTL Bit Configuration Selections

CTL Bits Allowed Configuration Values

for Bit Source

Description

CTL01-CTL24 IN9_A Overtravel (+) Axis 1

IN10_A Overtravel (-) Axis 1

IN11_A Home Switch Axis 1

IN9_B Overtravel (+) Axis 2

IN10_B Overtravel (-) Axis 2

IN11_B Home Switch Axis 2

IN9_C Faceplate 24v Input Axis 3

IN10_C Faceplate 24v Input Axis 3

IN11_C Home Switch Axis 3

IN9_D Faceplate 24v Input Axis 4

IN10_D Faceplate 24 v Input Axis 4

IN11_D Faceplate 24 v Input Axis 4

Strobe1 Level Axis1 Input Strobe1 Level Axis 1

Strobe2 Level Axis1 Input Strobe 2 Level Axis 1

Strobe1 Level Axis2 Input Strobe 1 Level Axis 2

Strobe2 Level Axis2 Input Strobe 2 Level Axis2

Strobe1 Level Axis3 Input Strobe 1 Level Axis 3

Strobe2 Level Axis3 Input Strobe 2 Level Axis 3

IN5_D Faceplate 5v Input Axis 4

IN6_D Faceplate 5v Input Axis 4

Local Logic Write CTL bit under Local Logic control

Local Logic Active Flag Local Logic Program Active

SNAP Write Bit 1 Serial Non-Acknowledge Protocol (FBSA) Bit 1

SNAP Write Bit 2 Serial Non-Acknowledge Protocol (FBSA) Bit 2

SNAP Write Bit 3 Serial Non-Acknowledge Protocol (FBSA) Bit 3

SNAP Write Bit 4 Serial Non-Acknowledge Protocol (FBSA) Bit 4

%Q bit Offset 12 CTL09 Program Control

%Q bit Offset 13 CTL10 Program Control

%Q bit Offset 14 CTL11 Program Control

%Q bit Offset 15 CTL12 Program Control

%Q bit Offset 24 Faceplate 24v Output Control Axis 1 (OUT1_A)

%Q bit Offset 25 Faceplate 5v Output Control Axis 1 (OUT3_A)

User Manual Chapter 14
GFK-1742F Jan 2020

Local Logic Configuration 322

CTL Bits Allowed Configuration Values

for Bit Source

Description

%Q bit Offset 40 Faceplate 24v Output Control Axis 2 (OUT1_B)

%Q bit Offset 41 Faceplate 5v Output Control Axis 2 (OUT3_B)

%Q bit Offset 56 Faceplate 24v Output Control Axis 3 (OUT1_C)

%Q bit Offset 57 Faceplate 5v Output Control Axis 3 (OUT3_C)

14.4 FBSA Function and CTL Bit Assignments
The backplane Fast Backplane Status Access (FBSA) function will write 4 bits to the DSM and

read 8 bits. The FBSA function is mapped as shown in the following table.

FBSA is a Series 90-30 only feature. For information on the FBSA service request, refer to the

Series 90-30/20/Micro PLC CPU Instruction Set Reference Manual, GFK-0467L (or later).

Table 73: FBSA Bit CTL Bit Assignments

FBSA Read CTL01-CTL08 CTL01-CTL08 each have an individually configurable source that

includes Local Logic or any DSM faceplate input. The bits are

always readable as PLC %I bits and FBSA inputs.

FBSA Write CTL01-CTL24

(Configurable)

FBSA Write Bits 1-4 can be configured as the source for any of the

bits CTL01-CTL24.

FBSA Write Bits 1-2 are the default source for CTL23-24.

14.5 Faceplate Output Bit Configuration
The programming environment, through Hardware configuration, allows you to configure

the DSM314 faceplate digital outputs for either Local Logic program control or host

controller program control. The DSM314 configuration screens contain a tab (Output Bits).

Selecting this tab results in a display similar to the one shown in Figure 144.

Figure 144: Output Bit Configuration

User Manual Chapter 14
GFK-1742F Jan 2020

Local Logic Configuration 323

The following table describes the faceplate outputs that can be controlled from Local Logic

or the host controller.

Table 74: Faceplate Output Bit Description

Signal Name Description

OUT1_A Faceplate 24v (SSR) Output Axis 1

OUT3_A Faceplate 5v Output Axis 1

OUT1_B Faceplate 24v (SSR) Output Axis 2

OUT3_B Faceplate 5v Output Axis 2

OUT1_C Faceplate 24v (SSR) Output Axis 3

OUT3_C Faceplate 5v Output Axis 3

OUT1_D Faceplate 24v (SSR) Output Axis 4

OUT3_D Faceplate 5v Output Axis 4

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 324

Chapter 15: Using the Electronic CAM

Feature
This chapter describes the electronic CAM function, which was introduced in DSM314

release 2.0. An electronic CAM is analogous to a mechanical CAM. In most cases, an

electronic CAM not only can replace the traditional mechanical CAM but also performs many

functions not achievable with its mechanical counterpart. For example, an electronic CAM

never mechanically wears out.

15.1 Electronic CAM Overview
Electronic CAMs are used in the machine industry to perform complex motions that require

tight coordination between axes. There are many examples of applications that fit these

requirements. Some examples are a simple rotary knife application shown in Figure 145 and

Figure 146. In this application, the conveyor belt position serves as the master position,

while the cutting knife is the slave. Since the knife position is linked to the master position,

the knife always tracks the master position even when the line is accelerating or

decelerating.

Figure 145: Rotary Knife Position to Position table

Figure 146: Rotary Knife Application

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 325

Another example application is a bottle filling line (reference Figure 147 and Figure 148). In

this case, the lift that raises and lowers the bottles serves as the CAM master. The slave is the

plunger that pushes the fluid into the bottle. In this example, the bottles have a curved

shape. Thus the fill rate must be varied to account for this shape

Figure 147: Filling Application Position to Position Table

Figure 148: Filling Application

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 326

15.2 Basic Cam Shapes/Definition
Electronic Cams duplicate the behavior of their mechanical counterparts. The following

figure illustrates the elements of a basic mechanical cam system and shows the Slave

Position for two positions of the Master Cam. As the Master Shaft rotates, the Master Cam,

which is fastened to the Master Shaft, rotates as well. The Cam Follower (which is a ball

bearing mounted to the Offset Link Arm) rolls on the Master Cam as the Master Cam rotates.

The Cam Follower either pushes up or pulls down on the Offset Link Arm, depending on the

position of the Master Cam. The Lever Arm, which is coupled to the Offset Link Arm, moves

up and down in turn, pivoting on the Fulcrum as the Offset Link Arm moves. Besides the

Master Cam shape, additional parameters that affect slave motion are the Cam Phase value

(the amount that the Master Cam position is offset from the Master Shaft position), the

Offset Length of the Offset Link Arm, and the Follower Amplitude (based on the Fulcrum

position). These mechanical parameters all have Electronic Cam counterparts.

Figure 149: CAM Model

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 327

15.3 CAM Syntax
This section covers some critical features of the CAM feature and introduces the CAM

Motion Program statements and error codes.

15.3.1 CAM Types
An important concept concerning the CAM function is the different CAM types available.

The CAM profiles can be one of the following types:

1. Non-Cyclic CAM

2. Linear Cyclic CAM

3. Circular Cyclic CAM

The following sections describe each of these CAM types.

Non-Cyclic CAM

A Non-Cyclic CAM has a unique non-repeating profile for the whole range of Master position

values. The CAM exits when either boundary of the CAM profile is reached. The CAM can also

exit if an external event is configured to trigger a conditional Jump. The User Units to Counts

ratio specified for the Master and Slave axes when configuring a Non-Cyclical CAM must

match the User Units:Counts ratio specified for the corresponding axes in Hardware

Configuration. Also, the maximum and minimum position values for the slave and master

axes must lie within the High/Low position limits specified for the corresponding axes in

Hardware Configuration.

Linear Cyclic CAM

A Linear Cyclic CAM has a profile that keeps repeating until an event causes it to exit.

Furthermore, the numerical and physical end points of the CAM slave axis are the same as

the starting point of the cycle. A reciprocating crankshaft is an example of a Linear Cyclic

CAM. The User Units to Counts ratio specified for the master and slave axes when

configuring a CAM profile must match the User Units per Counts value for the corresponding

axes in Hardware Configuration. Figures 145 and 146 show an example of a Linear Cyclic

CAM application.

Constraint: The first and last slave point must be the same for a Linear Cyclic CAM. The CAM

Editor will not display the option for “Linear Cyclic” in the “Cam Type” field unless this

constraint is satisfied by the data in the CAM table.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 328

Note:

1. For any Cyclic CAM, the master High/Low Position limits in Hardware Configuration must be set
up according to the master rollover points in the CAM profile. The master axis Low Limit must
equal the first master position in the profile. The master High Position Limit must be equal to the
(Last Master Position – 1) in user units. This is because a cyclic profile's first and last point are the
same on the physical device.

2. For any Cyclic CAM, the master High/Low Position limits in Hardware Configuration must be set
up according to the master rollover points in the CAM profile. The master axis Low Limit must
equal the first master position in the profile. The master High Position Limit must be equal to the
(Last Master Position – 1) in user units. This is because a cyclic profile's first and last point are the
same on the physical device.

Figure 150: Linear Cyclic CAM

Circular Cyclic CAM

A Circular Cyclic CAM has a profile that keeps repeating until an event causes it to exit.

Furthermore, a Circular Cyclic CAM has different numerical start and end slave axis positions

(see Figure 151). Both the master axis and the slave axis roll over at the profile end points. A

rotary knife is an example of a Circular Cyclic CAM.

Constraint: The entire slave profile (including interpolated values) must lie between the

minimum and maximum slave position limits, where the minimum and maximum slave

limits are defined as follows:

Minimum Slave Value Maximum Slave Value Condition

First Slave Point Last Slave Point Last Point > First Point

Last Slave Point First Slave Point Last Point < First Point

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 329

Note:

1. The Editor will not display “Circular Cyclic” as an option in the “CAM Type” field unless the
constraint described above is satisfied.

2. For Cyclic CAMs, the master High/Low Position limits in Hardware Configuration must be set up
according to the master rollover points in the CAM profile. The master axis Low Limit must equal
the first master position in the profile. The master High Position Limit must be equal to the (Last
Master Position – 1) in user units. This is because a cyclic profile's first and last point are the same
on the physical device. (for example, 0° and 360° on a circular knife).

3. For a Circular Cyclic CAM, both the master axis and the slave axis rolls over at the profile's end
points. The High and Low position limits for the slave axis are set (in Hardware Config.) as follows:

− If the minimum slave position is the profile's first point and the maximum slave position is
the last point, set the Low Position Limit to the first point's slave value and the High Position
limit to the (last point's slave value – 1).

− If the minimum slave position is the profile's last point and the maximum slave position is
the first point, set the Low Position Limit to the (last point's slave value + 1) and the High
Position Limit to the first point's slave value.

Figure 151: Circular Cyclic CAM

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 330

15.3.2 Interpolation and Smoothing
One key CAM feature is the interpolation scheme used to define the CAM profiles. The

following is a reprint of a section from the CAM Editor help system. It is included in this

section to not only introduce these important concepts, but also to encourage you to

explore the CAM Editor on-line help for additional information.

The CAM editor employs spline polynomial interpolation to define regions of a profile that

fall between user-defined points. This approach reduces the memory required for profile

storage on the target motion module while providing accurate and smooth motion

trajectories. Without this interpolation scheme, a large number of data points, thus a large

amount of memory, would be needed to define each profile.

A CAM profile is defined with a minimum number of actual data points. After these points

are defined they are grouped into sectors; a profile is composed of one or more sectors. For

each sector, you specify the curve-fit order (1, 2 or 3). The higher the order, the smoother

the curve-fit. The curve-fit order is the order of the polynomial curves used to define the

regions of the sector not specified by user-defined points. Unique curve-fit polynomial

coefficients are generated for each segment of a sector (that is, between each pair of user-

defined points). The coefficients of the polynomials are calculated to include the user-

defined points and to match the slope of the profile on either side of a user- defined point

(except for 1st order sectors).

Figure 152: Windowing Strobes Example

The polynomial curves for a position profile are described by the following function:

Y(X) = An-1(Xn-Xn-1)3 + Bn-1(Xn-Xn-1)2 + Cn-1(Xn-Xn-1) + Yn-1

Where:

Y = slave position value for a master position X.

Xn-1 = master position value at point n-1.

An-1, Bn-1, Cn-1 = curve-fit coefficients at point n-1.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 331

Note:

• For a given master position X, that lies between Xn-1 and Xn, the coefficients A, B and C are selected
for the point corresponding to Xn-1.

• For a second order curve-fit, the A coefficient is always zero, and for a first order curve-fit, both the
A and B coefficients are always zero.

Blending Sectors

The process applied to blend adjacent sectors depends on their curve-fit order. The

following descriptions cover the possible scenarios.

1st order to 1st order

No action is taken to smooth the transition between successive linear sectors (that is, with

curve-fit order of 1). The profile simply connects the end point of one sector to the start

point of the next with a straight line.

1st order to 2nd order

When a quadratic (2nd order) sector follows a linear (1st order) sector, the polynomial

coefficients for the first segment of the quadratic sector are calculated so that the slope of

the profile is equal on either side of the starting point of that sector. That is, the initial slope

of the quadratic sector is made equal to the final slope of the linear sector.

2nd order to 1st order

When a linear (1st order) sector follows a quadratic (2nd order) sector no action is taken to

smooth the transition. This type of transition is not recommended (if it is avoidable) as it

may result in drastic velocity or acceleration changes on the controlled servo.

2nd order to 2nd order

When a quadratic (2nd order) sector follows another quadratic (2nd order) sector the

polynomial coefficients for the first segment of the second quadratic sector are calculated

so that the slope of the profile is equal on either side of the starting point of that sector. That

is, the initial slope of the second quadratic sector is made equal to the final slope of the first

quadratic sector.

2nd order to 3rd order

When a cubic (3rd order) sector follows a quadratic (2nd order) sector the polynomial

coefficients for the first segment of the cubic sector are calculated so that the slope of the

profile is equal on either side of the starting point of that sector. That is, the initial slope of

the cubic sector is made equal to the final slope of the quadratic sector.

3rd order to 2nd order

When a quadratic (2nd order) sector follows a cubic (3rd order) sector the polynomial

coefficients for the first segment of the quadratic sector are calculated so that the slope of

the profile is equal on either side of the starting point of that sector. That is, the initial slope

of the quadratic sector is made equal to the final slope of the cubic sector.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 332

3rd order to 3rd order

When two cubic (3rd order) sectors are adjacent, the slopes of the profile before and after

the point they meet are made equal. Also, the 2nd derivatives of the profile before and after

the point the sectors meet are made equal. The curve-fit polynomial coefficients for the two

adjacent segments are calculated simultaneously.

Boundary Conditions

For non-cyclic profiles it is necessary to define some condition at the start and end of a

profile for the purpose of calculating curve-fit polynomial coefficients. The start or end

boundary condition can be:

• The numerical value of the profile's 1st derivative (slope).

• The numerical value of the profile's 2nd derivative.

• Based on a default calculation.

The default calculations are as follows:

• Start Boundary. The slope at the start point of the profile is calculated by temporarily

fitting a polynomial curve to the first three (2nd order sector) or four points (3rd order

sector) and calculating the slope of the temporary polynomial at the first point.

• End Boundary. The slope at the end point of the profile is calculated by temporarily

fitting a polynomial curve to the last four points (3rd order sector) and calculating the

slope of the temporary polynomial at the end point.

15.3.3 Interaction of Motion Programs with CAM
CAM motion shall be initiated in the DSM314 using instructions in the motion program. The

following new motion instructions are required to support CAM motion programming:

1. CAM: Used in the motion program to start CAM motion and specify exit conditions.

2. CAM-LOAD: Used to load a parameter register with the starting location for a CAM

slave axis. The PMOVE command can be used in conjunction with the CAM-LOAD

command to move a slave axis to the starting point.

3. CAM-PHASE: Used to specify a Phase for CAM commands. The phase value may be

specified either through a parameter register or as a constant.

The following sections describe the syntax and functionality of each of the above

instructions in more detail. The convention used to specify the command syntax is as

follows:

‘<>’ brackets- indicates a required field.

‘[]’ brackets- indicates an optional field.

‘{}’ brackets- indicates a field that is required for multi-axis programs and subroutines

but is illegal for single axis programs and subroutines.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 333

15.3.4 CAM Command
The CAM command is used to program a CAM move using the specified CAM profile.

Syntax:

CAM <”CAM Profile Name”>, <distance>, <master mode>, [Cyclic Exit Condition]

Parameter Description

<”CAM Profile Name”> Name of the CAM Profile from the CAM Library (the profile must be

linked to the CAM Download block). This name is limited to 20

characters maximum (also, see Note 3 below). Note that the quotes

around the name are required.

<distance> Maximum distance the master axis can travel once the CAM is active

(in user units)

Distance can be a constant , a parameter or the keyword NONE.

Allowed Range: –MaxPosn …. (MaxPosn-1) uu/cts

<master mode> Master mode can be declared as ABS (absolute) or INCR (incremental);

this indicates how the master position data is interpreted.

In ABS mode, an absolute master axis position is used to determine a

slave value from the CAM table. In INCR mode, the master value at the

starting point of a CAM command is assumed to be equal to the

“CAM-phase” value, and the slave values calculated during CAM

motion are relative to this start master value.

[Cyclic Exit Condition] Specifies an exit condition for Cyclical CAMs. The allowed range is

CTL01-CTL32. If the CTL bit evaluates to True, the Cam exits at the end

of the current cycle. Note that this parameter must not be used for a

Non-Cyclic CAM profile.

Note:

1. The CAM instruction is not permitted in a Multi-Axis motion program.

2. A CAM command counts as two instructions towards the 1000 instruction limit in a motion
program.

3. The Profile Names UDT_CAM_1, UDT_CAM_2, UDT_CAM_3 and UDT_CAM_4 are reserved for
future usage.

The <distance> argument in the CAM command is used to define the maximum distance

the master can travel through the profile before exiting. For Cyclic CAMs, the distance can

be either greater than or less than the length of the CAM table (defined as the absolute

difference between the first and last master positions in the CAM table). If the distance is

less than the length of the table, the CAM command exits once the distance has been

traversed. If the distance is greater than the length of the table, the CAM will cycle through

the CAM table until the distance is reached. Thus, the user may set up the number of times

a Cyclic CAM should be executed. For example, a distance of 2.5 times the length of the CAM

Table Master Position will cause the CAM profile to execute two and one-half times and then

exit. For non-Cyclic CAMs, the specified distance cannot exceed the length of the table.

The distance can also be specified as “NONE”. For a Cyclical CAM, this will result in

continuous CAM motion until a CTL bit triggers an exit or motion is aborted. For a non-

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 334

cyclical CAM, specifying “NONE” means the CAM will exit when it reaches either the

minimum or maximum master position of the profile.

The [master mode] is used to specify whether the master axis operates in Absolute or

Incremental mode. The master axis may be operated in absolute or incremental mode for

both Cyclic and Non-Cyclic CAMs. In Absolute mode, the master positions in the table

represent the absolute positions of the master axis. In Incremental mode, the slave axis

positions in the table are relative to the master axis position when the CAM instruction is

initiated.

The [Cyclic Exit Condition] is used to specify an exit condition for a Cyclic CAM profile. If the

CTL condition evaluates to TRUE, the CAM will exit at the end of the current cycle.

Bi-directional and Unidirectional CAMs can be defined by using the +Vlim and -Vlim master

axis velocity limit parameters. For Unidirectional operation, the appropriate velocity limit

must be set to zero for the direction in which motion is prohibited. For example, if motion

in the negative direction is prohibited, then –Vlim must be set to zero.

15.3.5 CAM-LOAD Command
The CAM-LOAD command is used to load the slave axis position into a parameter register.

A regular PMOVE command can then be used to move the slave axis to the loaded position.

The CAM-LOAD command uses the CAM profile name, actual master position and phase

(specified using the CAM-PHASE command) to determine the starting point for the slave

axis.

Syntax:

CAM-LOAD <”CAM profile name”>, <Parameter Number>, <master mode>

Parameter Description

<”CAM Profile Name”> Name of the CAM Profile from the CAM Library (the profile must be

linked to the CAM Download block). This name is limited to a

maximum length of 20 characters (also, see Note 3 below). Note that

the quotes around the name are required.

<Parameter Number> Specifies the Parameter Number to load.

<master mode> Master mode can be declared as ABS (absolute) or INCR (incremental);

this indicates how the master position data is interpreted in the slave

start position calculation.

In ABS mode the absolute master axis position is used to determine

the corresponding slave starting position value from the CAM table.

In INCR mode, the master value is assumed to be equal to the CAM-

Phase in the calculations.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 335

Note:

1. A CAM-LOAD command counts as two instructions towards the 1000 instruction limit in a
motion program.

2. When a CAM-LOAD command is executed, the following sequence of actions is performed:

A. The current master position is read.

B. Using the master position, CAM-Phase value, the CAM profile table, and CAM configuration
table, the appropriate position of the slave axis is calculated and loaded into the designated
parameter register.

C. The motion program can use a PMOVE instruction to move the slave axis to the position
calculated in step B.

3. The names UDT_CAM_1, UDT_CAM_2, UDT_CAM_3 and UDT_CAM_4 are reserved for future
use and cannot be used for CAM Profile Names.

15.3.6 CAM-PHASE Command
The CAM-PHASE command is used to specify a phase for CAM commands. This command

lets you offset or shift the phase relationship between the master position and follower

position. The phase value may be specified either through a parameter register or as a

constant. Note that a phase value is active for all CAM instructions that follow it, until

modified by another CAM-PHASE command. The default Cam Phase value for a motion

program is 0.

Syntax:

CAM-PHASE <Phase>

Parameter Description

<Phase> The CAM phase value specified as a constant or a Parameter Register.

Allowed Range for constant: –MaxPosn …. (MaxPosn-1)

15.3.7 CAM and MOVE Instructions
A series of CAM commands may execute without any dwells or interruptions. To obtain

smooth motion you must ensure that the starting point on each subsequent CAM profile is

the same as the ending point of the preceding CAM profile. This ensures a continuous

position and velocity trajectory. For a sequence of Non-Cyclic CAMs, the starting and ending

points may be adjusted in the CAM Editor to obtain smooth transitions. Transitions between

CAM and MOVE commands while the slave axis is moving are not permitted at this time.

Consequently, the slave axis must have a start velocity equal to 0 at the transition point

between a CAM and MOVE command. When a CAM command exits, if it is not immediately

followed by another CAM command, the axis will use the programmed acceleration rate to

decelerate to a stop.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 336

15.3.8 Time-Based CAM Motion
The implementation of a time-based CAM profile employs the same mechanism as a regular

CAM (position-based master). In order to program a time-based CAM profile, the CAM

master source should be configured as “Commanded Position” of Axis 3 in the DSM314

module hardware configuration, with the Axis 3 mode set to “Auxiliary Axis.” A constant

velocity command is then initiated on Axis 3. The effective time scale of the CAM motion is

determined by the scaling of the master in the profile source file and the User Units-to-

Counts conversion factor defined in Hardware Configuration. A time-based CAM motion

command can be executed simultaneously on multiple axes.

15.3.9 CAM Scaling Editor and Hardware Configuration
The DSM module allows the user to scale the position feedback device resolution versus the

module programming units. For example suppose 1 motor revolution corresponded to 1

inch of travel for the driven load. In this example, the motor connected to the driven load

has an encoder that produces 8,192 counts per motor revolution. Thus, 8,192 feedback

counts equals 1 inch of load travel. Some users would find it easier to program motion in

inches rather than in feedback counts. In this case, you could set up the scaling to program

motion in thousandths of an inch. To obtain this result, set the User Units to

Counts ratio to be 1000 to 8192 in the DSM hardware configuration. Additional information

on specifying these values is located in Chapter 5.

The CAM feature also supports application-specific units. However, you are required to

manually transfer the values entered in hardware configuration to the appropriate area

within the CAM editor.

Note: You must transfer these values for both Master and Slave axes. Building on the prior example,
suppose both the master and the slave axes had equivalent motors. Therefore, each feedback
device has the same 8,192 counts per revolution. However, for the master, one motor revolution
equals 1 inch of load travel, while for the slave, one motor revolution equals .5 inches of load
travel. To make the programs easier to understand, you should program the master and slave in
the same units. In this example, units of 0.001 inch are used. To obtain this result, first determine
the correct user units to counts ratios for the master and the slave.

To determine the ratio, apply the following equation

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 337

You then need to enter these values in the appropriate locations in hardware configuration.

In this example, Axis #2 is the master and Axis #1 is the slave. Therefore, enter the User Units

and Count values into hardware configuration for the slave as shown in Figure 153.

Figure 153: Slave User Units/Counts Hardware Configuration

The Master User Units/Counts value would be entered as shown in Figure 154

Figure 154: Windowing Strobes Example

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 338

This tells the module the correct scaling to use when it runs motion programs. However, the

CAM Editor also needs to know the correct scaling to perform the proper transformations

from user units to counts. For this example, this data must be entered into any CAM profiles

that are to run on these axes. An example is shown in Figure 155.

Figure 155: Slave and Master User Units/Counts CAM Editor

It is recommended that the scaling operations be performed before programming any

CAMs that do not have one-to-one scaling. This is suggested is to avoid the need to reenter

data. The CAM editor displays the master/slave data in User Units. Therefore, if you do not

define your scaling and enter all the CAM data, by default you have chosen 1 to 1 scaling.

When you finally correct this error and enter the correct scaling, you will note that all non-

zero numbers in the CAM data tables have changed to reflect the new User Units values.

The following section discusses how the CAM editor rounds values when you are entering

data. This function is performed automatically and does not require you to perform or

configure the editor in any special way.

Note that, internally, the DSM works in native feedback units and converts the native units

to User Units automatically for the user. The module performs this operation to take full

advantage of all the available feedback resolution. This includes when a user has chosen to

program motion in units that are not the full resolution of the feedback device. The CAM

Editor also seeks to maintain all the resolution that is available (without showing false

resolution) for a given motor/feedback set. Therefore, when you specify scaling within the

CAM editor, the editor will, in some cases, add decimal places to the data table. Additionally,

it automatically rounds numbers to values that can be represented as integer numbers of

feedback unit counts. The sample cam table in Table 75 is based on the previous example.

Note that the CAM Editor displays values in User Units, but always rounds them to an integer

value in counts.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 339

Table 75: CAM Example Data Scaled in Inches

Master Position (Inches) Slave Position (Inches)

0 0

0.075 0.075

0.5 0.25

1 0.5

The table above is shown in inches. In this example, the CAM is programmed in 1000th of an

inch. Therefore, convert the values and enter the data into the CAM Editor as shown in Table

76.

Table 76: CAM Example Data Scaled in .001 Inches

Master Position (1000th of In) Slave Position (1000th of In)

0 in =0 thousandth of in 0 in = 0 thousandth of in

.075 in = 75 thousandth of in .075 in = 75 thousand of in

.5 in = 500 thousandth of in .25 in = 250 thousandth of in

1 in = 1000 thousandth of in .5 in = 500 thousandth of in

When you enter the data into the CAM editor (Figure 156), some values are automatically

changed by the CAM editor.

Figure 156: CAM Data Table User Units Example

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 340

The CAM Editor automatically changes the values to correspond to an integer number of

feedback counts. The Editor also rounds the displayed values to limit clutter within the table.

Note that the editor maintains the variable’s precision and it is only the display that is

rounded. The functions that are automatically performed by the CAM editor are illustrated

below. First determine the integer feedback counts that are the closest to the desired

values. For this example, only two numbers cannot be exactly represented. These are the

Master Position of 75 and the Slave Position of 75. The closest integer count value to these

values is 614 counts and 1,229 counts for the master and slave respectively. The relationship

between the Master Position and Slave Position with respect to User Units and Counts is

shown in Table 77.

Table 77: Relationship Between User Units and Counts in Scaling Example

Master Position

(User Units)

Master Position

(Counts)

Slave Position (User

Units)

Slave Position

(Counts)

0 0 0 0

74.951171875 614 75.01000000000001 1229

500 4096 250 4096

1000 8192 500 8192

This agrees with the functions that where automatically performed by the editor. Note that

for the Master Position of 74.951171875, the editor rounds to 75.0. For the Slave Position

of 75.01000000000001, the editor rounds to 75.01.

15.3.10 Synchronization of CAM Motion with External Events
The following mechanisms allow the programmer to synchronize CAM motion with external

events:

• The start of CAM motion can be synchronized with an external event by using the

existing WAIT command in a motion program.

• A Cyclic CAM can be synchronized with a strobe using Local Logic variables. Refer to

Chapter 11-14 for additional information concerning Local Logic.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 341

15.3.11 CAM-Specific DSM Error Codes

Table 78: CAM Specific Error Codes

Error

Code

(hex)

Response Description Error

Type

Possible Cause

Cam Program Error Codes

2A Normal Stop Cyclic CAM CTL Exit

condition specified for

Non-Cyclic CAM

Axis CTL exit conditions are permitted

for Cyclic CAMs only. The motion

program contains a non-cyclic CAM

instruction with a CTL exit

condition.

2B Normal Stop CAM Phase out of range Axis The CAM PHASE value is outside the

axis position range.

CAM Configuration Error Codes

2D Normal Stop CAM Master Axis Config

Error – master profile does

not match master axis

configuration

Axis The User-Units:Counts ratio

specified for the master axis in the

Editor and Hardware Config are not

compatible and/or

The High/Low Position Limit

specified for the master axis in

Hardware Config is not compatible

with the profile. Refer to the section

on CAM Types for a detailed

description on setting up the

High/Low Position Limits.

2E Normal Stop CAM Slave Axis Config

Error – slave profile does

not match slave axis

configuration

Axis The User-Units : Counts ratio

specified for the slave axis in the

Editor and Hardware Config are not

compatible and/or

The High/Low Position Limit

specified for the slave axis in

Hardware Config is not compatible

with the profile. Refer to the section

on CAM Types

for a detailed description on setting

up the High/Low Position Limits.

2F Normal Stop CAM Slave Axis SW EOT

mode cannot be enabled

for Cyclic Circular CAM

Axis

Configuration Parameter Error Codes

1D Normal Stop Attempt to use CAM,

CAM-Load, or CAM- Phase

commands with Follower

Mode

Axis If using CAM, ensure that Follower

Mode is not configured (Follower

Mode cannot be used when using

CAM).

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 342

Error

Code

(hex)

Response Description Error

Type

Possible Cause

If using Follower Mode, ensure that

CAM commands are not present in

motion program (CAM cannot be

used when Follower Mode is

configured).

CAM Execution Error Codes

66 Normal Stop CAM Profile not found in

CAM Download Block

Axis The Cam profile was not linked to

the CAM Download block in the

CAM Editor and/or the CAM

Download block name was not

specified in Hardware Config.

67 Normal Stop CAM Exit Distance out of

range (Non-Cyclic CAMs)

Axis The exit distance for a Non-Cyclic

CAM was greater than the modulus

for the CAM.

68 Status Only (Correction Enabled)

Velocity Command

Limited due to Velocity

Limit violation or Position

Error Limit violation

Axis

68 Normal Stop (Correction Disabled) CAM

velocity command above

configured axis velocity

limit

Axis

6A Normal Stop CAM Position Error Limit

Violation (with Correction

Disabled)

Axis

6B Status Only CAM commanded position

at the exit different from

CAM profile value due to

position error or velocity

limit

Axis

6C Normal Stop CAM master value out of

profile master range for

Non-Cyclic profile (CAM

and CAM-LOAD

commands)

Axis

6D Normal Stop Absolute mode CAM after

incremental mode CAM in

the sequence

Axis

6F Fast Stop CAM trajectory calculation

error

Axis Contact Emerson

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 343

15.4 Electronic Cam Programming Basics
This section contains an introduction to the basic electronic CAM programming concepts.

The Local Logic function, and motion programming are not discussed in detail in this

section, since they are discussed in other chapters in this manual.

15.4.1 Requirements
The Local Logic, CAM editor, and Motion Program editors are integrated within the

programming software environment. You need one of the following software packages:

• CIMPLICITY Machine Edition Logic Developer – PLC version 2.1 or later

• VersaPro version 1.1 or later (Series 90-30 only. For details, refer to Appendix H.) The

CAM feature requires DSM314 firmware release version 2.0 or later.

15.4.2 Introduction to Electronic Cam Programming
The electronic CAM function works with the DSM314 motion program, DSM314 Local Logic

program, and the Host Controller programming environment. Specifically, the electronic

CAM function allows you to specify precise position-to-position relationships between a

master axis and a slave axis. This ability is critical to many applications where very tight

synchronization between axes is an absolute requirement.

The CAM Editor tool allows you to specify these position-to-position relationships, called

profiles, graphically, in tabular form, or a combination of both. These profiles are stored to

the DSM module where they are accessed through the DSM motion programs.

CAM Profiles must be linked to their associated CAM block. The CAM block is linked to the

DSM via the CAM Block entry in Hardware configuration.

A CAM block can contain numerous CAM profiles. The DSM has two limits that affect the

number of profiles. The maximum CAM block size is 50Kbytes, and the maximum number

of linked profiles for an individual block is 100. The CAM Profile library is only limited by

available disk space on the host computer.

The basic CAM concepts are illustrated with a simple example.

Creating a CAM Application Example

Basic Steps

1. Open the project folder or create a new one

2. Create a CAM block

3. Create a CAM profile

4. Link the CAM profile to the CAM block

5. Configure the CAM profile

6. Specify the CAM Type

7. Specify the Correction Property

8. Save the CAM profile

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 344

9. Generate motion and Local Logic programs

10. Set up hardware configuration in the configuration/programming software

11. Execute (test) the application

Step 1: Create a Project

For details on creating a project, refer to the on-line help or the software user’s manual.

PAC Machine Edition Logic Developer-PLC Getting Started, GFK-1918

Figure 157: New project

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 345

Step 2: Create a CAM Block Using the CAM Editor

The CAM editor is integrated into the Logic developer environment. The editor allows you

to easily create, edit, store, and download CAM blocks.

From the Target menu, select Add Component to Target1, then select Motion. This adds the

Motion Target to the Navigator portion of the Logic Developer window. If Motion programs

or Local Logic programs have already been defined, this step is not necessary.

Figure 158: Create CAM Program

In the Navigator window right-click “CAM blocks” and select “New Block.”

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 346

Figure 159: Create New CAM Block

Creating the new block opens up an edit field that allows you to name the block. The rules

for naming a CAM block are:

• Only the characters A-Z, a-z, 0-9, and _ (underscore symbol) are allowed.

Consecutive underscores are not allowed.

• The block name must begin with a letter or underscore symbol.

• A block cannot have the same name as another block that exists in an open folder.

• A CAM block name may contain up to twenty characters.

Figure 160: CAM Block Screen

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 347

Step 3: Create a CAM Profile

The next step is to create a simple CAM profile. The CAM profiles are linked to CAM blocks.

Additional information on this interlinking is contained within the on-line help. To create a

CAM profile, right-click the CAM Profiles icon in the Navigator window and select New Profile

as shown in the following figure.

Figure 161: Create New CAM Profile

This inserts a new profile named “Profile1” into the library as seen in the following figure.

Figure 162: New Profile Creation

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 348

You can rename this profile to a name more suitable to the application if desired. The

naming rules are:

• Any alpha-numeric character or the underscore (_) symbol may be used.

• The first character in a profile name must be a letter.

• A profile name cannot be more than 20 characters long.

• A profile is referenced by name in a motion program. NOTE: Logic Developer is not

case-sensitive when referencing a profile name.

To rename the profile, right-click the profile name in the Navigator window and choose

Rename Profile from the short-cut menu. Type a name for the profile and press ENTER to

finish. The profile and any CAM profile links to it are renamed. For this example, the profile

is renamed to ExCamProfile. Refer to the on-line help for additional information.

Step 4: Link the CAM Profile to the CAM Block

Although there is more than one way to link a CAM profile to a CAM block, the easiest

method is to click the desired CAM profile in the Navigator, then drag it and drop it on the

applicable CAM block. The result is shown in the next figure.

Note: Logic Developer limits the download block total size (Motion, Local Logic, and CAM combined) to
32K.

Figure 163: Linking a Profile to a CAM Block

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 349

Step 5: Configure CAM Profile Data Points

Once these operations are complete, you must configure the CAM profile. A CAM profile is

composed of a series of Points that defines the relationship between the master position

and the slave position. Each point is defined by two coordinates. When viewing the graphical

representation, the Master coordinate represents the horizontal axis and the Slave

coordinate represents the vertical axis, as shown in the next figure.

Begin by double-clicking the profile to open it in the Profile Editor window (see next figure),

which has two editors:

• Table Editor is similar to a spreadsheet. In the table, each point has its own row with

two columns, one for the Master position and one for the corresponding Slave

position. When a new profile is opened, there are, by default, only two points, a start

point and an end point. The start point is the top point of the table and the end point

is at the bottom.

• To edit points with the Graphical Editor, click the point on the graph and drag it to

the desire location. (NOTE: The point data in the table editor will update to the new

position.) To perform other tasks in the graphical editor, right-click in the graph and

select the applicable task from the short-cut menu.

The next step is to edit the end point (the bottom point in the table) for the Master and

Slave. In the Table Editor, click in the end point’s Master column and enter the value 50000;

then click in the end point’s Slave column and enter the value 0. (NOTE: As points are added

or changed in the Table Editor, the graph in the Graphical Editor will update accordingly.)

Next, insert an additional point into the Editor table. Right-click in the Master column of the

end point and choose Insert Point from the short-cut menu (shown it the next figure). A new

row is added above the end point row, specifying a new point with master and slave values,

by default, midway (25000 and 0, respectively) between the values of the two existing

adjacent (above and below) points. Change the values for this point to 47500 for the Master

and 11000 for the Slave. To change a point value, click it, type in the new number, then

either press the Enter key, or click outside of the table.

To change the Curve-Fit order, click the Curve-Fit column, then select the Curve-Fit Order

in the Property Inspector window. Also, a profile can be split into multiple sectors or

multiple sectors merged into one by right clicking on the Curve-Fit display and choosing

from the short-cut menu.

Note: A CAM profile is limited to 400 points if it contains second or third order sectors. A CAM profile is
limited to 5000 points if it only contains first order sectors.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 350

Figure 164: Inserting a Point in the Profile Editor Window

Since the Slave Position end point is the same value (0) as the initial Slave Position point, this

CAM meets the requirements for a Linear Cyclic CAM. (For more information on the different

CAM types, refer to “CAM Types” on page 326.) Note that the CAM Editor has several

“Smart” edit fields that will ONLY display the choices that are valid for a given data set. For

example, since a requirement for a Linear Cyclic CAM is that the Slave Position start point

and Slave Position end point are the same, the editor only allows the Linear Cyclic CAM

choice if these criteria is met.

Next, insert a new point into the profile and then edit the point. The point can be edited

either in the profile table or graphically on the plot. Insert the point as shown above and in

Figures 165 and 166 by right clicking the point below the insertion position and selecting

Insert Point from the menu. Then change the default values to 2500 for the Master and

10000 for the Slave.

Figure 165: CAM Profile Table Data

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 351

Figure 166: CAM Editor Example (Linear Cycle CAM)

There are numerous other features in the editor. These include being able to define

additional sectors that each have a different curve fit method. These editor features are

discussed in the programming software’s on-line help. Please refer to this source for

additional information.

Step 6: Specify the CAM Type

For this example, the CAM will be Linear Cyclic, as discussed previously. Use the following

procedure:

• In the Project tab of the Navigator, right-click a CAM profile. The short-cut menu

appears.

• From the short-cut menu, choose Properties. The Inspector opens showing the CAM

profile's properties.

• In the Inspector, click the arrow in the CAM Type field. The CAM Type drop-down list

appears.

• Choose ‘Linear Cyclic CAM’ from the list (Figure 167).

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 352

Figure 167: CAM Editor CAM Type Selection

Step 7: Specify the Correction Property

The last item to be specified for this example is the correction status. The Correction

property determines whether the motion module will permit an online correction for a

specific sector. A sector is a region of a CAM profile defined by at least two adjacent user-

defined points. The sector includes the user-defined points, the curve connecting them and

also up to, but not including, the first point defined for the next adjacent sector. The points

included in a given sector are denoted by the Sector Bracket, are shown in the figure above.

Each sector is assigned a curve-fit order number, also shown in the figure above. The

segments of the profile between user-defined points are defined by polynomials of the

curve-fit order specified. A unique polynomial is used to interpolate between each pair of

adjacent user-defined points. Although the actual polynomial coefficients can be different

for each segment, the curve-fit order is the same throughout the sector. A sector is

indicated in the CAM profile table as a bar spanning the user-defined Master Position values

included in the sector. Initially, all points defined in a profile are included in a single sector.

This single initial sector can be subdivided as required to facilitate smoothing a CAM profile.

When the Correction property is Enabled, the motion module reports a warning if there is a

velocity limit violation. When the Correction property is set to Disabled, the motion module

reports an error for these violations and stops the slave axis.

For this example, correction should be enabled. To enable correction, select the sector from

the CAM profile table by clicking it. This will cause the Inspector window to display the sector

properties and allow them to be edited. Select the Correction drop down box and choose

Enabled (Figure 168).

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 353

Figure 168: CAM Editor Correction Enable

Step 8: Save the CAM Profile

At this point, a simple CAM profile is defined. To save the CAM blocks/profiles, select the File

main menu item followed by the Save Project submenu selection. The CAM editor has many

more additional features and functionality. Refer to the online documentation for a detailed

description of these features.

Step 9: Generate Motion and Local Logic Programs

The next items to be generated are a motion program and Local Logic program that will

work with this CAM profile. For this example, the logic must work with a DSM3214

controlling two axes. Axis #1 will be the slave, and Axis #2 will be the master. Therefore,

there will be two motion programs. The Axis 1 program, for the slave, will do some base

initialization, load the slave starting point for the given CAM profile, and then execute the

CAM command. The Axis 2 program, for the master source, is a simple program that will

initialize and then wait for the slave to be ready. It will then execute a series of moves.

The program stops at points described within the CAM master such that it is easy to verify

that the slave axis is correctly executing the CAM profile. This example also requires a Local

Logic program. In this example the Local Logic program serves a supervisory role over the

CAM slave and CAM master motion programs. Thus, the Local Logic synchronizes the two

programs.

Consult the applicable chapters in this manual for additional details on these features. The

motion program and Local Logic programs for this example are as follows:

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 354

// Motion program for example CAM block

// Slave Axis

 Program 1 AXIS1

 VELOC 10000 // Set Velocity

 ACCEL 10000 // Set Acceleration

100: WAIT CTL01 // Wait For LL to Say Master is ready

110: CAM-LOAD "ExCamProfile", P006, ABS // Load Param. Reg. with Slave Pnt that

corresponds to current Master Position

120: PMOVE P006, ABS, LINEAR // Move Slave Axis to the Position that

corresponds to Start of Table

130: CAM "ExCamProfile", 50000, ABS // Execute CAM Statement

140: PMOVE 0,ABS,S-CURVE // Move back to zero

150:

 ENDPROG

// Master Axis Program

Program 2 AXIS2

 VELOC 10000

ACCEL 10000

// Set Velocity

// Set Acceleration

200: PMOVE 0 ,ABS,S-Curve // Start at zero

210: WAIT CTL08 // Master Waits Until Slave in Position

220: PMOVE 2500,ABS,LINEAR // Move 1st Master Point in Table

230: DWELL 5000 // Wait 5 Sec

240: PMOVE 47500,ABS,LINEAR // Move to 2nd Point

250: DWELL 5000 // Wait 5 Sec

260: PMOVE 2500,INC,LINEAR // Finish Distance Specified in CAM Cmd 1st CAM

Complete

270: PMOVE 0,ABS,LINEAR // Move back to zero

280:

 ENDPROG

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 355

// Local Logic Program for CAM Example

After completing the program entry, the resulting Logic Developer screen should look

similar to Figure 169.

Figure 169: CAM Editor Correction Enable

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 356

Step 10: Set up Hardware Configuration in Logic Developer

Once a successful syntax check is completed for the local logic and motion programs, you

need to set up the hardware configuration that will allow the example program to be

downloaded to the DSM314 module. Most users will first set up their hardware

configuration and then generate the programming statements. However, because this

example is intended to illustrate the CAM feature the order is reversed to better illustrate

the link the CAM block name and the DSM314 hardware configuration.

Configure the power supply, CPU, and DSM314 module that are appropriate for your

installation. For general information on hardware configuration, refer to chapter 4.

Change the following Settings tab parameters to the values shown. (Axis 1 and Axis 2 modes

are set to digital servo because this example uses the βis 0.5 digital servo.)

Axis 1 Mode Digital Servo

Axis 2 Mode Digital Servo

Local Logic Block Name CamExLLPgm

Cam Block Name CamBlk

Local Logic Mode Enabled

The resulting Settings tab will be as shown in Figure 170 .

Note: This example uses only one DSM314.The DSM314 executes the files (CAM, Local Logic, and Motion
Program) pointed to by the configuration. Multiple DSM314 modules can run the same Local
Logic program, motion programs, or CAM Blocks. This allows you to have one source file for
multiple DSM314 modules. Note that this does not prevent DSM314s from executing different
programs.

Figure 170: Hardware Configuration 90-30 rack DSM314 Settings Tab

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 357

In this example, the Local Logic program will control CTL01 and CTL08. Because CTL01 and

CTL08 are used to signal the Motion Programs, you must configure these CTL bits to be

under Local Logic Control. To do this, access the CTL Bits tab in the hardware configuration

and set CTL01 Config and CTL08 Config to Local_Logic_Controlled. The resulting Hardware

Configuration screen is shown in Figure 171.

Figure 171: Hardware Configuration 90-30 rack DSM314 CTL Bits Tab

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 358

You also need to indicate to Axis #1 that it will use the Axis #2 commanded position as its

CAM Master source. To do this select, the Axis #1 tab in hardware configuration. Go to the

CAM Master Source data entry field. From the drop-down box, select Cmd Position 2. This

will configure Axis #1 to use the Axis #2 commanded position as its CAM master source

(Figure 172). While in this tab, change the Home Mode to Move + and OverTravel Switch to

Disabled.

Figure 172: CAM Slave Master Source Selection

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 359

You also need to indicate to Axis #2, the rollover points for the Master axis position

reference. To do this, select the Axis #2 tab in hardware configuration. Input 49,999 into the

High Position Limit and 0 into the Low Position Limit data entry fields. Note that since this is

a Cyclic CAM, the master source high limit, by definition, must be one less than the last point

in the master data table. In this example, this is point 50,000. Thus, the high limit is equal to

49,999. One way to envision this principle is to think of a Cyclic CAM Master as a continuous

circular strip where the first point on the strip is the same as the last point on the strip.

Therefore, in this example, 50,000 is the same point as zero. While in this tab, change the

Home Mode: to Move + and OverTravel Switch to Disabled.

Figure 173: CAM Master Axis Scaling

To finish the configuration, go to the Tuning#1 and Tuning #2 tabs and enter the following

values:

• Motor Type: 281

• Position Error Limit: 200 (Optional; see Configuration information for additional

information)

• In Position Zone: 20 (Optional; see Configuration information for additional

information)

• Pos Loop Time Const: 200 (Note: Based upon application/mechanics reference

Chapter 4 and Appendix D)

• Velocity FeedForward: 9000 (Note: Based upon application/mechanics reference

Chapter 4 and Appendix D)

• Vel Loop Gain: 32 (Note: Based upon inertia attached to motor. Typical demo cases

have a indicator wheel attached that represents approximately this inertia to the

motor

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 360

The resulting display should be similar to Figure 174.

Figure 174: Hardware Configuration Tuning#1 Tab

The Tuning tab for Axis #2 should also be set up as shown for Axis #1.

This completes the configuration changes necessary for the example.

The link between the sample CAM Block, Motion program and Local Logic program, and the

DSM314 module are now complete. Create any required Host Controller ladder logic

programming, then Validate the programs and download them to the Host Controller.

Additional information concerning the download operation is shown in the Logic Developer

on-line help.

Step 11: Execute (Test) Your CAM-Based Motion Program

 WARNING

Before testing your application on actual machinery, you must first verify that it is safe to do

so. This includes insuring that all devices are securely mounted, all safety equipment is

installed and operational, and personnel in the area have been notified. Failure to address

all safety-related issues could result in injury to personnel and damage to equipment.

Once the download operation is complete, the module is ready to execute the CAM Blocks,

motion programs and Local Logic program. Use the following procedure:

1. Place the Host Controller in run mode.

2. Enable the servo drives. To enable Axis #1, toggle the %Q offset 18 bit. To enable

Axis #2, toggle The %Q offset 34 bit. Based upon the current module error status,

you may also have to initiate a clear error routine by toggling the %Q offset 0 bit.

3. Have both axes perform a find home routine by toggling the %Q offset 19 bit (find

home Axis #1) and the %Q offset 35 bit (find home Axis #2). At this point, both axes

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 361

will perform a find home cycle. Wait until this completes for both axes and the

Position Valid %I bits turn on. The Position Valid %I bit for Axis 1 is the %I offset 17 bit

(the 18th %I bit), and for Axis 2 is the %I offset 33 bit (the 34th %I bit). The resulting

display is shown in the following figure.

Figure 175: RVTExample Screen

4. Enable Local Logic by setting the %Q offset 1 bit from the Host Controller. If there

are no errors, you can then execute the motion programs.

5. Execute Program 1 by toggling %Q offset 2 bit. The motor connected to Axis #1

should then begin to execute Motion Program #1.

6. Execute Program 2 by toggling %Q offset 3 bit. The motor connected to Axis #2

should begin to execute Motion Program #2.

7. The motors will execute the statements until they reach the first DWELL, where you

can visually verify that it followed the CAM profile correctly. The display should be

similar to the following figure. Note that the commanded position for Axis#2 equals

2500, while the commanded position for the slave corresponds to the CAM table

and has the value 10,000.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 362

Figure 176: RVTExample Screen First Dwell

Once the dwell time is finished, the motors will continue executing the statements until they

reach the second DWELL where you can visually verify that it followed correctly. The display

should be similar to Figure 177. Note that the commanded position for Axis#2 equals

47500, while the slave commanded position corresponds to the CAM table and has the

value 11,000.

User Manual Chapter 15
GFK-1742F Jan 2020

Using the Electronic CAM Feature 363

Figure 177: RVTExample Screen Second Dwell

When the master axis reaches 50000 (47500 +2500), the CAM command will exit, the slave

axis will decelerate at the programmed acceleration rate and come to a halt, and both axes

will return to zero.

Details on the DSM314’s %AI, %AQ, %I, and %Q memory are provided in Chapter 5.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 364

Appendix A: Error Reporting
A-1 DSM314 Error Codes

The DSM314 reports error codes in these %AI table locations:

%AI Table Location Data Reported Usage

00 Module Status Code Errors not related to a specific axis

04 Axis 1 Error Code Errors related to Axis 1

24 Axis 2 Error Code Errors related to Axis 2

44 Axis 3 Error Code Errors related to Axis 3

64 Axis 4 Error Code Errors related to Axis 4

Each error code is a hexadecimal word that describes the error indicated when the Module

Error Present %I status bit is set.

A-1.1 Module Status Code Word
The Module Status Code %AI status word reports the following two categories of errors:

• Module errors that are not related to a specific axis. Examples of such errors would

be a self-test detected hardware failure or a request to run an empty or invalid

program. A new Module Status Code will not replace a previous Module Status Code

unless the new Module Status Code has Fast Stop or System Error priority. These can

be cleared with the %Q Clear Error bit.

• System Status Errors. These are of the format Dxxx, Exxx, and Fxxx. If one of these

codes is present, the module will not operate and the %Q Clear Error bit will not clear

the error. See the section “System Status Errors” later in this appendix for details.

A-1.2 Axis Error Code Words
All axis-specific motion related errors are reported in the proper Axis Error Code %AI status

word. Whenever the Module Error Present %I status bit is set, all error words (including

Module Status Code) should be checked for a reported error. A new Axis Error Code will

replace a previous Axis Error Code if it has equal or higher priority (Warning, Normal Stop,

Fast Stop) compared to the previous Axis Error Code.

Error codes that stop the axis will clear the Axis OK %I bit for that axis. User logic that sends

%Q or %AQ commands to an axis should normally be qualified by the applicable %I Axis OK

bit. If Axis OK is off, the axis will not respond to any %Q bit or %AQ commands other than

Clear Error or Load Parameter. The %Q Clear Error bit will always clear the Axis Error Code;

however, if the condition that caused the error still exists, the error will immediately be

reported again.

Note: The STAT LED on the faceplate of the module flashes slow (four times/second) for Status Only
errors and fast (eight times/second) for errors that cause the servo to stop. In the case of a fatal
hardware error being detected at power-up, the STAT LED will flash an error code, which should
be reported to Emerson. See “LED Indicators” later in this chapter for more details.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 365

A-1.3 Error Code Format
All error codes are represented as hexadecimal data with the following format:

Figure 178: Status Code Organization

A-1.4 Response Methods
1. Status Only Errors: Set the Module Error Present %I bit and Module Status Code or

Axis Error Code %AI word, but do not affect motion.

Note: Unless otherwise noted, any command that causes a Status Only Error is ignored.

2. Stop Normal Errors: Perform an internal abort of any current motion using current

Jog Acceleration and Jog Acceleration Mode (LINEAR or S–CURVE). The Drive

Enabled and Axis Enabled %I bit are each turned OFF after the configured Drive

Disable Delay.

3. Stop Fast Errors: Instantly abort all motion by setting the servo velocity command to

zero. The Drive Enabled and Axis Enabled %I bits are each turned OFF after the

configured Drive Disable Delay.

System Errors (displayed in Module Status Code only): The DSM is disabled and will

not respond to PLC control. System errors cannot be cleared until a new

configuration is sent to the DSM.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 366

Table 79: DSM314 Error Codes

Error Code

(hex)

Response Description Error Type Possible Cause

00 None No Error All

Configuration Errors

02 Status Only Scaled data too big,

maximum value in range used

Axis Check DSM axis configuration in HWCFG

03 Status Only Home Position > Positive EOT,

Positive EOT used

Axis Check DSM axis configuration in HWCFG

04 Status Only Home Position < Negative

EOT, Negative EOT used

Axis Check DSM axis configuration in HWCFG

05 Status Only Tuning parameter row 1

invalid; data ignored

Axis Check DSM tuning configuration in HWCFG

Advanced Tab Row 1

06 Status Only Tuning parameter row 2

invalid; data ignored

Axis Check DSM tuning configuration in HWCFG

Advanced Tab Row 2

07 Status Only Tuning parameter row 3-16

invalid; data ignored

Axis Check DSM tuning configuration in HWCFG

Advanced Tab One or more than one

parameter in row 3-16 is invalid

0A System Error Output written by Local Logic

is not configured for Local

Logic control

Module A Local Logic block name is specified in the

configuration and the Hardware

Configuration (Output Bits Tab) for the

module does not have the required output

configured for Local Logic control.

0B System Error CTL bit written by Local Logic

is not configured for Local

Logic control

Module A Local Logic block name is specified in the

configuration and the Hardware

Configuration (CTL Bits Tab) for the module

does not have the required CTL bit

configured for Local Logic control.

Configuration Parameter Errors

17 Status Only EOT Adjust Error Axis Software End of Travel is enabled in

configuration and the High or Low Software

End of Travel values are set outside the High

or Low Count Limits. Configuration should

be changed by either disabling the Software

End of Travel or setting the End of Travel

values within the Count Limits.

18 Status Only (Aux only) Scaled rotary EOT

count modulus is not an

integer

Axis Check DSM axis configuration in HWCFG.

19 Status Only Scaled rotary Hi/Lo limit

count modulus is not an

integer

Axis Check DSM axis configuration in HWCFG.

1C Status Only Unsupported AQ command

mode

Axis The AQ commands that configure Torque

Mode variables are not available in Analog

Velocity Mode.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 367

Error Code

(hex)

Response Description Error Type Possible Cause

1D Normal Stop Attempt to use CAM, CAM-

Load, or CAM-Phase

commands with Follower

Mode

Axis If using CAM, ensure that Follower Mode is

not configured (Follower Mode cannot be

used when using CAM).

If using Follower Mode, ensure that CAM

commands are not present in motion

program (CAM cannot be used when

Follower Mode is configured).

1E Status Only Immediate command Jog

Velocity out of range,

command ignored

Axis The AQ immediate Jog Velocity command

that was sent is too large. Re-enter the

command using a smaller value

1F Status Only Immediate command Jog

Acceleration out of range,

command ignored

Axis The AQ immediate Jog Acceleration

command that was sent is too large. Re-

enter the command using a smaller value

Program Errors

20 Status Only Program Acceleration over-

range, acceleration set to

maximum value

Axis The acceleration programmed in the motion

program currently executing is too large.

Maximum value (1,073,741,823 cts/sec/sec

at 1:1 scaling) is being used in the motion

program.

21 Status Only Program Acceleration too

small, defaulted to 32

cts/sec/sec

Axis The acceleration programmed in the motion

program currently executing is too small.

Default value (32 cts/sec/sec) is being used

in the motion program

22 Status Only Scaled Velocity greater than 1

million cts/sec, 1 million

cts/sec is used

Axis Check scaling in configuration, velocity in

program

23 Status Only Program Velocity is zero, set

to minimum value of 1

count/sec.

Axis The program velocity in the motion program

currently executing is zero. The minimum

value (1 count/sec) is being used

24 Status Only Motion Program Velocity >

Configured Velocity Limit,

limit value used

Axis The programmed velocity in the currently

executing program is greater than the

Velocity Limit set in axis configuration.

25 Reserved – not used in

DSM314

Axis

26 Stop Normal Jump Mask error Axis Contact Emerson

27 Stop Normal Wait Mask error Axis Contact Emerson

28 Stop Normal Parameter Position too large Axis The position contained in the parameter

referenced by the current PMOVE or CMOVE

was greater then the maximum position

range (-536,870,912 to +536,870,911 at 1:1

scaling)

29 Status Only Dwell time greater than 60

seconds, 5 seconds used

Axis The executing motion program

encountered a DWELL statement where the

DWELL time is greater than 60 seconds. This

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 368

Error Code

(hex)

Response Description Error Type Possible Cause

value is larger than allowed. The DWELL time

used for the program is 5 seconds. The user

should open the motion program and

correct the DWELL time statement to be less

than 60 seconds. If more DWELL time is

needed, consider multiple DWELL

statements

2A Normal Stop Cyclic CAM CTL Exit condition

specified for Non-Cyclic CAM

Axis CTL exit conditions are permitted for Cyclic

CAMs only. The motion program contains a

non-cyclic CAM instruction with a CTL exit

condition.

2B Normal Stop CAM Phase out of range Axis The CAM PHASE value is outside the axis

position range.

Position Increment Errors

2C Status Only Position Increment Over-

range error, increment

ignored

Axis Position Increment in AQ command must be

in range –128 to 127 user units

2D Normal Stop CAM Master Axis

Configuration Error – master

profile does not match

master axis configuration

Axis 1) The User-Units:Counts ratio specified

for the master axis in the Editor and

Hardware Configuration are not

compatible and/or

2) The High/Low Position Limit specified

for the master axis in Hardware

Configuration is not compatible with

the profile. Refer to the section on CAM

Types for a detailed description on

setting up the High/Low Position Limits.

2E Normal Stop CAM Slave Axis Configuration

Error – slave profile does not

match slave axis

configuration

Axis 1) The User-Units : Counts ratio specified

for the slave axis in the Editor and

Hardware Configuration are not

compatible and/or

2) The High/Low Position Limit specified

for the slave axis in Hardware

Configuration is not compatible with

the profile. Refer to the section on CAM

Types for a detailed description on

setting up the High/Low Position Limits.

2F Normal Stop CAM Slave Axis SW EOT mode

cannot be enabled for Cyclic

Circular CAM

Axis

Find Home Errors

30 Status Only Find Home while Drive Not

Enabled error

Axis The Find Home command was executed

when the Drive Enable bit was not on. The

user should enable the drive and re-execute

the command.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 369

Error Code

(hex)

Response Description Error Type Possible Cause

31 Status Only Find Home while Program

Selected error

Axis The Find Home command was executed

while a Motion Program was selected for

execution. The motion program must be

halted (Program Active I bit off) prior to

executing the Find Home command.

32 Status Only Find Home while Force Digital

Servo Velocity or Force

Analog Output

Axis The Find Home command was executed

while the user was sending the Force Digital

Servo Velocity (34h) or Force Analog Output

(24h) AQ command. The user needs to clear

this command prior to executing the Find

Home command

33 Status Only Find Home while Jog error Axis The user executed the Find Home command

while the servo was being jogged. The user

must halt the Jog command prior to

executing the Find Home command.

34 Status Only (1) Find Home while Move at

Velocity error, or

(2) Find Home while another

Find Home Cycle is still active

Axis User executed the Find Home command (1)

while executing a Move at Velocity (22h) AQ

command or (2) while another Find Home

cycle was in progress. For (1), halt the Move

at Velocity operation (Moving I bit off) prior

to executing the Find Home command. For

(2), verify that axis is In Zone and not Moving

before executing a Find Home command.

35 Status Only Find Home While Follower

Enabled

Axis The user executed the Find Home command

while the follower function was enabled. The

user must disable the follower (Follower

Enabled I bit off) prior to executing the Find

Home command

36 Status Only Find Home while Abort bit set

error

Axis The user executed the Find Home command

while the Abort bit was set. The user must

clear the Abort bit prior to executing the

Find Home command

37 Status Only Find Home on first PLC sweep

error

Axis The Find Home Q bit was set during the first

PLC sweep. The PLC program must be

corrected to prevent this command from

being sent on the first PLC sweep.

Move at Velocity Errors

38 Status Only Move at Velocity on First PLC

sweep error

Axis The Move at Velocity command (22h) was

sent during the first PLC sweep. The PLC

program must be corrected to prevent this

command from being sent on the first PLC

sweep.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 370

Error Code

(hex)

Response Description Error Type Possible Cause

39 Status Only Move at Velocity while Drive

Not Enabled error

Axis The Move at Velocity command (22h) was

sent when the Drive Enable bit was not on.

The user should enable the drive and re-

execute the command.

3A Status Only Move at Velocity while

Program Selected error

Axis The Move at Velocity command (22h) was

sent while a Motion Program was selected

for execution. The motion program must be

halted (Program Active I bit off) prior to

sending the Move at Velocity Command

3B Status Only Move at Velocity while Home

Cycle active error

Axis The Move at Velocity command (22h) was

sent while the module was executing a

Home Cycle. The user needs to either abort

the Home Cycle or wait until the Home

Cycle completes prior to sending the Move

at Velocity command

3C Status Only Move at Velocity while Jog

error

Axis The Move at Velocity command (22h) was

sent while the Jog Q bit was active. The user

must halt the Jog command prior to sending

the Move at Velocity command

3D Status Only Move at Velocity while Abort

All Moves bit is set error

Axis The Move at Velocity command (22h) was

sent while the Abort All Moves Q bit was set.

The user must clear the Abort bit prior to

sending the Move at Velocity command

3E Status Only Move at Velocity Data greater

than 8,388,607 user units/sec

Axis The user sent a Move at Velocity command

(22h) where the commanded Velocity was

greater than 8,388,607 user units/sec. The

user needs to make the commanded

Velocity smaller prior to re-executing the

command.

3F Status Only Move at Velocity Data greater

than 1 million cts/sec error

Axis The user executed a Move at Velocity

command (22h) where the scaled

commanded Velocity was greater than 1

million cts/sec. The user needs to make the

commanded Velocity smaller prior to re-

executing the command. Check scaling

Jog Errors

40 Status Only Jog while Find Home error Axis The user executed a Jog while the module

was executing a Find Home function. Either

abort the Find home function or wait until it

completes prior to executing the Jog

function

41 Status Only Jog while Move at Velocity

error

Axis The user set a Jog Q bit while the module

was executing a Move at Velocity (22h)

command. The Move at Velocity action

must be halted before executing a Jog.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 371

Error Code

(hex)

Response Description Error Type Possible Cause

42 Status Only Jog while Force Digital Servo

Velocity error

Axis The user set a Jog Q bit while the module

was executing a Force Digital Velocity (34h)

or Force Analog Output (24h) AQ command.

The AQ command must be removed before

executing a Jog.

43 Status Only Jog while Program Selected

and not Feedholding error

Axis If a program is running, the DSM can only

Jog if the Feedhold Q bit is set.

Force Digital Servo Velocity Errors

47 Status Only Force Digital Servo Velocity or

Force Analog Output while

Jog error

Axis The user executed a Force Digital Servo

Velocity (34h) or Force Analog Output (24h)

AQ command while the module is executing

a Jog function. The Jog function must be

halted prior to executing Force Digital Servo

Velocity or Force Analog Output.

48 Status Only Force Digital Servo Velocity or

Force Analog Output while

Move at Velocity error

Axis The user executed a Force Digital Servo

Velocity (34h) or Force Analog Output (24h)

AQ command while the module is executing

a Move at Velocity function. The Move at

Velocity command must be halted prior to

executing Force Digital Servo Velocity or

Force Analog Output.

49 Status Only Force Digital Servo Velocity or

Force Analog Output while

Program Selected error

Axis The user executed a Force Digital Servo

Velocity (34h) or Force Analog Output (24h)

AQ command while the module is executing

a motion program. The motion program

must be halted (Program Active I bit off)

prior to executing Force Digital Servo

Velocity or Force Analog Output.

4A Status Only Force Digital Servo Velocity or

Force Analog Output while

Follower Enabled error

Axis The user executed a Force Digital Servo

Velocity (34h) or Force Analog Output (24h)

AQ command while the follower was

enabled. The follower must be disabled

(Follower Enabled I bit off) prior to executing

Force Digital Servo Velocity or Force Analog

Output.

4B Status Only Force Analog Output while in

Analog Torque mode

Axis The user executed a Force D/A (24h) AQ

command while the servo was configured

for Analog Torque Mode. Force Analog

Output. is not supported in Analog Torque

Mode

Set Position Errors

50 Status Only Set Position while Program

Selected error

Axis The user executed a Set Position command

while a Motion Program was selected to

execute. The motion program must be

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 372

Error Code

(hex)

Response Description Error Type Possible Cause

halted (Program Active I bit off) prior to

executing the Set Position command.

51 Status Only Set Position Data over-range

error

Axis The user executed a Set Position command

with a value greater then the maximum

position range (-536,870,912 to

+536,870,911 at 1:1 scaling)

52 Status Only Set Position while Moving or

Set Position while not

Moving, not In Zone and

velocity > 100 cts/sec.

Axis Set Position is not allowed if the Moving %I

bit is on. If the Moving bit is off and the In

Zone %I bit is also off, the Actual Velocity

must be < 100 cts/second.

53 Status Only Attempt to initialize position

before digital encoder passes

reference point.

Axis The absolute digital encoder was not

rotated past the zero reference point after

the first application of power. The encoder

must be rotated past the reference point (up

to 1 revolution) before Set Position is

allowed in absolute mode.

54 Status Only Digital encoder position

invalid, must use Find Home

or Set Position.

Axis 1. Absolute encoder position has not been

initialized since first application of

power

2. Configuration for Encoder mode has

been changed from incremental to

absolute.

3. Configuration for Axis Direction

(normal or reverse) has been changed.

4. Encoder resolution (Set with Advanced

configuration tab parameter) has been

changed.

5. Encoder alarm has occurred

55 Status Only Digital Encoder moved too far

while power off

Axis The digital absolute encoder was moved

more than 16,383 revolutions while power

was off.

End of Travel and Count Limit Errors

56 Status Only Commanded Position >

Positive End of Travel or High

Count Limit

Axis The user executed a command that resulted

in the Commanded Servo Position

exceeding the Positive End of Travel or High

Count Limit. Either fix the command to be

less than these values or make the values

higher in Hardware Configuration.

57 Status Only Commanded Position <

Negative End of Travel or Low

Count Limit

Axis The user executed a command that resulted

in the Commanded Servo Position

exceeding the Negative End of Travel or Low

Count Limit. Either fix the command to be

greater than these values or make the values

more negative in Hardware Configuration

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 373

Error Code

(hex)

Response Description Error Type Possible Cause

58 Status Only Absolute Encoder Position >

High Software EOT Limit

Axis This error is reported at power up or re-

configuration if the absolute digital encoder

has been moved beyond the High Software

EOT Limit.

59 Status Only Absolute Encoder Position <

Low Software EOT Limit

Axis This error is reported at power up or re-

configuration if the absolute digital encoder

has been moved beyond the Low Software

EOT Limit.

Drive Disable Errors

5B Stop Normal Drive Disabled while Moving Axis The Enable Drive Q bit was turned off while

the servo was performing a Jog or Move at

Velocity (Moving I bit set). The PLC program

should be corrected to prevent this error.

Consider using the Moving Bit in the logic

that disables the drive.

5C Stop Normal Drive Disabled while Program

Active

Axis The Enable Drive Q bit was turned off while

the servo was executing a motion program

(Program Active I bit set). The PLC program

should be corrected to prevent this error.

Consider using the Program Active Bit in the

logic that disables the drive.

Software Errors

5F Status Only Software Error (Call Emerson

Field Service)

Axis Contact Emerson

60 Status Only Absolute Encoder Rotary

Position Computation error

Axis Contact Emerson

Program and Subroutine Errors

61 Stop Normal Invalid subroutine number Axis The Motion Program called a subroutine

that was not contained in the module

program space. If the call instruction

references a parameter that contains the

subroutine number, confirm that the

parameter data is correct.

62 Stop Normal Call Error (subroutine already

active on axis)

Axis A Motion Subroutine called itself or called

another subroutine that called the original

subroutine.

63 Stop Normal Subroutine End command

found in Program

Axis The Motion Program contains an invalid

Subroutine end command within the main

Motion Program (Program 1-10). Modify the

Motion Program to remove this statement.

64 Stop Normal Program End command

found in Subroutine

Axis The Motion Subroutine contains an invalid

Program end command within the Motion

Subroutine (Subroutine 1-40) . Modify the

Subroutine to remove this statement

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 374

Error Code

(hex)

Response Description Error Type Possible Cause

65 Stop Normal Sync subroutine encountered

by non-sync program

Axis The Motion Program encountered a Sync

block in a program that was not multi-axis

and setup for sync blocks.

66 Normal Stop CAM Profile not found in CAM

Download Block

Axis The Cam profile was not linked to the CAM

Download block in the CAM Editor and/or

the CAM Download block name was not

specified in Hardware Configuration.

67 Normal Stop CAM Exit Distance out of

range (Non-Cyclic CAMs)

Axis The exit distance for a Non-Cyclic CAM was

greater than the modulus for the CAM.

68 Status Only (Correction Enabled) Velocity

Command Limited due to

Velocity Limit violation or

Position Error Limit violation

Axis

69 Normal Stop (Correction Disabled) CAM

velocity command above

configured axis velocity limit

Axis

6A Normal Stop CAM Position Error Limit

Violation (with Correction

Disabled)

Axis

6B Status Only CAM commanded position at

the exit different from CAM

profile value due to position

error or velocity limit

Axis

6C Normal Stop CAM master value out of

profile master range for Non-

Cyclic profile (CAM and CAM-

LOAD commands)

Axis

6D Normal Stop Absolute mode CAM after

incremental mode CAM in the

sequence

Axis

6F Fast Stop CAM trajectory calculation

error

Axis Contact Emerson

Program Execution Errors

70 Status Only Execute Program on first PLC

sweep

Module An Execute Program Q bit was set on the

first PLC sweep. The PLC program must be

corrected to prevent these Q bits from being

set on the first sweep.

71 Status Only Too many programs

requested in same PLC sweep

Module The number of Execute Program Q bits that

transitioned ON in 1 sweep is greater than

the configured number of axes.

This error is also reported if the number of

programs requested in a PLC sweep is less

than or equal to the number of configured

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 375

Error Code

(hex)

Response Description Error Type Possible Cause

axes but greater than the number of axes

that are NOT already executing programs.

72 Status Only Execute multi-axis program

with multi-axis program

already active

Module An Execute Program Q bit was set for a

multi-axis program when a multi-axis

program was already executing.

Note: Error 0075 will be reported instead of

Error 0072 if the DSM is configured
for only 1 axis. Error 0071 will be
reported instead of Error 0072 if the
DSM is configured for only 2 axes.

73 Status Only Execute Program for axis

configured as Limited Aux

axis

Module Motion Programs cannot be executed on an

axis configured as Limited Aux. A Limited

Aux axis performs position feedback

processing only and does not have an

internal motion path generator.

74 Reserved - not used in

DSM314

75 Status Only Empty or Invalid Program

requested

Module An Execute Program Q bit was set for a

program number not defined in the

configured motion program block.

This error is also reported if the DSM is

configured for fewer axes than the axis

number of the requested program. Check

the configuration for a correct motion

program block name. Make sure the

requested program number is defined in the

configured program block. Make sure the

DSM is configured for a number of axes

greater than or equal to the axis number of

the requested program.

76 Status Only AQ Move Command Position

Out of Range

Axis The user sent an AQ Move command (27h)

with a position value greater then the

maximum position range.

(-536,870,912 to +536,870,911 at 1:1

scaling)

77 Status Only AQ move command on first

PLC sweep

Axis An AQ Move command (27h) was

commanded on the first PLC sweep. The PLC

program must be corrected to prevent AQ

Move commands from being sent on the

first sweep.

Program Execution Conditions Errors

80 Status Only Execute Program while Home

Cycle active

Axis The PLC set an Execute Program Q bit while

the module was executing a home cycle.

The user either needs to wait until the home

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 376

Error Code

(hex)

Response Description Error Type Possible Cause

cycle completes or abort the home cycle

prior to executing the Motion Program.

81 Status Only Execute Program while Jog Axis The PLC set an Execute Program Q bit while

the module was performing a Jog operation.

The Jog bits (from PLC or local logic) must be

turned off prior to executing a Motion

Program.

82 Status Only Execute Program while Move

at Velocity

Axis The PLC set an Execute Program Q bit while

the module was executing a Move at

Velocity (22h) command. The Move at

Velocity command must be halted prior to

executing the Motion Program.

83 Status Only Execute Program while Force

Digital Servo Velocity or Force

Analog Output

Axis The PLC set an Execute Program Q bit while

the module was executing a Force Digital

Velocity (34h) or Force Analog Output (24h)

command. The Force Digital Velocity or

Force Analog Output command must be

removed prior to executing the Motion

Program.

84 Status Only Execute Program while

Program Active

Axis The PLC set an Execute Program Q bit for an

axis that was already running a motion

program. The current program must be

completed (Program Active I bit off) before

executing another program on the same

axis.

85 Status Only Execute Program while Abort

All Moves bit set

Axis The PLC set an Execute Program Q bit while

the module was executing an Abort All

Moves. The Abort Q bit, the Moving I bit and

the Program Active I bit must all be off

before executing a program.

86 Status Only Execute Program while

Position Valid not set

Axis The PLC set an Execute Program Q bit when

the Position Valid I bit was off. Position Valid

must be set by a Find Home cycle or Set

Position command.

87 Status Only Execute Program while Drive

Enabled not set

Axis The PLC set an Execute Program Q bit when

the drive was not enabled (Drive Enabled I

bit off). The Enable Drive Q bit must be set in

order to enable the drive.

Program Synchronous Block Errors

8C Status Only Sync Block Error during

CMOVE

Axis Program execution encountered a CMOVE

identified by a sync block even though the

other axis had not yet reached the sync

block.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 377

Error Code

(hex)

Response Description Error Type Possible Cause

8D Status Only Sync Block Error during Jump Axis Program execution jumped to a CMOVE or

PMOVE identified by a sync block even

though the other axis had not yet reached

the sync block.

EEPROM Errors

90 Status Only Flash EEPROM memory

programming failure

Module Contact Emerson

Local Logic Errors

91 Stop Fast Local Logic System Halt Module The Local Logic program executed a

statement that wrote to the System_Halt

variable (e.g. System_Halt := 1;)

92 Stop Fast Local Logic Time-Out Error Module The Local Logic Program exceeded the

allocated execution time of 300

Microseconds. Decrease the Local Logic

execution time by reducing the number of

Local Logic statements or by modifying the

program structure. Consult Appendix E for

more information on local logic execution

time.

93 Stop Fast Local Logic Divide By Zero

Error

Module The Local Logic program performed a divide

by zero or a Modulus by zero. Check the

Local Logic program divide statements for

error source. Parameter registers that

contain zero values are possible sources for

this error.

94 Stop Fast Local Logic Divide/Modulus

Overflow Error

Module The Local Logic program performed a divide

(or modulus) of a 64 bit integer and the

result could not fit in a 32 bit integer. Check

the Local Logic program divide statements

for error source.

95 Status Only Local Logic Add/Subtract

Overflow Warning

Module The Local Logic program added or

subtracted numbers that caused an

overflow condition to occur. The allowable

range is –2,147,483,648 to +2,147,483,647.

Change the local logic program to prevent

overflow or set the Overflow variable to 0 at

the end of each local logic cycle.

96 Status Only Local Logic Absolute(ABS)

Overflow warning

Module The Local Logic program attempted to

perform an ABS operation on –

2,147,483,648 resulting in an overflow.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 378

Error Code

(hex)

Response Description Error Type Possible Cause

97 Status Only Local Logic Timeout Warning Module The Local Logic program execution time is

close (greater than 275 Microseconds) to

the maximum allowable execution time

(300 Microseconds). Decrease the Local

Logic execution time by reducing the

number of Local Logic statements or by

modifying the program structure. Consult

Appendix E for more information on local

logic execution time.

98 Status Only Local Logic Execute on First

Sweep Error

Module The user attempted to execute Local Logic

on the first PLC sweep (e.g. if the Local Logic

enable Q bit is on when the PLC is switched

from Stop to Run Mode).

99 Status Only Local Logic Invalid Program

Name or Not Enabled in

Configuration

Module The Local Logic Program Name specified in

Hardware Configuration is not valid (or

empty) or Local Logic is not enabled in

Hardware Configuration.

9A Stop Fast Local Logic Stop Error (Per-

Axis)

Axis A Local Logic Stop Fast Error occurred (error

codes 91-94).

Hardware Limit Switch Errors

A0 Stop Fast Limit Switch (+) error Axis The Positive Overtravel Limit Switch input is

off. If Overtravel Limit switches are not used,

set the Overtravel Limit Switch configuration

to Disabled.

A1 Stop Fast Limit Switch (–) error Axis The Negative Overtravel Limit Switch input

is off. If Overtravel Limit switches are not

used, set the Overtravel Limit Switch

configuration to Disabled.

Hardware Errors

A8 Stop Fast Out of Sync error Axis Position Error has exceeded the Position

error limit. Possible sources for this error are:

1. Position error limit being set too low for

the application.

2. Feedback device being disconnected or

slipping on controlled device

3. Incorrect Feedback device wiring. (i.e.

positive rotation indicated as negative

by feedback device)

A9 Status Only Loss of Position Feedback Axis A Quadrature Error has been detected on an

incremental quadrature encoder. Check the

encoder wiring and ensure that the encoder

is not operated beyond its rated speed.

B0-BE See Table 81 Digital Servo Alarms, documented in Table

81

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 379

Error Code

(hex)

Response Description Error Type Possible Cause

Encoder Alarms

C0 Stop Fast Servo not ready Axis For analog servos, the Drive Ready faceplate

input must be set on (0 volts) within 1

second after turning on the Enable Drive Q

bit. If the Drive Ready input for analog servos

is not used, the input configuration must be

set to Disabled.

For Digital servos, the amplifier E–Stop input

may be activated or an amplifier fault may

have occurred.

C1 Status Only Serial Encoder Battery Low Axis The Serial Encoder battery voltage is low.

The battery must be replaced or the encoder

can be configured for Incremental (instead

of Absolute) operation.

C2 Stop Normal Serial Encoder Battery Failed Axis The Serial Encoder battery has failed. The

battery must be replaced or the encoder can

be configured for Incremental (instead of

Absolute) operation.

C3 Stop Normal Servo Motor Over

Temperature

Axis The Servo Motor or Control Firmware has

reported an over temperature condition.

The user needs to check the motion

program to make sure that the duty cycle

rating for the motor is not being exceeded.

The user needs to also check the motor

mounting to make sure the heat sink for the

motor is adequate and ventilation for the

motor is adequate

C4 N/A Not used. N/A

C5 Stop Fast Loss of Encoder Axis The module is not communicating with the

encoder. Make sure the servo amplifier is on.

Check encoder cabling to make sure cable is

connected. Additionally, check grounding to

ensure that grounding is correct.

C6 Stop Fast Error in encoder pulse

detection

Axis The encoder pulse detection circuit has

encountered an error. Make sure that the

motor is properly grounded. If error persists

consult factory.

C7 Stop Fast Encoder counter error Axis The encoder counter circuit has

encountered an error. Make sure that the

motor is properly grounded. If error persists

consult factory.

C8 Stop Fast Encoder LED is disconnected Axis The encoder LED is disconnected. Consult

factory.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 380

Error Code

(hex)

Response Description Error Type Possible Cause

C9 Stop Fast Encoder CRC checksum

failure

Axis The encoder communications circuit has

detected a CRC error. Check the encoder

cable grounding and the motor grounding

for possible error sources. Check for other

electrical noise sources in the area of the

motor and encoder cabling. Isolate these

sources from motor/encoder cabling if

possible. If error persists consult factory

CA Stop Fast Unsupported encoder, linear

or Type A

Axis The motor encoder connected to the

module is not supported. Motor is either not

supported by the DSM module or has an

incorrect encoder attached to the motor.

Check motor label and verify motor is a

supported model. If problem persists

consult factory

CB Stop Fast Unsupported encoder, Type C Axis The motor encoder connected to the

module is not supported. Motor is either not

supported by the DSM module or has an

incorrect encoder attached to the motor.

Check motor label and verify motor is a

supported model. If problem persists

consult factory

CC Normal Stop Missed DZ pulse when DS

transitioned from 1 to 0

Axis Position data may be incorrect. Power-cycle

motor and amplifier. If problem persists

consult factory.

DSP Alarms

D1 Stop Fast Over current Detected Axis The Motor Control firmware detected an

over current condition. Possible sources for

this error include:

- Incorrect Motor Type selected in Hardware

configuration

- Machine back driving motor excessively

- Over Duty cycle conditions

D2 N/A Not Used

D3 Stop Fast Over Acceleration Detected Axis The Motor Control firmware detected an

acceleration value that exceeded allowed

values. This error is not encountered under

normal operating conditions. Possible error

causes include encoder failure, encoder

slippage, incorrect position reported from

encoder. If error is not explained by physical

hardware consult factory.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 381

Error Code

(hex)

Response Description Error Type Possible Cause

D4 Stop Fast Over Velocity Detected Axis The Motor Control firmware detected a

velocity value that exceeded allowed values.

This error is not encountered under normal

operating conditions. Possible error causes

include encoder failure, encoder slippage,

incorrect position reported from encoder. If

error is not explained by physical hardware

consult factory.

D5 Status Only Velocity Loop Gain for Kp Too

Large

Axis The Proportional Gain for the Velocity Loop

has exceeded allowed values. Value limited

to valid range. This error should not be

encountered during normal operation.

Possible error sources include incorrect

motor type selected in hardware

configuration, or Velocity Loop Gain values

that are too large. If motor type is correct in

hardware configuration, then reduce

velocity loop gain. If problem persists, or

velocity loop gain is too small for the

application consult factory.

D6 Status Only Integrator Gain Too Large Axis The Integral Gain for the Velocity Loop has

exceeded allowed values. Value limited to

valid range. This error should not be

encountered during normal operation.

Possible error sources include incorrect

motor type selected in hardware

configuration, or Velocity Loop Gain values

that are too large. If motor type is correct in

hardware configuration, then reduce

velocity loop gain. If problem persists, or

velocity loop gain is too small for the

application consult factory.

D7 Status Only Alpha Calculation Overflow

G.S.

Axis Internal Velocity Loop calculation has

exceeded allowed values. Value limited to

valid range. This error should not occur

during normal operation. Reduce Velocity

Loop Gain. If problem persists consult

factory

D8 Status Only Integrator Gain Calculation

Overflow

Axis Integral Gain for the Current Loop has

exceeded allowed range. Calculation limited

to valid range. This error should not occur

during normal operation. If error

encountered consult factory.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 382

Error Code

(hex)

Response Description Error Type Possible Cause

D9 Status Only Kp Calculation Overflow Axis Proportional Gain for the Current Loop has

exceeded allowed range. Calculation limited

to valid range. This error should not occur

during normal operation. If error

encountered consult factory.

DA Stop Fast FPGA Error Detected Axis An error was detected when the Field

Programmable Gate Array was initialized.

This error should not be encountered during

normal operating conditions. If error

encountered consult factory.

Special Purpose Errors

E2 Stop Fast DSP Interrupt failure Module Contact Emerson

Follower Ramp Errors

E8 Status Only Follower Registration

Distance (from parameter

register) is out of allowed

range - follower stops using

ramp acceleration.

Axis When Follower Disable Action = Incremental

Position, the incremental distance

(registration distance) specified in the

associated parameter register must be

greater than the stopping distance. The

stopping distance depends on the present

slave axis velocity and follower ramp

acceleration. Negative slave axis velocities

require negative registration distances.

E9 Reserved - not used in

DSM314

EA Status Only Master velocity greater than

0.8*velocity limit-no distance

compensation

Axis The master velocity when converted to slave

axis units is greater than 0.8 * the

configured velocity limit. The velocity limit

must be increased or the master velocity

must be decreased.

EB Stop Fast Error in calculation during

follower ramp-up

Axis Contact Emerson

EC Status Only Follower makeup time is not

long enough

Axis The configured Ramp Makeup Time is too

small so that actual makeup time is longer.

The makeup time of follower ramp

acceleration should be increased.

ED Status Only Velocity limit violation during

follower ramp

Axis Follower ramp makeup requires a velocity

greater than 0.8 * the configured axis

velocity limit, so that actual makeup time is

longer than the configured value. Increase

the velocity limit, makeup time or ramp

acceleration.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 383

Error Code

(hex)

Response Description Error Type Possible Cause

EE Status Only Time limit violation during

acceleration sector of the

follower distance correction

Axis Ramp makeup required an acceleration time

> 64000 position loop sample times. The

follower ramp acceleration must be

increased.

Position Loop Errors

F0 Status Only Attempt to enable follower

with drive disabled

Axis Follower has been enabled on an axis that

the drive is not enabled. Drive must be

enabled prior to enabling follower.

F1 Status Only Follower Position Error Limit

Encountered

Axis The position error has reached the position

error limit and the follower loop is no longer

position-locked to the master axis. The

position error limit must be increased or

velocity feedforward must be used.

F2 Status Only Velocity Limit Condition

Encountered

Axis The sum of all command inputs (internal

cmds + follower master + local logic) to the

position loop has exceeded the configured

velocity limit. The axis is no longer position-

locked to the commands. The command

velocities must be decreased or the velocity

limit must be increased.

F3 Status Only Follower Ratio B value = 0 Axis Follower Ratio B values < 0 are not allowed.

F4 Status Only Follower Ratio B value < 0 Axis A Follower Ratio B value of 0 is not allowed.

F5 Status Only Follower ratio A:B > 32:1 or <

1:10000

Axis The Follower Ratio A / Ratio B values must

represent an A/B ratio in the range 32:1 to

1:10000.

Internal Errors

FB Status Only Control Loop execution time

> 500 microseconds

Axis Contact Emerson

FC Status Only Control Loop execution > 400

microseconds, more than 5

times in a row

Axis Contact Emerson

FD Stop Fast System software error Axis Contact Emerson

FE Stop Fast Unrecognized encoder, not

supported

Axis Error can indicate defective encoder cable –

check cable. If cable checks out correctly,

contact Emerson

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 384

A-1.5 System Error Codes
If the DSM encounters errors with the configuration, a motion program, or local logic

block, it will place a System Error code in the Module Status Code register (the first AI

word). When a System Error occurs, the DSM will not update any %I bits or %AI data and

will not respond to any %Q bit or %AQ commands.

So the %Q Clear Error bit has no effect on a System Error. A System Error can only be

cleared by sending a new configuration to the DSM

The following system error codes indicate that the user has entered an invalid DSM

configuration in the configuration/programming software. If one of these errors occurs,

you must change the configuration and store the new configuration to the PLC. Any other

errors of the format Dxxx, Exxx or Fxxx not documented in the table below are unexpected

and should be reported to Emerson.

Table 80: System Error Codes

Error Code (hex)

(x = axis number)

System Error

Type

Description

D008 Module Axis 4 not disabled when Axis 1,2 = Digital Servo

Dx65 Axis Feedback Source is invalid or not supported

Dx68 Axis Follower Disable action is not supported

Dx69 Axis Follower Ramp Makeup Mode is not supported

Dx71 Axis Invalid digital servo motor type

Dx81 Axis Analog Servo Cmd mode (Torque mode) not supported.

Note: DSM314 version 3.0 or later supports Torque Mode.

A-2 DSM Digital Servo Alarms (B0–BE)
 and  digital servo systems have built in detection and safety shut down circuitry for

many potentially dangerous conditions. The table below reflects that three different

models of servo amplifiers may be used with the DSM, the  Series, the  Series SVU and

the  Series SVM. The following table indicates alarms supported by a particular servo

amplifier and the corresponding DSM error code. Table entries that are blank in the

amplifier columns indicate amplifier alarms not supported by the particular amplifier

series. To clear a servo alarm, amplifier power cycle reset is required. Additionally, a “Clear

Error“ %Q discrete command is required to clear the DSM Error Code. Amplifier alarms not

cleared by power cycle of the amplifier will continue to be reported to the DSM module. A

brief diagnostics section for servo alarms appears at the end of the error alarm tables.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 385

Table 81: DSM Digital Servo Alarms

Error

Number

(Hex)

Servo

Alarm

Name

Description Amplifier Alarm Display

SVM

7 SEG

SVU

7 SEG

 ALM

LED

B0 HV Over- Voltage DC LINK 07† 1 ON

B1 LV Low Voltage Control Power 06† 2

B2 DBRLY Dynamic Brake Circuit Failure

† SVM PSM DC LINK Low Charge

05† 7

B3 LVDC Low Voltage DC LINK 04† 3 ON

B4 OH Amplifier Over Heat 03† ON

B5 FAL Cooling Fan Failure 02† ON

B6 † SVM PSM IPM Alarm or Over Current 01†

B7 DCSW Regenerative Circuit – Failure Alarm

Regenerative Circuit – Discharge Alarm

08† 4 ON

DCOH 5

B9 LV5V SVM Servo Module +5 V Low 2

BA IPML IPM Over Current, High Temp or Low 8. 8.

IPMM Volt 9. 9.

IPMN A. A.

IPMLM b. b.

IPMMN (L axis, M axis, N axis, L & M axes, M & C. C.

IPMNL N axes, N & L axes or L & M & N axes) d. d.

IPMLMN E. E.

BB LVDC SVM Servo Module Low DC LINK 5

BD FAL SVM Servo Module Fan Failure 1

BE HCL Abnormally High Motor Current 8 8 ON

HCM 9 9

HCN A A

HCLM (L axis, M axis, N axis, L & M axes, M & b b

HCMN N axes, N & L axes or L & M & N axes) C C

HCNL d d

HCLMN E E

† The two segment display on the SVM power supply module (PSM) indicates power supply

alarms.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 386

A-3 Troubleshooting Digital Servo Alarms
The guidelines below are intended to assist in isolating problems associated with various

servo alarms. If the items below do not fit the case or resolve the alarm, replace the servo

amplifier, or Contact Emerson Technical support. The appropriate amplifier and motor,

Maintenance Manual or Description Manual, will include more detailed trouble shooting

procedures.

HV (High-voltage) Alarm: This alarm occurs if the high voltage DC level (DC LINK) is

abnormally high.

1. The AC voltage supplied to the amplifier may be higher than the rated input voltage.

The  Series amplifier, three-phase supply voltage should be between 200 VAC to

240 VAC.

2. The external regeneration resistor may be wired incorrectly. Carefully check the

connections of the regeneration resistor to the amplifier. Check that the resistance

of the regeneration resistor is within 20% of the rated value. Replace the

regeneration unit if the resistance is out of tolerance.

3. The regeneration resistor may not be capable of dissipating excess generated

voltage. Review the calculations for selecting the regenerative discharge unit and

replace with a resistor of higher wattage rating as needed. Reducing acceleration

values and position loop gains (larger value Position Loop Time Constant) will

additionally reduce regenerated voltage levels.

LVDC (Low Voltage DC Link: This alarm occurs if the high voltage DC level (DC LINK) voltage

is abnormally low.

The AC voltage supplied to the amplifier may be missing or lower in value than the rated

input voltage. The β Series amplifier, three-phase supply voltage should be between 200

VAC to 240 VAC. Verify that the proper level of AC voltage is supplied to the line input

(L1, L2 and L3) connections of the amplifier.

DCOH or DCSW (Regeneration Alarm): The DCOH alarm occurs if the temperature of the

regeneration resistors is too high. The DCSW alarm indicates problems in the switching

portion of the regeneration circuitry.

1. If the external regeneration resistor is not used check that the temperature sensor

input to the amplifier is shorted or jumped. The  Series amplifier jumper T604

should be installed on connector CX11-6.

2. The external regeneration resistor may be wired incorrectly. Carefully check the

connections of the regeneration resistor to the amplifier. Check that the resistance

of the regeneration resistor temperature sensor is near zero ohms at room

temperature. Replace the regeneration resistor if the temperature sensor indicates

an open condition.

3. The regeneration resistor may not be capable of dissipating excess generated

voltage. Review the calculations for selecting the regenerative discharge unit and

replace with a resistor of higher wattage rating as needed. Reducing acceleration

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 387

values and position loop gains (larger value Position Loop Time Constant) will

additionally reduce regenerated voltage levels.

OH (Over-heat Alarm): The temperature of the amplifier heat sink is too high or motor

temperature is excessive.

1. Ambient temperature may be too high, consider a cooling fan for the servomotor.

Emerson supplies fan kits for most motors.

2. The motor may be operating in violation of duty cycle restrictions. Calculate the

amount of cooling time needed based on the duty cycle curves published for the

particular motor.

3. The motor may be over loaded. Check for excessive friction or binding in the

machine.

4. For all the above problems, allow ten minutes cooling of the amplifier with minimum

or no motor loading then cycle amplifier power to reset.

FAL (Fan Alarm): The cooling fan has failed.

1. Check the fan for obstructions or debris. With amplifier power removed attempt to

manually rotate the fan.

2. For SVM type amplifier systems the power supply module (PSM) and the servo

amplifier module each include a cooling fan. The alarm code will indicate which unit

failed.

3. Some amplifiers have field replaceable fan units. If a replacement fan unit is not

available, replace the amplifier.

HC, HCL, etc. (High Current Alarm): Motor current is excessive. For α Series amplifiers the

suffix (L, M, N, etc.) indicates which axis is in alarm

1. Motor power wiring (U, V and W) may be shorted to ground or connected with

improper phase connections. Check the wiring and connections. Check the

servomotor for shorts to motor frame. Replace the motor if shorted.

2. Improper motor type code may be configured or excessive values for tuning

parameters. Confirm that the proper motor is configured and lower gain values.

3. The amplifier maintenance manual will describe the procedure for monitoring

motor current signals (IR and IS). If the waveforms are abnormal replace the

amplifier. If excessive noise is observed check grounds and especially the cable

shield grounds for the command cable (K1) to the amplifier.

4. The motor may be operating in violation of duty cycle restrictions. Calculate the

amount of cooling time needed based on the duty cycle curves published for the

particular motor.

5. The motor may be over loaded. Check for excessive friction or binding in the

machine.

6. For all the above problems, allow ten minutes cooling of the amplifier with minimum

or no motor loading then cycle amplifier power to reset.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 388

LV (Low Voltage Control Power Alarm): The control voltage used to operate the low- voltage

circuitry in the amplifier is too low.

1.  Series SVU type amplifiers will be shipped with default jumpers to use a single

phase of the 220 VAC power to the amplifier. Optionally the user may remove the

jumpers and connect 220 VAC control power separately. Check that a minimum

200VAC is available on terminals L1C and L2C for default installation or on connector

CX3 (Y Key) for separate control power.

2. Check the amplifier fuse. If the fuse is open replace with a new fuse after checking

control power voltage. If the second fuse blows open, replace the amplifier.

DBRLY (Dynamic Brake Relay Failure): This alarm indicates that the contacts of the braking

relay are welded together. Replace amplifier immediately.

IPML, IPMM, etc. (IPM Alarm): The Intelligent Power Module (IPM) is the high current

switching device in the amplifier. The IPM can detect over-current, over-heat or low- voltage

conditions in the power switching circuitry. The suffix (L, M, N, etc.) indicates which axis is

in alarm.

1. Motor power wiring (U, V and W) may be shorted to ground or connected with

improper phase connections. Check the wiring and connections. Check the

servomotor for shorts to motor frame. Replace the motor if shorted.

2. Improper motor type code may be configured or excessive values for tuning

parameters. Confirm that the proper motor is configured and lower gain values.

3. The amplifier maintenance manual will describe the procedure for monitoring

motor current signals (IR and IS). If the waveforms are abnormal replace the

amplifier. If excessive noise is observed check grounds and especially the cable

shield grounds for the command cable (K1) to the amplifier.

4. The motor may be operating in violation of duty cycle restrictions. Calculate the

amount of cooling time needed based on the duty cycle curves published for the

particular motor.

5. The motor may be over loaded. Check for excessive friction or binding in the

machine.

6. For all the above problems, allow ten minutes cooling of the amplifier with minimum

or no motor loading then cycle amplifier power to reset.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 389

A-4 LED Indicators
There are seven LEDs on the DSM314 module that provide status indications. These LEDs

are described below.

STAT Normally ON. FLASHES to provide an indication of operational errors. Flashes

slow (four times/second) for Status-Only errors. Flashes fast (eight

times/second) for errors that cause the servo to stop.

ON: When the LED is steady ON, the DSM314 is functioning properly.

Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result of a

hardware or software malfunction that will not allow the module to power

up.

Flashing: When the LED is FLASHING, an error condition is being signaled.

Constant Rate, CFG LED ON:

The LED flashes slow (four times / second) for Status Only errors and fast

(eight times / second) for errors that cause the servo to stop. The Module

Error Present %I status bit will be ON. An error code (hex format) will be

placed in the Module Status Code %AI word or one of the Axis Error Code

%AI words.

Constant Rate, CFG LED Flashing:

If the STAT and CFG LEDs both flash together at a constant rate, the

DSM314 module is in boot mode waiting for a new firmware download. If

the STAT and CFG LEDs both flash alternately at a constant rate, the

DSM314 firmware has detected a software watchdog timeout due to a

hardware or software malfunction.

Irregular Rate, CFG LED OFF:

If this occurs immediately at power-up, then hardware or software

malfunction has been detected. The module will blink the STAT LED to

display two error numbers separated by a brief delay. The numbers are

determined by counting the blinks in both sequences. Record the

numbers and contact Emerson for information on correcting the problem.

OK The OK LED indicates the current status of the DSM314 module.

ON: When the LED is steady ON, the DSM314 is functioning properly.

Normally, this LED should always be ON.

OFF: When the LED is OFF, the DSM314 is not functioning. This is the result of a

hardware or software malfunction that will not allow the module to power

up.

User Manual Appendix A
GFK-1742F Jan 2020

Error Reporting 390

CFG This LED is ON when a module configuration has been received from the PLC.

EN1 When this LED is ON, the Axis 1 Drive Enable relay output is active

EN2 When this LED is ON, the Axis 2 Drive Enable relay output is active.

EN3 When this LED is ON, the Axis 3 Drive Enable relay output is active.

EN4 When this LED is ON, the Axis 4 Drive Enable relay output is active.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 391

Appendix B: DSM314 Communications
Request Instructions

This appendix describes two types of Communications Request (abbreviated COMM REQ in

this appendix) ladder instructions used with the DSM314:

• Parameter Load Type: Used to load DSM Parameter Memory. An advantage of the

COMM REQ instruction is that each one can load up to 16 parameters, and multiple

COMM REQ instructions may be used in one host controller sweep. By comparison,

each Load Parameter Immediate Command can load only one parameter per sweep,

with from one to four Load Parameter Immediate commands allowed per sweep,

depending upon the number of %AQ words configured (which, in turn, depends

upon the number of axes configured - see Table 47). Therefore, the COMM REQ is

most useful for loading several or many parameters, and the Load Parameter

Immediate Command is most useful if you only need to load a few (one to four).

• User Data Table (UDT) Type: Used to access the DSM314’s Local Logic User Data

Table. The User Data Table is an 8192-byte memory area that Local Logic programs

can use for data storage and retrieval. The UDT COMM REQ can copy data either

from host controller word memory to the UDT or from the UDT to host controller

word memory.

In general, a COMM REQ is used in a host controller ladder program to communicate with a

variety of intelligent modules. This appendix first discusses the COMM REQ instruction in

general in Sections 1 and 2, then in Sections 3 – 5, discusses how it specifically applies to the

DSM314 module. This appendix is divided into the following sections:

• Section 1: Communications Request Overview

• Section 2: The COMM REQ Ladder Instruction

• Section 3: The User Data Table (UDT) COMM REQ

• Section 4: The Parameter Load COMM REQ

• Section 5: COMM REQ Ladder Logic Example (uses Parameter Load COMM REQ)

B-1 Communications Request Overview
The Communications Request uses the parameters of the COMM REQ Ladder Instruction

and an associated Command Block to define the characteristics of the request. An

associated Status Word reports the results of each request.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 392

B-1.1 Structure of the Communications Request
The Communications Request is made up of three main parts:

• The COMM REQ Ladder Instruction

• The Command Block, which is a block of host controller memory (usually %R

memory) that contains instructions and data for the COMM REQ.

• The Status Word, which is one word of memory that status/error codes are written

to.

The figure below illustrates the relationship of these parts:

Figure 179: Structure of the COMM REQ

The COMM REQ Ladder Instruction: The COMM REQ Ladder Instruction is the main structure

used to enter specific information about a communications request. This information

includes the rack and slot location of the DSM module associated with the request, and a

parameter that points to the starting address of the Command Block. Note that in

programming this instruction, the command block data should be initialized in the ladder

program before the rung containing the COMM REQ instruction is executed.

The Command Block: The Command Block consists of several words of host controller

memory that contain additional information about the communications request. This

information includes timing parameters, a pointer to the Status Word, a Data Block,

memory types and sizes, and a specific command code. The Data Block specifies the

direction of the data transfer (via the Command Code) and location and type of data to be

transferred.

The Status Word: The Status Word is a single location in host controller data memory where

the CPU reports the result of the communications request. The Status Word address is

specified in the Command Block by the user. The following table lists the status codes

reported in the Status Word:

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 393

Table 82: DSM COMM REQ Status Word Codes

Code Name Code # Description Possible Corrective

Action

IOB_SUCCESS 1 All communications proceeded

normally.

None required.

IOB_PARITY_ERR -1 A parity error occurred while

communicating with an

expansion rack.

Retry. Check hardware –

expansion cables, DSM

module, etc.

IOB_NOT_COMPL -2 After the communication was

over, the module did not

indicate that it was complete.

Retry. Verify the COMM

REQ parameters.

IOB_MOD_ABORT -3 The module aborted the

communication.

Retry. Verify the COMM

REQ parameters.

IOB_MOD_SYNTAX -4 The module indicated that the

data sent was not in the correct

sequence.

Verify the COMM REQ

parameters.

IOB_NOT_RDY -5 The RDY bit in the module’s

status was not active.

Retry. Check DSM module.

IOB_TIMEOUT -6 The maximum response time

elapsed without receiving a

response from the module.

Check DSM module. Verify

the COMM REQ

parameters.

IOB_BAD_PARAM -7 One of the parameters passed

was invalid.

Verify the COMM REQ

parameters.

IOB_BAD_CSUM -8 The checksum received from the

DMA protocol module did not

match the data received.

Retry. Check installation

for proper grounding,

shielding, noise

suppression, etc.

IOB_OUT_LEN_CHGD -9 The output length for the

module was changed, so normal

processing of the reply record

should not be performed.

Verify the COMM REQ

parameters.

Corrective Action

The type of corrective action to take depends upon the application. If an error occurs during

the startup or debugging stage of ladder development, the advice to “Verify the COMM REQ

parameters” is appropriate. The same is true if an error occurs right after a program is

modified. But, if an error occurs in a proven application that has been running successfully,

the problem is more likely to be hardware related. The host controller fault tables should be

checked for possible additional information when troubleshooting Status Word errors.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 394

B-1.2 Monitoring the Status Word

Error Detection and Handling

Figure 180

As shown in the table above, a value of 1 is returned to the Status Word if communications

proceed normally, but if any error condition is detected, a negative value is returned. If you

require error detection in your ladder program, you can use a Less Than (LT) compare

instruction to determine if the value in the Status Word is negative (less than zero). An

example of this is shown in the following figure. If an error occurs, the Less Than’s output

(Q) will go high. A coil driven by the output can be used to enable fault handling or error

reporting logic.

The FT output of the COMM REQ, described later in this appendix, goes high for certain

faults and can be used for fault detection also. Additionally, the Status Word can be

monitored by error message logic for display on an Operator Interface device, in which case,

Status Word codes would correspond to appropriate error messages that would display on

the operator screen. For example, if a –1 was detected in the Status Word, a message could

be displayed that says something like “Error communicating with the DSM module in an

expansion rack.”

To dynamically check the Status Word, write a non-significant positive number (0 or 99 are

typically used) into the Status Word each time before its associated COMM REQ is executed.

Then, if the instruction executes successfully, the CPU will write the number 1 there. This

method lets you know that if the number 1 is present, the last COMM REQ definitely

executed successfully, and that the 1 was not just “left over” from a previous execution. In

the example presented at the end of this appendix, the number 99 is moved into the Status

Word (%R0195) in a rung prior to the rung that contains the COMM REQ instruction.

When multiple DSM COMM REQs are used, it is recommended that each be verified for

successful communications before the next is enabled. Monitoring the Status Word is one

way to accomplish this.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 395

Verifying that the DSM Received Correct Data

For critical applications, it may be advisable to verify that certain parameter values were

communicated correctly to the DSM module before operation is allowed to continue. To

accomplish this, first program the Select Return Data %AQ Immediate Command to specify

a DSM parameter number to be read into the applicable User Selected Data %AI double word

(there is one User Selected Data %AI double word for each axis). Note that at least three host

controller sweeps or 20 milliseconds, whichever represents more time, must elapse before

the new User Selected Data is available in the host controller. This requires programming

some time delay logic to ensure that this requirement is met. Then, program a Double

Integer type Equal instruction to compare the value returned in the User Selected Data

double word with the value sent. Section 5 of this appendix shows an example of this. Also,

refer to Chapter 5 for more information on the User Selected Data word and the Select

Return Data command.

B-1.3 Operation of the Communications Request
The figure below illustrates the flow of information from the host controller CPU to the

DSM module:

Figure 181: Operation of the DSM Communications Request

A Communications Request is initiated when a COMM REQ ladder instruction is activated

during the host controller scan. At this time, details of the Communications Request,

consisting of command and data, are sent from the host controller CPU to the DSM module.

• In the case of a Parameter Load COMM REQ, the command data specifies that data

is to be read from host controller memory and copied into specific DSM parameter

memory locations.

• In the case of a UDT COMM REQ, the command data either specifies that data is to

be read from host controller memory and copied into a specific UDT memory

Segment or read from a specific UDT memory Segment and copied into host

controller memory.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 396

The order in which these instructions are sent is critical, so the Command Block for each type

of COMM REQ should be programmed exactly as instructed later in this appendix. In the

figure above, the DSM module is shown in the CPU rack and communications occur over the

host controller backplane. If the DSM module is located in an expansion or remote rack, the

commands and data are sent over the CPU rack’s backplane, through the expansion or

remote cable to the rack containing the DSM module, and across that rack’s backplane to

the DSM.

At the conclusion of every request, the host controller CPU reports the status of the request

to the Status Word, which is a location in host controller memory that is designated by the

Status Word Pointer in the Command Block.

B-2 The COMM REQ Ladder Instruction
This section discusses the COMM REQ instruction in general. More information is provided

in the PACSystems CPU Reference Manual, GFK-2222 and the Series 90-30/20/Micro PLC

CPU Instruction Set Reference Manual, GFK-0467. The Communications Request begins

when the COMM REQ Ladder Instruction is activated. The COMM REQ ladder instruction has

four inputs and one output:

Figure 182: COMM REQ Ladder Instruction

Enable Input: Must be Logic 1 to enable the COMM REQ Instruction. It is recommended that

the enabling logic be a contact from a transition (“one-shot”) coil.

IN: The memory location of the first word of the Command Block. It can be any valid address

in word-type memory (%R, %AI, or %AQ).

SYSID: A hexadecimal value that gives the rack and slot location of the module that the

COMM REQ is targeting. The high byte (first two digits of the hex number) contains the rack

number, and the low byte contains the slot number. The table below shows some examples

of this:

SYSID Examples

Rack Slot Hex Word Value

0 4 0004h

3 4 0304h

2 9 0209h

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 397

TASK: The number 0 should always be entered here for a DSM module.

FT Output: The function’s FT (fault) output can provide an output to optional logic that can

verify successful completion of the Communications Request. The FT output can have these

states:

Table 83: COMM REQ Instruction FT Output Truth Table

FT Output

Enable Input Status Does an Error Exist? FT output

Active No Low

Active Yes High

Not active No execution Low

• The FT output will be set High if:

— The specified target address is not present (for example, specifying Rack 1

when the system only uses Rack 0).

— The specified task number is not valid for the device (the TASK number should

always be 0 for the DSM).

— Data length is set to 0.

DSM COMM REQ Programming Requirements and Recommendations

• It is recommended that DSM COMM REQ instructions be enabled with a contact

from a transition coil.

• If using more than one DSM COMM REQ in a ladder program, verify that a previous

COMM REQ executed successfully before executing another one. This can be done

by checking the Status Word and the FT (Fault) output, explained earlier in this

appendix under the heading “Monitoring the Status Word.”

• As seen in the table above, the FT output will be held False if the Enable Input is not

active. This means that if the COMM REQ is enabled by a transitional (one-shot)

contact and a fault occurs, the FT output will only be High for one host controller

scan. Therefore, to “capture” the fault, you can program the fault output as a Set

coil, which would not be automatically reset at the end of a scan. Additional logic

would then be needed to reset the fault output coil after the fault is acknowledged.

• Programming a device, such as a Set Coil, on the FT output of the COMM REQ is

optional.

• It is necessary to initialize the data in the Command Block prior to executing the

COMM REQ instruction. Since the normal host controller sweep order is from top to

bottom, initializing the Command Block in an earlier rung (or rungs) than the rung

that contains the COMM REQ will facilitate this requirement. See the example at the

end of this appendix.

• Recommendation: If you use MOVE instructions to load values into Command Block

registers, use a Word-type MOVE to load a hexadecimal number, and an Integer-

type MOVE to load a decimal number. You will see this applied in the example at the

end of this appendix for a Parameter Load COMM REQ, where the E501h code is

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 398

loaded via a Word-type MOVE instruction, and the remaining decimal values are

loaded via Integer-type MOVEs.

B-3 The User Data Table (UDT) COMM REQ
The DSM314 has an 8192-byte memory area called the User Data Table (UDT) that is

designated for use with Local Logic (LL) programs. LL Programs can access all or part of this

memory to store and retrieve data. The UDT is useful for storing and retrieving large

amounts of data such as large batches of setup data.

The host controller CPU can write to or read from the UDT via a User Data Table

Communications Request (UDT COMM REQ) instruction in the host controller ladder

program. A single UDT COMM REQ reads or writes 2048 bytes of memory at a time.

Therefore, the UDT is logically divided into four 2048-byte segments, called Segments 1-4,

that can be accessed individually by a UDT COMM REQ. There is a unique Read and a unique

Write command for each of the four Segments, for a total of 8 possible UDT COMM REQ

commands.

B-3.1 User Data Table COMM REQ Features and Usage
Information
• Reads or Writes 2K (2048) bytes at a time to the Local Logic User Data Table. No

other value is permitted.

• Only works with the DSM314 module (will not work with the DSM302)

• Cannot be used to download parameter data to the DSM314

• This instruction adds about 15 ms to host controller scan (sweep) time for one scan

if the host controller’s Communication Window Sweep Control parameter is set to

COMPLETE (Run to Completion). If the Communication Window Sweep Control

parameter is set to LIMITED, the COMM REQ will be executed over several scans, with

a smaller impact on scan time. However, the COMM REQ probably will not be

executed repeatedly – it will only be executed when there is a need to change data.

Therefore, if it was sent on the First Scan, or during a job setup, it would not have an

impact while the application is running.

• To avoid memory access conflicts, it is recommended that a Periodic Subroutine not

be used during the time this COMM REQ is active.

• This COMM REQ does not support discrete memory for its host controller Data Type.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 399

B-3.2 The UDT COMM REQ Command Block

Table 84: User Data Table Command Block

User Data TableCOMM REQ Command Block for DSM314 Module

Description Address Offset Word No. and Value

Data Block Header Length Address + 0 Word 1, always set to 4

WAIT/NOWAIT Flag Address + 1 Word 2, always set to 0

Status Word Memory Type (see Status

Word Memory Type Codes table below)

Address + 2 Word 3, chosen by user (see

Memory Type Codes table, below)

Status Pointer Offset Address + 3 Word 4, chosen by user

Idle Timeout Value Address + 4 Word 5, always set to 0

Maximum Communication Time Address + 5 Word 6, always set to 0

Command Code Address + 6 Word 7, see Command Code Table

Parameter Data Size, in bytes Address + 7 Word 8, always 2048.

Memory Type for Host Controller Data Address + 8 Word 9, chosen by user (see

Memory Type Codes table, below)

Start of Host Controller Data (Data Offset) Address + 9 Word 10, chosen by user

Data Block Length (Word 1): The length of the Data Block header portion of the Command

Block. It should be set to 4. The Data Block header is stored in Words 7 through 10 of the

Command Block

WAIT/NOWAIT Flag (Word 2): This must always be set to logic zero for the DSM.

Status Word Memory Type (Word 3): This word specifies the memory type that will be used

for the Status Word. Each memory type has its own specific code number, shown in the

Memory Type Codes table below. So, for example, if you want to use %R memory for the

Status Word, you would put either the decimal code number 8 or the hexadecimal code

number 08h in this word.

Note that if you select a discrete memory type (%I or %Q), 16 consecutive bits will be

assigned to the Status Word, beginning at the address specified in the Status Word Pointer

Offset word, described below.

Table 85: Status Word Memory Type Codes

Memory Type

Abbreviation

Memory Type Code Number to Enter

Decimal Hexadecimal

%I Discrete input table 70 46h

%Q Discrete output table 72 48h

%R Register memory 8 08h

%AI Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 400

Status Word Pointer Offset (Word 4): This word contains the offset within the memory type

selected. Note: The Status Word Pointer Offset is a zero-based number. In practical terms,

this means that you should subtract one from the address number that you wish to specify.

For example, to select %R0001, enter a zero (1 – 1 = 0). Or, if you want to specify %R0100,

enter a 99 (100 – 1 = 99). Note that the memory type, %R in this example, is specified by the

previous word (see the “Status Word Pointer Memory Type” explanation above).

Idle Timeout Value (Word 5): Since the DSM always uses the NOWAIT mode (WAIT/NOWAIT

flag always set to zero), this Idle Timeout Value parameter is not used for the DSM. Set it to

zero.

Maximum Communication Time (Word 6): Since the DSM always uses the NOWAIT mode

(WAIT/NOWAIT flag always set to zero), this Maximum Communication Time parameter is

not used for the DSM. Set it to zero.

Command Code (Word 7): Use one of the eight Command Codes from the table below. The

Command Codes are given as hexadecimal numbers.

Table 86: UDT COMM REQ Command Codes

User Data Table (UDT) COMM REQ Commands

Command Code Command Description

D001h Write to UDT Segment 1

D101h Write to UDT Segment 2

D201h Write to UDT Segment 3

D301h Write to UDT Segment 4

D804h Read from UDT Segment 1

D904h Read from UDT Segment 2

DA04h Read from UDT Segment 3

DB04h Read from UDT Segment 4

UDT Segment Data Size (Word 8): Specifies the memory size, in bytes, of the UTP Segment

to be accessed. This value should always be 2048 bytes (800h for hexadecimal).

Data Memory Type (Word 9): This word specifies the memory type that will be used for host

controller data. Each memory type has a unique code number, shown in the Memory Type

Codes table below. So, for example, to specify %R memory, you would put either the

decimal code number 8 or the hexadecimal code number 08h in this word.

Note: The UDT COMM REQ does not support discrete memory (%I or %Q) for the Data Memory Type.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 401

Table 87: Data Memory Type Codes for UDT COMM REQ

Memory Type

Abbreviation

Memory Type Code Number to Enter

Decimal Hexadecimal

%R Register memory 8 08h

%AI Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

Data Start Pointer Offset (Word 10): This word contains the offset within the memory type

selected in the Data Memory Type word (Word 9). Note: The Data Start Pointer Offset is a

zero-based number. In practical terms, this means that you should subtract one from the

address number that you wish to specify. For example, to select %R0001 as the Data Start

location, enter zero (1 – 1 = 0). Or, to select %R0100, enter 99 (100 – 1 = 99). Note that the

memory type, %R in this example, is specified in the previous word. The starting address

designated by this word will be the first of 1024 contiguous words of memory used in the

COMM REQ.

B-3.3 User Data Table COMM REQ Example
In this example, the following specifications are given:

• The DSM314 module is mounted in Rack 0, Slot 7 of the PLC.

• The Command Block’s starting address is %R0196.

• The Status Word is located at %R0195.

• The COMM REQ’s FT (fault) output drives a Set Coil.

• Segment 1 of the DSM314 User Data Table is to be Written to. This is specified by

the Command Code D001 in Word 7 of the Command Block.

• The data in a 1024-word (2048 byte) portion of register memory, %R0301 through

%R1324, is copied and written into Segment 1 (2048 bytes) of the User Data Table.

(Note that each %R word is two bytes in length.) This transfer of data is illustrated in

the next figure:

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 402

Figure 183: Data Transfer for Command Code D001 (Write to Segment 1)

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 403

B-3.4 User Data Table COMM REQ Example

Figure 184: DSM314 UDT COMM REQ Example

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 404

B-4 The Parameter Load COMM REQ

B-4.1 The Command Block
The Command Block contains the details of a Communications Request. The first address of

the Command Block is specified by the IN input of the COMM REQ Ladder Instruction. This

address can be in any word-oriented area of memory (%R, %AI, or %AQ). The Command

Block structure can be placed in the designated memory area using an appropriate

programming instruction (the BLOCK MOVE instruction is recommended). The DSM

Command Block has the following structure:

Table 88: DSM Parameter Load COMM REQ Command Block

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 405

Data Block Length (Word 1): The length of the Data Block header portion of the Command

Block. It should be set to 4 for the DSM. The Data Block header is stored in Words 7 through

10 of the Command Block

WAIT/NOWAIT Flag (Word 2): This must always be set to logic zero for the DSM.

Status Word Pointer Memory Type (Word 3): This word specifies the memory type that will

be used for the Status Word. Each memory type has its own specific code number, shown in

the Memory Type Codes table below. So, for example, if you want to use %R memory for

the Status Word, you would put either the decimal code number 8 or the hexadecimal code

number 08h in this word.

Note that if you select a discrete memory type (%I or %Q), 16 consecutive bits will be

assigned to the Status Word, beginning at the address specified in the Status Word Pointer

Offset word, described below.

Status Word Pointer Offset (Word 4): This word contains the offset within the memory type

selected. Note: The Status Word Pointer Offset is a zero-based number. In practical terms,

this means that you should subtract one from the address number that you wish to specify.

For example, to select %R0001, enter a zero (1 – 1 = 0). Or, if you want to specify %R0100,

enter a 99 (100 – 1 = 99). Note that the memory type, %R in this example, is specified by the

previous word (see the “Status Word Pointer Memory Type” explanation above).

Idle Timeout Value (Word 5): Since the DSM always uses the NOWAIT mode

(WAIT/NOWAIT flag always set to zero), this Idle Timeout Value parameter is not used for

the DSM. Set it to zero.

Maximum Communication Time (Word 6): Since the DSM always uses the NOWAIT mode

(WAIT/NOWAIT flag always set to zero), this Maximum Communication Time parameter is

not used for the DSM. Set it to zero.

Command Code (Word 7): This is always E501(hexadecimal) for the DSM. To enter this

value directly as a hexadecimal value, use a Word-type MOVE instruction. Also, since this

value is 58,625 in decimal, an Integer-type MOVE instruction (limited to a maximum

decimal value of 32,767 because bit 16 is used for the sign) does not have the capacity to

contain it. A Word-type MOVE instruction can hold a decimal number up to 65,535 (FFFF in

hex.).

Parameter Data Size (Word 8): Specifies the Parameter Data size in bytes. This value is

always 68, which provides 4 bytes (for the first two words of the Parameter Data section)

plus 4 additional bytes for each parameter loaded.

Parameter Data Memory Type (Word 9): This word specifies the memory type that will be

used for Parameter Data. Each memory type has a unique code number, shown in the

Memory Type Codes table below. So, for example, to specify %R memory, you would put

either the decimal code number 8 or the hexadecimal code number 08h in this word.

Note that if you select a discrete memory type (%I or %Q), a group of 32 consecutive bits will

be required for each parameter, and a group of 16 consecutive bits each will be required for

Words 11 and 12.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 406

Parameter Data Start Pointer Offset (Word 10): This word contains the offset within the

memory type selected in the Parameter Data Memory Type parameter. Note: The

Parameter Data Pointer Offset is a zero-based number. In practical terms, this means that

you should subtract one from the address number that you wish to specify. For example, to

select %R0001 as the Parameter Data Start location, enter zero (1 – 1 = 0).

Or, to select %R0100, enter 99 (100 – 1 = 99). Note that the memory type, %R in this

example, is specified in the previous word.

Starting Parameter Number (Word 11): Specifies the number of the first parameter to be

loaded to the DSM Parameter Table. Valid values are 0 – 255. However, to load all 16

parameters, the value of Word 11 must be 240 or less.

Number of Parameters to Send (Word 12): This parameter must always be set to 16.

Parameter Data (Words 13 - 44): The size of this Parameter Data area depends on the value

in Word 12 (Number of Parameters to Send). Two words (4 bytes) of data are required for

each parameter. Since the valid number of Double Integer parameters is 1 through 16, the

Parameter Data area can be between 2 and 32 words.

COMM REQ Memory Type Codes: The codes in the following table are used in Word 3 (Status

Word Pointer Memory Type), and Word 9 (Parameter Data Memory Type).

Table 89: Parameter Load COMM REQ Memory Type Codes

Parameter Load COMM REQ Memory Type Codes

Memory Type

Abbreviation

Memory Type Code Number to Enter

Decimal Hexadecimal

%I Discrete input table 70 46h

%Q Discrete output table 72 48h

%R Register memory 8 08h

%AI Analog input table 10 0Ah

%AQ Analog output table 12 0Ch

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 407

B-4.2 DSM Parameter Load COMM REQ Example
This example is used as the basis for the following section, “Section 5: COMM REQ Ladder

Logic Example.” In this example, the following specifications are given:

• The DSM module is mounted in Rack 0, Slot 7 of the PLC.

• The Command Block’s starting address is %R0196.

• The Status Word is located at %R0195.

• 16 parameters are to be sent.

• The COMM REQ’s FT (fault) output drives a Set Coil.

• DSM Parameter 1 is considered critical in this example application. The last two

rungs of the “COMM REQ Ladder Logic Example” (see Section 5) verify that

Parameter 1 received the correct value via the COMM REQ.

• The data in 32 words (16 double words) of memory, %R0208 through %R0239, are

copied to 16 double word parameter registers, P001 through P016, in DSM314

parameter memory. This transfer of data is illustrated in the next figure:

Figure 185: Data Transfer for Parameter Load COMM REQ Example

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 408

Figure 186: Overview of the Parameter Load COMM REQ Example

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 409

B-5 COMM REQ Ladder Logic Example
The following ladder logic example is based upon the Parameter Load COMM REQ example

in the previous section. Refer to the table on the previous page for the Command Block

listing.

Setting up the COMM REQ Command Block Values

The next two rungs load the appropriate values into the first seven words of the COMM

REQ’s Command Block.

Figure 187

In the following two rungs, the remainder of the Command Block data is loaded. This data

is listed next:

%R00202 – Command. For DSM, it’s always = E501 (hex)

%R00203 – Parameter data size, in bytes = 68

%R00204 – Memory type code for %R memory = 8

%R00205 – Starting register for Parameter Data (offset by one) = 205

%R00206 – Starting Parameter Number = 1

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 410

%R00207 – Number of Parameters to send = 16

%R00208 - %R00239 – Parameter data to be sent

Figure 188

Logic for Parameter Data (not Shown)

Additional logic will be required to load your data into registers %R00208 - %R00239 so that

it can be sent to the DSM314 parameters. (The value in double word %R00208/%R00209

will be sent to Parameter 1, the value in %R00210/%R00211 will be sent to Parameter 2, and

so on, until finally, the value in %R00238/%R00239 will be sent to Parameter 16.) The

method to be used for loading the data into these registers depends upon your application.

If the data values will not change, constants can be moved into the registers using Block

Move and/or Move instructions. If the values are to change, they could be moved into the

registers from an operator interface device.

Handling Double Integer Parameter Values and Input Value Scaling

The data in the single precision registers (16 bits) needs to be converted to double-integer

(32 bits) form because the DSM’s parameters are double-integer size. A convenient way to

do this is to use a Double Integer Multiply (MUL DINT) instruction to move input data into

the registers whose contents will be sent to the DSM. There are two possible advantages to

this approach:

• This is an easy way to convert single integer registers to double-integer form.

• It lets you easily scale the input values if you should need to. The term scaling refers

to multiplying and/or dividing a value to create a new value that is proportional to

the original value. For example, multiplying an input value by two, then dividing it

by 3 would result in an output value that is always 2/3 the size of the input value.

Scaling is often required in a servo system to match the actual distance moved to

the distance commanded. It is doing so, it provides the function of an “electronic

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 411

gearbox.” It can be used to allow for gear ratio, ballscrew pitch, encoder resolution,

and customer input value preference.

In the example below, the integer value from an Operator Input device (a 4-digit BCD

thumbwheel switch) will be multiplied by a factor of 1000, then placed into the double-

integer word %R00208/%R00209 (for Parameter 1).

Figure 189

In the example above, when switch %I00001 is closed, the Binary Coded Decimal (BCD)

value in BCDINP (%I00017-%I00032) from a BCD Operator Input device is converted to an

integer value (by the BDC4 TO INT instruction), and the integer value is placed in register

%R00150. Next, %R00151 is cleared to zero by the BLK CLR instruction. Note that on the

output of the BCD4 TO INT instruction, %R00150 is a single integer value. However, when

%R00150 is used as an input (IN1) for the double integer Multiply instruction (MUL DINT),

the CPU automatically combines it with the next %R address (%R00151) to form a double-

integer value. Word %R00150 becomes the Least Significant Word, and %R00151 becomes

the Most Significant Word in this double-integer word. The MUL DINT instruction multiplies

the value in %R00150/%R00151 by 1000 and places the result in double word

%R00208/%R00209 (DBL_WRD).

When used this way, %R00151 is called an “implied address” since it is not shown on the

screen. Be aware that you must not use %R00151 for any other purpose (it should be held

to a value of zero); otherwise, the value placed into %R00150 from the BDC4 to INT

instruction would be altered. The same principle applies in the case of double word

%R00208/R00209. Here, the use of %R00209 is implied by the fact that %R00208 is

displayed as the output of the Double Integer Multiply (MUL DINT) instruction. So %R00209

should be reserved for this use only.

In this rung, the MUL DINT instruction performs two functions: (1) it converts the value in

%R00150 from single integer form to double integer form, and (2) it scales the value in

%R00150/%R00151 by multiplying it by 1000. If scaling had not been desired, a value of 1

would be used instead of 1000 at IN2 of the MUL DINT instruction; this would provide

conversion to double integer without changing (scaling) the value.

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 412

The Communications Request Instruction

The next figure shows the Communications Request (COMM REQ) instruction. The IN input

contains the address of the first word of the command block. The SYSID input contains the

rack and slot number (rack 00, slot 07) of the DSM314 targeted by this COMM REQ. The

TASK input is always zero for the DSM314. The FT output connects to a coil (%M00295) that

will be energized if a fault is detected.

Figure 190

Verifying the Data Sent to Parameter 1

In this example, the value in DSM Parameter 1 is critical because it specifies a move distance

that, if incorrect, could result in machine damage. So, the logic in the following two rungs

verifies that Parameter 1 received the correct value. If the value is not correct, contacts (not

shown) from output coil “VERIFY” in the second rung will prevent the DSM from producing

motion.

Figure 191

User Manual Appendix B
GFK-1742F Jan 2020

DSM314 Communications Request Instructions 413

First Rung: The MOVE WORD instruction moves hexadecimal number 1840 into %AQ00001,

the first word of the Immediate Command. The low byte value (40) of this number specifies

the Select Return Data Immediate Command. The high byte value (18) specifies the Mode

selection for Parameter Data.

The MOVE INT instruction moves a decimal value of 1, indicating Parameter 1, into

%AQ00002. This commands that the value in DSM Parameter 1 be written to the User

Selected Data double word for Axis 1, %AI00021/AI00022 in this example.

Note: The actual %AI addresses used for any DSM module are specified when the module is configured.

The TMR THOUS (thousandths) timer instruction produces a 45-millisecond time delay after

the Select Return Data Immediate Command is sent. This is required because User Selected

Data is not available in the ladder until at least 3 sweeps or 20 milliseconds (whichever is

greater) elapses after the Select Return Data Immediate Command is sent. Since the sweep

time in this example is 14 milliseconds, this 45-millisecond delay ensures that the Parameter

1 data will be present in the User Selected Data double word before the Equal instruction in

the next rung executes. Note that contact %M00200 must stay ON long enough for the TMR

timer to time out and enable the second rung.

Second Rung: After the 45-millisecond delay in the previous rung elapses, contact %M00202

closes and enables this rung. In this rung, a double integer EQUAL instruction compares the

value in %R00208/R00209 (the source of the value sent by the COMM REQ to DSM

Parameter 1) with the value returned from Parameter 1 in %AI00021/AI00022. If the values

are equal, coil “Verify” will turn on.

User Manual Appendix C
GFK-1742F Jan 2020

Position Feedback Devices 414

Appendix C: Position Feedback Devices
Four  and  Series Digital serial encoder models function with the DSM314:

Table 90: Digital Serial Encoder Resolutions

8K (8,192 cts/rev) - No longer available on new motors

32K (32,768 cts / rev) - Standard on β Series motors

64K (65,536 cts/rev) - Standard on α Series motors

1000K (1,048,576 cts/rev) - Optional on α Series motors

Note: The older “A” or “C” Series million count serial encoder will not operate with the DSM314. An
error will be reported if this encoder is connected.

For position control purposes, by default, the DSM314 treats all encoders as 8192

counts/rev. The additional resolution of 32K, 64K and 1000K encoders will still be used in

the digital servo velocity controller to provide smooth operation at low speeds. To use the

increased position feedback resolution, refer to the Tuning Parameters section of Chapter

4.

C-1 Digital Serial Encoder Modes
The Digital serial encoders can be operated in either Incremental mode or Absolute mode.

The mode is configured using the Feedback Mode selection in the configuration software.

Proper operation of the Absolute mode requires an external battery pack that must be

connected to the servo amplifier. Refer to the appropriate amplifier manual for selection

and installation of the battery pack.

C-2 Incremental Encoder Mode Considerations
The digital serial encoder can be used as an incremental encoder returning 8192 counts per

shaft revolution, with no revolution counts retained through a power cycle. The equivalent

of a marker pulse will occur once each motor shaft revolution. All Home Modes (Home

Switch, Move+, Move–) and Set Position %AQ commands reference the axis, and set the

Position Valid %I bit upon successful completion. The configured High Position Limit and

Low Position Limit are valid and the Actual Position %AI status word as reported by the

DSM314 will wrap from high to low count or from low to high count values. This is an

excellent mode for continuous applications that will always operate via incremental moves,

in the same direction. Home Offset and Home Position configuration items allow simple

referencing to the desired location.

User Manual Appendix C
GFK-1742F Jan 2020

Position Feedback Devices 415

C-3 Absolute Encoder Mode Considerations
The Digital serial encoder can be used as an absolute type encoder by adding a battery pack

to retain servo position while system power is off. A Find Home cycle or Set Position %AQ

command must be performed initially or whenever encoder battery power is lost with the

servo amplifier also in a powered down state. Feedback Mode set to ABSOLUTE must be

selected in the configuration software for proper operation with a battery pack.

C-3.1 Absolute Encoder - First Time Use or Use After Loss of
Encoder Battery Power
The absolute encoder temporarily provides incremental data during the first use or after

restoring encoder battery power. The incremental data is lost when motor shaft rotation

causes the encoder to pass a reference point (similar to a marker signal) within one

revolution of the motor shaft. The Digital Absolute serial encoder must be rotated up to one

full revolution after the absolute mode battery has been reattached to the amplifier. The

encoder will reference itself within one revolution and report a referenced status to the

DSM314.

C-3.2 Absolute Encoder Mode - Position Initialization
When a system is first powered up in Absolute Encoder mode, a position offset for the

encoder must be established. Using the %Q Find Home cycle or the Set Position % AQ

command can accomplish this.

Find Home Cycle - Absolute Encoder Mode

The Find Home Mode can be configured for Move (+), Move (–) or Home Switch operation.

Refer to Chapter 4 for additional details of Home Cycle operation. The Home Offset and

Home Position configuration items function the same as in Incremental Encoder mode. At

the completion of the Home Cycle, the Actual Position %AI status word is set to the

configured Home Position value. The DSM314 internally calculates the encoder Absolute

Feedback Offset needed to produce the configured Home Position at the completion of the

Home Cycle. This Absolute Feedback Offset is immediately saved in the DSM314 non-

volatile (capacitor backup) memory.

Once an absolute position is established by successful completion of a Find Home cycle, the

DSM314 will automatically initialize the Actual Position %AI status word after a power cycle

and set the Position Valid %I bit.

Note: If the Position Valid %I bit is set before initiating a Home Cycle, the Home Cycle clears Position Valid
and then sets Position Valid again when the cycle completes. If the Home cycle is halted by an
Abort All Moves %Q bit command, Position Valid will remain off. However cycling power will cause
a valid Actual Position to be restored and Position Valid will be automatically set.

User Manual Appendix C
GFK-1742F Jan 2020

Position Feedback Devices 416

Set Position Command - Absolute Encoder Mode

The Set Position %AQ command functions the same way as in incremental encoder mode.

At the completion of the Set Position operation, Actual Position is set to the Set Position

value. The DSM314 internally calculates the encoder Absolute Feedback Offset needed to

produce the commanded Set Position value. This Absolute Feedback Offset is immediately

saved in the DSM314 non-volatile (capacitor backup) memory.

If a Set Position AQ command is received before the encoder has been referenced, Error

Code 53(hex) “Attempt to initialize position before digital encoder passes reference point”

will be reported. This error code is only reported if the Feedback Mode is set to Absolute.

Serial Encoders configured for Incremental mode do not have this restriction.

Once an absolute position is established by a Set Position command, the DSM314

automatically initializes Actual Position after a power cycle and sets the Position Valid %I bit.

C-3.3 Absolute Encoder Mode - DSM314 Power-Up
The battery pack attached to the servo subsystem maintains power to the encoder counter

logic. Once the encoder has referenced through first time start up, the encoder

automatically maintains the actual position, even if the axis is moved during servo power

loss. The encoder monitors the status of the battery pack, and reports loss of battery power

or low battery power to the DSM314.

The DSM314 completes a power-on diagnostic, and when configured for absolute encoder

mode, interrogates the referenced status of the Digital serial encoder. A valid referenced

status from the encoder signals the DSM314 to read the encoder absolute position. The

DSM314 reports the Actual Position %AI status as the sum of the encoder position and the

Absolute Feedback Offset established by the initial Find Home cycle or Set Position %AQ

command.

User Manual Appendix C
GFK-1742F Jan 2020

Position Feedback Devices 417

C-3.4 Incremental Quadrature Encoder
Incremental Quadrature Encoders provide three output signals to the DSM314: Channel A,

Channel B, and Marker. The Channel A and Channel B signals transition as the encoder turns,

allowing the DSM314 to count the number of signal transitions and calculate the latest

encoder position change and direction of rotation.

Incremental Quadrature Encoders are incremental feedback devices; they do not provide a

continuous indication of absolute shaft angle as the input shaft rotates. For this reason, the

DSM314’s Actual Position %AI status word must be initialized with a known physical position

before positioning control is allowed. This position alignment can be accomplished using

the Set Position %AQ Immediate command or the %Q Find Home cycle. The home cycle

makes use of the encoder marker channel, which is a once per revolution pulse produced at

a known encoder shaft angle. Successful completion of the %Q Find Home cycle or a Set

Position %AQ command causes the DSM314 to set the axis Position Valid %I bit. Position

Valid must be set before motion programs will be allowed to execute. Position Valid is only

cleared by an encoder Quadrature Error (Channel A and Channel B switching at the same

time) or by turning on the Find Home and Abort %Q bits simultaneously.

Note: In Digital Mode, only incremental quadrature encoders are supported for the Follower mode
master axis.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 418

Appendix D: Tuning Digital and Analog Servo
Systems

This appendix provides a procedure for starting up and tuning a Digital or Analog servo

system. For Digital servos systems, there are two control loops in the DSM314 that require

tuning, the velocity loop and the position loop. Always begin with module configuration

then proceed to the velocity loop setting and finally the position loop. For Analog servo

systems, there are a series of Start-Up Procedures to follow.

D-1 Start-Up and Tuning Information for Digital

Servo Systems
There are three major sections covered:

• Validating Home Switch, Over Travel Inputs and Motor direction.

• Tuning the Velocity Loop.

• Tuning the Position Loop.

D-1.1 Validating Home Switch, Over Travel Inputs and Motor
direction

1. Connect the motor, amplifier and DSM314 module following the procedures in

Chapter 2.

2. If Over travel Limit switches are used (Overtravel Limit Switch = Enabled in

configuration), wire them to the correct 24V terminal board points (refer to Chapter

3). The overtravel inputs are operated in the fail-safe mode i.e. a normally closed or

PNP type switching device should be used. Current must be sourced to the input to

maintain a logic level 1 on the input while the axis is NOT at the overtravel position

or an alarm condition (Error A9) will be returned. Otherwise the Overtravel Limit

Switch configuration must be set to Disabled using the configuration software.

3. If a Home switch is used (Home Mode = Home Switch in configuration), wire it to the

correct 24V terminal board points (refer to Chapter 3). The Home switch must be

wired and actuated so that it is ALWAYS ON (closed) when the axis is on the negative

side of home and ALWAYS OFF (open) when the axis is on the positive side of home.

Typically, the Home switch is mounted at or near one end of the axis travel. It is

important to verify the operation of the home switch prior to attempting a home

cycle. It may be necessary to reverse the motor direction (Motor1 or Motor2 Dir =

POS/NEG) in the module configuration.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 419

4. Use the configuration software to set the desired user scaling factors and other

configurable parameters. The following items MUST be changed from the default

configuration settings:

Configuration Item Setting

Axis 1 Mode Digital Servo

Motor Type: Select from Table in Chapter 4

Position Loop Time Constant: 60 ms

Velocity Loop Gain: (Load Inertia / Motor Inertia) * 16

User Units : Counts (Standard Mode Only) See Chapter 3

Position Error Limit: 30000 x User Units / Counts

Set the configuration parameters in the order shown above.

5. Store the configuration to the host controller.

6. Clear the program from the host controller, turn off all DSM314 %Q bits and place

the host controller in RUN mode. Monitor the %I CTL bits for Home Switch, (+)

Overtravel and (-) Overtravel and confirm that each bit responds to the correct

switch (Refer to Chapter 5 for %I bit definitions).

7. Turn on the Enable Drive %Q bit and confirm that the servo amplifier is enabled. If a

brake is used on the servomotor it should be released at this time.

8. Send the %AQ command code for Force Digital Servo Velocity 100 (rpm). Confirm

that the motor moves in the desired POSITIVE direction and the Actual Velocity

reported in the %AI table is POSITIVE. If the motor moves in the wrong direction, use

the Axis Direction parameter in the configuration software to swap the positive and

negative axis directions.

9. Remove the Force Digital Servo Velocity command from the %AQ table. Use a low

Jog Velocity and Jog Acceleration in the configuration, values may be increased later.

Turn on the Jog Plus %Q bit. Confirm that the servo moves in the proper direction

and that the Actual Velocity reported by the DSM314 in the %AI table matches the

configured Jog Velocity. If Motion Programs will use an acceleration higher than the

Jog Acceleration, it may be necessary to increase Jog Acceleration so that Abort All

Moves and Normal Stop actions will operate as expected.

10. Use a low value for Find Home Velocity and Final Home Velocity in the module

configuration, values may be increased later. Check for proper operation of the Find

Home cycle by momentarily turning on the Find Home %Q bit (the Drive Enabled %Q

bit must also be maintained on). The axis should move towards the Home Switch at

the configured Find Home Velocity, then seek the Encoder Reference point at the

configured Final Home Velocity. If necessary, adjust the configured velocities and

the location of the Home Switch for consistent operation. The final Home Switch

MUST transition at least 10 milliseconds before the encoder reference point is

encountered. The physical location of Home Position can be adjusted by changing

the Home Offset value with the configuration software.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 420

11. Monitor servo performance and use the Jog Plus and Jog Minus %Q bits to move the

servomotor in each direction. Placing the correct command code in the % AQ table

can temporarily modify the Position Loop Time Constant. For most systems the

Position Loop Time Constant can be reduced until some servo instability is noted,

then increased to a value approximately 50% higher. Once the correct time constant

is determined, the DSM314 configuration should be updated using the

configuration software. Velocity Feedforward can also be set to a non-zero value

(typically 90 – 100 %) for optimum servo response. Refer to Tuning a Digital Servo

for information on setting the digital servo Velocity Loop Gain.

12. If Follower mode is used with an Incremental Quadrature Encoder, confirm that

Actual Position (Aux Axis 3) represents the encoder position. Make sure the desired

Follower axis slave: master ratio has been programmed as the A:B ratio using the

configuration software.

Digital Servo System Startup Troubleshooting Hints

1. The DSM314 requires a Series 90-30 CPU with firmware release 10.0 or later, or a

PACSystems RX3i CPU (version 2.8 or later).

2. DSM support for Beta M1 and Beta M0.5 motors requires DSM firmware version 3.0

or later.

3. The default DSM314 configuration for the Overtravel Limit Switch inputs is

ENABLED. Therefore, 24 VDC must be applied to the Overtravel inputs or the

DSM314 will not operate. If Overtravel inputs are not used, the DSM314

configuration should be set to Overtravel Limit Switch inputs DISABLED.

If the Axis Enabled %I bit is OFF, the axis will not respond to any %Q bits or %AQ

commands. When a servomotor is not used with a Servo Axis, the Motor Type must

be set to 0 or Axis Enabled will stay OFF. A Motor Type of 0 disables the axis servo

loop processing and sets Axis Enabled ON, allowing the axis to accept commands

such as Load Parameter Immediate and Set Analog Output Mode.

4. The Enable Drive %Q control bit must be set continuously to ON or no motion other

than Jogs will be allowed. If no STOP errors have occurred, the Drive Enabled %I

status bit will mirror the state of the Enable Drive %Q bit. A STOP error will turn off

Drive Enabled even though Enable Drive is still ON. The error condition must be

corrected, and the Clear Error %Q control bit turned ON for one host controller

sweep to re-enable the drive.

5. If the Module Error Present %I status bit is ON and the Axis Enabled and Drive Enabled

%I status bits are OFF, then a STOP error has occurred (Status LED flashing fast). In

this state, the Servo Axis will not respond to any %Q bits or %AQ commands other

than the Clear Error %Q bit.

6. The Clear Error %Q control bit uses one-shot action. Each time an error is generated,

the bit must be set OFF then ON for at least one sweep to clear the error.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 421

7. The CFG OK LED must be ON or the DSM314 will not respond to host controller

commands. If the LED is OFF then a valid DSM314 configuration has not been

received from the host controller, or there may be a recognized configuration error.

Check the %AI error code words for Dxxx errors, which are documented in the

“System Error Codes” section of Appendix A. Also check the PLC fault tables for

reported configuration errors.

D-1.2 Tuning a Digital Servo Drive
The following pages provide you with an introduction to the basics required for tuning a

Digital servo drive. This introduction shows one method for tuning a servo drive. The

method will not work in all applications, and you should modify the approach based on the

application. In order to display and measure the necessary signal waveforms, the DSM314

analog outputs must be connected to an oscilloscope. Without an oscilloscope to measure

the signals, tuning the servo drive with the following approach will not be possible. The

Select Analog Output Mode %AQ command (47h) is used to select the data that is sent to

the analog outputs during servo tuning. Refer to Chapter 5 for a discussion of this %AQ

command.

Tuning Requirements

The module has three main parameters that are adjusted during tuning. The parameters are

the Position Loop Time Constant, Velocity Feed Forward Gain, and Velocity Loop Gain. The

Position Loop Integrator Time Constant gives the position loop an additional degree of

freedom but in typical applications is not required.

The approach to tuning the control loops is to tune the inner control loops first. In this

example, the inner control loop that requires tuning is the velocity loop. As shown in the

figure below, the position loop is the outer loop and sends velocity commands to the

velocity loop.

Figure 192: Control Loops Block Diagram

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 422

Tuning the DIGITAL MODE Velocity Loop

The proper method to tune the velocity loop is to separate the velocity loop from the

position loop. To achieve this separation, a method must be used to directly send velocity

commands without using the position loop control. The DSM module has several modes

that will allow the user to send a velocity command directly to the velocity loop. Two

methods are as follows:

Method #1:

The Force Digital Servo Velocity %AQ immediate command (34h) will send a velocity

command directly to the velocity loop. This command is different from the Move at Velocity

Command, which uses the position loop to generate the command. This is important since

the position loop should not be interacting with the velocity loop at this point in the tuning

process. The Force Digital Servo Velocity %AQ command allows the user to generate a step

change in the velocity. The velocity command step is then used to generate the velocity

loop step response. The user should note that when a velocity command step change is

performed the acceleration is limited only by the bandwidth of the velocity loop. In some

applications this can cause damage to the controlled device due to the high acceleration

rate.

Method #2:

In some applications, method #1 introduces too large a shock to the device under control.

In these cases, another method to generate a velocity command is needed. The method

requires that the user set the position loop to an open loop configuration. The position loop

is set to open loop by setting the Position Loop Time Constant to zero and the Velocity

Feedforward Gain to 100 percent. You can then use the Move at Velocity Command or a

motion program to generate velocity commands to the servo drive.

The first parameter that needs to be adjusted is the Velocity Loop Gain. The parameter

adjusts the velocity loop bandwidth. As a starting point use the following formula (also

reference the Velocity Loop Gain Section):

Equation 1

Velocity Loop Gain = 16

Where :

Jl = Load Inertia

Jm = Motor Inertia

The Velocity Loop Gain calculated in equation 1 in many cases will not need to be altered.

However, due to the application (for example, machine resonance) the value may need to

be adjusted. To tune the Velocity Loop Gain the following procedure can be used:

1. Choose the method to introduce velocity command to the velocity loop. Method #1

and Method #2 (above) are examples of methods to perform this task.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 423

2. Connect an oscilloscope to the analog outputs for Motor Velocity feedback and

Torque Command. See Section 4.25 of Chapter 5 for analog output configuration

instructions.

3. Set the Velocity Loop Gain to zero. This is a conservative approach. If the application

is known to not have resonant frequencies from zero to approximately 250 Hz, you

can start with a higher value, but do not exceed the value calculated in equation 1 at

this point.

4. Generate a velocity command step change. At this point the step change should be

relatively small compared to the full speed of the machine. Ten to 20 % of the rated

machine speed is a good start.

5. Observe the Motor Velocity and Torque Command on the oscilloscope. The

objective is to obtain a critically damped velocity loop response. Pay particular

attention to any oscillations that are occurring in the velocity feedback signal.

6. Increase the Velocity Loop Gain in small steps and repeat 4 and 5 until instability in

the Motor Velocity feedback signal is observed. Once this point is reached, decrease

the Velocity Loop Gain by at least 15 %. As a general rule, the lower the Velocity Loop

Gain value that meets the system requirements the more robust the control. You

should carefully observe the velocity feedback signal. In some applications, running

the Velocity Loop Gain high enough to create instability can cause machine damage.

If in doubt, adjust the Velocity Loop Gain to be no greater than the value calculated

in equation 1. If oscillations are observed in the Motor Velocity feedback signal prior

to this point, decrease the Velocity Loop Gain and continue with step 7 below.

7. The velocity loop is tuned at this point. However, the robustness of the loop must

be checked. To perform this test, introduce velocity command steps in increments

of 20% Rated Machine Speed, 40% Rated Machine Speed, 60% Rated Machine Speed,

80% Machine Rated Speed, and 100% Rated Machine Speed. Observe the Motor

Velocity and Torque Command signals for any instability. If an instability or

resonance is observed, reduce the Velocity Loop Gain and repeat the test.

Note: For Digital servos, the %AQ Force Analog Output command can provide Torque Command or
Commanded Motor Velocity. (Velocity = 750 rpm/volt and %TqCmd = (100/1.111111 Volt)*X Volt
or Torque Cmd = 100% Torque Command = 1.111 Volts, 100%TqCmd = MaxCur Amplifier. For
instance: Beta 0.5 MaxCurAmp = 12 amps => 1.111111 volt = 12 amps.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 424

Sample DIGITAL MODE Velocity Loop Tuning Session

A sample velocity loop tuning session is shown in the plots that follow.

Figure 193: Velocity Loop Step Response Velocity vs. Time VLGN = 0

Figure 194: Velocity Loop Step Response Torque Command vs. Time VLGN = 0

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 425

Note that in Figures 193 and 194 the system does not have enough damping. In this case

the controller does not have the required bandwidth and the Velocity Loop Gain must be

increased.

Figure 195: Velocity Loop Step Response Velocity vs. Time VLGN = 24

Figure 196: Velocity Loop Step Response Torque Command vs. Time VLGN = 24

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 426

Note that in Figures 195 and 196, the system is beginning to look acceptable. The only

problem is the velocity overshoot.

Figure 197: Velocity Loop Step Response Velocity vs. Time VLGN = 48

Figure 198: Velocity Loop Step Response Torque Command vs. Time VLGN = 48

The response shown in Figures 197 and 198 is good.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 427

Figure 199: Velocity Loop Step Response Velocity vs. Time VLGN = 64

Figure 200: Velocity Loop Step Response Torque Command vs. Time VLGN = 64

The response shown in Figures 199 and 200 is acceptable.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 428

Figure 201: Velocity Loop Step Response Velocity vs. Time VLGN = 208

Figure 202: Velocity Loop Step Response Torque Command vs. Time VLGN = 208

The response shown in Figures 201 and 202 is marginally stable and would be

unacceptable in many applications. The plots are shown for reference only.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 429

Tuning the Position Loop

The very first step in adjusting the tuning for the position loop is to insure that the velocity

loop is stable and has response suitable to the application. Refer to the previous section for

methods of setting the velocity loop.

Preliminary Position Loop Settings for Tuning Session.

1. If using Standard Mode control loop settings, set the User Unit and Counts

configuration to values appropriate to the mechanical configuration for the axis. See

the discussion and examples in Chapter 4 for details.

2. Set the Velocity at 10 Volt value as described in Chapter 4.

3. Set the Integrator Mode selection to “OFF”.

4. Set the Feed Forward % to zero.

5. Set the Position Error Limit to near maximum value. The maximum is 60,000 (User

Units / Counts).

Setting the Position Loop Gain

The position control loop is primarily a “PI” (Proportional, Integral) algorithm with optional

Feed Forward. Begin tuning the position loop by setting the proportional gain (Pos Loop TC)

to provide a stable response with sufficient gain (bandwidth) to meet the motion profile

requirements. Setting the Integrator Mode to “OFF” as described in the previous section

creates a proportional-only control loop. There are two suggested methods of setting the

proportional gain (Pos Loop TC).

Position Loop Proportional Gain Method 1

Calculating the position loop proportional gain assumes that the mechanical design of the

machine will have sufficient bandwidth to remain stable and that any resonant frequencies

are higher than the bandwidth required by the motion profile.

Terminology

A large mismatch between the load and motor inertia can cause a RESONANCE in the

system. Resonance is oscillatory behavior caused by mechanical limitations and

aggravated by gearing backlash or torsion windup of mechanical members like

couplings or shafts. Resonance is eliminated by improving the mechanics, reducing

load/motor inertia mismatch or reducing servo gains (reduce performance).

BANDWIDTH is a figure of merit used to compare control system or mechanical

performance. As the frequency of command increases, the system response will begin

to lag. The bandwidth is defined as the frequency range over which system response

(gain) is at least 70% (-3 decibels) of the desired command.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 430

High Bandwidth

• Allows the servo to more accurately reproduce the desired motion

• Allows accurate following of sharp corners in motion paths and high machine cycle

rates

• Rejects torque disturbances from mechanics or outside influences improving

system accuracy

• Can expose machine resonance, which occur at frequencies near or below the

bandwidth

The response of a proportional only system, which is set up by setting Integrator Mode to

“OFF”, is an exponential rise. A time constant for an exponential curve represents 68% of

the remaining rise. For instance, starting at zero velocity, the response of the position loop

to a change in command will require one time constant to reach 68% of the commanded

velocity. The second time constant will reduce 68% of the remaining command.

Subsequent time constants will reduce 68% of remaining command. For example 100% -

68% (one time constant) = 32%, 32%(68%)=21.8%, 68% (first time constant) + 21.8% (second

time constant) = 89.8%. Two-time constants eliminate 89.8% of the command necessary.

Three-time constants will account for 96.7% of the rise in command. Four-time constants

account for 98.9% of the rise. Typically, three time constants are sufficient for most motion

applications.

You can use your knowledge of time constants to predict the required system response. For

instance, if the fastest acceleration required in the motion profiles must occur within

200 mSec, the 200 mSec response to the change in command will be 98.9% complete in

three-time constants. Dividing the 200 mSec by 3 results in a time constant of about 67

mSec. The Pos Loop TC configuration field represents one time constant in mSec. In the

example above one time constant is 67msec.

Position Loop Proportional Gain Method 2

Similar to the Velocity loop tuning method above. Use an oscilloscope and gradually lower

the Pos Loop TC value (increasing gain). Monitor the Motor Velocity analog output for

performance characteristics are appropriate.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 431

D-2 Start-Up and Tuning Information for Analog

Servo Systems
There are two major sections covered;

• Validating Home Switch, Over Travel Inputs, and Motor direction.

• Velocity at Max Cmd, Position Loop Time Constant, and Velocity Feedforward

determination

D-2.1 Analog Mode Velocity Interface System Startup
Procedures

Startup Procedures

1. Connect the motor to the analog velocity interface servo amplifier according to the

manufacturer’s recommendations.

2. Connect the DSM314 Drive Enable Relay and Velocity Command outputs to the

servo amplifier. Connect the position feedback device (Incremental Quadrature

Encoder) to the Motion Mate DSM314 encoder inputs.

Note: If these connections are incorrect or there is slippage in the coupling to the Feedback
Device, an Out of Sync error condition can occur when motion is commanded.

3. Connect the servo amplifier Ready output (if available) to the DSM314 Drive Ready

input (IN_4). This signal must switch to 0v when the amplifier is ready to control the

servo. The DSM starts checking the Drive Ready input one second after the Drive

Enable relay turns on in response to the Enable Drive %Q bit. If the servo amplifier

does not provide a suitable Ready output, this input to the DSM314 must be

connected to 0v or the Drive Ready input can be disabled in the module

configuration. If a Home switch is used (24 Vdc), wire it to the correct DSM314 input.

The Home switch must be wired so that it is ALWAYS ON when the axis is on the

negative side of home and ALWAYS OFF when the axis is on the positive side of

home.

4. Use the configuration software to set the desired configurable parameters. Store the

configuration to the host controller.

5. Turn on the %Q Enable Drive bit and place the command code for Force D/A Output

equal to 0 in the %AQ table. Confirm that the servo amplifier is enabled (the motor

should exhibit holding torque). If the motor moves, adjust the amplifier command

offset adjustment until the motor stops moving. Note: The %Q Enable Drive bit must

be maintained ON in order for the Force D/A Output command to function.

6. Send the command code for Force D/A Output equal to +3200 (+1.0v). Confirm that

the motor moves in the desired POSITIVE direction (based on the Axis Direction

configuration parameter setting) and the Actual Velocity reported in the DSM314

%AI table is POSITIVE. If the motor moves in the wrong direction, consult the servo

amplifier manufacturer's instructions for corrective action. The Axis Direction

parameter in the Configuration Software can also be used to swap the positive and

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 432

negative axis directions. If the motor moves in the POSITIVE direction but the

DSM314 reports that Actual Velocity is NEGATIVE, then the encoder channel A and

channel B inputs must be swapped.

7. Record the actual motor velocity reported by the Motion Mate DSM314 with a 1.0

volt velocity command. Multiply this velocity by 10 and update the Velocity at Max

Cmd entry in the DSM314 configuration, if necessary. Initially set the Pos Loop Time

Constant (0.1 ms) configuration parameter to a high value (typically 100 ms or a

value of 1000 in the configuration).

8. Turn on the %Q Jog Plus bit. Confirm that the servo moves in the proper direction

and that the Actual Velocity reported by the Motion Mate DSM314 in the %AI table

matches the configured Jog Velocity. If Motion Programs will use an acceleration

higher than the Jog Acceleration, it may be necessary to increase Jog Acceleration so

that Abort All Moves and Normal Stop actions will operate as expected.

9. With the Drive Enabled %Q bit ON and no servo motion commanded, adjust the

servo drive command offset adjustment for zero Position Error. The integrator

should be OFF during this process.

10. Check for proper operation of the Find Home cycle by momentarily turning on the

%Q Find Home bit (the Drive Enabled %Q bit must also be maintained ON). The axis

should move towards the Home Switch at the configured Find Home Velocity, then

seek the Encoder Marker at the configured Final Home Velocity. If necessary, adjust

the configured velocities and the location of the Home Switch for consistent

operation. The final Home Switch transition MUST occur at least 10 ms before the

Encoder Marker Pulse is encountered. The physical location of Home Position can

then be adjusted by changing the Home Offset value in the Configuration Software.

11. Monitor servo performance and use the %Q Jog Plus and Jog Minus bits to move the

analog servo motor in each direction. The Position Loop Time Constant can be

temporarily modified by placing the correct command code in the %AQ table. For

most systems the Position Loop Time Constant can be reduced until some servo

instability is noted, then increased to a value approximately 50% higher. Once the

correct time constant is determined, the DSM314 configuration should be updated

using the Configuration Software. Velocity Feedforward can also be set to a non-

zero value (typically 90-100 %) for optimum servo response.

Note: For proper servo operation, the Configuration entry for Velocity at Max Cmd MUST be set

to the actual servo velocity (in User Units/sec) caused by a 10 Volt Velocity command to
the amplifier.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 433

D-2.2 Analog Mode Torque Interface System Startup
Procedures

Startup Procedures

1. Connect the motor to the analog torque interface servo amplifier according to the

manufacturer’s recommendations.

Note: The amplifier must be configured to accept voltage (+-10 volt) that corresponds to motor
torque.

2. Connect the DSM314 Drive Enable Relay and Torque Command outputs to the servo

amplifier. Connect the position feedback device (Incremental Quadrature Encoder)

to the Motion Mate DSM314 encoder inputs.

Note: If these connections are incorrect or there is slippage in the coupling to the Feedback
Device, an Out of Sync error condition can occur when motion is commanded.

3. Connect the servo amplifier Ready output (if available) to the DSM314 Drive Ready

input (IN_4). This signal must switch to 0v when the amplifier is ready to control the

servo. The DSM starts checking the Drive Ready input one second after the Drive

Enable relay turns on in response to the Enable Drive %Q bit. If the servo amplifier

does not provide a suitable Ready output, this input to the DSM314 must be

connected to 0v or the Drive Ready input can be disabled in the module

configuration. If a Home switch is used (24 Vdc), wire it to the correct DSM314 input.

The Home switch must be wired so that it is ALWAYS ON when the axis is on the

negative side of home and ALWAYS OFF when the axis is on the positive side of

home.

4. Use the configuration software to set the desired configurable parameters. Store the

configuration to the host controller. Specific parameters that the user will need to

reference are as follows:

Analog Servo Command -configuration must be set to Torque. This is not the default

value. This configuration parameter configures the module to produce a torque

command on the analog output.

Note: DSM firmware revision 3.0 or later is required for Analog Torque mode to function.

Velocity at Max Command - The configuration setting velocity at maximum

command determine the maximum velocity the servo will be commanded to run. In

the early tuning stages it is advisable to set this value relatively low. This will allow

the system to be brought up in stages. Once basic operation and tuning has been

verified, the maximum value can be raised to the value that is determined by either

the process limitations or servo amplifier/motor set

Torque Limit - The torque limit value determines the maximum analog torque

command that will be sent to the servo amplifier. In the early tuning stages it is

advisable to set this value relatively low. This torque limit is set using %AQ

command. Refer to Chapter 5 for information on this command. Once basic

operation is verified, the torque limit value can then be set to the value desired for

the application.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 434

Advanced Tuning Parameters: The advanced tuning parameter section contains

many parameters that are used to configure torque mode to operate correctly. The

advanced tuning parameters are discussed in detail in Chapter 4. For a complete

reference consult this chapter. The tuning parameters of interest are as follows:

Tuning Parameter 6: Sets the encoder resolution parameter. The parameter is only

used in torque mode. For correct torque mode operation, this value must be set to

the number of quadrature encoder counts generated by the motor feedback device

per revolution. The user can determine the value from the feedback device

specification. As a double check, the user may wish to connect the feedback device

to the DSM and manual rotate the motor shaft one revolution. The reading on the

DSM %AI data for actual position should closely match (variations are caused by the

accuracy of manual turning shaft one revolution) the value placed in this parameter.

The allowed range is 100-32767 counts/revolution. The default value is 4096 counts

per revolution

Tuning Parameter 7: Sets the velocity regulator proportional gain. The parameter is

only used in torque mode. The proportional gain is multiplied by velocity error

(velocity command - velocity feedback) to generate the portion of the torque

command due to the proportional term. Correctly setting this value will determine

how well the velocity regulator performs in the control system. The following

sections will discuss how to set this value.

Tuning Parameter 8: Sets the velocity regulator integral gain. The parameter is only

used in torque mode The integral gain is the term multiplied by the area of the

velocity error (velocity command - velocity feedback) to generate the portion of the

torque command due to the integral term. Correctly setting this value will

determine how well the velocity regulator performs in the control system. The

following sections will discuss how to set this value.

Note: For proper servo operation, the Configuration entry for Encoder Resolution MUST be set
to the correct value for the servo amplifier/motor set. If this value is not set correctly
instabilities can result.

5. Turn on the %Q Enable Drive bit and place the command code for Force Servo

Velocity equal to 0 in the %AQ table. Confirm that the servo amplifier is enabled (the

motor should exhibit holding torque). If the motor moves, adjust the amplifier until

the motor stops moving.

6. Make sure that the motor shaft is not connected to the load when first performing

the following operation. The user needs to now verify basic control functionality.

Send the command code for Force Servo Velocity equal to 10 RPM. Confirm that the

motor moves in the desired POSITIVE direction (based on the Axis Direction

configuration parameter setting) and the Actual Velocity reported in the DSM314

%AI table is POSITIVE. If the motor moves in the wrong direction, consult the servo

amplifier manufacturer's instructions for corrective action. The Axis Direction

parameter in the Configuration Software can also be used to swap the positive and

negative axis directions. If the motor moves in the POSITIVE direction but the

DSM314 reports that Actual Velocity is NEGATIVE, then the encoder channel A and

channel B inputs must be swapped.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 435

7. With the Drive Enabled %Q bit ON and no servo motion commanded, adjust the

servo drive so no motion is generated. The velocity loop integral term MUST be set

to 0 to properly complete this step.

8. Once correct basic operation has been achieved, the velocity loop requires tuning.

The section "Tuning the Torque Mode Velocity Loop" contains a basic procedure for

tuning the loop. NOTE: The tuning procedure for Torque Mode velocity regulators is

DIFFERENT from Digital Mode Velocity regulators. The user should NOT proceed to

tuning the Position Loop until the velocity loop tuning is complete.

9. Once the velocity regulators have been tuned, the position loop tuning and setup

can be completed. Initially set the Pos Loop Time Constant (0.1 ms) configuration

parameter to a high value (typically 100 ms or a value of 1000 in the configuration).

10. Turn on the %Q Jog Plus bit. Confirm that the servo moves in the proper direction

and that the Actual Velocity reported by the Motion Mate DSM314 in the %AI table

matches the configured Jog Velocity. If Motion Programs will use acceleration

higher than the Jog Acceleration, it may be necessary to increase Jog Acceleration so

that Abort All Moves and Normal Stop actions will operate as expected.

11. Check for proper operation of the Find Home cycle by momentarily turning on the

%Q Find Home bit (the Drive Enabled %Q bit must also be maintained ON). The axis

should move towards the Home Switch at the configured Find Home Velocity, then

seek the Encoder Marker at the configured Final Home Velocity. If necessary, adjust

the configured velocities and the location of the Home Switch for consistent

operation. The final Home Switch transition MUST occur at least 10 ms before the

Encoder Marker Pulse is encountered. The physical location of Home Position can

then be adjusted by changing the Home Offset value in the Configuration Software.

12. Monitor servo performance and use the %Q Jog Plus and Jog Minus bits to move the

analog servo motor in each direction. The Position Loop Time Constant can be

temporarily modified by placing the correct command code in the %AQ table. For

most systems the Position Loop Time Constant can be reduced until some servo

instability is noted, then increased to a value approximately 50% higher. Once the

correct time constant is determined, the DSM314 configuration should be updated

using the Configuration Software. Velocity Feedforward can also be set to a non-

zero value (typically 90-100 %) for optimum servo response.

Note: For proper servo operation, the Configuration entry for Velocity at Max Cmd MUST be set

to maximum servo velocity (in User Units/sec) that the system or process allows.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 436

Tuning the Torque Mode Velocity Loop

The proper method to tune the velocity loop is to separate the velocity loop from the

position loop. To achieve this separation, a method must be used to directly send velocity

commands without using the position loop control. The DSM module has several modes

that will allow the user to send a velocity command directly to the velocity loop. Two

methods are as follows:

Figure 203: Analog Mode Torque Interface Control Loops Block Diagram

Method #1:

The Force Servo Velocity %AQ immediate command (34h) will send a velocity command

directly to the velocity loop. This command is different from the Move at Velocity

Command, which uses the position loop to generate the command. This is important since

the position loop should not be interacting with the velocity loop at this point in the tuning

process. The Force Servo Velocity %AQ command allows the user to generate a step change

in the velocity. The velocity command step is then used to generate the velocity loop step

response. The user should note that when a velocity command step change is performed

the acceleration is limited only by the bandwidth of the velocity loop. In some applications

this can cause damage to the controlled device due to the high acceleration rate.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 437

Method #2:

In some applications, method #1 introduces too large a shock to the device under control.

In these cases, another method to generate a velocity command is needed. The method

requires that the user set the position loop to an open loop configuration. The position loop

is set to open loop by setting the Position Loop Time Constant to zero and the Velocity

Feedforward Gain to 100 percent. You can then use the Move at Velocity Command or a

motion program to generate velocity commands to the servo drive.

1. The following procedure tunes the velocity regulator. It is suggested that initially,

this be done with the motor NOT connected to the driven load. The tuning

associated with the load will be performed in a later step. The first parameter that

needs to be adjusted is the Velocity Loop Proportional Gain. The velocity loop

proportional gain is multiplied by velocity error (velocity command - velocity

feedback) to generate the portion of the torque command due to the proportional

term. The proportional term should be set low to begin the process. Depending on

the bandwidth of the controlled servo amplifier, the default value of 1500 may

represent a good starting point. However, if the servo amplifier has a low bandwidth

or is very sensitive to changes in the torque command the initial value may need to

be set lower. The tuning procedure will allow the user to iterate to get the final value.

Thus, if there is any concern start with a very low value (100 for example)

2. Choose the method to introduce velocity command to the velocity loop. Method #1

and Method #2 (above) are examples of methods to perform this task.

3. Connect an oscilloscope to the analog outputs for Motor Velocity from the servo

amplifier.

4. Per the earlier discussion, set the initial velocity loop proportional gain value.

5. Generate a velocity command step change. At this point the step change should be

relatively small compared to the full speed of the machine. Ten to 20 % of the rated

machine speed is a good start.

6. Observe the Motor Velocity on the oscilloscope. The objective is to obtain a critically

damped velocity loop response. There will most likely be a steady state error in the

velocity at this point. This is expected at this point in the tuning process. The velocity

integral term will be introduced in steps that follow to cancel this error. Pay

particular attention to the 1st peak that occurs and any oscillations that are

occurring in the velocity signal.

7. Increase the Velocity Loop Proportional Gain in small steps and repeat 5 and 6 until

the desired response is achieved. Depending on the application this may be a

critically damped system or may have a slight overshoot. As a general rule, the lower

the Velocity Loop Proportional Gain value that meets the system requirements the

more robust the control. The user should carefully observe the velocity feedback

signal. In some applications, running the Velocity Loop Gain high enough to create

instability can cause machine damage. If oscillations are observed in the Motor

Velocity feedback signal prior to this point, decrease the Velocity Loop Proportional

Gain.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 438

8. The next parameter to be adjusted is the Velocity Loop Integral Gain. . The Velocity

Loop integral gain is the term multiplied by the area of the velocity error (velocity

command - velocity feedback) to generate the portion of the torque command due

to the integral term. The integral gain term is typically used to compensate for

steady state error in velocity. To begin the tuning process the Velocity Loop Integral

Gain should be set to zero. The tuning procedure will be to slowly increase this value

until steady state error is eliminated without incurring large overshoot or excessive

ringing in the response.

9. Choose the method to introduce velocity command to the velocity loop. Method #1

and Method #2 (above) are examples of methods to perform this task.

10. Connect an oscilloscope to the analog outputs for Motor Velocity from the servo

amplifier.

11. Per the earlier discussion, set the initial Velocity Loop Integral Gain value.

12. Generate a velocity command step change. At this point the step change should be

relatively small compared to the full speed of the machine. Ten to 20 % of the rated

machine speed is a good start.

13. Observe the Motor Velocity on the oscilloscope. The objective is to eliminate steady

state error without introducing excessive overshoot or ringing. While tuning the

integral term pay particular attention to any oscillations that occur in the response.

Excessive oscillations are an indication of instability in the control loop due to

excessive integral gain.

14. Increase the Velocity Loop Integral Gain in small steps and repeat 12 and 13 until the

desired response is achieved. Depending on the application this may be a critically

damped system or may have a slight overshoot. As a general rule, the lower the

Velocity Loop Integral Gain value that meets the system requirements the more

robust the control. The user should carefully observe the velocity feedback signal. In

some applications, running the Velocity Loop Integral Gain high enough to create

instability can cause machine damage. If oscillations are observed in the Motor

Velocity feedback signal prior to this point, decrease the Velocity Loop Integral Gain.

The basic velocity loop is tuned at this point. The next step will be to connect the

motor to the load and adjust the Velocity Loop Gain parameter to adjust for the

motor load.

15. With the base Velocity Loop tuned, connect the motor to the load. The Velocity Loop

Gain. parameter adjusts the velocity loop response to compensate for the load.

Specifically, the Velocity Loop Gain parameter adjusts the velocity loop bandwidth.

As a starting point use the following formula shown below.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 439

Equation 2

Velocity Loop Gain = 16

Where:

JI Motor Inertia

Jm Load Inertia

The Velocity Loop Gain calculated above in many cases will not need to be altered. However,

due to the application (for example, machine resonance) the value may need to be adjusted.

To tune the Velocity Loop Gain the following procedure can be used:

16. Choose the method to introduce velocity command to the velocity loop. Method #1

and Method #2 (above) are examples of methods to perform this task.

17. Connect an oscilloscope to the analog outputs from the Servo Amplifier for Motor

Feedback Velocity.

18. Set the Velocity Loop Gain to zero. This is a conservative approach. If the application

is known to not have resonant frequencies from zero to approximately 250 Hz, you

can start with a higher value, but do not exceed the value calculated in equation 2 at

this point.

19. Generate a velocity command step change. At this point the step change should be

relatively small compared to the full speed of the machine. Ten to 20 % of the rated

machine speed is a good start.

20. Observe the Motor Velocity on the oscilloscope. The objective is to obtain a critically

damped velocity loop response. Pay particular attention to any oscillations that are

occurring in the velocity feedback signal.

21. Increase the Velocity Loop Gain in small steps and repeat 19 and 20 until instability

in the Motor Velocity feedback signal is observed.

Note: Care should be taken in this step that an instability does not cause damage to the

machine. Once this point is reached, decrease the Velocity Loop Gain by at least 15 %. As
a general rule, the lower the Velocity Loop Gain value that meets the system
requirements the more robust the control. You should carefully observe the velocity
feedback signal. In some applications, running the Velocity Loop Gain high enough to
create instability can cause machine damage. If in doubt, adjust the Velocity Loop Gain
to be no greater than the value calculated in equation 1. If oscillations are observed in
the Motor Velocity feedback signal prior to this point, decrease the Velocity Loop Gain
and continue with step 22 below.

22. The velocity loop is tuned at this point. However, the robustness of the loop must

be checked. To perform this test, introduce velocity command steps in increments

of 20% Rated Machine Speed, 40% Rated Machine Speed, 60% Rated Machine Speed,

80% Machine Rated Speed, and 100% Rated Machine Speed. Observe the Motor

Velocity and Torque Command signals for any instability. If an instability or

resonance is observed, reduce the Velocity Loop Gain and repeat the test.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 440

Sample Velocity Loop Tuning Session

A sample velocity loop tuning session is shown in the plots that follow. To begin the

process the Velocity Loop Proportional Gain is tuned

Figure 204: Velocity Loop Step Response Velocity Feedback vs. Time Kp=500 Ki=0

VLGN = 0

Note the system has a relatively slow response. Also based the desired velocity, there is a

steady state error. In this case, the Velocity Loop Proportional Gain can be increased to

help generate a faster response.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 441

Figure 205: Velocity Loop Step Response Velocity Feedback vs. Time Kp=1000 Ki=0

VLGN = 0

The Velocity Loop Proportional Gain has been increased in the figure above. The rise time

has been decreased. However, the system can still be enhanced by adding additional

Velocity Loop Proportional Gain. The steady state error is still present.3

Figure 206: Velocity Loop Step Response Velocity Feedback vs. Time Kp=2000 Ki=0

VLGN = 0

The Velocity Loop Proportional Gain has been increase again. The response shown is

starting to look very acceptable. However, the rise time can be improved further.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 442

Figure 207: Velocity Loop Step Response Velocity Feedback vs. Time Kp=3000 Ki=0

VLGN = 0

The response shown above in is looking very good. Note the slight peak in the response. To

experiment with the response, the Velocity Loop Proportional Gain will be increased more.

Figure 208: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=0

VLGN = 0

The response shown in the figure has a slight overshoot. This or the previous response

would be very acceptable in many applications. However, the tuning should be

determined based upon the machine abilities. The plots are shown for reference only.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 443

Figure 209: Velocity Loop Step Response Velocity Feedback vs. Time Kp=10000 Ki=0

VLGN = 0

The plot shown above represents an unacceptable response. The loop is exhibiting signs of

instability. Not the Overshoot and ringing following the first peak. The Velocity Loop

Proportional Gain should be significantly decreased to achieve a more stable response.

For this exercise, the response shown corresponding to the Velocity Loop Proportional Gain

(Kp) =4000 will be chosen as the desired response for the system. This value will be used

when tuning the Velocity Loop Integral Gain.

The Velocity Loop Integral Gain is initially zero. You can make a small change to the value

and observe the response.

Figure 210: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 0

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 444

The response above indicates that the Velocity Loop Integral Gain has resulted in a more

desirable response. Specifically, the steady state error is being reduced.

Figure 211: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=60

VLGN = 0

When you increase the Velocity Loop Integral Gain further, you can see the beginning of an

overshoot due to the integral gain. However, the responses in the previous two figures are

both acceptable. The final values chosen to depend on the capabilities of the driven load. In

general, the lower the Velocity Loop Proportional Gain and Velocity Loop Integral Gain that

meet the system requirements the more robust the control.

Figure 212: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=120

VLGN = 0

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 445

The response shown above illustrates too much Velocity Loop Integral Gain and in most

applications this would be considered unacceptable.

Figure 213: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000

Ki=7500 VLGN = 0

The result shown above represents a marginally stable system. In this response, there is not

only a significant overshoot, but also a ringing in the velocity response that is slowly being

damped out. The response is unacceptable.

The next step in the tuning process is to connect the motor to the load and then adjust the

control to achieve the desired performance. The Velocity Loop Gain parameter allows the

user to adjust the controller parameters to account for the motor load. As in the procedure

above, start with the Velocity Loop Gain equal to zero.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 446

Figure 214: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 0

The figure above shows the motor velocity response with a load connected to the motor

and the motor tuned per the exercise above. The performance is acceptable, but by

increasing the Velocity Loop Gain the rise time can be decreased.

Figure 215: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 16

The response shown above is acceptable. The response has a slight overshoot but no

sustained oscillation or ringing.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 447

Figure 216: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 32

The response shown above has a rather large overshoot, however there are no adverse

effect beyond the initial overshoot and oscillation. The overshoot indicates that the user

may wish to reduce the Velocity Loop Gain.

Figure 217: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 48

The response shown above exhibits an overshoot and notable ringing in the response. This

response is starting to indicate that the velocity loop gain is greater than necessary.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 448

Figure 218: Velocity Loop Step Response Velocity Feedback vs. Time Kp=4000 Ki=30

VLGN = 80

The response shown above represents a marginally stable system. The Velocity Loop Gain is

significantly too large. Notice the significant overshoot and sustained ringing in the

response. This response would not be acceptable.

D-3 System Troubleshooting Hints (Analog Mode)
1. The DSM314 requires a Series 90-30 CPU with firmware version 10.0 or later, or a

PACSystems RX3i CPU with version 2.8 or later.

2. The DSM Torque Mode function requires DSM firmware version 3.0 or higher.

3. If the Drive Ready input is enabled in the module configuration, the input must be

connected to 0v within 1 second after the Drive Enable relay turns on or the Motion

Mate DSM314 will not operate. Incorrect Drive Ready configuration or wiring will

cause Error Code C0h to be reported in the Axis Error Code %AI data.

4. The ENABLE DRIVE %Q control bit must be set continuously to 1 or no motion other

than Jog moves will be allowed. If no STOP errors (see Appendix A for error codes)

have occurred, the DRIVE ENABLED %I status bit will mirror the state of the ENABLE

DRIVE %Q bit. A STOP error will turn off the DRIVE ENABLED output bit even though

ENABLE DRIVE input bit is still a 1. The error condition must be corrected and the

CLEAR ERROR %Q control bit turned on for one host controller sweep to re-enable

the drive.

5. If the ERROR %I status bit is 1 and the AXIS ENABLED and DRIVE ENABLED %I status

bits are 0, then a STOP error has occurred (Status LED flashing fast). In this state, the

DSM314 will not respond to any commands other than the CLEAR ERROR %Q control

bit.

User Manual Appendix D
GFK-1742F Jan 2020

Tuning Digital and Analog Servo Systems 449

6. The CLEAR ERROR %Q control bit uses one-shot action. Each time an error is

generated, the bit must be set to 0 then set to 1 for at least one sweep to clear the

error.

7. The CFG OK LED must be ON or the DSM314 will not respond to host controller

commands. If the LED is OFF then a valid DSM314 configuration has not been

received from the host controller, or there may be a recognized configuration error.

Check the %AI error code words for Dxxx errors, which are documented in the

“System Error Codes” section of Appendix A. Also check the PLC fault tables for

reported configuration errors.

8. Host controller logic should not send the following %Q bit commands to the

DSM314 on the first sweep: Find Home, Execute Motion Program, Execute Local

Logic. If these commands are sent on the first sweep, an error will be reported, and

the action will not be performed.

9. Host controller logic should not send the following %AQ commands to the DSM314

on the first sweep: Move at Velocity, Move Command. If these commands are sent

on the first sweep, an error will be reported, and the action will not be performed.

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 450

Appendix E: Local Logic Execution Time
This appendix contains information necessary to determine a local logic program’s

execution time.

E-1 Local Logic Execution Timing Data
Local Logic program in the DSM is constrained to complete execution within 300

Microseconds. Exceeding the execution time limit will result in a watchdog timeout and an

error being reported. The watchdog timeout error will stop axes motion and Local Logic

execution. The timing data supplied in the tables below allows the programmer to compute

the worst-case execution time for a program. Note that the data below represents

execution times, not response times. For example, the execution time required to write a

value to the follower ratio variables is 0.30 microseconds, however the time required to

observe the resulting change in the axes motion would be in the order of

2 to 5 milliseconds. Similarly, for the digital inputs the hardware filter delays must be taken

into account when computing the response time.

Note: If the program execution time is between 300 and 350 microseconds a watchdog timeout may
not occur, depending on the task loading in the module. The user should keep his program
execution time within 300 microseconds to ensure that it runs without any timeouts.

The tables below can be used to compute the worst case execution times and therefore

predetermine that a program will not cause a watchdog timeout. The examples below

illustrate the computation of execution times for a program.

E-2 Example 1

Execution Time for Instruction Line 1=>

(Time to Load P002) + (Time to load Constant) + (Time to perform Addition) + (Time to write

P001)

=> 0.60 (from Table 97) + 0.50 (from Table 97) + 0.90 (from Table 91) + 0.60 (from

Table 97)

=> 2.60 microseconds

Execution Time for Instruction Line 2 =>

(Time to Load P001) + (Time to load Constant) + (Time to perform > Conditional)

=> 0.60 (from Table 97) + 0.50 (from Table - 97) + 2.50 (from Table 92)

=> 3.60 microseconds

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 451

Execution Time for Instruction Line 3 (assuming Conditional evaluates to TRUE)=>

(Time to load Constant) + (Time to write Torque_Limit_1)

=> 0.50 (from Table 97) + 0.30 (from Table 93)

=> 0.80 microseconds

Execution Time for Instruction Line 4 (assuming Conditional evaluates to TRUE)=>

(Time to load Strobe1_Level_1) + (Time to write Jog_Plus_1)

=> 1.40 (from Table 93) + 1.70 (from Table 93)

=> 3.10 microseconds

Execution Time for Instruction Line 5 => 0.0 microseconds (from Table 92)

Total Execution Time => 2.60 + 3.60 + 0.80 + 3.10 +0.0 = 10.10 Microseconds

E-3 Example 2

Execution Time for Instruction Line 1 =>

(Time to Load P100) + (Time to Load Constant) + (Time to Multiply) +(Time to write D00)

=> 0.60 (from Table 97) + 0.50 (from Table 97) + 1.30 (from Table 91) + 0.70 (from Table

97)

=> 3.10 microseconds

Execution Time for Instruction Line 2 =>

(Time to Load D00) + (Time to load constant) + (Time to perform divide) + (Time to write

P101)

=> 0.70 (from Table 97) + 0.50 (from Table 97) + 2.90 (from Table 91) + 0.60 (from Table

97)

=> 4.70 microseconds

Execution Time for Instruction Line 3 =>

(Time to Load CTL01) + (Time to load CTL02) + (Time to perform BWAND) + (Time to store

Enable_Follower_1)

=> 1.40 (from Table 97) + 1.40 (from Table 97) + 0.20 (from Table 91) + 1.70 (from Table

93)

=> 4.70 microseconds

Execution Time for Instruction Line 4 =>

(Time to Load P101) + (Time to write Follower_Ratio_A_1)

=> 0.60 (from Table 97) + 0.30 (from Table 93)

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 452

=> 0.90 microseconds

Total Execution Time => 3.10 + 4.70 + 4.70 + 0.90 = 13.40 Microseconds

Table 91: Local Logic Math/Logical Operation execution times

Local Logic Math and Logical Operations

(Assignment, :=)

Local Logic Execution Time

(Microseconds)

Add (+) 0.90*

Subtract (-) 0.90*

Multiply (*) 1.30

Divide (/) 2.90

Modulus (MOD) 2.90

Absolute (ABS) 1.70*

BWAND 0.20

BWOR 0.30

BWXOR 0.20

BWNOT 0.50

* Execution times for Addition, Subtraction and Absolute value (ABS) assume there are no

computation overflows.

Table 92: Local Logic Conditional Operation Execution Times

Local Logic Conditional Operations

(IF…THEN)

Local Logic Execution Time

(Microseconds)

Greater Than (>) 2.50

Less Than (<) 2.50

Greater/Equal (>=) 2.50

Less/Equal (<=) 2.50

Equal (=) 2.30

Not Equal (<>) 2.30

BWAND 1.40

BWOR 1.40

BWXOR 1.40

BWNOT 1.60

Null operator (IF var THEN) 1.10

END_IF 0.00

Note: The execution time for the conditionals is for the case where the IF…THEN operation evaluates to
FALSE. This represents the worst-case execution time, since the execution time required to
evaluate a conditional that is TRUE is less. Note that the END_IF instruction does not require any
execution time.

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 453

Table 93: Axis 1 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Strobe1_Level_1 1.40 X

Strobe2_Level_1 1.40 X

Positive_EOT_1 1.40 X

Negative_EOT_1 1.40 X

Home_Switch_1 1.40 X

Digital_Output1_1 X 1.80

Digital_Output3_1 X 1.80

Analog_Input1_1 0.80 X

Analog_Input2_1 0.80 X

Position_Loop_TC_1 X 0.30

Follower_Ratio_A_1 X 0.30

Follower_Ratio_B_1 X 0.30

Torque_Limit_1 X 0.30

Position_Increment_Cts_1 X 0.30

Velocity_Loop_Gain_1 0.80 0.20

Reset_Strobe1_1 X 1.70

Reset_Strobe2_1 X 1.70

Enable_Follower_1 X 1.70

Jog_Plus_1 X 1.70

Jog_Minus_1 X 1.70

FeedHold_1 X 1.70

Error_Code_1 0.80 X

Actual_Position_1 0.70 X

Strobe1_Position_1 0.80 X

Strobe2_Position_1 0.80 X

Actual_Velocity_1 0.80 X

Block_1 0.90 X

Commanded_Position_1 0.60 X

Position_Error_1 0.60 X

Commanded_Velocity_1 0.60 X

User_Selected_Data1_1 0.60 X

User_Selected_Data2_1 0.60 X

UnAdjusted_Actual_Position_Cts_1 0.80 X

UnAdjusted_Strobe1_Position_Cts_1 0.80 X

UnAdjusted_Strobe2_Position_Cts_1 0.80 X

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 454

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Commanded_Torque_1 0.80 X

Axis_OK_1 1.40 X

Position_Valid_1 1.40 X

Strobe1_Flag_1 1.40 X

Strobe2_Flag_1 1.40 X

Drive_Enabled_1 1.40 X

Program_Active_1 1.40 X

Moving_1 1.40 X

In_Zone_1 1.40 X

Position_Error_Limit_1 1.40 X

Torque_Limited_1 1.40 X

Servo_Ready_1 1.40 X

Follower_Enabled_1 1.40 X

Follower_Ramp_Active_1 1.40 X

Follower_Velocity_Limit_1 1.40 X

Table 94: Axis 2 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Strobe1_Level_2 1.40 X

Strobe2_Level_2 1.40 X

Positive_EOT_2 1.40 X

Negative_EOT_2 1.40 X

Home_Switch_2 1.40 X

Digital_Output1_2 X 1.80

Digital_Output3_2 X 1.80

Analog_Input1_2 0.80 X

Analog_Input2_2 0.80 X

Position_Loop_TC_2 X 0.30

Follower_Ratio_A_2 X 0.30

Follower_Ratio_B_2 X 0.30

Torque_Limit_2 X 0.30

Position_Increment_Cts_2 X 0.30

Velocity_Loop_Gain_2 0.80 0.20

Reset_Strobe1_2 X 1.70

Reset_Strobe2_2 X 1.70

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 455

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Enable_Follower_2 X 1.70

Jog_Plus_2 X 1.70

Jog_Minus_2 X 1.70

FeedHold_2 X 1.70

Error_Code_2 0.80 X

Actual_Position_2 0.70 X

Strobe1_Position_2 0.80 X

Strobe2_Position_2 0.80 X

Actual_Velocity_2 0.80 X

Block_2 0.90 X

Commanded_Position_2 0.60 X

Position_Error_2 0.60 X

Commanded_Velocity_2 0.60 X

User_Selected_Data1_2 0.60 X

User_Selected_Data2_2 0.60 X

UnAdjusted_Actual_Position_Cts_2 0.80 X

UnAdjusted_Strobe1_Position_Cts_2 0.80 X

UnAdjusted_Strobe2_Position_Cts_2 0.80 X

Commanded_Torque_2 0.80 X

Axis_OK_2 1.40 X

Position_Valid_2 1.40 X

Strobe1_Flag_2 1.40 X

Strobe2_Flag_2 1.40 X

Drive_Enabled_2 1.40 X

Program_Active_2 1.40 X

Moving_2 1.40 X

In_Zone_2 1.40 X

Position_Error_Limit_2 1.40 X

Torque_Limited_2 1.40 X

Servo_Ready_2 1.40 X

Follower_Enabled_2 1.40 X

Follower_Ramp_Active_2 1.40 X

Follower_Velocity_Limit_2 1.40 X

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 456

Table 95: Axis 3 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Strobe1_Level_3 1.40 X

Strobe2_Level_3 1.40 X

Positive_EOT_3 1.40 X

Negative_EOT_3 1.40 X

Home_Switch_3 1.40 X

Digital_Output1_3 X 1.80

Digital_Output3_3 X 1.80

Analog_Input1_3 0.80 X

Analog_Input2_3 0.80 X

Reset_Strobe1_3 X 1.70

Reset_Strobe2_3 X 1.70

Error_Code_3 0.80 X

Actual_Position_3 0.70 X

Strobe1_Position_3 0.80 X

Strobe2_Position_3 0.80 X

Actual_Velocity_3 0.80 X

Axis_OK_3 1.40 X

Position_Valid_3 1.40 X

Strobe1_Flag_3 1.40 X

Strobe2_Flag_3 1.40 X

Table 96: Axis 4 Local Logic Variable Execution Times

X- Not Applicable.

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Strobe1_Level_4 1.40 X

Strobe2_Level_4 1.40 X

Positive_EOT_4 1.40 X

Negative_EOT_4 1.40 X

Home_Switch_4 1.40 X

Digital_Output1_4 X 1.80

Digital_Output3_4 X 1.80

Analog_Input1_4 0.80 X

Analog_Input2_4 0.80 X

User Manual Appendix E
GFK-1742F Jan 2020

Local Logic Execution Time 457

Table 97: Global Local Logic Variable Execution Times

X- Not Applicable

Local Logic Variable Name Local Logic Execution Time (In Microseconds)

Read Write

Local Logic Program Constants 0.50 X

Overflow 2.40 1.30

System_Halt X 1.80

Data_Table_Ptr 0.60 0.70

Data_Table_sint 2.10 1.70

Data_Table_usint 1.80 1.70

Data_Table_int 2.30 2.20

Data_Table_uint 2.30 2.20

Data_Table_dint 3.80 4.00

Module_Error_Present 1.40 X

New_Configuration_Received 1.40 X

First_Local_Logic_Sweep 1.40 X

Module_Status_Code 0.50 X

CTL_1_to_32 0.50 X

P000-P255 0.60 0.60

D00-D07 0.70 0.70

CTL01-CTL32 1.40 1.80

User Manual Appendix F
GFK-1742F Jan 2020

Updating Firmware in the DSM314 458

Appendix F: Updating Firmware in the
DSM314

The DSM314 operating firmware is stored in on-board FLASH memory. The Winloader

update utility requires Windows 95, Windows NT, or Windows 98, or Windows 2000. The

hardware required to run these operating systems should suffice to also run Winloader.

Winloader requires about 500Kbytes of hard disk space.

The DOS-based PC Loader utility controls downloading the new firmware from the floppy to

the DSM314 FLASH memory. PC Loader requires an IBM AT/PC compatible computer with

at least 640K RAM, one floppy drive, MS-DOS 3.3 (or higher), and one RS-232 serial port. In

order to run this utility within an MS-DOS box under Windows® 3.1, Windows 95 or

Windows NT, the processor should be at least a Pentium 133. If not, the computer should

be rebooted into MS-DOS mode. PC Loader functions optimally with a hard drive with at

least 1 MB available space.

 WARNING

The user MUST determine that the PC is connected to a DSM (and not a Host Controller CPU

or other module that supports FLASH firmware upgrades) before entering Boot mode.

Failure to do so can cause loss of Host Controller CPU Program and Configuration.

To Install the New Firmware, Perform the Following Steps:

1. Save or back up any programs or data resident in the module before performing the

update function.

2. Place the Host Controller in STOP/NOIO Mode. (Clear any faults.)

3. Ensure that the module’s SNP serial port baud rate is set to 19200 baud.

4. Using a Station Manager to PC cable, IC693CBL316, connect the appropriate serial

port of your computer (master) to the DSM314 module to be updated (slave).

User Manual Appendix F
GFK-1742F Jan 2020

Updating Firmware in the DSM314 459

F-1 Windows Update (for Windows

95/NT/98/2000)

Note: This section only applies to those using the Winloader update software with Windows 95, NT, 98
or 2000. If using the DOS operating system, see the section “DOS Update.”

1. Insert a labeled floppy disk in drive A: or B. Ensure that the floppy is not write

protected. Run the self-extracting archive specifying drive A: or B: as the destination

when prompted with "Unzip to folder".

2. Invoke the Winloader software package by double clicking on its icon located in

drive A: or B: (depending on the drive designation for the 3.5” floppy disk) in

Windows Explorer or simply execute it by going to the start menu and selecting RUN.

In the RUN window type A (or B): winloader.exe.

3. Begin storing firmware by single clicking the “Update” button.

4. Upon completion of the update a window will “pop up” indicating the status of the

update. If the update was successful, power cycle the Host Controller and indicate

that another device is NOT to be updated by left clicking on “No”. If not successful,

consult the on-line help for additional information.

F-2 DOS Update

Note: This section only applies to those running the DOS Loader update program from DOS. For those

using Windows software, refer to “Windows Update.”

1. Insert a labeled floppy disk in drive A: or B: Ensure that the floppy is not write

protected. Run the self-extracting archive specifying drive A: or B: as the destination

when prompted with “Unzip to folder:”.

2. At the C:\> prompt, type A: install (or B: install if your floppy drive is B:). The install

program will copy several files to the hard drive then invoke the PC Loader. Install

can also be run from the floppy drive directly if there is not enough space on the hard

drive. To run from the floppy, type install at the A:\> or B:\> prompt.

3. From the main menu, press the F3 key to configure the correct serial port if the cable

is not connected to COM1. Press the TAB key to toggle through the options and

ENTER to accept the displayed choice.

4. From the main menu, press the F1 key to attach to the DSM312 slave device.

5. Once the slave device is attached, the boot mode menu will appear - press F1 to

enter BOOT MODE and press the ‘Y’ key to confirm the operation. The STAT and CFG

LED’s on the front of the module should now be flashing in unison.

6. Once in boot mode, press the F1 key to download the new firmware.

7. Press the Y key to confirm the operation. The download should take about 4

minutes. If the download fails, refer below to Restarting An Interrupted Firmware

Upgrade.

User Manual Appendix F
GFK-1742F Jan 2020

Updating Firmware in the DSM314 460

8. When the download is complete, the PC loader will instruct you to power cycle your

module. At this time, power cycle the module. If the module is installed in an

expansion or remote rack, it is necessary to also power-cycle the main rack.

9. Label the unit with the installed firmware version. If the firmware is Beta or an

Engineering Release, indicate so on the label.

F-3 Restarting an Interrupted Firmware Upgrade
A. Connect all cables as described in step 4 of the procedure above.

B. Power cycle the rack containing the module. If a partial or erroneous download was

performed, the module will power up with the STAT and CFG LED’s on the module

flashing in unison.

C. If you are still running the PC Loader or Winloader program on your PC, skip to step

D below; otherwise, follow steps 5 and 6 above.

D. Follow step 7 above. Note that you will automatically be placed in BOOT MODE. E.

Follow steps 9 through 12 above.

E. If the update still fails, repeat the process with a lower baud rate.

F. Label your unit with the installed firmware version.

MS-MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft

Corporation; Pentium is a trademark of Intel Corporation; IBM-AT and IBM-PC are registered

trademarks of International Business Machines Corporation.

User Manual Appendix G
GFK-1742F Jan 2020

Strobe Accuracy Calculations 461

Appendix G: Strobe Accuracy Calculations
In general the accuracy of the strobe position value can be expressed as +/- 2 counts with an

additional variance of 10 microseconds. However, the actual accuracy of the strobe position

value may be better than that depending upon axis configuration, motor acceleration

during a strobe event, and the number of counts per revolution of the encoder used. The

first consideration is whether the axis configuration is Digital or Analog.

G-1 Analog Mode
In Analog mode, when a strobe event occurs, the quadrature counter value is latched into a

holding register immediately. This means that the position capture inaccuracies are based

primarily on the input filtering and sampling delay for the strobe input which can total up to

10 microseconds (or the number of counts that can occur in 10 microseconds). Note that

the value may be one count off based on when the strobe event occurred in relation to when

the count value changed.

G-2 Digital Mode
In Digital mode the encoder is read as serial data. Because this data is only acquired once

every 250 microseconds, latching the position value read from the encoder will only allow

an accuracy of 250 microseconds. To overcome this limitation, the strobe event is time

stamped in relation to the last encoder position reading that occurred within the DSM314.

This value is used to estimate the axis position at the instant that the strobe event occurred

based on the actual servo axis velocity at the time of the strobe. The velocity used for the

calculation is derived from the difference in the two encoder position readings around the

strobe event (see the formula below).

Therefore, changes in velocity (i.e. acceleration or deceleration of the motor) between

position samples are not taken into account thus causing inaccuracies in the captured

strobe position value. For strobe events that occur during when velocity is constant during

the sampling period, the interpolation algorithm will be accurate to within one count and

the position capture inaccuracy will be primarily determined by the filtering and sampling

delays.

The following example can be used to calculate the worst case inaccuracies due to

acceleration given a particular servo motor:

User Manual Appendix G
GFK-1742F Jan 2020

Strobe Accuracy Calculations 462

Given the following values/constant for this example:

Encoder Resolution = 8192 cnts/rev

A = Acceleration/deceleration during the strobe event which is 250,000,000 cnts/sec2

(assumed to be constant over the entire 250μs period; Larger acceleration values will

increase the amount of error in the calculation)

Tp = Position sampling period which is 250 microseconds

VI = Initial velocity just before the strobe event which will be 0 for this example.

The change in the number of encoder counts (Cnts) for a given amount of time (t) can be

calculated using the following formula:

Pact = VI t + ½ A t2

Therefore the total number of counts to occur during the sampling period for this example

is approximately 8 counts (actual calculated values is 7.8125) or 0.343 degrees of motor

rotation.

The average velocity for the sample period given the change in position would be as follows:

The following formula can be used to estimate the strobe position using the velocity derived

above:

Pest = VI t + Vavg t

Therefore, the error between the estimated strobe position and the actual strobe position

is as follows:

Error = Pact - Pest

The graph below contains plots of the actual position, the estimated position, and the

resulting strobe position count error for the 250-microsecond sample period. The graph

shows that the greatest count error occurs in the middle (i.e. at 125 microseconds) of the

period.

User Manual Appendix G
GFK-1742F Jan 2020

Strobe Accuracy Calculations 463

Figure 219: Example axis position capture error due to acceleration

Since the initial velocity is equal to 0, the formula for calculating Pact can be manipulated to

determine the time that the count actually occurred at (Tact) as follows:

Likewise, the formula for estimating the strobe position (Pest) can be solved for time (Test) as

well (assuming that the initial velocity is 0):

Test = Pest / Vavg

Using these formulas, the difference in time between when the strobe occurred and when

the reported count occurred (i.e. the effective delay) can be calculated as follows:

Effective Delay = Test - Tact

The effective delay for the maximum strobe position error (i.e. at 125 microseconds) is equal

to -62.5 microsecond. This value is negative because the estimated/reported strobe

position occurred prior to the actual position when the strobe event happened. The

following graph represents the effective delay that would be seen across the change in

position for the sampling period in this example.

User Manual Appendix G
GFK-1742F Jan 2020

Strobe Accuracy Calculations 464

Figure 220: Effective response time delay

Therefore, in the example above, the worst-case error due to acceleration/deceleration

can be expressed as +/- 0.086 degrees (approximately 2 counts) of position or as 62.5

microseconds of delay (given that the initial velocity is 0). Note that the DSM cannot deal

with fractional units and therefore the error will be rounded to the nearest count or user

unit.

The formulas for determining the strobe error due to acceleration/deceleration on a

Digital axis are as follows:

Counts_of_error =

Effective_delay =

Where:

A = Acceleration/deceleration during the strobe event

Tp = Position sampling period which is 250 microseconds

VI = Velocity just before the strobe

Note that the formulas above assume constant acceleration throughout the sampling

period. The formulas for determining the error for the cases where acceleration is not

constant during the sampling period are too complex for the context of this manual.

User Manual Appendix G
GFK-1742F Jan 2020

Strobe Accuracy Calculations 465

Note that an additional error as much as 10 microseconds (or the number of degrees or

position counts that can occur in 10 microseconds) may also be seen due to input

filtering/sampling delays in the hardware.

 WARNING

Note that user wiring and the type of device used for the strobe input may also cause

inaccuracies in the strobe value.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 466

Appendix H: Using VersaPro with the
DSM314

The examples shown in this chapter are specific to the VersaPro programming software.

Users of Machine Edition software should refer to other chapters in this manual and the on-

line help for instructions on configuring and programming the DSM314 controller.

H-1 Getting Started

Note: VersaPro Version 1.1 or later is required for use with the DSM314.

This document discusses how to use the VersaPro software to access the DSM314

configuration, motion programming, and Local Logic programming screens. It does not tell

you specifically what values to configure, or what commands to use in motion or Local Logic

programs. That information is covered elsewhere in this manual. Additional VersaPro

information can be found in the VersaPro Programming Software User’s Guide, GFK-1670,

as well as in VersaPro’s on-line help.

H-1.1 Starting VersaPro
Double click the VersaPro icon on your Windows desktop to start the software running.

VersaPro will start with a blank screen called the “Workbench.”

Figure 221: VersaPro Startup Screen

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 467

• Before creating a file, check the Workbench default settings to make sure that Series

90-30 is the default PLC. To do this, click Tools on the Menu bar (see Figure 15-4),

then click the Options selection. The Options dialog box will appear, as shown next:

Figure 222: Checking the VersaPro Default Settings in the Tools/Options Dialog Box

• Make sure Series 90-30 is shown in the Default Hardware Configuration box, then

click the OK button.

• To open a folder, click File on the Menu bar, then either click Open Folder to open an

existing one, or click New Folder to create a new one. You can also import an existing

Series 90-30 folder that was originally created in Logicmaster or Control. See the

“Folder Operations” section of Chapter 2 in the VersaPro User’s Guide, GFK-1670 for

details. For this example, click New Folder. A New Folder Wizard dialog box will

appear as shown in the next figure.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 468

Figure 223: The New Folder Wizard Dialog Box

• Enter a name for your folder. Although you can use up to 255 characters to name

the folder, only the last 7 characters will be used as the folder name in the PLC. These

last 7 characters of the Folder Name are called the Folder Nickname. This being the

case, you may wish to carefully name your folder so that its nickname is meaningful.

For example, if your Folder Name is “Pumphouse_Number_1,” the Nickname stored

to the PLC is “umber_1” which may not convey the meaning you desire. Better

names might be something like “PHouse1” or “PH1.” Chapter 2 of the VersaPro

user’s manual (GFK-1670) has a section that explains the rules for creating Folder

Names, including which characters are allowed.

• You may also change the folder location path from the default path shown in the

Location field if you wish to store your folder in a different location. Also, there is a

Description field that allows you to enter up to 64 characters of description

information. When finished entering information in this dialog box, click the Finish

button. (If you wanted to import a Logicmaster or Control folder, you would click

Next, which would give you another dialog box with the import choices.) You will

now see the Main LD (Ladder Diagram) screen.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 469

Figure 224: VersaPro’s Main Ladder Diagram (LD) Screen

H-2 Starting the Configuration Process
The configurator is actually a separate program that you can launch from the Main screen

(shown in the previous figure). To begin, double click the Hardware Configuration icon

to launch the HWC (Hardware Configuration) program. The HWC screen may appear as a

window in or on top of the VersaPro Workbench, as shown below. If so, click the Expand

button to expand it to full size. (You may also have to click the Expand Button in the smaller

window to expand it also.)

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 470

Figure 225: The Hardware Configuration (HWC) Startup Screen

The Configuration Window will expand to its full size:

Figure 226: The Expanded Hardware Configuration Screen

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 471

H-3 Configuring the DSM314
The following information discusses configuring the DSM314. For configuring other

hardware, please refer to the VersaPro User’s Guide, GFK-1670, and the VersaPro on- line

help.

• With the Configuration window open, as shown in the previous figure, double click

the empty slot where the DSM314 is to be installed. You will see a Module Catalog

window appear with a list of module categories:

Figure 227: Module Catalog Widow for Hardware Configuration

• Click the Motion tab to access a list of motion module choices:

Figure 228: Motion Tab for Hardware Configuration

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 472

• Double click the IC693DSM314 or highlight it as shown and click the OK button. The

DSM314 will be added to the on-screen rack, and its Configuration window will

appear:

Figure 229: DSM314 Hardware Configuration Window

The figure above shows the DSM314 default configuration settings. Only 11 of the selection

tabs are displayed. Other tabs not shown will appear if their associated parameters are

selected. For details on individual configuration settings, refer to Chapter 4. Here is a

summary of the tabs:

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 473

Table 98: DSM314 Hardware Configuration Window Selection Tabs

Tab Name Description

Settings Contains PLC Reference assignments and lengths, DSM Axis setup, and other

global data.

SNP Port Setup for the DSM front panel SNP port (labeled COMM).

CTL Bits Configuration for 24 Control bits used inside the DSM.

Output Bits Configuration for the 8 DSM faceplate digital outputs.

Axis #1 Configuration of axis parameters such as Position Limits, Find Home Velocity,

and Jog Acceleration. Axis #2

Axis #3

Axis #4

Tuning #1 Configuration of servo loop tuning items such as Motor Type, Position Loop Time

Constants, and Velocity Feedforward parameters. Tuning #2

Tuning #3

Tuning #4

Advanced Allows user entry of custom tuning parameters for any axis.

Power

Consumption

Lists DSM power consumption required from the backplane supply (4.0 watts

plus encoder power).

• When finished configuring the module, click the DSM314 configuration window’s

close button (the button in the upper right corner of the configuration window with

an X) to return to the “Rack View.” At this point, your configuration settings are not

yet saved to disk. They only reside in your computer’s volatile RAM memory.

Saving Your Configuration Settings to Disk

• Click File on the Menu bar, then click Save on the drop-down File menu. The

configuration settings will be written to the applicable file in your program folder.

Once a file is saved, the Save selection on the Menu file becomes inactive (it changes

from black to a light green color). If you make any further changes to the

configuration, the Save selection on the File menu will return to its active state (and

its color will change back to black).

• After saving your configuration file, click File on the Menu bar, then click Exit to

return to the Main LD screen.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 474

H-4 Connecting to and Storing Your Configuration

to the PLC

Note: You cannot store your configuration file to the PLC from within the configurator program. You
must be on VersaPro’s Main LD screen in order to store to the PLC.

Useful Tool Bar Icons

Several toolbar icons will be used in the next several steps to initiate such operations as

Connect, Stop the PLC, and Store. The following figure identifies these toolbar icons:

Figure 230: VersaPro Toolbar Icons

Connecting to the PLC

• On the main VersaPro screen, click the Connect icon on the Toolbar. The Connect

dialog box will appear.

Figure 231: The Connect Dialog Box

• If connecting directly to the PLC programmer port from the COM1 serial port on your

computer, use the DEFAULT settings shown in the figure above.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 475

• Make sure your serial cable is connected between your computer and the serial port

on the PLC. Then click the Connect button on the Connect dialog box to begin

connecting to the PLC. The message bar at the bottom of the VersaPro screen will

display a “Connecting” message with a horizontal bar graph. Once the connection is

made, the Status bar message will change from Disconnected to Connected.

Stopping the PLC

• The PLC must be stopped to store configuration files, so click the Stop icon on the

Tool bar. The Stop Execution dialog box will appear.

Figure 232: The Stop Execution Dialog Box

• Click Yes to stop the PLC. The Status bar message at the bottom of the screen will

change from Run Enabled to Stop Disabled.

Store Operation

• Click the Store to PLC icon on the Tool bar. The Store Folder to PLC dialog box will

appear.

Figure 233: The Store Folder to PLC Dialog Box

• Make sure the “Store hardware configuration and motion to PLC” item is checked as

shown, then click the OK button to store to the PLC. Once the store is complete, the

message on the Status bar at the bottom of the screen will change from Not Equal

to Equal.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 476

H-5 Creating a Motion Program

H-5.1 Accessing the Motion Editor Screen
Both the Motion Editor and Local Logic Editor are accessed from the VersaPro Folder

Browser window. However, once created and saved, motion programs and Local Logic

programs become part of the PLC CPU Hardware Configuration and are Stored to the PLC

with the other configuration information.

• On the Main LD screen, click File on the Menu bar, then select New Motion. Then, on

the side menu, click Motion Program (see next figure).

Figure 234: Creating a New Motion Program from the File Menu

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 477

• The Create New Motion Program dialog box will appear.

Figure 235: The Create New Motion Program Dialog Box

• Enter the motion program Name and Description, then click the OK button (leave

the Motion Module Type box set at its default DSM314 setting). A window for the

new motion program block will open. As shown in the next figure, the window title

is based upon the folder name, Test102 in this case, and motion program name,

Part1 in this case. Notice also in the next figure that an icon for the new motion

program, called “Part1 – MP” (Motion Program), appears in the Folder Browser

window.

Figure 236: A New Motion Editor Window

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 478

• The text-based motion programs and subroutines are created in the Motion Editor

window, as shown in the following figure. Up to 10 motion programs and 40

subroutines, separated by their identifying headers (such as “PROGRAM 1 MULTI-

AXIS”), are programmed in the same window and are stored in the same file. Details

on motion program commands and syntax are covered in Chapter 7.

Figure 237: Motion Editor Window with Programmed Code

H-5.2 Saving your Motion Program
• When ready to save your motion program/subroutine file to your computer’s hard

disk, either click the Save icon on the tool bar (looks like a floppy diskette), or click

File from the Menu bar and click Save.

H-5.3 Storing your Motion Programs and Subroutines to the
PLC
Since the Motion Program/Subroutine file is considered part of the Configuration file group,

use the procedure under the heading “Connecting to and Storing Your Configuration to the

PLC” on page 473.

H-5.4 Printing a Hardcopy of your Motion Programs and
Subroutines
There are two print selections on the File menu: Print and Print Report.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 479

Print

• This item describes how to print your entire motion program file (block). While the

Motion Editor is active, click File on the Menu bar and select Print. The Printer dialog

box will display. Make any desired printer setup changes, then click the OK button.

Figure 238: Print Dialog Box

• This item describes how to print just a selected portion of your motion

program/subroutine file. In the Motion Editor window, use your mouse to select the

portion you wish to print, click File on the Menu bar, then select Print. In the Print

dialog box (shown above), make sure the Selection radio button in the Print range

section is selected (has a dot in the middle). Click the OK button.

Print Report

• To print all motion program blocks (if you have more than one) as part of a report

with the other information in the folder, click File on the Menu bar and select Print

Report. The Print Report dialog box will appear. Click the Blocks checkbox on the

Print Report dialog box. Make sure the All radio button is selected. (You can also

select other items and features for the report such as Table of Contents, Cross

References, Variables, etc.) Click the OK button to start printing. Motion program,

Local Logic, and Ladder Diagram blocks will be printed as part of this report.

• To print only selected blocks, highlight them in the Folder Browser window. Click File

on the Menu bar and select Print Report. Click the Blocks checkbox, then choose the

Selected radio button. This limits the reports to only those blocks that you have

highlighted in the Folder Browser window.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 480

Figure 239: The Print Report Dialog Box

H-6 Creating a Local Logic Program
Both the Motion Editor and Local Logic Editor are accessed from VersaPro’s Folder Browser

window. However, once created and saved, motion programs and Local Logic programs

become part of the PLC CPU Hardware Configuration and are Stored to the PLC with the

other configuration information.

• On the Main LD screen, click File on the Menu bar, then select New Motion. Then, on

the side menu, click Local Logic Program.

Figure 240: Creating a New Local Logic Program

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 481

The Create New Local Logic dialog box will appear.

Figure 241: Create New Local Logic Dialog Box

• Type the Local Logic program Name and Description, then click the OK button (leave

the Motion Module Type box set at its default DSM314 setting). A window for the

new Local Logic program block will open. As shown in the next figure, the window

title is based upon both the folder name, Test102 in this case, and Local Logic

program name, Part1LL in this case. The Local Logic program in this example could

not be called “Part1” because that name had already been used as the Motion

Program block name. Notice also in the next figure that an icon for the new motion

program, called “Part1LL – LL” (Local Logic), appears in the Folder Browser window

on the right side of the screen.

Figure 242: New Local Logic Program Window

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 482

The text-based Local Logic program is created the left window (Local Logic Editor window).

Details on Local Logic commands and syntax are covered in Chapters 10—14.

Saving your Local Logic Program

When ready to save your Local Logic file to your computer’s hard disk, either click the Save

icon on the tool bar (looks like a floppy diskette), or click File from the Menu bar and click

Save.

Storing your Local Logic Program to the PLC

Since the Local Logic file is considered part of the Configuration file group, use the

procedure under the heading “Connecting to and Storing Your Configuration to the PLC,”

documented earlier in this appendix.

Printing a Hardcopy of your Local Logic Program

There are two print selections on the File menu: Print and Print Report.

Print:

• Printing your entire Local Logic file (block): While the Local Logic Editor is active, click

File on the Menu bar and select Print. The Printer dialog box will display. Make any

desired printer setup changes, then click the OK button.

Figure 243: Print Dialog Box

• Printing just a selected portion of your Local Logic file: In the Local Logic Editor

window, use your mouse to select the portion you wish to print, click File on the

Menu bar, then select Print. In the Print dialog box (shown above), make sure the

Selection radio button in the Print range section is selected (has a dot in the middle).

Click the OK button.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 483

Print Report:

• To print all Local Logic blocks as part of a report with the other information in the

folder, click File on the Menu bar and select Print Report. The Print Report dialog box

will appear. Click the Blocks checkbox on the Print Report dialog box. Make sure the

All radio button is selected. (You can also select other items and features for the

report such as Table of Contents, Cross References, Variables, etc.) Click the OK

button to begin printing. Motion program, Local Logic, and Ladder Diagram blocks

will be printed as part of this report.

• To print only selected Local Logic blocks as part of a report, highlight the desired

Local Logic blocks in the Folder Browser window. Click File on the Menu bar and

select Print Report. Click the Blocks checkbox, then choose the Selected radio

button. This limits the reports to only those blocks that you have highlighted in the

Folder Browser window. See the next figure for an example of this.

Figure 244: The Print Report Dialog Box

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 484

H-6.1 Checking Local Logic Syntax
To check the language syntax in VersaPro, select Folder from the main menu, then the

submenu Check Block ‘LLExample’. This causes the syntax check routines to run on the

specified Local Logic program. Note: To check all the blocks within the folder, select Check

All. (Figure 245.)

Figure 245: LLExample Syntax Check Command

Checking the blocks causes the information window to appear if it was not previously

displayed. Note the Information window can be toggled on and off by pressing the

information toolbar icon.

The information window displays the output of the syntax check operation. If the sample

program has been entered correctly, you should receive a message indicating zero errors

and zero warnings.

If the information window indicates a syntax error has occurred, you can scroll the

information window to the line that contains the error message. While the information

window has focus, double click the error message. This causes the editor window to

automatically go to the line within the program that caused this error. For example, if in the

example program you incorrectly typed “First_Local_Logic_Sweep” as

“First_Local_Logic_Swee” a syntax error will be generated. As follows:

You can then go to the error message in the information window and double click the line.

The Local Logic editor automatically goes to the beginning of the line that caused the error

message so the user can fix the error.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 485

If you are actively editing a local logic program and want to find out your approximate line

number, click the vertical scrollbar on the right side of the local logic editor. It displays the

line number of the line at the top of the window. If the cursor is several lines below the top

of the window, either scroll the window until the current line is at the top of the window or

count down the number of lines from the top and add them to the current line number.

Figure 246: LLExample Syntax Check Failure

Chapter 12 contains details and corrective actions for syntax errors and warnings.

H-6.2 Viewing the Local Logic Variable Table
The Local Logic Variable Table appears in the Information Window area of the screen and

contains information on the variables used in your Local Logic program. To use this feature,

a Local Logic block must exist. If none exist, create a new one. To display the table, click View

on the Menu bar, and select Local Logic Variable Table from the dropdown menu, shown in

the following figure:

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 486

Figure 247: Selecting the Local Logic Variable Table from the View Menu

Once the Local Logic Variable Table appears near the bottom of the VersaPro screen, you

can drag its top border or column borders to size them to your preference. See the next

figure.

Figure 248: View Showing Local Logic Variable Table near Bottom of Screen

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 487

This table is useful when creating a Local Logic program because it allows you to copy and

paste variable names, such as “Actual_Position_1,” into your program.

H-7 Creating a Cam Block
For information about Cam operation, refer to chapter 15.

Basic Steps

1. Open the project folder or create a new one

2. Create a CAM block

3. Create a CAM profile

4. Link the CAM profile to the CAM block

5. Configure the CAM profile

6. Specify the CAM Type

7. Specify the Correction Property

8. Save the CAM profile

9. Generate motion and Local Logic programs

10. Set up hardware configuration in the configuration/programming software

11. Execute (test) the application

Step 1: Create a Project

For details on creating a project, refer to the on-line help or the software user’s manual.

VersaPro™ Programming Software User’s Guide, GFK-1970

Step 2: Create a CAM Block Using the CAM Editor

The CAM editor is integrated into the VersaPro environment. The editor allows you to easily

create, edit, store, and download CAM blocks. To create a CAM block, you must open or

create a new VersaPro folder (see Step 1). Refer to the VersaPro User’s Manual, GFK-1670

for how to create or open a folder. Once the VersaPro folder is open, select the File menu

selection, then the New Motion menu selection, followed by the CAM Program… menu

selection. (Figure 249)

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 488

Figure 249: Create CAM Program

A “Create New Program” dialog box appears. Give the CAM block a name and an optional

descriptive comment. At this time, the CAM feature is supported only on the DSM314

(release 2.0 or later). Therefore, the default selection for Motion Module Type should not be

changed. (Figure 250). The rules for naming a CAM block are:

• Only the characters A-Z, a-z, 0-9, and _ (underscore symbol) are allowed.

Consecutive underscores are not allowed.

• The block name must begin with a letter or underscore symbol.

• A block cannot have the same name as another block that exists in an open folder.

• A CAM block name may contain up to twenty characters.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 489

Figure 250: Create New CAM Program

Enter the data in the “Create New CAM Program” box, then click the OK button to create

the CAM Block. VersaPro launches the CAM editor program. (Figure 251)

Figure 251: Initial CAM Editor with InfoViewer Screen

The CAM Editor contains extensive on-line hypertext help. This manual only attempts to

introduce some of these concepts. It does not try to cover all the editor features, so it is

strongly suggested that you review the programming software’s on-line material.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 490

Step 3: Create a CAM Profile

The next step is to create a simple CAM profile in the CAM editor. The CAM Editor has a CAM

profile library that is created by the user. The CAM profiles within the library are then linked

to the CAM blocks. Additional information on this interlinking is contained within the on-

line help. For this example, a profile must first be created in the library. One method to

perform this step is to right-click the “CAM Profiles” icon in the Navigator window. The

short-cut menu appears. Select New Profile as shown in Figure 252.

Figure 252: Create New CAM Profile

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 491

This will insert a new profile into the library named “profile1” as seen in Figure 253.

Figure 253: New Profile Creation

You can then rename this profile to a name more suitable to the application if desired. The

naming rules are:

• Any alpha-numeric character or the underscore (_) symbol may be used.

• The first character in a profile name must be a letter.

• A profile name cannot be more than 20 characters long.

• A profile is referenced by name in a VersaPro motion program. NOTE: VersaPro is not

case-sensitive when referencing a profile name.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 492

One method to rename the profile is to right-click the profile name in the Navigator window

and choose Rename Profile (Figure 254) from the short-cut menu. Type a name for the

profile and press ENTER to finish. The profile and any CAM profile links to it are renamed.

For this example, the profile is renamed to ExCamProfile. Refer to the on-line help for

additional information.

Figure 254: Rename Profile

Step 4: Link the CAM Profile to the CAM Block

• CAM Profiles must be linked to their associated CAM block. A CAM block can contain

numerous CAM profiles. The DSM has two limits that affect the number of profiles.

The maximum CAM block size is 50K, and the maximum number of linked profiles

for an individual block is 100. The CAM Profile library is only limited by available disk

space on the host computer. The CAM block is linked to the DSM via the CAM Block

entry in Hardware configuration.

Although there is more than one way to link a CAM profile to a CAM block, the easiest

method is simply to drag and drop the desired CAM profile onto the applicable CAM

block. The result is shown in the next figure.

Note: VersaPro limits the download block total size (Motion, Local Logic, and CAM combined) to 32K.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 493

Figure 255: Linking a Profile to a CAM Block

Step 5: Configure CAM Profile Data Points

Once these operations are complete, you must configure the CAM profile. The CAM profile

is a relationship between the master position and the slave position. A CAM profile is

composed of a series of Points. Each point is defined by two coordinates. In the graphical

representation, the Master coordinate represents the horizontal axis and the Slave

coordinate represents the vertical axis, as shown in the next figure.

Begin by double-clicking the profile to open it in the Profile Editor window (see next figure),

which has two editors:

• The Table Editor is similar to a spreadsheet. In the table, each point has its own row

with two columns, one for the Master position and one for the corresponding Slave

position. When a new profile is opened, there are, by default, only two points, a start

point and an end point. The start point is the top point of the table and the end point

is at the bottom.

• To edit points with the Graphical Editor, click the point on the graph and drag it to

the desire location. The point data in the table editor will update to the new position.

To perform other tasks in the graphical editor, right-click in the graph and select the

applicable task from the short-cut menu.

The next step is to edit the end point (the bottom point in the table) for the Master and

Slave. In the Table Editor, click in the end point’s Master column and enter the value 50000;

then click in the end point’s Slave column and enter the value 0. (NOTE: As points are added

or changed in the Table Editor, the graph in the Graphical Editor will update accordingly.)

Next, insert an additional point into the Editor table. Right-click in the Master column of the

end point and choose Insert Point from the short-cut menu (shown it the next figure). A new

row is added above the end point row, specifying a new point with master and slave values,

by default, midway (25000 and 0, respectively) between the values of the two existing

adjacent (above and below) points. Change the values for this point to 47500 for the Master

and 11000 for the Slave. To change a point value, click it, type in the new number, then

either press the Enter key, or click outside of the table.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 494

To change the Curve-Fit order, click the Curve-Fit column, then select the Curve-Fit Order in

the Property Inspector window. Also, a profile can be split into multiple sections or multiple

sections merged into one by right clicking on the Curve-Fit display and choosing from the

short-cut menu.

Note: A CAM profile is limited to 400 points if it contains second or third order sectors. A CAM profile is
limited to 5000 points if it only contains first order sectors.

Figure 256: Inserting a Point in the Profile Editor Window

Since the Slave Position end point is the same value (0) as the initial Slave Position point, this

CAM meets the requirements for a Linear Cyclic CAM. (If desired, refer to Section 2 for more

information on the different CAM types.) Note that the CAM Editor has several “Smart” edit

fields that will ONLY display the choices that are valid for a given data set. For example, since

a requirement for a Linear Cyclic CAM is that the Slave Position start point and Slave Position

end point are the same, the editor only allows the Linear Cyclic CAM choice if these criteria

is met.

Next, insert a new point into the profile and then edit the point. The point can be edited

either in the profile table or graphically on the plot. Insert the point as shown above and in

Figure 47HH-9 and Figure 48HH-10 by right-clicking the point below the insertion position

and selecting Insert Point from the menu. Then change the default values to 2500 for the

Master and 10000 for the Slave.

Figure 257: CAM Profile Table Data

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 495

Figure 258: CAM Editor Example

There are numerous other features in the editor. These include being able to define

additional sectors that each have a different curve fit method. These editor features are

discussed in the programming software’s on-line help. Please reference this source for

additional information.

Step 6: Specify the CAM Type

For this example, the CAM will be Linear Cyclic, as discussed previously. Use the following

procedure:

• In the Project tab of the Navigator, right-click a CAM profile. The short-cut menu

appears.

• From the short-cut menu, choose Properties. The Inspector opens showing the CAM

profile's properties.

• In the Inspector, click the arrow in the CAM Type field. The CAM Type drop-down list

appears.

• Choose ‘Linear Cyclic CAM’ from the list (Figure 289).

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 496

Figure 259: CAM Editor CAM Type Selection

Step 7: Specify the Correction Property

The last item to be specified for this example is the correction status. The Correction

property determines whether the motion module will permit an online correction for a

specific sector. A sector is a region of a CAM profile defined by at least two adjacent user-

defined points. The sector includes the user-defined points, the curve connecting them and

also up to, but not including, the first point defined for the next adjacent sector. The points

included in a given sector are denoted by the Sector Bracket, shown in the figure above.

Each sector is assigned a curve-fit order number, also shown in the figure above. The

segments of the profile between user-defined points are defined by polynomials of the

curve-fit order specified. A unique polynomial is used to interpolate between each pair of

adjacent user-defined points. Although the actual polynomial coefficients can be different

for each segment, the curve-fit order is the same throughout the sector. A sector is

indicated in the CAM profile table as a bar spanning the user-defined Master Position values

included in the sector. Initially, all points defined in a profile are included in a single sector.

This single initial sector can be subdivided as required to facilitate smoothing a CAM profile.

When the Correction property is Enabled, the motion module reports a warning if there is a

velocity limit violation. When the Correction property is set to Disabled, the motion module

reports an error for these violations and stops the slave axis.

For this example, correction should be enabled. To enable correction, select the sector from

the CAM profile table by clicking it. This will cause the Inspector window to display the

sector properties and allow them to be edited. Select the Correction drop down box and

choose Enabled (Figure 260).

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 497

Figure 260: CAM Editor Correction Enable

Step 8: Save the CAM Profile

At this point, a simple CAM profile is defined. To save the CAM blocks/profiles, select the

File main menu item followed by the Save Project submenu selection. You could also select

Exit, which causes an automatic save. The CAM editor has many more additional features

and functionality. Refer to the online documentation for a detailed description of these

features.

Step 9: Generate Motion and Local Logic Programs

The next items to be generated are a motion program and Local Logic program that will

work with this CAM profile. For this example, the logic must work with a DSM314 controlling

two axes. Axis #1 will be the slave, and Axis #2 will be the master. Therefore, there will be

two motion programs. The Axis 1 program, for the slave, will do some base initialization,

load the slave starting point for the given CAM profile, and then execute the CAM command.

The Axis 2 program, for the master source, is a simple program that will initialize and then

wait for the slave to be ready. It will then execute a series of moves. The program stops at

points described within the CAM master such that it is easy to verify that the slave axis is

correctly executing the CAM profile. This example also requires a Local Logic program. In

this example the Local Logic program serves a supervisory role over the CAM slave and CAM

master motion programs. Thus, the Local Logic synchronizes the two programs.

Consult the applicable chapters in this manual for additional details on these features. The

motion program and Local Logic programs for this example are provided in chapter 15.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 498

After completing the program entry, the resulting VersaPro screen should look similar to

the figure shown below (Figure 261).

Figure 261: CAM Example VersaPro Screens

Step 10: Set up Hardware Configuration in VersaPro

Change the following Settings tab parameters to the values shown. (Axis 1 and Axis 2 modes

are set to digital servo because this example uses the  is 0.5 digital servo.)

Axis 1 Mode Digital Servo

Axis 2 Mode Digital Servo

Local Logic Block Name CamExLLPgm

Cam Block Name CamBlk

Local Logic Mode Enabled

Note: This example uses only one DSM314.The DSM314 executes the files (CAM, Local Logic, and Motion
Program) pointed to by the configuration. Multiple DSM314 modules can run the same Local
Logic program, motion programs, or CAM Blocks. This allows you to have one source file for
multiple DSM314 modules. Note that this does not prevent DSM314s from executing different
programs.

The resulting Settings tab will be as shown in Figure 262.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 499

Figure 262: Hardware Configuration 90-30 rack DSM314 Settings Tab

In this example, the Local Logic program will control CTL01 and CTL08. Because CTL01 and

CTL08 are used to signal the Motion Programs, you must configure these CTL bits to be

under Local Logic Control. To do this, access the CTL Bits tab in the VersaPro hardware

configuration. Select “CTL01 Config” and choose Local_Logic_Controlled. Repeat the

procedure for CTL08. The resulting Hardware Configuration screens are shown in Figure

263.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 500

Figure 263: Hardware Configuration 90-30 rack DSM314 CTL Bits Tab

Since this example uses the Beta 0.5 digital servo, Axis 1 and Axis 2 Mode should be set to

Digital Servo.

The resulting Hardware Configuration screens are shown in Figure 264.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 501

Figure 264: Hardware Configuration DSM314 Settings Tab

You also need to indicate to Axis #1 that it will use the Axis #2 commanded position as its

CAM Master source. To do this select, the Axis #1 tab in hardware configuration. Go to the

CAM Master Source data entry field. From the drop-down box, select Cmd Position 2. This

will configure Axis #1 to use the Axis #2 commanded position as it’s CAM master source

(Figure 265). While in this tab, change the Home Mode: to Move + and OverTravel Switch to

Disabled.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 502

Figure 265: CAM Slave Master Source Selection

You also need to indicate to Axis #2, the rollover points for the Master axis position

reference. To do this, select the Axis #2 tab in hardware configuration. Input 49,999 into

the High Position Limit and 0 into the Low Position Limit data entry fields (Figure 266). Note

that since this is a Cyclic CAM, the master source high limit, by definition, must be one less

than the last point in the master data table. In this example, this is point 50,000. Thus, the

high limit is equal to 49,999. One way to envision this principle is to think of a Cyclic CAM

Master as a continuous circular strip where the first point on the strip is the same as the last

point on the strip. Thus, for this example, 50,000 is the same point as zero. While in this tab,

change the Home Mode: to Move + and OverTravel Switch to Disabled.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 503

Figure 266: CAM Master Axis Scaling

To finish the configuration, you need go to the Tuning#1 and Tuning #2 tabs and enter the

following data:

• Motor Type: 13

• Position Error Limit: 200 (Optional; see Configuration information for additional

information)

• In Position Zone: 20 (Optional; see Configuration information for additional

information)

• Pos Loop Time Const: 200

Note: (Based upon application/mechanics reference Chapter 4 and Appendix D)

• Velocity FeedForward: 9000

Note: (Based upon application/mechanics reference Chapter 4 and Appendix D)

• Vel Loop Gain: 32

Note: (Based upon inertia attached to motor. The typical Beta Demo case has an indicator
wheel attached that represents approximately this inertia to a Beta 0.5)

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 504

The resulting display should be similar to Figure 267.

Figure 267: Hardware Configuration Tuning#1 Tab

The Tuning tab for Axis #2 should also be set up as shown for Axis #1.

The link between the example CAM Block, Motion program, Local Logic program, and the

DSM314 module is now complete. Create any required PLC ladder logic programming, then

perform a Check All on the programs and download them to the PLC. Additional information

concerning the download operation is provided in the VersaPro manual, GFK-1670, or the

on-line help.

Step 11: Execute (Test) Your CAM-Based Motion Program

 WARNING

Before testing your application on actual machinery, you must first verify that it is safe to do

so. This includes insuring that all devices are securely mounted, all safety equipment is

installed and operational, and personnel in the area have been notified. Failure to address

all safety-related issues could result in injury to personnel and damage to equipment.

Once the download operation is complete, the module is ready to execute the CAM Blocks,

motion programs and Local Logic program. Use the following procedure:

1. Place the PLC in run mode.

2. Enable the servo drives. To enable Axis #1, toggle the %Q offset 18 bit. To enable

Axis #2, toggle The %Q offset 34 bit. Based upon the current module error status,

you may also have to initiate a clear error routine by toggling the %Q offset 0 bit.

3. Have both axes perform a find home routine by toggling the %Q offset 19 bit (find

home Axis #1) and the %Q offset 35 bit (find home Axis #2). At this point, both axes

will perform a find home cycle. Wait until this completes for both axes and the

Position Valid %I bits turn on. The Position Valid %I bit for Axis 1 is the %I offset 17 bit

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 505

(the 18th %I bit), and for Axis 2 is the %I offset 33 bit (the 34th %I bit). The resulting

display is shown in Figure 268.

Figure 268: RVTExample Screen

4. Enable Local Logic by setting the %Q offset 1 bit from the PLC. If there are no errors,

you can then execute the motion programs.

5. Execute Program 1 by toggling %Q offset 2 bit. The motor connected to Axis #1

should then begin to execute Motion Program #1.

6. Execute Program 2 by toggling %Q offset 3 bit. The motor connected to Axis #2

should begin to execute Motion Program #2.

7. The motors will execute the statements until they reach the first DWELL, where you

can visually verify that it followed the CAM profile correctly. The display should be

similar to Figure 269. Notice how the commanded position for Axis#2 equals 2500,

while the commanded position for the slave corresponds to the CAM table and has

the value 10,000.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 506

Figure 269: RVTExample Screen First Dwell

Once the dwell time is finished, the motors will continue executing the statements until they

reach the second DWELL where you can visually verify that it followed correctly. The display

should be similar to Figure 270. Notice how the commanded position for Axis#2 equals

47500, while the slave commanded position corresponds to the CAM table and has the

value 11,000.

User Manual Appendix H
GFK-1742F Jan 2020

Using VersaPro with the DSM314 507

Figure 270: RVTExample Screen Second Dwell

When the master axis reaches 50000 (47500 +2500), the CAM command will exit, the slave

axis will decelerate at the programmed acceleration rate and come to a halt, and both axes

will return to zero.

Details on the DSM314’s %AI, %AQ, %I, and %Q memory are found in Chapter 5.

User Manual

GFK-1742F

Jan 2020

Technical support & Contact Information

Home link: http://www.Emerson.com/Industrial-Automation-Controls

Knowledge Base: https://www.emerson.com/Industrial-Automation-Controls/support

Note: If the product is purchased through an Authorized Channel Partner, please contact the seller directly for any support.

Emerson reserves the right to modify or improve the designs or specifications of the products mentioned in this manual at any time without notice.
Emerson does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and
maintenance of any Emerson product remains solely with the purchaser.

© 2019 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. All
other marks are the property of their respective owners.

http://www.emerson.com/Industrial-Automation-Controls
https://www.emerson.com/Industrial-Automation-Controls/support

	Chapter 1: Product Overview
	1.1 Features of the Motion Mate DSM314
	1.1.1 High Performance
	1.1.2 Easy to Use
	1.1.3 Versatile I/O

	1.2 Section 1: Motion System Overview
	1.2.1 DSM314 Operation with a Host Controller
	Host Controller Data Latency and DSM314 Latencies
	Host Controller to DSM Data Transfers
	DSM314 Servo Loop Update Times
	DSM314 Position Strobes
	DSM314 Scan Time Contribution
	Software
	Operator Interfaces
	Servo Drive and Machine Interfaces

	1.3 Section 2: Overview of DSM314 Operation
	1.3.1 Standard Mode Operation
	Follower Mode Operation

	1.4 Section 3: (Series Servos (Digital Mode)
	1.4.1 (Series Integrated Digital Amplifier (SVU)
	(Series Servo Motors

	1.5 Section 4: (Series Servos (Digital Mode)
	1.5.1 (Series Digital Amplifiers
	(Series Servo Motors

	1.6 Section 5: SL Series Servos (Analog Velocity Mode)

	Chapter 2: System Overview
	2.1 Unpacking the System
	2.1.1 Unpacking the DSM314
	2.1.2 Unpacking the Digital Servo Amplifier
	2.1.3 Unpacking the Motor

	2.2 Assembling the Motion Mate DSM314 System
	2.2.1 General Guidelines
	2.2.2 Motion Mate DSM314 Connections
	2.2.3 Connecting the (Series SVU Digital Servo Amplifier
	2.2.4 Connecting the β Series SVU Digital Servo Amplifier
	HIROSE 20 Pin PCR Type Connector Pin Configuration
	HONDA 20 Pin PCR Type Connector Pin Configuration

	2.2.5 Installing and Wiring the DSM314 for Analog Mode
	2.2.6 Grounding the Motion Mate DSM314 Motion System

	2.3 Turning on the Motion Mate DSM314
	2.4 Connecting the Programmer to the Host Controller
	2.5 Machine Edition Configuration
	2.6 Storing Your Configuration to the Host Controller
	2.7 Alarms
	2.8 Configuration Settings
	2.9 Getting Help

	Chapter 3: Installing and Wiring the DSM314
	3.1 Hardware Description
	3.1.1 LED Indicators
	3.1.2 The DSM COMM (Serial Communications) Connector
	3.1.3 I/O Connectors
	3.1.4 Shield Ground Connection

	3.2 Installing the DSM314 Module
	3.3 I/O Wiring and Connections
	3.3.1 I/O Circuit Types
	3.3.2 Terminal Boards
	3.3.3 Digital Servo Axis Terminal Board - IC693ACC335
	Description
	Mounting Dimensions
	Converting From DIN-Rail Mounting to Panel Mounting

	3.3.4 Auxiliary Terminal Board - IC693ACC336
	Description and Mounting Dimensions
	Converting From DIN-Rail Mounting to Panel Mounting

	3.3.5 Cables
	I/O Cable Grounding
	DSM to (or (Series Digital Servo Amplifier – Signal Cable Grounding

	I/O Circuit Identifiers and Signal Names
	I/O Circuit Function and Pin Assignments
	Digital Servo Axis 1, 2 Circuit and Pin Assignments
	Analog Servo Axis 1-4 Circuit and Pin Assignments
	Aux Axis 2-4 Circuit and Pin Assignments

	I/O Connection Diagrams
	I/O Specifications
	Differential / Single Ended 5v Inputs
	Single Ended 5v Sink Input
	Optically Isolated 24v Source / Sink Inputs
	Single Ended 5v Inputs/Outputs
	5v Differential Outputs
	24v DC Optically Isolated Output
	Optically Isolated Enable Relay Output
	Differential +/- 10v Analog Inputs
	Single Ended +/- 10v Analog Output
	+5v Power

	Chapter 4: Configuration
	4.1 Connecting the Programmer to the Host Controller
	4.2 Rack/Slot Configuration
	4.3 Module Configuration
	4.3.1 Setting the Configuration Parameters
	4.3.2 Settings
	4.3.3 Serial Communications Port Configuration Data
	4.3.4 Control (CTL) Bits
	4.3.5 Output Bits
	4.3.6 Axis Configuration Data
	4.3.7 Tuning Data
	(Series Servo Motor
	(L Series Servo Motor
	(C Series Servo Motor
	(HV Series Servo Motor
	(M Series Servo Motor
	(Series Servo Motor
	(M Series Servo Motor

	4.3.8 Computing Data Limit Variables
	4.3.9 Advanced Tab Data
	4.3.10 Power Consumption Data

	Chapter 5: DSM314 to Host Controller Interface
	5.1 Section 1: %I Status Bits
	5.2 Section 2: %AI Status Words
	5.3 Section 3: %Q Discrete Commands
	5.4 Section 4: %AQ Immediate Commands

	Chapter 6: Non-Programmed Motion
	6.1 DSM314 Home Cycle
	6.1.1 Home Switch Mode
	6.1.2 Move+ and Move– Modes

	6.2 Jogging with the DSM314
	6.3 Move at Velocity Command
	6.4 Force Servo Velocity Command (DIGITAL Servos; Analog Torque Mode)
	6.5 Force Analog Output Command (ANALOG Velocity Interface Servos)
	6.6 Position Increment Commands
	6.7 Other Considerations

	Chapter 7: Programmed Motion
	7.1 Single-Axis Motion Programs and Subroutines
	7.2 Multi-Axis Motion Programs and Subroutines
	7.3 Motion Program Command Types
	7.4 Program Blocks and Motion Command Processing
	7.5 Prerequisites for Programmed Motion
	7.6 Conditions That Stop a Motion Program
	7.7 Motion Program Basics
	7.7.1 Motion Language Syntax and Commands
	White space
	Numeric Constants
	Comments
	Motion Program Key Words
	Variables
	Separators

	7.7.2 Motion Program Commands
	ACCEL
	Block Number
	CALL
	CMOVE
	DWELL
	ENDPROG
	ENDSUB
	JUMP
	LOAD
	PMOVE
	PROGRAM
	SUBROUTINE
	Sync Block
	VELOC
	WAIT

	7.7.3 Program and Subroutine Structure
	7.7.4 Command Usage Examples
	Absolute or Incremental Positioning
	Absolute Positioning
	Incremental Positioning

	Types of Acceleration
	Linear Acceleration
	S-Curve Acceleration

	7.7.5 Types of Programmed Move Commands
	Positioning Move (PMOVE)
	Continuous Move (CMOVE)
	Programmed Moves
	Example 1: Combining PMOVEs and CMOVEs
	Example 2: Changing the Acceleration Mode During a Profile
	Example 3: Not Enough Distance to Reach Programmed Velocity
	Example 4: Hanging the Move When the Distance Runs Out

	DWELL Command
	Example 5: DWELL

	Wait Command
	Subroutines
	Block Numbers and Jumps
	Unconditional Jumps
	Example 6: Unconditional Jump

	Conditional Jumps
	Conditional Jump Example 1:
	Conditional Jump Example 2:
	Conditional Jump Example 3:

	Jump Testing
	Example 7: Jump Testing

	Normal Stop Before JUMP
	Example 8: Normal Stop Before JUMP

	Jumping Without Stopping
	Example 9: JUMP Without Stopping

	Jump Stop
	Example 10: Jump Stop
	Example 11: Jump Followed by PMOVE

	S-CURVE Jumps
	S-CURVE Jumps after the Midpoint of Acceleration or Deceleration
	Example 12: S-CURVE - Jumping After the Midpoint of Acceleration or Deceleration
	S-CURVE Jumps before the Midpoint of Acceleration or Deceleration
	Example 13: S-CURVE - Jumping Before the Midpoint of Acceleration or Deceleration
	S-CURVE Jumps to a Higher Acceleration while Accelerating or a lower Deceleration while Decelerating
	Example 14: S-CURVE - Jumping to a Higher Velocity While Accelerating or Jumping to a Lower Velocity While Decelerating

	7.7.6 Other Programmed Motion Considerations
	Maximum Acceleration Time
	Example 15: Maximum Acceleration Time

	7.7.7 Feedhold with the DSM314
	Example 16: Feedhold

	7.7.8 Feedrate Override
	Example 17: Feedrate Override

	7.7.9 Multi-axis Programming
	Example 18: Multi-axis Programming

	7.7.10 Parameters (P0-P255) in the DSM314
	7.7.11 Calculating Acceleration, Velocity and Position Values
	Kinematic Equations
	Trapezoidal Velocity Profile Application Example
	Triangular Velocity Profiles
	Non-Linear or S-Curve Acceleration

	7.7.12 Motion Editor Error and Warning Messages
	Syntax Errors
	Semantic Errors
	Warnings
	Using Error Messages to Troubleshoot Motion Programs

	Chapter 8: Follower Motion
	8.1 Master Sources
	8.2 External Master Inputs
	8.2.1 Example 1: Following Axis 3 Actual Position Master Input

	8.3 Internal Master Axis Command Generators
	8.3.1 Example 2: Following an Internal Master command

	8.4 A:B Ratio
	8.4.1 Example 3: Sample A:B Ratios
	Example 4: Changing the A: B Ratio

	8.5 Velocity Clamping
	8.5.1 Example 5: Velocity Clamping

	8.6 Unidirectional Operation
	8.6.1 Example 9: Unidirectional Operation

	8.7 Enabling the Follower with External Input
	8.8 Disabling the Follower with External Input
	8.9 Follower Disable Action Configured for Incremental Position
	8.10 Follower Axis Acceleration Ramp Control
	8.10.1 Follower Mode Command Source and Connection Options

	Chapter 9: Combined Follower and Commanded Motion
	9.1 Example 1: Follower Motion Combined with Jog
	9.2 Follower Motion Combined with Motion Programs
	9.3 Example 2: Follower Motion Combined with Motion Program

	Chapter 10: Introduction to Local Logic Programming
	10.1 Local Logic Programming
	10.2 When to Use Local Logic Versus Ladder Logic
	10.3 Getting Started with Local Logic and Motion Programming
	10.3.1 Requirements
	10.3.2 Creating a Local Logic Program

	10.4 Local Logic Variable Table
	10.5 Connecting the Local Logic Editor to the DSM
	10.6 Building a Local Logic Program
	10.6.1 Creating a Local Logic Program
	Sample Local Logic Program

	10.6.2 Checking Local Logic Syntax
	10.6.3 Setting up Hardware Configuration for Local Logic

	10.7 Downloading a Local Logic Program
	10.8 Executing Your Local Logic Program
	10.9 Using the Motion Program Editor
	10.9.1 Creating a Motion Program
	10.9.2 Setting Motion Program Parameters in Hardware Configuration

	10.10 Executing Your Motion Program

	Chapter 11: Local Logic Tutorial
	11.1 Statements
	11.2 Comments
	11.3 Variables
	11.4 Operators
	11.4.1 Arithmetic Operators
	11.4.2 Relational Operators
	11.4.3 Bitwise Logical Operators

	11.5 Local Logic / Host Controller / Motion Program Communication
	11.6 Local Logic Programming Examples
	11.6.1 Torque Limiting Program Example
	11.6.2 Gain Scheduler Program Example
	11.6.3 Programmable Limit Switch Program Example
	11.6.4 Trigger Output Based Upon Position Program Example
	11.6.5 Windowing Strobes Program Example

	Chapter 12: Local Logic Language Syntax
	12.1 Syntactic Elements
	12.1.1 Numeric Constants
	12.1.2 Local Logic Variables
	12.1.3 Local Logic Statements
	Local Logic Assignment Statements
	Local Logic Conditional Statements

	12.1.4 Whitespace
	12.1.5 Comments
	12.1.6 PRAGMA Directive
	12.1.7 Local Logic Keywords and Operators

	12.2 Enabling and Disabling Local Logic
	12.3 Local Logic Outputs/Commands
	12.4 Local Logic Arithmetic Operators
	12.4.1 Operator +
	12.4.2 Operator -
	12.4.3 Operator *
	12.4.4 Operator MOD
	12.4.5 Function ABS

	12.5 Local Logic Bitwise Logical Operators
	12.5.1 Operator BWAND
	12.5.2 Operator BWOR
	12.5.3 Operator BWXOR
	12.5.4 Operator BWNOT

	12.6 Comparison Operators
	12.7 Local Logic Runtime Errors
	12.7.1 Overflow Status
	Divide By Zero
	Watchdog Timeout Warning / Error

	12.8 Local Logic Error Messages
	12.8.1 Local Logic Build Error Messages
	12.8.2 Local Logic Syntax Errors
	12.8.3 Local Logic Parse Errors
	Examples:

	12.8.4 Local Logic Parse Warnings
	12.8.5 Local Logic Download Error Messages
	12.8.6 Local Logic Runtime Errors

	Chapter 13: Local Logic Variables
	13.1 Local Logic Variable Types
	13.2 Local Logic System Variables
	13.2.1 First_Local_Logic_Sweep Variable
	13.2.2 Overflow Variable
	13.2.3 System_Halt Variable

	13.3 Double Precision 64 Bit Registers
	13.4 Local Logic User Data Table
	13.5 Digital Outputs / CTL Variables

	Chapter 14: Local Logic Configuration
	14.1 CTL Bit Configuration
	14.2 CTL bits CTL01-CTL32
	14.3 CTL01-CTL24 Bit Configuration Selections
	14.4 FBSA Function and CTL Bit Assignments
	14.5 Faceplate Output Bit Configuration

	Chapter 15: Using the Electronic CAM Feature
	15.1 Electronic CAM Overview
	15.2 Basic Cam Shapes/Definition
	15.3 CAM Syntax
	15.3.1 CAM Types
	Non-Cyclic CAM
	Linear Cyclic CAM
	Circular Cyclic CAM

	15.3.2 Interpolation and Smoothing
	Blending Sectors
	1st order to 1st order
	1st order to 2nd order
	2nd order to 1st order
	2nd order to 2nd order
	2nd order to 3rd order
	3rd order to 2nd order
	3rd order to 3rd order

	Boundary Conditions

	15.3.3 Interaction of Motion Programs with CAM
	15.3.4 CAM Command
	15.3.5 CAM-LOAD Command
	15.3.6 CAM-PHASE Command
	15.3.7 CAM and MOVE Instructions
	15.3.8 Time-Based CAM Motion
	15.3.9 CAM Scaling Editor and Hardware Configuration
	15.3.10 Synchronization of CAM Motion with External Events
	15.3.11 CAM-Specific DSM Error Codes

	15.4 Electronic Cam Programming Basics
	15.4.1 Requirements
	15.4.2 Introduction to Electronic Cam Programming
	Creating a CAM Application Example

	Appendix A: Error Reporting
	A-1 DSM314 Error Codes
	A-1.1 Module Status Code Word
	A-1.2 Axis Error Code Words
	A-1.3 Error Code Format
	A-1.4 Response Methods
	A-1.5 System Error Codes

	A-2 DSM Digital Servo Alarms (B0–BE)
	A-3 Troubleshooting Digital Servo Alarms
	A-4 LED Indicators

	Appendix B: DSM314 Communications Request Instructions
	B-1 Communications Request Overview
	B-1.1 Structure of the Communications Request
	B-1.2 Monitoring the Status Word
	Error Detection and Handling
	Verifying that the DSM Received Correct Data

	B-1.3 Operation of the Communications Request

	B-2 The COMM REQ Ladder Instruction
	B-3 The User Data Table (UDT) COMM REQ
	B-3.1 User Data Table COMM REQ Features and Usage Information
	B-3.2 The UDT COMM REQ Command Block
	B-3.3 User Data Table COMM REQ Example
	B-3.4 User Data Table COMM REQ Example

	B-4 The Parameter Load COMM REQ
	B-4.1 The Command Block
	B-4.2 DSM Parameter Load COMM REQ Example

	B-5 COMM REQ Ladder Logic Example

	Appendix C: Position Feedback Devices
	C-1 Digital Serial Encoder Modes
	C-2 Incremental Encoder Mode Considerations
	C-3 Absolute Encoder Mode Considerations
	C-3.1 Absolute Encoder - First Time Use or Use After Loss of Encoder Battery Power
	C-3.2 Absolute Encoder Mode - Position Initialization
	Find Home Cycle - Absolute Encoder Mode
	Set Position Command - Absolute Encoder Mode

	C-3.3 Absolute Encoder Mode - DSM314 Power-Up
	C-3.4 Incremental Quadrature Encoder

	Appendix D: Tuning Digital and Analog Servo Systems
	D-1 Start-Up and Tuning Information for Digital Servo Systems
	D-1.1 Validating Home Switch, Over Travel Inputs and Motor direction
	Digital Servo System Startup Troubleshooting Hints

	D-1.2 Tuning a Digital Servo Drive
	Tuning Requirements
	Tuning the DIGITAL MODE Velocity Loop
	Method #1:
	Method #2:
	Equation 1
	Sample DIGITAL MODE Velocity Loop Tuning Session
	Tuning the Position Loop

	D-2 Start-Up and Tuning Information for Analog Servo Systems
	D-2.1 Analog Mode Velocity Interface System Startup Procedures
	Startup Procedures

	D-2.2 Analog Mode Torque Interface System Startup Procedures
	Startup Procedures
	Tuning the Torque Mode Velocity Loop
	Method #1:
	Method #2:
	Equation 2
	Sample Velocity Loop Tuning Session

	D-3 System Troubleshooting Hints (Analog Mode)

	Appendix E: Local Logic Execution Time
	E-1 Local Logic Execution Timing Data
	E-2 Example 1
	E-3 Example 2

	Appendix F: Updating Firmware in the DSM314
	F-1 Windows Update (for Windows 95/NT/98/2000)
	F-2 DOS Update
	F-3 Restarting an Interrupted Firmware Upgrade

	Appendix G: Strobe Accuracy Calculations
	G-1 Analog Mode
	G-2 Digital Mode

	Appendix H: Using VersaPro with the DSM314
	H-1 Getting Started
	H-1.1 Starting VersaPro

	H-2 Starting the Configuration Process
	H-3 Configuring the DSM314
	H-4 Connecting to and Storing Your Configuration to the PLC
	H-5 Creating a Motion Program
	H-5.1 Accessing the Motion Editor Screen
	H-5.2 Saving your Motion Program
	H-5.3 Storing your Motion Programs and Subroutines to the PLC
	H-5.4 Printing a Hardcopy of your Motion Programs and Subroutines
	Print
	Print Report

	H-6 Creating a Local Logic Program
	H-6.1 Checking Local Logic Syntax
	H-6.2 Viewing the Local Logic Variable Table

	H-7 Creating a Cam Block

